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44 ABSTRACT 

45 According to the fatty acid and headgroup compositions of the phospholipids (PL) from 

46 Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl- 

47 sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 

48 POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL 
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49 headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation 

50 Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were 

51 screened  using  two  models  (lipid  vesicles  in  solution  or  lipid  monolayers  at  air/liquid 

52 interface). Calcein leakage, surface pressure, ellipsometry, microscopy and  spectroscopy 

53 revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and 

54 POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed 

55 when  interacting with  POPA  monolayers  (i.e.  aggregation +  modification of  secondary 

56 structure from -helices to -sheets, characteristic of its amyloid aggregated form), which 

57 might be involved in the irreversible coagulation mechanism of Hevea rubber particles. 

58 

59 INTRODUCTION 

60 Hevea brasiliensis (Willd. Ex A. Juss) Müll. Arg (para rubber tree), a tropical plant 

61 belonging to the Euphorbiaceae family, is the only commercial source of natural rubber 

62 (NR). NR exhibits very specific properties that are not mimicked by synthetic rubbers such as 

63 low heat build-up and crystallization under strain. However, it also suffers from drawbacks, 

64 such as the variability of its properties. NR originates from the latex of H. brasiliensis tree, 

65 which is a colloidal suspension of rubber particles (RP) and lutoids in cytoplasmic serum. 

66 The  micrometric  and  spherical  RP  are  made  of  a  polyisoprene  core  surrounded  by  a 

67 lipid/protein biomembrane [1-4]. Interestingly, the RP from H. brasiliensis latex have a 

68 bimodal size distribution, with large rubber particles (LRP, diameter ~ 0.4–1.0 μm) and small 

69 rubber particles (SRP, diameter ~ 0.1–0.4 μm) [5-7]. When latex is processed into NR, it is 

70 not clear whether the RP retain their structure and/or composition in dry NR. Wu et al. used a 

71 super-resolution fluorescence imaging technique to characterize latex and NR samples, and 

72 they suggested that there is some sort of interaction between proteins and lipids in dry NR 

73 [8]. Therefore, a precise description of the RP membrane at latex stage is needed to better 

74 understand the interactions between polyisoprene chains, lipids and proteins in dry NR. This 

75 would help to better control the variability of NR quality and understand its structuration 

76 dynamics. 

77 Among the many proteins associated with H. brasiliensis RP [9], two abundant proteins 

78 are important for their role in rubber biosynthesis: Rubber Elongation Factor (REF) and 

79 Small Rubber Particle Protein (SRPP) [10-13]. These two hydrophobic proteins are found on 

80 the surface of RP [14]. Ten isoforms of SRPP (SRPP1–10) and eight isoforms of REF 

81 (REF1–8) have been identified in the almost complete H. brasiliensis genome (93.8%, 1.37 

82 Gb), but the expression of REF1 and SRPP1 genes prevails in latex [15]. Previously, we have 

83 carried out several studies to describe the organization/structure of REF1 and SRPP1 proteins 

84 at the surface of RP by studying lipid/protein interactions in Langmuir films. In this original 

85 approach, the  lipid/protein membrane surrounding the  poly(cis-1,4-isoprene) core of  the 

86 rubber  particle  was  mimicked  by  a  lipid  Langmuir  monolayer  formed  at  the  air/water 

87 interface [16] and interacting with REF1 and SRPP1 proteins. We first applied this strategy to 

88 study the interactions of recombinant REF1 and SRPP1 proteins with synthetic lipids [17, 
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18]. We later investigated the interactions of both proteins with native lipids extracted from 

latex and separated into three types: neutral lipids (NL), glycolipids (GL) and phospholipids 

(PL) [19]. It was shown that both REF1 and SRPP1 proteins have different behaviors 

depending on the type of lipid they bind to. In particular, while the secondary structure of 

REF1 in -helices is maintained when interacting with native PL and GL, it switches to - 

sheets in the presence of native NL. 

Plant lipids are complex mixtures of different lipid species [20]. This complexity is also 

observed in the latex of H. brasiliensis, where the presence of NL, GL and PL was reported 

[21-23]. PL of H. brasiliensis latex were shown to contain different species with various 

headgroups and esterified acyl chains [22]. As structural lipids of the RP membrane [2, 24], 

PL interact with rubber proteins REF1 and SRPP1 at the RP membrane. Various headgroup 

types and fatty acyl chain lengths were identified within PL family [22]. This diversity in 

headgroup and fatty acyl chain was shown to impact the PL-binding ability of TbSRPP1-3, 

three isoforms of SRPP from T. brevicorniculatum, another rubber-producing plant [25]. The 

screening of the affinity of TbSRPPs for different PL revealed a preference for negatively 

charged headgroups and C18:2/C16:0 fatty acid chains. 

In this study, we investigated the interaction between synthetic PL and recombinant REF1 

or SRPP1 proteins. We determined the headgroup and fatty acid compositions of native PL 

from Hevea latex and we selected three synthetic PL (i.e. POPC, POPA, POPG). These three 

synthetic PL have exactly the same acyl chains (PO: 1-palmitoyl-2-oleoyl, C16:0/C18:1) but 

various headgroups (phosphocholine, phosphate and phosphoglycerol). Phosphocholine (PC) 

(zwitterionic) and phosphate (PA) (anionic) were chosen because of their important amount 

in Hevea latex. Anionic phosphoglycerol (PG) was also chosen, even though it is not found in 

latex, to investigate the effects of size (small POPA vs large POPG) and charge (zwitterionic 

POPC  vs  anionic  POPG)  of  the  headgroup.  We  performed  an  affinity  screening  to 

characterize the interactions of RP proteins with the selected synthetic PL. We used 

ellipsometry, BAM, PM-IRRAS and fluorescence (calcein leakage) to measure these 

interactions. The lipid headgroup was shown to have a strong impact on the behavior of both 

REF1 and SRPP1. REF1 and SRPP1 induced strong calcein leakage in POPA and POPG 

LUV. The strong interaction with POPA led to an aggregation of REF1 and formation of β- 

sheets, similar to its amyloid-like structure. This mechanism may be important when REF1 

interacts with lutoids, some intracellular organelles found in latex, as their membranes are 

enriched in phosphatidic acid [26]. It has been proposed that the interactions of REF1 with 

phosphatidic acid-enriched lutoid membranes might result in a switch of REF1 structure to its 

amyloid-aggregated  form,  which  would   be  involved  in  the  irreversible  coagulation 

mechanism of Hevea brasiliensis RP. 
 

