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ABSTRACT

The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-
resolution, which is intended to facilitate the cognitive mapping of the human brain. It consists in the deep phenotyping of
twelve individuals in a fixed environment, covering a broad range of psychological domains that allows, in turn, the investigation
of atlasing techniques in functional neuroimaging. Here, we present the inclusion of task data from both naturalistic stimuli and
trial-based designs, to uncover core structures of brain activation. We rely on the Fast Shared Response Model (FastSRM): an
analytical tool that provides a data-driven solution to model naturalistic stimuli, typically containing many features. We show
that data from left-out runs can be reconstructed using FastSRM, thus enabling the extraction of functional networks pertaining
to vision, audio and language systems. We also present an in-depth study of the topographic organization of the visual system
through a retinotopy task. IBC is open access: source plus derivatives imaging data and meta-data are available in public
repositories.

Background & Summary

Mapping cognition in the whole human brain calls for the multi-dimensional analysis of the correlates of behavior corresponding
to a wide range of psychological domains. Such analysis relies on brain-activation maps obtained from functional Magnetic
Resonance Imaging (fMRI) that quantify the underlying neural correlates modulated by mental functions across tasks1–5.

Generalization across task implementations can be achieved by launching data-pooling analyses, such as meta-analysis,
which involves the aggregation of data derivatives pertaining to different tasks across publications6–9. However, while this
framework benefits from the combination of multi-task data information, it is still susceptible to inter-subject and inter-site
variability as well as loss of information due to sparse peak-coordinate representation, among other limitations10, 11. An
alternative solution is mega-analysis, which consists in pooling source data instead7, 12. Because data can be treated all together
and the same processing routines are applied, it mitigates the variability resulting from the aggregation of neuroimaging data
from different sources13.



Yet, mega-analyses do not eliminate inter-subject variability—both within and between tasks—making it difficult to
determine whether such variability is elicited by either differences in general cognitive strategies across behavioral conditions or
individual functional differences. This problem has been widely recognized in neuroimaging and affects all kinds of group-level
analyses. It has been shown to undermine not only the estimation of statistical significance14 but also the exact demarcation of
functional regions according to their contribution in elementary cognitive processes4. In the past decade, many studies have
thus started to adopt individual analysis, in order to overcome both functional and anatomical inter-subject variability15–21.

On the other hand, cognitive neuroscience has traditionally relied upon temporal and sparsely controlled designs, using
abstract stimuli22. Single-task fMRI experiments are usually conceived in this way, wherein experimental designs tightly
control the variables and isolate targeted cognitive constructs as means to link them to the function of discrete brain regions.
Because this approach has been the mainstay in cognitive neuroscience, many of the publicly available task datasets, as well as
the ensuing data-pooling studies are mostly based on this type of stimuli3, 22–26. By contrast, the study of real-life, dynamic and
multimodal sensory stimuli—aka naturalistic stimuli—was only recently introduced in the field of cognitive neuroimaging by
two seminal papers27, 28, giving rise afterwards to initiatives like the studyforrest dataset29–32. They are thought to reduce biases
inherent to the choice of artificial behavioral settings, and importantly, a priori designed contrasts22. The main challenges to
employ naturalistic-stimuli tasks include: (1) experimental implementation, as naturalistic paradigms are lengthy in duration
because their high-dimensional feature space requires the collection of a larger amount of data; (2) statistical modelling, as the
standard General Linear Model (GLM) applied to naturalistic stimuli leads to high-dimensional controlled-design models due
to the greater amount of features extracted from the paradigms; and (3) unsupervised data-driven approaches are preferred
because of (2), but high-dimensional imaging data (many voxels) require decomposition methods with scalability.

To obtain a large sample of behavioral features and simultaneously achieve a whole-brain coverage free from inter-subject
and inter-site variability, extensive functional mapping at high-spatial resolution of individual brains exposed to a comprehensive
collection of task paradigms—comprising trial-based as well as naturalistic designs—is necessary. We thus present herein the
third release of the Individual Brain Charting (IBC) dataset: a multi-task fMRI-data collection obtained from a permanent
cohort of twelve participants acquired with a spatial resolution of 1.5mm. Its task-wise organization combined with a higher
spatial resolution make it possible to estimate finer individual representations linked to a broad variety of mental functions4, 5.
It extends previous releases of the IBC dataset33, 34 and is focused foremost on the inclusion of naturalistic tasks16, 35 probing
mainly the visual system and to some extent the auditory and language systems. To complement the coverage of the visual
system, we have also included the classic retinotopy paradigms dedicated to map the polar angle and eccentricity in the visual
cortex36.