 

EXPERIMENTAL SECTION 

1. Native phospholipids from Hevea latex 

Hevea brasiliensis rubber trees of certified RRIM600 clone planted in 2002 and tapped for 

the first time in 2009 (tapping system S/2, 2d/3) were selected from a plantation belonging to 

Visahakit Thai Rubber Co., Ltd., Chanthaburi, Thailand. The latex sampling details, the 

extraction and purification methods of PL and the determination of the lipid composition of 
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latex (total lipids, phospholipids, glycolipids, neutral lipids) have been described previously 

[19]. 
 

 

2. Commercial phospholipids 

Synthetic PL used for Langmuir film studies were from Avanti (USA): 1-palmitoyl-2- 

oleoyl-sn-glycero-3-phosphate (sodium salt) (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3- 

phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(sodium salt) (POPG). 

In addition, five PL were used as standards to determine the headgroup composition of 

native phospholipids of Hevea latex: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid 

(Larodan, Malmö, Sweden), L-α-phosphatidylinositol sodium salt from soybean (PI) (Sigma- 

Aldrich, USA), phosphatidylcholine from egg yolk (PC) (Sigma-Aldrich, USA), L-α- 

lysophosphatidylcholine from egg yolk (LPC) (Sigma-Aldrich, USA) and L-α- 

phosphatidylethanolamine from egg yolk (PE) (Sigma, USA). 
 

 

3. Fatty acid composition of native phospholipids of latex by GC-FID 

To obtain fatty acids from PL, around 20 mg of PL was saponified by mixing with 5 mL 

of a mixture of methanol/6M NaOH (9:1, v/v) and refluxed at 80 °C for 1.5 hours. After 

cooling, 10 mL of water was added and the unsaponifiable fraction was separated with 3 x 10 

mL of n-hexane. The fatty acid containing aqueous bottom phase was acidified with 0.6 mL 

of 6 M HCl (pH below 3) and the free fatty acids were extracted with 3  10 mL of n-hexane. 

After evaporation, the obtained total fatty acids were methylated by adding 5 mL of 2% of 

concentrated H2SO4 in methanol and refluxed at 80 °C for 1.5 hours and 0.5 mL of water was 

added once the solution was cooled down. The derived fatty acid methyl esters (FAME) were 

extracted with 3  5 mL of n-hexane and evaporated. The concentration of FAME was 

adjusted to 1 mg.mL-1 and injected to GC-FID. A Shimadzu GC17A gas chromatograph 

(Shimadzu Co., Kyoto, Japan) equipped with a fused silica capillary column BPX70 (30 m, 

i.d. 0.25 mm, film thickness 0.25 μm, SGE, Victoria, Australia) and a Shimadzu AOC20i 

automatic injector (injected volume 1 μL) were used. The initial linear velocity of helium in 

the column was 34 cm.sec-1. The temperature of the split injector (split ratio 1:15) and of the 

flame ionization detector was 250 °C and 280 °C, respectively. Oven temperature was 

programed to start at 160 °C for 0.5 min, and then increased to 200 °C at 10 C.min-1 and 

kept constant for 4 min. Data acquisition was performed using the GC solution v 2.10 

software (Shimadzu Co., Kyoto, Japan). Calibration curve was performed using fatty acid 

methyl   ester   (FAME)   standard   mixtures   containing   C14-C20   fatty   acids   at   total 

concentrations ranging from 0.5 to 10 mg.mL-1. 
 

 

4. Headgroup composition of native phospholipids of latex by HPLC-MS 

The separation and identification of phospholipid species was carried out with normal- 

phase liquid chromatography using a Waters Alliance 2695 separation module (Waters Corp., 

Massachusetts, United States). This module was equipped with an Atlantis HIHIC Silica 

column (150 mm x 2.1 mm, 3 μm particles size, Waters, Ireland) thermostated at 30 °C and 

coupled to a Waters SQ Detector 2 mass spectrometer with a combined ESI/APCI/ESCi 
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probe. Both lipid standards and samples were solubilized in chloroform/methanol (2:1). A 

volume of 5 μL of sample (1 mg.mL-1) or lipid standard solutions in a range from 0 to 1.0 

mg.mL-1 (concentrations: 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg.mL-1) were injected 

using the Water Alliance 2695 autosampler. 

The separation was performed with a ternary mixture mobile phase consisting of (A) 

methanol with 0.1% ammonium hydroxide (v/v), (B) chloroform with 0.1% ammonium 

hydroxide (v/v), and (C) deionized water with 0.1% ammonium hydroxide (v/v) with the 

flow rate of 0.25 mL.min-1. Separation was obtained by using gradient starting at 24.5% of A, 

75% of B and 0.5% of C. Then the ratios are linearly changed to 50% of A, 44.5% of B and 

5.5% of C within 10 min and held isocratically for 20 min. The total chromatographic run 

time was 40 min. The mass spectrometer was operated under positive electrospray ionization 

(ESI+) (capillary voltage 5 kV; cone voltage 70 V; source temperature 150 °C; desolvation 

temperature 250 °C; desolvation nitrogen flow 260 L.h-1; cone nitrogen flow 30 L.h-1) and 

negative electrospray ionization (ESI-) (40 and 90 V of cone voltage with the same other 

parameters). The full scan mass spectrum was acquired in the mass range between m/z 190 

and 1200. 
 

 

5. Expression and purification of REF1 and SRPP1 proteins 

Recombinant Hevea brasiliensis REF1 and SRPP1 proteins were produced in Escherichia 

coli and purified as described previously by Berthelot et al. [17]. Briefly, recombinant Hevea 

brasiliensis REF1 and SRPP1 proteins were produced in Escherichia coli BL21 (DE3) pLysS 

Gold cells. Bacteria were grown to 0.7 OD in 2× YT medium (16 g/L tryptone, 10 g/L yeast 

extract, and 5.0 g/L NaCl), and expression was induced by addition of 1 mM isopropyl-D- 

thiogalactoside (Euromedex, Souffelweyersheim, France). After 4 h induction, cells were 

harvested by centrifugation and frozen at −20 °C. Overexpression of SRPP1 and REF1 

caused inclusion body formation. Cells were sonicated 5 × 1 min in buffer A (150 mM NaCl 

and 100 mM Tris-HCl, pH 8.0). The lysate was centrifuged for 30 min at 20,000g. The pellet 

was washed in the buffer A and re-suspended in denaturing buffer (8 M urea in buffer A). 

The lysate was incubated with 3 mL Ni-NTA resin (InVitrogen, ThermoScientifique, Illkirch, 

France) for 2 h at room temperature. The resin was then washed twice with 35 mL of 8 M 

urea/buffer A, by centrifuging 10 min at 900g. The proteins were eluted from the resin in the 

same buffer containing 250 mM imidazole (Euromedex). Protein samples were pooled and 

dialyzed against 25 mM Tris/HCl pH 8.0 and kept aliquoted at −80 °C. 
 

 

6. Characterization of the interactions between lipids and protein 

6.1 Calcein leakage measurements of large unilamellar vesicles (LUV) 

The ability of proteins to interact with large unilamellar vesicles (LUV) results in a 

destabilization of their membrane and thus in a calcein release in the medium which is 

recorded by fluorescence. Calcein leakage experiments were performed by monitoring the 

fluorescence signal after adding REF1 and SRPP1 proteins to LUV made from pure POPC 

and POPG lipids. However, due to the geometry of POPA lipid (small headgroup with large 

fatty acid chains) [27], it was not possible to prepare LUV made of POPA only. Thus, for 

POPA, LUV were prepared from an equimolar mixture of POPA and POPC. To form LUV, 

dried lipid films were hydrated with buffer containing calcein (70 mM in TBS 1X pH 7.4, 
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TBS: Tris 20 mM, NaCl 150 mM) and dispersion was run through five freeze/thawing cycles 

and passed through a mini-extruder equipped with two stacked 0.1 μm polycarbonate filters 

(Avanti, USA). The sizes of LUV were determined to be around 120 nm by dynamic light 

scattering (DynaPro Nanostar, US). The lipid concentration was calculated by phosphate 

dosage [28]. 

Fluorescence measurements were made with a microplate reader (TECAN infinite 

M1000PRO).  After  the  addition of  the  reactants, the  384-well  microplate (Grenier Flat 

bottom, black polystyrene) was shaken just before measurement. Data were collected every 1 

h at 25 °C, λ excitation at 485 nm and λ emission at 515 nm. Lipid concentration was set at 

100 μM and concentration of proteins varied from 0.01 μM to 50 μM (total volume 30 μL). 

After 24 hours, 1 μL of 10% Triton X-100 (Sigma) solution was added to achieve complete 

liposome  leakage.  The  percentage  of  calcein  release  was  calculated  according  to  the 

following equation: L(t) = [(Ft −F0) / (Fmax − F0)]  100, where L(t) is the percentage of the 

calcein released (%), Ft is the measured fluorescence intensity at time t, F0 is the fluorescence 

intensity at time t = 0 and Fmax  is the fluorescence intensity after addition of Triton X-100. 

Each experiment was repeated two times. 
 

 

6.2 Surface tension 

Adsorption of proteins below air/buffer or lipid/buffer interface was followed by surface 

pressure () measurement. Experiments were performed at 25 ± 1 °C on a circular Teflon 

trough of 20.4 cm2  filled with 8 mL of subphase (TBS 1X buffer pH 7.4). The surface 

pressure () was measured with a plate of Whatman filter paper held by a Nima Wilhelmy 

balance. The interaction of proteins with lipid films was performed in two steps. First, the 

lipids were spread at the air-buffer interface from chloroform/methanol (4:1 v/v) solution at 1 

mg.mL-1 to reach the desired surface pressure (28 mN.m-1). Second, proteins were injected at 

a final concentration of 2 μM into the subphase using a microsyringe. The surface pressure 

was measured continuously during protein adsorption in the lipid monolayer until an 

equilibrium  pressure  was  reached  (plateau).  The  difference  between  the  initial  surface 

pressure of the lipid (i) and the surface pressure reached at the plateau (p) gives the 

surface pressure increase (Δ = p - i). Each experiment was repeated at least 2 times and 

reported values are the means with their corresponding standard deviations. 
 

 

6.3 Ellipsometry and Brewster angle microscopy (BAM) 

The thickness of the films formed at the air-buffer interface was determined on a 6 mL 

Teflon trough using a NFT IElli2000 ellipsometer (Göttingen, Germany) equipped with a 

doubled frequency Nd-Yag laser (532 nm, 50 mW), a polarizer, an analyzer, and a CCD 

camera. The imaging ellipsometer works at an incidence angle close to the Brewster angle 

(54.58°) and it operates on the principle of classical null ellipsometry. The morphology of 

films at the air-buffer interface was observed by the CCD camera. The spatial resolution was 

about 1 μm and the size of BAM images was 450×600 μm² with the ×10 magnification 

objective used. The angles of the polarizer, compensator, and analyzer that obtained the null 

condition allow one to get the (Δ, Ψ) ellipsometric angles which are related to the optical 

properties of the sample [29, 30]. For ultrathin films, Δ is proportional to the film thickness. 
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The value of the film thickness mainly depends on the refractive index used. Since it is 

difficult to determine an accurate experimental refractive index value, we used the same 

average value of the refractive index 1.45 for both lipid layers and proteins to perform 

thickness estimations. The BAM images presented in the various figures were corrected from 

the tilt angle observation. Note that a shutter was used with various timing to avoid camera 

saturation. 
 

 

6.4 Polarization modulated-infrared reflection adsorption spectroscopy (PM-IRRAS) 

Polarization modulated-infrared reflection-adsorption spectra were recorded on a Nicolet 

(Madison, WI) Nexus 870 spectrometer equipped with a HgCdTe (MCT) detector (SAT, 

France) and cooled at 77 K by liquid nitrogen at a resolution of 8 cm-1 by adding 600 scans. 

Details of PM-IRRAS experiments were previously described [18, 31]. PM-IRRAS spectra 

were normalized by the TBS 1X buffer pH 7.4 spectrum or lipid spectrum. The room 

temperature was regulated at 25 ± 1 °C. Each experiment was repeated at least 2 times. 
 

 

RESULTS AND DISCUSSION 
 

 

1.  Linoleyl  (C18:2)  and  phosphocholine  are  the  major  acyl  chain  and  the  major 

headgroup of the phospholipid extract of Hevea latex, respectively 
 

The knowledge of the detailed native PL composition of Hevea latex was necessary to 

select synthetic PL. The latex from RRIM600 clone contained 2.71% (w/w dry rubber) of 

extractable lipids [19], which were composed of: 45 ± 3 % of neutral lipids (NL), 32 ± 1% of 

phospholipids (PL) and 23 ± 2% glycolipids (GL). 

The fatty acid (FA) composition of saponified latex PL extract is reported in Table 1. 

Linoleic acid was found to be the major FA (49.7%). The other FA were found in the 

following order of decreasing abundance: oleic (22.4%), stearic (13.6%), palmitic (9.2%), 

linolenic (2.9%), palmitoleic (1.1%), arachidic (1.1%) and furanoic (0.2%). Although those 

data agree with a previous study [22], one important difference was noticed regarding the 

proportion of oleic acid which was found to have doubled as compared to the previous study. 

This is believed to be mostly due to a modification of the extraction procedure applied in the 

present study, specifically the use of SPE technique [19], which likely preserved the lipid 

extract from transesterification toward methyl esters that could preferentially target the C18:2 

species. Additionally, the trees used in the two studies were of different ages, which could 

also have impacted the lipid composition [32]. 