In the present paper, we provide a thorough description of the tasks taking part for this extension and their technical
validation. Given the aforementioned challenges posed by the analysis of fMRI data relative to naturalistic paradigms, we give
particular emphasis to showcasing the application of the Fast Shared Response Model (FastSRM), described in Richard&Thirion
(2023)37.

IBC is an open-access dataset consisting of high-resolution, functional maps of individual brains. It aims at providing
quantitative insights about individual differences of elementary processes in cognition, by leveraging a deep behavioral-
phenotyping approach. Many sessions pertaining to different tasks are thus undertaken per participant. Unlike longitudinal
studies, data collection of each task only takes place once during the lifetime of the project. IBC is thus intended to serve as a
source of functional correlates of various cognitive conditions, in order to support research in human neuroscience.

Methods
To avoid ambiguity with MRI-related terms, definitions follow the Brain-Imaging-Data-Structure (BIDS) Specification version
1.8.038.

Participants
The present release of the IBC dataset consists of brain fMRI data from twelve individuals (two female) acquired between April
2016 and February 2019. The experiments were carried out with the understanding and formal consent of the participants, in
accordance with the Helsinki declaration and the French public health regulation.

Detailed description of the age, sex and handedness of the group is provided in Table 1. Age varied between 26 and 40
years old (median = 30 years) upon recruitment and handedness was determined with the Edinburgh Handedness Inventory39.
For more information on the cohort’s recruitment, consult Pinho et al. (2018)33 and Pinho et al. (2020)34.

Materials
Stimuli
The stimuli of the tasks (see Experimental Paradigms Section for details about tasks’ paradigms) were delivered through
custom-made scripts that ensured a fully automated environment and computer-controlled collection of the behavioral data.
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Subject ID Year of recruitment Age Sex Handedness score
sub-01 2015 39.5 M 0.3
sub-04 2015 26.9 M 0.8
sub-05 2015 27.4 M 0.6
sub-06 2015 33.1 M 0.7
sub-07 2015 38.8 M 1
sub-08 2015 36.5 F 1
sub-09 2015 38.5 F 1
sub-11 2016 35.8 M 1
sub-12 2016 40.8 M 1
sub-13 2016 28.2 M 0.6
sub-14 2016 28.3 M 0.7
sub-15 2017 30.3 M 0.9

Table 1. Demographic data of the participants. Age stands for the participants’ age upon recruitment.

All protocols were set under Python 2.7. The protocol of the Clips task was adapted from the original study35 using standard
Python libraries; the ones pertaining to the Retinotopy and Raiders tasks were respectively designed with PsychoPy v1.90.340

and Expyriment v0.9.041. Visual stimuli of Clips consisted of the same color natural movies as described in Nishimoto et al.
(2011)35, whereas the audiovisual stimuli presented in the Raiders task corresponded to the 2009 DVD edition of Raiders of the
Lost Ark dubbed to French.

These materials are available in a public GitHub repository dedicated to the behavioral protocols of the tasks featuring
the IBC dataset: https://github.com/individual-brain-charting/public_protocols (consult Section Code Availability for further
details about the repository).

Eye-Tracker
The video-based, eye-tracker system EyeLink 1000 Plus was used for the behavioral, training sessions of the Clips plus
Retinotopy tasks (for more information about the training sessions, consult Section Experimental Procedure).

MRI Equipment
The fMRI data were acquired using an MRI scanner Siemens 3T Magnetom Prismafit along with a Siemens Head/Neck
64-channel coil. Behavioral responses for the Retinotopy tasks were obtained with a MR-compatible, five-button ergonomic
pad (Current Designs, Package 932 with Pyka HHSC-1x5-N4) and the MRI-environment audio system for the Raiders task was
set with the MR-Confon package.

All sessions were conducted at the NeuroSpin platform of the CEA Research Institute, Saclay, France.

Experimental Procedure
Upon arrival to the research institute, participants were instructed about the execution and timing of the tasks referring to the
upcoming session.

Particularly, behavioral training sessions prior to the MRI sessions were conducted for the Clips and Retinotopy tasks. We
stress that the center of the visual field must be approximately constant during data acquisition of these tasks, as means to
obtain a consistent map of the visual system within and between individuals (consult Section Experimental Paradigms for more
details). To this end, participants were prepared during the training sessions to gain perception of their eyes’ movements. They
were instructed to move them as little as possible while fixating toward a flickering point placed on the center of a screen,
which was also displaying video scenes at the same time. These video scenes were excerpts of those presented for the Clips
task. An eye-tracker was also coupled to the experimental setup of the training session. Participants were thus provided with a
real-time feedback of their eyes’ movements in the form of a green moving point displayed on the screen, too. The main goal of
this training exercise was to keep the green moving point as close as possible to the flickering one, which was fixed. By this
way, participants could then practice how to keep looking continuously toward the center of the screen—i.e. the perimetric
origin—for as long as possible.