 

Fatty acids FA composition of PL extract from latex (% w/w of total PL FA) 

Myristic acid C14:0 - 

Palmitic acid C16:0 9.2 ± 0.02 

Palmitoleic acid  C16:1 1.0 ± 0.02 

Stearic acid C18:0 13.6 ± 0.02 

Oleic acid C18:1 22.4 ± 0.02 

Linoleic acid C18:2 49.7 ± 0.02 

Linolenic acid C18:3 2.9 ± 0.02 
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Arachidic acid C20:0 1.0 ± 0.02 

Furanoic acid 0.2 ± 0.03 
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Table 1. Fatty acid (FA) composition of saponified phospholipids (PL) extracted from fresh latex of 

RRIM600 clone. The standard error was obtained from 3 saponifications of one PL sample. 
 

 

FA composition of latex PL was used to select the FA chains of synthetic PL. Linoleic and 

oleic acids were found to be the most abundant FA species in latex PL (Table 1). However, 

synthetic PL with the combination of these two FA are not commercially available, while in 

contrast, PL species that associate a palmityl chain to an oleyl one are the most often used in 

Langmuir model membrane studies [33, 34]. Indeed, these lipids have different chain lengths, 

with a saturated chain associated to a non-saturated one, making them good models to mimic 

the variety of native lipid mixtures [35]. Therefore, we chose to associate a palmityl chain to 

an oleyl one, which is a good compromise for this study, as these two FA roughly represent 

one third of the total FA found in latex PL extract (Table 1). 

The headgroup composition of the latex PL extract is reported in Table 2. The main 

species detected among PL headgroups of RRIM600 latex were phosphocholine (50%), 

followed by phosphoethanolamine (19%), phosphate (16%) and phosphoinositol (15%). 

 

 

PL headgroup 
Headgroup composition of PL extract from 

RRIM600 latex (% w/w of total PL headgroups) 

Phosphocholine 50 ± 2 

Phosphoethanolamine 19 ± 3 

Phosphate 16 ± 2 

Phosphoinositol 15 ± 1 
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Table 2. Headgroup composition of phospholipids (PL) extracted from fresh latex of RRIM600 clone. 

The standard error was obtained from 3 injections of one PL sample. 
 

 

The headgroup composition of latex PL extract, given in Table 2, was used to select the 

headgroups of synthetic PL. Both phosphocholine and phosphate headgroups were found in 

significant  amounts  in  native  PL  from  latex.  Interestingly,  both  phosphocholine  and 

phosphate have opposite properties that are  valuable for  our  research purpose: 

phosphocholine is a large zwitterionic headgroup, while phosphate is a small negatively- 

charged headgroup (charge -1 at pH 7.4, [36]). Moreover, although the lipid headgroup 

phosphoglycerol was not detected in native PL of latex, it was included in this study because 

its size is comparable to that of phosphocholine headgroup, while it is negatively charged as 

phosphate (charge -1, at pH 7.4, [36]). Figure 1 shows the chemical structures of the three 

selected synthetic PL: POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate), POPC (1- 

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn- 

glycero-3-phosphoglycerol). REF1 and SRPP1 proteins were studied for their interactions 

with those three synthetic PL in the form of vesicles and monolayers. 
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Figure 1. Chemical structures of the three synthetic PL chosen to be studied in interaction with REF1 

and SRPP1 proteins: POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate), POPC (1-palmitoyl-2- 

oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3- 

phosphoglycerol). A color code was added: blue rectangles correspond to acyl chains (similar for the 

3 lipids: C16:0/C18:1), red areas show lipid headgroups and yellow patches highlight charges at pH 

7.4 (POPA and POPG are negatively charged while POPC is zwitterionic). 
 

 

2.   SRPP1 interacts more strongly than REF1 with LUV of anionic PL 
 

The effect of the RP proteins REF1 and SRPP1 on PL LUV were studied by fluorescent 

calcein leakage measured at t=0 h and t=24 h. Calcein was encapsulated in POPC or POPG 

LUV. However, due to the geometry of POPA lipid (small headgroup with large fatty acid 

chains) [27], it was not possible to prepare LUV made of pure POPA. Therefore, to study the 

protein interactions with POPA, we used LUV prepared from an equimolar mixture of POPA 

and POPC. The percentage of released calcein from POPC, POPG and POPA/POPC LUV at 

t=0 h and t=24 h induced by REF1 or SRPP1 is shown in Figure 2. 

Interestingly, for all three lipids (POPG, POPC, POPA/POPC), all protein concentrations 

(0.01 to 50 M) and both times (t=0 h and t=24 h), SRPP1 systematically induced a higher 

calcein leakage from LUV than REF1, although the values between REF1 and SRPP1 were 

not always statistically different. Moreover, the comparison of the curves at t=0 h and t=24 h 

shows that REF1 acts in a time-dependent manner (Figures 2A vs 2B), while SRPP1 affects 

the integrity of the LUV more instantaneously (Figures 2C vs 2D).  The stronger disruption of 

LUV (120 nm) by SRPP1 than REF1 might reflect the preference of SRPP1 for binding to 

smaller RP. This is in agreement with the fact that SRPP1 and REF1 mostly bind to SRP (< 

0.2 m) and LRP (> 0.3 m), respectively [41]. 
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Figure 2. Fluorescent calcein leakages (with standard deviations) measured at t=0 h (A, C) and t=24 

h (B, D) from LUV (100 µM in TBS 1X pH 7.4) made of POPC, POPA/POPC (1:1) and POPG in the 

presence of the proteins REF1 (A, B) and SRPP1 (C, D) injected at various concentrations (0.01 to 50 

µM). 
 

 

REF1 did not induce any calcein leakage from POPC LUV neither at t=0 h (Figure 2A) or 

t=24 h (Figure 2B). When POPA was added to POPC (in an equimolar mixture 1:1) to form 

LUV, calcein leakages ranging from 1.0 to 26.5% and 4.3 to 68.3% were measured at t=0 h 

and t=24 h, respectively, for REF1 concentrations from 0.01 to 50 M. Therefore, this 

suggests  the  absence  of  interaction  between  REF1  and  POPC  LUV,  rather  than  an 

aggregation of REF1 outside the LUV. In contrast to REF1, SRPP1 induced leakage of POPC 

LUV (Figures 2C and 2D), as indicated by leakages increasing from 2.3 to 48.3% at t=0 h, 

and from 4.6 to 49.3% at t=24 h, when SRPP1 concentration was increased from 0.01 to 50 

M. The calcein leakages of POPC LUV measured with SRPP1 were significantly higher 

than the ones measured with REF1 at both times and for all protein concentrations. 

Higher calcein leakages were previously measured from EggPC LUV in the presence of 

REF1 and SRPP1, i.e. 35% and 70%, respectively [18]. The two major acyl chains in EggPC 

are C16:0 (33%) and C18:1 (32%), which are the same as those in POPC. EggPC also 

contains  20%  of  C18:2,  which  suggests  that  both  REF1  and  SRPP1  proteins  have  a 

preference  for  this  acyl  species.  As  a  polyunsaturated  acyl  chain,  C18:2  can  influence 
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membrane fluidity and stereochemistry, thereby facilitating hydrophobic interactions between 

the hydrophobic proteins REF1 and SRPP1 and the acyl chains of the LUV membrane. This 

mechanism could explain the enhanced LUV disruption observed for EggPC [18], as 

compared to what is observed in the present study for POPC. Protein affinity for specific acyl 

chains has been shown for other proteins. For example, three T. brevicorniculatum SRPP 

proteins  (SRPP3–5),  have  preferred  interactions  with  C16:0/C18:2  acyl  chains,  and  the 

authors proposed that they may bind to RP via pockets of unsaturated PC [25]. 

Compared to zwitterionic POPC LUV, REF1 interacts more strongly with both anionic 

POPA/POPC and POPG LUV, at both times t=0 h (Figure 2A) and t=24 h (Figure 2B). With 

both anionic LUV types, REF1 acts in a dose-dependent manner. Indeed, at t=0 h, and for 

REF1 concentrations varying from 0.01 to 50 M, the calcein leakages from POPG LUV 

ranged from 4.6 to 37.6% (Figure 2A), and those from POPA/POPC LUV ranged from 1.0 to 

26.5% (Figure 2A). At t=24 h, REF1 concentrations from 0.01 to 50 M induced calcein 

leakages of 13.3 to 70.4% for POPG (Figure 2B) and 4.3 to 68.3% for POPA/POPC (Figure 

2B). At both times (t=0 h, t=24 h) and for all protein concentrations (0.01 to 50 M), the 

calcein leakages induced by REF1 were in the same order for POPG as for POPA/POPC 

LUV.  For  SRPP1,  as  observed  for  REF1,  the  incorporation  of  POPA  into  POPC  (1:1) 

(Figures 2C and 2D) significantly enhanced the calcein leakage from LUV by the protein, at 

both times t=0 h and t=24 h. The calcein leakage values from POPG LUV by SRPP1 were in 

the same range as those from POPA/POPC LUV. When increasing SRPP1 concentration 

from 0.01 to 50 M, the calcein leakages increased from 5.3 to 83.4% for POPG and 4.7 to 

87.7% for POPA/POPC at t=0 h, and from 11.0 to 92.7% for POPG and 11.6 to 94.0% for 

POPA/POPC at t=24 h. Under the action of SRPP1, there was no significant difference 

between the leakages from POPA/POPC and POPG LUV. 

Both RP proteins interact strongly with negatively charged LUV made of POPA/POPC 

(1:1) and POPG, as evidenced by the ~ 70% and ~ 90% calcein leakage induced by REF1 and 

SRPP1 for both LUV types, respectively. This suggests that anionic headgroups favor 

interactions between LUV and RP proteins REF1 and SRPP1. Although both proteins have a 

net negative charge at pH 7.4 (REF1: -2, SRPP1: -6, [14]), it is interesting to observe that 

they still interact with negatively charged PL. This phenomenon has also been observed in T. 

brevicorniculatum, where several negatively charged SRPP proteins (net charges at pH 7.4 

are indicated in brackets), i.e. Tb-SRPP1 (-9), Tb-SRPP3 (-13), Tb-SRPP4 (-14) and Tb- 

SRPP5 (-15), have been shown to have a preference for negatively charged PL headgroups 

[25]. 

We have previously suggested that REF1 and SRPP1 may behave similarly to surfactin 

[18], a negatively charged antimicrobial peptide (7 amino acids, net charge: -2) that strongly 

interacts with negatively charged lipids [37]. Surfactin is able to induce a strong 

destabilization of negatively charged micrometer-scale liposomes, leading to the formation of 

stable small unilamellar vesicles of a few tens of nanometers. This occurs in two steps. First, 

peptide inserts into membrane because of favorable van der Waals forces between the acyl 

chains of lipids and the hydrophobic part of the peptide. Second, electrostatic repulsion 

occurs between negative charges of lipid headgroups and peptides. This results in severe 

changes in membrane curvature, leading to the formation of smaller and stable vesicles. This 
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mechanism is known as the ‘electrostatic wedge’ model [37, 38]. The massive disruption of 

negatively charged POPG and POPA/POPC LUV by the highly hydrophobic and negatively 

charged REF1 and SRPP1 proteins (Figure 2) supports the possibility that these RP proteins 

behave in a ‘surfactin-like’ manner, forming both hydrophobic contacts with lipid acyl chains 

and electrostatic repulsions with anionic headgroups. These results are consistent with the 

literature, which has shown that SRPP can affect the size and stability of RP. For instance, 

Hillebrand et al. showed that SRPP proteins are essential for maintaining the integrity of RP 

in T. brevicorniculatum [39]. Indeed, the RP of transgenic plants with strongly reduced 

TbSRPP  protein  level  displayed  significantly  higher  diameter  as  compared  to  wild-type 

plants. This indicates that RP in transgenic plants are less stable, with a heterogeneity in size 

that suggests RP fusion. Another study showed that the addition of TbSRPPs to artificial 

poly(cis-1,4-isoprene) bodies narrowed their size distribution [25]. In H. brasiliensis, 

Yamashita et al. highlighted the role of REF1 in modulating the diameters of washed RP, 

providing the first direct evidence that REF1 is an important protein for RP stability [40]. 
 

 

3. REF1 displays higher affinity than SRPP1 for monolayer of anionic PL 
 

The interactions of RP proteins REF1 and SRPP1 were studied with monolayer of PL 

formed at the air/buffer interface. The films were characterized by surface pressure, 

ellipsometry, BAM and PM-IRRAS spectroscopy. Before investigating these interactions, 

isotherms of synthetic PL were recorded while BAM images were regularly captured during 

compression  (data  not  shown).  All  PL  isotherms  showed  a  regular  increase  in  surface 

pressure without a shoulder until collapse. BAM images showed that the PL films were 

homogeneous, without aggregation or segregation. These results indicate the presence of a 

single, homogeneous liquid-expanded phase, in agreement with the presence of one 

unsaturation in the lipid acyl chains of the studied PL. The minimal mean molecular area of 

POPA (50 Å²/molecule), POPC (55 Å²/molecule) and POPG (57 Å²/molecule) were found to 

be in agreement with the values reported by Liu et al. [35], Smaby and Brockman [41] and 

Kwon et al. [42], respectively. Due to the smaller size of its headgroup as compared to POPC 

and POPG [27], POPA can be compressed to a lower minimal mean molecular area. 