All MRI sessions were composed of several runs dedicated to one or two tasks as described in Section Experimental
Paradigms. The structure of the sessions according to the MRI modality employed at every run is detailed in Table 2. Information
on the imaging parameters of the referred modalities can be found in Section Imaging Data.
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Duration of each Run∗
Session Modality Task

(min:sec)
Repetitions

Clips 1-3
2D Spin-Echo - 00:31 PA(×2) + AP(×2)
BOLD fMRI Training set 10:50 PA(×2) + AP
BOLD fMRI Test set 10:50 PA + AP(×2)

Clips 4

2D Spin-Echo - 00:31 PA(×2) + AP(×2)
BOLD fMRI Training set 10:50 PA(×2) + AP
BOLD fMRI Retinotopy wedge clock 05:30 PA(x2) + AP(x2)
BOLD fMRI Retinotopy wedge anti clock 05:30 PA(x2) + AP(x2)
BOLD fMRI Retinotopy ring expanding 05:30 PA
BOLD fMRI Retinotopy ring contracting 05:30 AP

Raiders 1

2D Spin-Echo - 00:31 PA(×2) + AP(×2)
BOLD fMRI Chapter 1 12:28 PA
BOLD fMRI Chapter 2 09:53 PA
BOLD fMRI Chapter 3 10:28 PA
BOLD fMRI Chapter 4 12:37 AP
BOLD fMRI Chapter 5 11:33 AP
BOLD fMRI Chapter 6 11:32 AP

Raiders 2

2D Spin-Echo - 00:31 PA(×2) + AP(×2)
BOLD fMRI Chapter 7 11:39 PA
BOLD fMRI Chapter 8 11:46 PA
BOLD fMRI Chapter 9 09:22 AP
BOLD fMRI Chapter 10 07:01 AP
BOLD fMRI Chapter 1 12:28 AP
BOLD fMRI Chapter 2 09:53 AP
BOLD fMRI Chapter 3 10:28 AP

Table 2. Plan of the MRI acquisitions for the second extension of the IBC dataset. A BOLD-fMRI run refers to the
acquisition of fMRI data on one single task. At least, there were two BOLD runs, corresponding to PA- and AP-
phase-encoding directions for each task during a session. The 2D Spin-Echo PA/AP volumes were always acquired before the
runs dedicated to the collection of BOLD-fMRI data and repeated afterwards.
∗ For BOLD fMRI sequences, the durations herein presented account only for the period of the actual acquisition, included in
the data volumes. The full duration of each run also included ∼45s of dummy scans, always performed at their beginning.
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Experimental Paradigms
Tasks were aggregated in different sessions according to the Table 2. The following sections intend to provide a description
of the paradigms employed for each task. Materials used for stimulus presentation (see Section Stimuli) have been made
publicly available, together with video annotations of the corresponding protocols, on https://github.com/individual-brain-
charting/public_protocols (see Section Code Availability for a more comprehensive description of the repository).

Clips task
The Clips task stands for a reproduction of the study reported in Nishimoto et al. (2011)35, in which participants were to
visualize naturalistic scenes edited as video clips of ten and a half minutes each.

Each run was always dedicated to the data collection of one video clip at a time. As in the original study, runs were
grouped in two categories: training and test. Scenes from the training category were shown only once. Contrariwise, scenes
from the test category were composed of approximately one-minute-long excerpts extracted from the clips presented during
training. Excerpts were concatenated to construct the sequence of every test run; each sequence was predetermined by randomly
permuting many excerpts that were repeated ten times each across all runs. The same randomized sequences, employed across
test runs, were used to collect data from all participants.

There were twelve and nine runs dedicated to the collection of training data and test data, respectively. Data from nine runs
of each category were interspersedly acquired in three full sessions; the three remaining runs devoted to train-data collection
were acquired in half of one last session, before the Retinotopy tasks (see Section Retinotopy tasks for complete description of
these tasks).

To assure the same topographic reference of the visual field for all participants, a colored fixation point was always presented
at the center of the images. Such point was changing three times per second to ensure that it was visible regardless the color of
the movie. To account for stabilization of the BOLD signal, ten extra seconds of acquisition were added at the beginning and
end of every run. The total duration of each run was thus ten minutes and fifty seconds.