To prepare PL monolayers for further experiments with proteins, they were compressed to 

a surface pressure of 28 mN.m-1 before injecting the protein into the subphase (2 M). At this 

surface pressure, POPA, POPC and POPG have a mean molecular area of 52, 60 and 64 

Å²/molecule, respectively. The thicknesses of the PL films compressed at 28 mN.m-1  were 

measured by ellipsometry (Table 3, left part) and agree with the values reported in the 

literature [30, 43]. 

 

 

 
 

Synthetic 

PL 

 

Synthetic PL without 

protein at  = 28 mN.m-1
 

Synthetic PL (i = 28 mN.m-1) with 2 M proteins at 

p (plateau) 

REF1 SRPP1 

Mean 

molecular area 

(Å/molecule) 

 

Thickness 

(Å) 

 

 
(mN/m) 

 

Thickness 

(Å) 

 

 
(mN/m) 

 

Thickness 

(Å) 

POPC 60 14.3 ± 1.4 6.3 ± 0.9 16.7 ± 1.2 5.4 ± 0.6 16.5 ± 0.2 

POPA 52 14.4 ± 0.8 4.2 ± 0.2 77.2 ± 0.8 5.4 ± 0.5 55.7 ± 2.7 
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POPG 64 15.8 ± 1.6 4.9 ± 0.7 62.2 ± 1.0 6.2 ± 0.7 28.1 ± 0.7 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

Table 3. Layer thickness at 28 mN.m-1 of synthetic PL monolayers made of POPC, POPA and POPG. 

Film thickness and increase in surface pressure () are also reported when synthetic PL interact with 

REF1 and SRPP1 proteins injected at 2 μM in TBS 1X buffer pH 7.4. 
 

 

After protein injection, the surface pressure increased regularly due to the adsorption of 

proteins in the synthetic PL monolayers, until it reached a plateau within 10 minutes to 1 

hour. The difference between the initial surface pressure of the lipid (i) and the surface 

pressure reached at the plateau (p) gives the surface pressure increase (Δ = p - i). Δ 

values and thicknesses of lipid/protein films measured at the maximal surface pressure of the 

kinetic (plateau) are reported in Table 3 (right part). 

The  surface  pressure  increase  due  to  REF1  adsorption  into  PL  monolayers  was 

significantly higher for POPC (+ 6.3 mN.m-1) than for POPA (+ 4.2 mN.m-1), while the one 

measured for POPG was intermediate (+ 4.9 mN.m-1) (not significantly different from POPC 

or POPG). Surprisingly, the thickness of the REF1/POPC film (16.7 Å) was almost the same 

as that of the pure POPC film (14.3 Å), resulting in a very small thickness increase (+ 2.4 Å). 

In contrast, as compared to pure PL films, the thicknesses of the REF1/POPG (62.2 Å, + 46.4 

Å) and REF1/POPA (77.2 Å, + 62.8 Å) films were much higher than those of the pure PL 

films. For POPC, although the surface pressure increased significantly when REF1 was 

injected, the film thickness remained almost unchanged, suggesting that REF1 does not 

penetrate into the POPC monolayer. In contrast, the measured thickness increases for POPA 

and POPG indicate that REF1 penetrates deeply into POPA and POPG monolayers. BAM 

images and PM-IRRAS spectra were recorded at the plateau of the adsorption kinetic of 

proteins into PL films (Figure 3). BAM images (Figures 3A) of both REF1/POPG and 

REF1/POPC films are homogeneous showing the absence of aggregation. REF1/POPA film 

was most of the time homogeneous but white objects were sometimes noticed (insert on 

REF1/POPA BAM image in Figure 3A) indicating that aggregation may occur. 

The PM-IRRAS spectra of films of REF1, REF1/synthetic PL and REF1/native PL (from 

[19]) are shown in Figures 3B. The amide II band of REF1 was centered at 1540 cm-1, while 

the amide I was intense and centered at 1653 cm-1, with a strong shoulder at 1630 cm-1 and 

two slight ones at 1670 cm-1 and 1690 cm-1. This indicates that several secondary structures 

coexist in REF1 when the protein forms a film at the air/buffer interface, i.e. mainly -helices 

(1653 cm-1), as well as -sheets (1630, 1690 cm-1) and turns (1670 cm-1) [17]. The PM- 

IRRAS spectra of REF1 interacting with PL are different from the spectrum of the protein. 

They are also dramatically different depending on the lipid type (Figure 3B). No signal was 

detected  when  REF1  interacts  with  POPC,  resulting  in  a  flat  spectrum.  This  result  is 

consistent with ellipsometry (no thickness increase) and BAM (low level of grey) data. In 

contrast to POPC, the PM-IRRAS spectra of REF1/POPG and REF1/POPA films show the 

presence of two amide bands. The spectrum of POPG/REF1 was slightly less intense than the 

one of REF1 interacting with native PL of Hevea latex, but the position of amide bands were 

similar for both spectra. The secondary structure of REF1 is unchanged (as compared to pure 

REF1 film) when it interacts with POPG, as we previously observed for native PL [19]. The 

protein mainly contains α-helices, and the ratios between the intensities of the amide I and 

amide II bands are similar for pure REF1 and REF1/POPG. This suggests that the α-helices 
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of REF1 keep the same orientation in the POPG monolayer as they do when the protein is 

alone at the interface. Interestingly, the spectrum of REF1/POPA is drastically different from 

the one of REF1. The amide I band is shifted 20 cm-1 to lower wavenumber (1633 cm-1), 

which indicates a high proportion of -sheets. This means that the secondary structure of 

REF1 switches from mainly -helices to mainly -sheets when it interacts with POPA lipid. 

This observation is consistent with the aggregation observed by BAM (insert in Figure 3A) 

and the strong thickness increase (compared to pure lipid film) measured when REF1 

accumulates into POPA (Table 3). 
 

 

 
Figure 3. A) BAM images (450 × 600 μm²) of protein/lipid films captured on the plateau. Surface 

pressure () and thickness (T) of the films at the capture are indicated for each image. White bars are 

100 μm. B) PM-IRRAS spectra in the 1750-1450 cm-1  spectral range of REF1 and REF1/PL films 

recorded at the plateau. C) PM-IRRAS spectra in the 1750-1450 cm-1  spectral range of SRPP1 and 

SRPP1/PL films recorded at the plateau. The spectra recorded for REF1 and SRPP1 interacting with 

native PL (from [19]) were reminded on B and C, respectively. 
 