Retinotopy tasks
The Retinotopy tasks refer to the classic retinotopic paradigms—i.e. the Wedge and the Ring tasks—consisting of four kinds of
visual stimuli: (1-2) a slowly rotating clockwise or counterclockwise, semicircular checkerboard stimulus, as part of the Wedge
task; and (3-4) a thick, dilating or contracting ring, as part of the Ring task. The phase of the periodic response at the rotation or
dilation/contraction fundamental frequency measured at each voxel relates to the measurement of the perimetric parameters
concerning polar angle and eccentricity, respectively36.

In the present study, six runs were devoted to this task. Each of them were five-and-a-half minutes long. They were
programmed for the same session following the last three “training-data” runs of the Clips task (see Section Clips task for
complete description of this task.) Four runs were dedicated to the presentation of the rotating checkerboard stimulus (two runs
for each direction) and the remaining two were dedicated to the dilating or contracting ring, one at a time.

Similarly to the Clips task, a point was displayed at the center of the visual stimulus in order to keep constant the perimetric
origin in all participants. Participants were thus to fixate continuously this point whose color flickered throughout the entire
run. To keep the participants engaged in the task, they were instructed that, at the end of every run (i.e. after MRI acquisition
was finished), they would be asked which color had most often been presented. They had to select one of the four possible
options—i.e. red, green, blue or yellow—by pressing on the corresponding button in the response box.

Raiders task
The Raiders task was adapted from Haxby et al. (2011)16, in which the full-length action movie Raiders of the Lost Ark was
presented to the participants. The main goal of the original study was the estimation of the hyperalignment parameters that
transform voxel space of functional data into feature space of brain responses, linked to the visual characteristics of the movie
displayed.

Similarly, herein, the movie was shown to the IBC participants in contiguous runs determined according to the chapters of
the movie defined in the DVD (see Section Stimuli for details about the DVD edition).

This task was completed in two sessions. In order to use the acquired fMRI data in train-test split and cross-validation
experiments, we performed three extra-runs at the end of the second session in which the three first chapters of the movie were
repeated.

To account for stabilization of the BOLD signal, ten seconds of acquisition were added at the end of the run. The structure
of both sessions and duration of their runs are detailed in Table 2.

Data Acquisition
Data across participants were acquired throughout four MRI sessions, whose structure is described in Table 2. Deviations from
this structure was only registered for participant 8 (sub-08), whose data pertaining to Run #13 of Raiders task was acquired in
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the session dedicated to the Theory-of-Mind and Pain Matrices task battery from the second release of the IBC dataset (for
more details about this release, consult Pinho et al. (2020)34).

Behavioral Data
Behavioral data from the training sessions for the Clips and Retinotopy tasks were recorded throughout four sessions.

Scores were obtained according to the response accuracy of the participant for a given trial. They indicate how close
participant’s sight was from the center of the screen during the trial. Each session was composed of four different trials.
Therefore, we collected a maximum of sixteen scores per participant across all sessions. They are presented as Supplementary
Material. We denote that each participant performed at least one training session. Nevertheless, the completion of the four
sessions was not compulsory, because there was a trade-off between extensive training and quality of performance. Since
participants could experience some fatigue while fixating their eyes for a continuous period of time, we thus recommended
carrying out at least one training session (for more information about how training sessions were conducted, consult Section
Experimental Procedure).

Additionally, participants were also asked to provide a button-press response at the end of every run concerned with the
Retinotopy tasks (for more details about these tasks, consult Section Retinotopy tasks). The registry of these behavioral data
was held in log files generated by the corresponding stimulus-delivery software.

Imaging Data
FMRI data were collected using a Gradient-Echo (GE) pulse, whole-brain Multi-Band (MB) accelerated42, 43 Echo-Planar
Imaging (EPI) T2*-weighted sequence with Blood-Oxygenation-Level-Dependent (BOLD) contrasts, using the following
parameters: the repetition time (TR) is 2000 ms; the echo time (TE) is 27 ms; the flip angle is 74◦; the field-of-view (FOV)
is 192 × 192 × 140 mm3; voxel size is 1.5 × 1.5 × 1.5 mm3; the slice orientation is axial; slices are acquired in interleaved
fashion; in-plane acquisitions were accelerated by a factor (GRAPPA) of 2; and across slices, a multi-band factor of 3 was
used. Two different acquisitions for the same task were always performed using two opposite phase-encoding directions: one
from Posterior to Anterior (PA) and the other from Anterior to Posterior (AP). The main purpose was to mitigate geometrical
distortions while assuring built-in, within-subject replication of the same tasks.

Spin-Echo (SE) EPI-2D image volumes were acquired in order to correct for spatial distortions, using the following
parameters: a TR of 7680 ms; a TE of 46 ms; a FOV of 192 × 192 × 140 mm3; a voxel size of 1.5 × 1.5 × 1.5 mm3; axial
slice orientation; and acceleration factor (GRAPPA) = 2. Similarly to the GE-EPI sequences, two different acquisitions were
also performed using PA and AP phase-encoding directions.

In addition, a 3D magnetization-prepared rapid gradient-echo (MP-RAGE) T1-weighted anatomical-image volume,
covering the whole brain, was acquired with the following parameters: voxel size of 1 × 1 × 1 mm3; sagittal slice orientation;
flip angle of 9◦; and FOV of 256 × 256 × 160 mm.

A detailed description of the imaging parameters set for each MRI modality is available in Pinho et al. (2018)33 and in the
IBC-dataset documentation: https://individual-brain-charting.github.io/docs/mri_acquisitions.html.

Imaging-Data Analysis
Prior to any neuroimaging-data analysis, the MRI DICOM images were converted to NIfTI format using the DCM2NII tool,
which is available on https://www.nitrc.org/projects/dcm2nii/. Conversion to NIfTI format also included a full anonymization
of the data, i.e. pseudonyms were removed and images were defaced using the Freesurfer-6.0.0 library44.

Preprocessing
All GE-EPI volumes were collected twice with reversed phase-encoding directions, resulting in pairs of images with distortions
going in opposite directions. Susceptibility-induced off-resonance field was estimated from the two SE-EPI volumes, which
were collected twice and also using reversed phase-encoding directions. The GE-EPI images were then corrected based on
the corresponding deformation model, which was computed using the FSL implementation as described in Andersson et al.
(2003)45 and Smith et al. (2004)46.

Source data were then preprocessed using the same pipeline as described in Pinho et al. (2018)33 and Pinho et al. (2020)34,
which relies on the PyPreprocess library: https://github.com/neurospin/pypreprocess. Pypreprocess stands for a collection of
Python scripts—built upon the Nipype interface47—which are oriented toward a common workflow of fMRI-data preprocessing
analysis; it uses precompiled modules of both SPM12 software package (Wellcome Department of Imaging Neuroscience,
London, UK) and FSL library (Analysis Group, FMRIB, Oxford, UK) v6.0.0.

GE-EPI volumes of each participant were then aligned among them. To this end, a rigid body transformation was employed,
wherein the average volume of all images was used as main reference48.

The T1-weighted MPRAGE volume and the aligned GE-EPI volumes were then given as input to FreeSurfer v6.0.0, in order
to extract the surface meshes of the tissue interfaces and a sampling of the functional activation on these meshes, as described
in vanEssen et al. (2012)49. These functional activations were then resampled onto the fsaverage7 template of FreeSurfer50.
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Naturalistic-Data Analysis
Naturalistic stimuli typically imply a profuse amount of data descriptors, which leads to high-dimensional design matrices51, 52.
A data-driven approach was thus employed herein as means to inspect the effects-of-interest elicited by the fMRI data that were
acquired for this type of behavioral paradigms.

Because brains exposed to the same stimuli exhibit synchronous activity28, a shared response can be obtained across
different individuals. To this end, we used the FastSRM implementation for fMRI data—as described in Richard&Thirion
(2023)37 —to analyze the preprocessed imaging data of Clips and Raiders and extract a common subjects’ response to these
tasks together with their individual spatial components.

Formally, consider GE-EPI data preprocessed on the surface (see Section Preprocessing) for n = 12 subjects. The brain
image at timeframe r, Xr

n ∈ Rv,r ∈ 1, · · · ,R is modeled for subject n, n ∈ 1, · · · ,N, as a weighted sum of k spatial components
stored in Ws ∈ Rk×v, wherein v is the number of vertices in the cortical surface mesh. Generalizing for all subjects and time
frames, the Deterministic Shared Response Model (SRM)53 is defined by:

Xn = SWn +En with WnW⊤
n = Ik (1)

in which Xn ∈ RR×v is the concatenation of R brain images with v vertices from subject n; S ∈ RR×k is the concatenation of
the weights for every spatial component and it is denoted as the shared response; the Wn ∈ Rk×v is the concatenation of k
spatial components with v vertices for subject n; En ∈ RR×v is a Gaussian additive noise and Ik ∈ Rk×k is the identity matrix.
By analogy with the GLM framework, typically employed in fMRI analysis, the resulting shared response herein obtained is
equivalent to the design matrix, while the spatial components are naturally seen as parameter estimates. To estimate S and
(W)n∈{1,...,N}, one shall consider the following minimization problem:

argmin(Wn)
N
n=1,S

N

∑
n=1

∥Xn −SWn∥2 such that ∀n ∈ {1, . . . ,N},W⊤
n Wn = Ik. (2)