 

The  insertion  of  SRPP1  protein  below  PL  monolayers  resulted  in  surface  pressure 

increases that were not significantly different between the lipids: + 6.2 mN.m-1 for POPG and 

+ 5.4 mN.m-1  for both POPC and POPA. As observed for REF1, the interaction of SRPP1 

with POPC resulted in an almost unchanged thickness of + 2.2 Å. A strong thickness increase 

(as compared to pure PL films) was measured for SRPP1/POPA film (+ 41.3 Å) while the 

one of SRPP1/POPG film was intermediate, at + 12.3 Å. All BAM images (Figure 3A) 

indicate that no aggregation was observed when SRPP1 interacts with PL. SRPP1 proteins 

adsorb homogeneously in synthetic PL monolayers as observed with native PL of Hevea 

latex [19]. 

As shown in Figure 3C, PM-IRRAS spectrum of pure SRPP1 displays a sharp and intense 

amide I band centered at 1653 cm-1 and a weak amide II band at 1530 cm-1 corresponding to a 

strong structuration of SRPP1 in -helices lying flat on the interface [17]. Moreover, slight 
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shoulders detected at 1630 and 1690 cm-1 are the signature of -sheets. As for REF1/POPC 

film, a flat PM-IRRAS spectrum was recorded for SRPP1/POPC film. This suggests that 

SRPP1 does not adsorb at the interface into POPC monolayer, in agreement with the very 

small thickness increase measured by ellipsometry and the low level of grey of BAM image 

(Figure 3A). The PM-IRRAS spectrum of SRPP1/POPG showed two amide bands having the 

same wavenumber as the bands of pure SRPP1 indicating that protein keeps its secondary 

structure in -helices when interacting with POPG. However, as compared to the protein 

alone, the intensities of amide bands of SRPP1 were affected in the presence of POPG. With 

POPG, the amide II band was almost as intense as the amide I band, indicating that a drastic 

change of orientation of the -helices occurred. The -helices, which adopt a flat orientation 

with respect to the interface when the protein is alone, reorient themselves more 

perpendicularly to the interface with POPG lipid. With POPA lipid, a particular behavior was 

highlighted. The amide I band shifted slightly to lower wavenumber with a moderate shift of 

amide I toward lower wavenumber (1643 cm-1) and the intensity of the amide II band 

increased significantly. These observations are the signature of random domains indicating a 

lower structuration of SRPP1 when interacting with POPA, as compared to pure protein. 

When both REF1 and SRPP1 were injected below flat monolayers of neutral POPC, 

despite significant protein-induced increases in surface pressure (Table 3), no amide I or 

amide II bands could be detected in mixed lipid/protein films (Figures 3B and 3C). This 

phenomenon (i.e. a surface pressure increase associated to a flat PM-IRRAS spectrum) has 

been previously observed for a tryptophan-rich peptide interacting with DPPC (1,2- 

dipalmitoyl-sn-glycero-3-phosphocholine) monolayers and authors explained that this 

behavior could be linked to aromatic tryptophan residues which prefer the water/membrane 

interface [44]. Similarly, other authors have shown that a penetrating peptide induced a low 

chain disorder in DPPC monolayer and strongly perturbated the whole lipid structure when 

10% of anionic DPPS (1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine) was added to DPPC 

monolayer [45]. In this work, we observed that the grey level of POPC/RP proteins BAM 

images (Figure 3A) remained low throughout the kinetic while very slight thickness increases 

were measured (Table 3). These results suggest that both REF1 and SRPP1 do not penetrate 

in POPC monolayers but instead accumulate below lipid headgroups without interacting with 

lipid acyl chains. The proximity of proteins to the lipid headgroups might disturb both the 

lipid headgroup and protein hydration layers, i.e., the regions of structured water molecules 

that form hydrogen bonds with lipid headgroups and proteins. The surface pressure increase 

might  be  a  consequence  of  the  strong  perturbation  of  the  hydration  layer  of  POPC 

headgroups. Moreover, the fact that neither REF1 nor SRPP1 interact with POPC tails could 

also suggest that the hydration of proteins is increased leading to specific structuration which 

prevents them from adsorbing to the air interface. It was previously observed that an alkaline 

phosphatase strongly inserts into DPPS (negatively charged) monolayers, while it only 

interacts with the headgroups of DPPC [46]. Different protein hydration layers between the 

DPPC and DPPS monolayers have been suggested to explain these results. These authors 

later showed that an increase in the hydration of this protein results in a lower PM-IRRAS 

signal [47]. In this work, the perturbation of lipid headgroup and protein hydration layers 

could respectively explain the increase in surface pressure and the lack of amide bands on 
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PM-IRRAS spectra. In a previous study with DMPC (1,2-dimyristoyl-sn-glycero-3- 

phosphocholine) monolayer at 28 mN.m-1, no PM-IRRAS signal and no surface pressure 

increase were noticed for SRPP1. In contrast, amide bands were detected for REF1 as well as 

important surface pressure and thickness increases (+9.8 mN.m-1 and +47 Å, respectively) 

[14]. These differences are not fully understood, but could arise from different lipid species 

(POPC (16:0-18:1 PC) vs DMPC (14:0-14:0 PC)) and/or varying experimental conditions 

(temperature, humidity). 

In contrast to neutral POPC, RP proteins REF1 and SRPP1 developed strong interactions 

with negatively charged PL monolayers, as indicated by surface pressure, ellipsometry, BAM 

and PM-IRRAS data. Thus, as observed for curved PL membrane (LUV), anionic PL seem to 

promote interactions with RP proteins. This might seem counterintuitive as both REF1 and 

SRPP1 proteins are negatively charged at physiological pH. However, this phenomenon is 

commonly observed for antimicrobial peptides which have the ability to adopt a shape in 

which clusters of hydrophobic and cationic amino acids are spatially organized in discrete 

sectors of the molecule [48]. REF1 and SRPP1 proteins contain 8.7% and 9.3% of positively 

charged amino acids, respectively; as well as 10.0% and 12.2% of negatively charged amino 

acids, respectively. The structures of REF1 (GenBank accession no. P15252) and SRPP1 

(GenBank accession no. O82803) predicted by DeepMind’s AlphaFold [49, 50] are shown in 

Figure 4. Although these views are predictions and do not necessarily represent possible 

protein folding when they interact with other molecules, they highlight clustering of 

hydrophobic residues in specific regions of both proteins. Regarding charged amino acids, 

there is no clear clustering of positive and negative residues in REF1 and SRPP1 structures 

but some protein folding might occur in the presence of anionic PL monolayers to create 

pockets or surfaces of positively charged residues which might promote contacts with anionic 

lipids, as described for various proteins [51]. In this work, while protein adsorption might be 

first enhanced by electrostatic interactions between positive pockets of protein residues and 

lipid headgroups, hydrophobic contacts might then dominate between hydrophobic surfaces 

of proteins and acyl chains of lipids. 
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Figure 4. Structures of proteins REF1 (GenBank accession no. P15252) and SRPP1 (GenBank 

accession no. O82803) predicted by DeepMind’s AlphaFold (average model confidence: 72.43 and 

69.83 for REF1 and SRPP1, respectively). Two different views (A and B) are shown for each protein, 

as well as two different representations for each view where charged residues (color code: blue = 

positive residues Arginine + Lysine, red = negative residues Asparagine + Glutamate) and 

hydrophobic residues (color code: blue = least hydrophobic, red = most hydrophobic) are highlighted. 
 