This optimization problem is solved by alternate minimization. Solving with respect to Wn while the other quantities are
fixed, it yields the following updates:

Wn = UnVn where Un,Dn,Vn = SVD(ST Xn) (3)

where SVD stands for Singular Value Decomposition.
Solving with respect to S, while other quantities are fixed, it yields the following update:

S =
1
N

N

∑
n=1

XnWT
n . (4)

Updates in equations (3) and (4) are performed alternatively until the gradient of the objective in equation (2) is small enough.
The FastSRM is, in turn, a memory-efficient computational algorithm of the SRM, especially suitable for datasets with

large v. Because the IBC dataset was acquired at high-spatial resolution (see Sections Background & Summary and Imaging
Data for more details), v is on the order of 105. The method works by applying a Principal Component Analysis (PCA) to each
subject with a number of components set to the number of timeframes R in the dataset (in the IBC dataset, R is on the order
of 103). Since R is much smaller than v, the reduced data X̂n ∈ RR×R are much smaller in size. We then estimate Wn and S
replacing Xn by X̂n in equations (3) and (4). As proved by Richard&Thirion (2023)37, the estimate Ŝ of S we obtain using the
reduced data is the same as if the full data were used.

For the present study, the number of iterations used to fit the data in the FastSRM model was 104. After, we recover the
spatial components Wn for every subject n through orthonormal regression—as defined by (3)—using Ŝ and the original data
Xn.

Within this framework, we can extract the subject-specific effects-of-interest elicited by the tasks through the individual
spatial components Wn. To be able to statistically validate these findings, we set an analysis based on Cross Validation (CV),
in which we assessed whether reconstructed individual data of one run predicted the original individual data for that run. As
referred in Table 2, data per participant and for one task were collected in different runs during one or more sessions and,
consequently, data from one run pertain only to one task. Moreover, Raiders and Clips data were analyzed separately. By this
way, this prediction framework is task specific.

Concretely, it consists in a double K-fold cross validation based on co-smoothing54, wherein K = 3 for N = 12 subjects and
K = 2 for R runs. The total number of runs per task is different. For Raiders, R = 13 and, therefore, the size of the two folds are
six and seven. For Clips, data were split in terms of number of runs for training and test, which were predefined according to
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the acquisition design of the task (see Clips task for more details); the size of the training and test sets are thus twelve and
nine, respectively. This CV procedure served therefore as a scoring algorithm. It computes the correlation coefficient between
predicted brain-activity maps of test runs and subjects —which were obtained from the shared response and k = 20 spatial
components learnt on the training runs— and the corresponding original data. The resulting vertex-wise correlation coefficients
represent a similarity measure of the shared content between subjects. This procedure is depicted in further detail on Figure 1.

Figure 1. Description of the co-smoothing procedure to compute the jointly activated brain areas using FastSRM. The
algorithm runs two nested CV loops. One first outer loop executes a random split of the cohort of twelve participants into a
train set and a test set, respectively composed of eight and four subjects. One inner loop executes a random split of the group of
runs into a train set and a test set: respectively twelve and nine for Clips and, interchangeably seven or six for Raiders. For
every turn of the nested CV loops: (a) the k = 20 spatial components specific to each subject on the train runs are computed
through alternate minimization (see equations 3 and 4) together with their shared response, which is then used to compute the
individual components of test subjects on the same runs; then, (b) assuming that the same features of the train runs will be
found on the test runs, we fit the individual responses of the train subjects on the test runs in order to compute their shared
response; (c) test runs are then predicted through their shared response computed in (b); and, (d) the vertex-wise correlation
between the predicted runs and the corresponding original data is computed. For every subject, the vertex-wise median of the
correlations was estimated across runs within each split-half set. The vertex-wise median of the correlations across all subjects
was then estimated from the individual median correlations. This final coefficient represents the similarity of activated regions
across subjects for each task.

To compute the group-level significance of these individual estimates, we performed a mass-univariate group analysis with
permuted Ordinary Least Squares (OLS) using a sign flipping permutation scheme.

We also assessed what regions are significantly different in the performance of Raiders versus Clips by computing a
two-sided Paired t−test in every vertex, between the individual correlation coefficients of the two tasks. In order to obtain a
precise labeling of the functional regions covered by these results, we computed the proportion of significant vertices present in
the areas and regions derived from the cortical parcellation of Glasser et al. (2016)55. This estimation was performed using the
projection of the HCP-MMP1.0 parcellation onto the fsaverage7 template, which is available on Mills (2016)56.