 

When comparing the behavior of REF1 and SRPP1 with anionic PL, the surface pressure 

increases were not significantly different while thickness increases were much higher for 

REF1 than SRPP1 with both POPA and POPG. This indicates a stronger affinity of REF1 

than SRPP1 for flat negatively charged PL membranes. They also agree with previous works 

where SRPP1 was shown to interact preferentially with headgroups of native and synthetic 

PL with no deep insertion of the protein into the monolayer [18, 19]. Interestingly, as 

compared to POPG, both RP proteins interact more strongly with POPA. The smaller 

phosphate headgroup of POPA may facilitate hydrophobic interactions between the 

hydrophobic domains of the proteins and the lipid acyl chains. For both proteins, the surface 

pressure increases with POPA were not significantly different from POPG. While both 

proteins keep their structures (-helices) with POPG, they accumulate much more into POPA 

where they also underwent changes in their secondary structure: a destructuration for SRPP1 

and a variation from -helices to -sheets for REF1. Some aggregation was noticed when 

REF1 interacts with POPA. This behavior (i.e. shift from -helices to -sheets + aggregation) 

was already observed when REF1 interacts with native neutral lipids from Hevea latex and 

we proposed that the strong aggregation of REF1 with neutral lipids might have a significant 

impact on the irreversibility of coagulation of rubber particles [19]. Dupont et al. studied the 

PL composition of the membrane of lutoids from Hevea and reported a high content of 

phosphatidic acid (> 80% of total lutoid PL), which makes lutoids highly electronegatively 

charged   particles   [26].   The   authors   suggested   that   small,   localized   drops   in   the 
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electronegative charge of the lutoids, by combination with cations or by other mechanisms, 

could facilitate the aggregation of rubber particles onto the lutoid surface. These biochemical 

mechanisms may be enhanced by physical mechanisms related to the behavior of REF1 with 

POPA described in this work, i.e. switch of REF1 structure from -helices to -sheets and 

protein aggregation. The increase in -sheets was shown to be associated to the amyloid form 

of REF1 [17], while negatively charged lipids were reported to favor interactions and 

aggregation of amyloid proteins [52]. From this study, we propose that the interactions of 

REF1 with phosphatidic acid-enriched lutoid membranes might result in a switch of REF1 

structure to its amyloid aggregated form that could be involved, in synergy with biochemical 

mechanisms, in the irreversible coagulation mechanism of Hevea RP. 
 

 

CONCLUSION 

REF1 and SRPP1, two major proteins from Hevea latex localized at the surface of rubber 

particles, were studied for their interactions with three synthetic PL in the form of vesicles 

and monolayers. According to the acyl chain and headgroup compositions of native PL from 

Hevea latex, three synthetic PL were selected, i.e. POPA, POPC  and POPG. 

For both proteins, lower calcein leakages were measured from zwitterionic LUV (POPC) 

than from anionic LUV (POPA/POPC and POPG). This suggests that LUV/protein 

interactions  might  be  initiated  by  electrostatic  interactions  between  positive  pockets  of 

protein residues and negatively charged lipid headgroups. The disruption of both zwitterionic 

and anionic LUV (120 nm) was faster and stronger for SRPP1 than REF1. This might reflect 

the preference of SRPP1 for binding to smaller RP and could explain why SRPP1 and REF1 

mostly bind to SRP (< 0.2 m) and LRP (> 0.3 m), respectively [53]. 

Protein/lipid interactions were studied at the air/liquid interface by forming PL monolayers 

at the interface. As observed in LUV systems, both proteins interacted much weakly with 

POPC as compared to anionic PL monolayers. We suggested that RP protein do not penetrate 

in POPC monolayers but instead accumulate below lipid headgroups, supposedly due to the 

perturbation of the lipid headgroup and protein hydration layers [44-47]. In LUV systems, the 

interactions of REF1 with POPC was almost absent while they were moderate for SRPP1. 

The different behavior of SRPP1 protein when it interacts with a planar lipid monolayer or a 

curved LUV reveals the impact of the membrane curvature. 

As compared to zwitterionic POPC, both proteins interacted more strongly with anionic 

monolayers made of POPA and POPG, with stronger interactions for REF1 than SRPP1. It is 

believed that pockets or surfaces of positively charged residues in the protein sequences 

might promote contacts with anionic lipids [51]. As compared to POPG, POPA induced a 

stronger accumulation of proteins. POPA also induced a destructuration of the SRPP1 

structure and a specific behavior of REF1 with some aggregation and a switch of its structure 

from -helices to -sheets. This behavior was already observed when REF1 interacts with 

native neutral lipids from Hevea latex and we suggested that the strong aggregation of REF1 

with neutral lipids might have a significant impact on the irreversibility of coagulation of 

rubber particles [19]. 

This work reinforces the proposed physical role of REF1 (i.e. switch of structure) in the 

irreversible coagulation of latex. Indeed, the interactions of REF1 with phosphatidic acid- 
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enriched lutoid membranes [26], could also result in a switch of REF1 structure to its amyloid 

aggregated form that would be involved, in synergy with biochemical mechanisms, in the 

irreversible coagulation mechanism of Hevea RP. Moreover, this study highlights the 

important role of lipid nature in modulating the behavior and structuration of both REF1 and 

SRPP1 proteins which probably indirectly affects their function in rubber tree [14]. 
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ABBREVIATIONS 

BAM, Brewster angle microscopy; CCD, charge-coupled device; DMPC, 1,2-dimyristoyl-sn- 

glycero-3-phosphocholine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DPPS, 1,2- 

dipalmitoyl-sn-glycero-3-phospho-L-serine;  FA, Fatty acid; FAME, fatty acid methyl ester; 

GL, glycolipid; LRP, large rubber particle; LUV: large unilamellar vesicle, Nd:YAG, 

neodymium-doped yttrium aluminium garnet; NL, neutral lipid; NR, natural rubber; PA, 

phosphate; PC, phosphocholine; PE, phosphoethanolamine; PG, phosphoglycerol; PL, 

phospholipid; POPA, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; POPC, 1-palmitoyl-2- 

oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3- 

phosphoglycerol; PM-IRRAS, polarization modulated-infrared reflection adsorption 

spectroscopy; REF, rubber elongation factor; SPE, Solid Phase Extraction; SRP, small rubber 

particle; SRPP, small rubber particle protein; TBS, tris-buffered saline. 
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