The FastSRM encoding analysis was implemented using the IdentifiableFastSRM module of the FastSRM package that can
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be found on: https://github.com/hugorichard/FastSRM. Statistical analyses and plotting were performed using SciPy v1.6.1
(https://www.scipy.org/) and Nilearn v0.9.257 (https://nilearn.github.io/).

Retinotopic-Data Analysis
The retinotopic mapping data (rotating wedge and expanding/shrinking rings) were analyzed using the standard frequency-
domain analysis described in Sereno et al. (1995)36 and Warnking et al. (2002)58: sine/cosine regressors were specified at the
frequency of the periodic stimulus position change ( 1

32 Hz). The magnitude of the reponse of the voxels was estimated across
six sessions, and tested for significance using an F−test, thresholded at p < 0.001 and uncorrected for multiple comparisons.
The phase of the reponse in each voxel with a significant effect was then determined for each session, by comparing the relative
magnitude of the sine and cosine regressors. The phase information was combined for wedge- and ring-stimuli separately,
in order to cancel the hemodynamic-induced phase delay. This is possible because the stimuli were presented in opposite
motions (clockwise versus anti-clockwise for the wedge and expanding versus contracting for the ring). In addition, results
were averaged across replications (wedge experiments). The phase estimate therefore defines in polar coordinates (eccentricity
and polar angle) the visual field position that elicits a maximal amount of activation in each voxel.

All these steps were computed on the data sampled on the fsaverage7 template using the Freesurfer software50. For
visualization, the surface-based polan angle and eccentricity maps were displayed using the flat representation available through
the Pycortex tool59.

Data Records

The online access of source data is assured by the Human Brain Project (HBP) EBRAINS platform60 as well as the OpenNeuro
public repository61 under the accession number ds00268562. The NIfTI files as well as paradigm descriptors and imaging
parameters are organized per run for subject and each session, according to BIDS Specification. For more details, consult ‘Data
Records’ sections of Pinho et al. (2018)33 and Pinho et al. (2020)34: the data descriptors of the IBC first and second releases,
respectively.

The individual and unthresholded z-maps, obtained from the contrast maps of the experimental conditions concerned with
the Retinotopy (see Section Retinotopy Study) tasks, can be found in the NeuroVault repository63, under the collection with the
id=661864.

Technical Validation
Behavioral results were obtained through an elementary assessment of curated behavioral data. They are reported in Section
Behavioral Results.

All imaging results were obtained following the methodological procedures, as presented in Sections Naturalistic-Data
Analysis and Retinotopic-Data Analysis, applied to task-fMRI data previously preprocessed on the surface, as described in
Section Preprocessing. They are respectively reported in Sections FastSRM-Encoding Study and Retinotopy Study.

Behavioral Results
In the Retinotopy tasks, participants were to give a button-press response at the end of every run corresponding to the color of
the flickering fixation point they saw most times. There was only one correct answer out of the four possible options provided
for each task run, which was fixed across participants. Table 1 displays the individual response accuracy achieved for all task
runs. These scores are presented as percentages of the individual correct responses with respect to the total number of (correct)
responses; because there were six runs dedicated to the Retinotopy tasks (see Table 2), six responses were obtained. The
average ± standard deviation of the response accuracy across participants (excluding participant 5) are 56±20%, i.e. higher
than chance level (25%). These results show that overall participants’ fixation was good enough to perform a discrimination
task during the course of the run, thus suggesting that fixation was held properly.

FastSRM-Encoding Study
Figure 2 – a shows the t-tests’ results of the measures of performance across subjects of the FastSRM algorithm in terms of
pearson-correlation coefficients (see Section Naturalistic-Data Analysis and Figure 1 for details), which were obtained between
predicted and original data. These results yield functional regions that are synchronously activated across subjects for each
task, because predicted data is herein estimated from a shared response to the same stimuli—learnt from the model—which is
assumed to be observed in all individuals.

Higher significance was obtained throughout occipital areas for both Raiders (Figure 2 – a-left) and Clips (Figure 2 – a-right)
tasks. Besides, same results were also attained in the Inferior Parietal Lobe and posterior areas of the Superior Temporal Sulcus
only for the Raiders task. Overall, these results suggest a prominent recruitment of the visual system during performance
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Figure 2. Group-level brain activation per task and between tasks. (a) Negative log10 p-values associated with the
significance one-sample group-level test accuracy prediction in the reconstruction task. Pearson-correlation coefficient obtained
for every vertex from a double K−fold cross-validation experiment across subjects (K=3) and runs (K=2) of (left) Raiders task
and (right) Clips task. Data of test subjects performing test runs were reconstructed from the projection of the shared response
of train subjects while performing test runs onto the individual components of test subjects while performing train runs.
Predictions between original and reconstructed data were performed for every subject and run. To obtain the group-level
estimation of the coefficient and associated p−value at every vertex, the vertex-wise median of the coefficients and combined
p−values were first taken within split-halfs and, second, between split-halfs for every subject. To assess the group-level
significance of these estimates at every vertex, we computed a mass-univariate analysis with permuted OLS and took the
maximum t-score across permutations. Associated family-wise corrected p-values of permutations across vertices were
estimated and corresponding negative log10 p-values thresholded to 0.1 are displayed on the panel. (b) Group-level z−maps
displaying brain activation significantly different between Raiders and Clips tasks. Statistical results were determined through a
vertex-wise paired t−test between the individual pearson-correlation coefficients of the two tasks and standardized afterwards.
Statistical significance was assessed using an FDR-corrected threshold q = 0.05. Clusters depicted by the orange/yellow scale
represent brain activation significantly higher for Raiders than Clips; conversely, clusters depicted by the dark/light blue
represent brain activation significantly higher for Clips than Raiders. One can clearly observe that the orange-yellow clusters
surpass in number and size the blue clusters. These results thus highlight the predominant recruitment of extra brain regions
during performance of Raiders, which relate to the additional cognitive domains pertaining to auditory and language
comprehension that are involved in this task.
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Subject ID Response Accuracy (%)
sub-01 83
sub-04 67
sub-05 -
sub-06 50
sub-07 33
sub-08 67
sub-09 67
sub-11 67
sub-12 33
sub-13 33
sub-14 33
sub-15 83

Chance level: 25 %

Supplementary Table 1. Response accuracy (%) of behavioral performance for the Retinotopy tasks. Scores were
estimated based on the correct answers of each participant across the six Retinotopy runs, i.e. comprising both the Wedge and
the Ring tasks. The absence of response accuracy for subject 05 relate to loss of behavioral data due to a transient
malfunctioning of the equipment; we stress that this issue refers to a misregistration of the data in the log files generated by the
stimulus-delivery software and, thus, agnostic to subjects’ performance.

of both Raiders and Clips tasks and an additional recruitment of the auditory and language-comprehension systems during
performance of the Raiders task. They also reflect the main behavioral differences underlying these two tasks, i.e. they highlight
the fact that while both tasks refer to naturalistic visual stimuli, only Raiders refers to naturalistic audio stimuli.

To obtain a clear distinction of the regions exhibiting greater contributions for Raiders than Clips and vice-versa, we further
inspected the z−maps from Figure 2 – b depicting clusters whose difference of activations between the two tasks is significant.
Results massively display regions in which the magnitude of their activation is significantly higher for Raiders than Clips,
whereas the amount of regions showing results in the opposite direction is residual. The identification of the functional territories
covered by the clusters was determined in agreement with the parcellation of Glasser et al. (2016)55, which comprises 180
neocortical areas that are subsequently grouped in 22 main regions. Supplementary Table 2 presents, by descending order, the
list of areas that contain a proportion of significant vertices larger than 5% in both hemispheres. The correspondence between
area and main region was established according to the primary section in which the given area is described by the cortical
parcellation (for further details, consult Table 1 of the Neuroanatomical Supplementary Results of Glasser et al. (2016)55). We
identified 94 areas belonging to 21 main regions displaying higher activation for Raiders than Clips; no areas displaying higher
activation for Clips than Raiders were observed above the same threshold. These results confirm the recruitment of additional
brain networks necessary in the performance of cognitive tasks—namely auditory, speech and narrative comprehension—that
are present in Raiders but not in Clips (see Section Experimental Paradigms for more details). Contributions to these networks
come largely from the Auditory Association Cortex, Early Auditory Cortex, Temporo-Parieto-Occipital Junction, Posterior
Cingulate Cortex, Parietal Cortex and Lateral Temporal Cortex (see Supplementary Table 2).

Proportion (%) of Proportion (%) of
significant vertices significant verticesRegion Name Area Name

in the left hemisphere in the right hemisphere

Auditory Association Cortex

Area STSd posterior 99 93
Auditory 5 Complex 90 88
Area STSv posterior 78 61
Auditory 4 Complex 76 48
Area STSd anterior 64 25
Area STSv anterior 58 9

Area STGa 31 24

Temporo-Parieto-Occipital Junction

Area TemporoParietoOccipital Junction 1 90 95
Superior Temporal Visual Area 89 84

PeriSylvian Language Area 77 70
Area TemporoParietoOccipital Junction 3 70 67
Area TemporoParietoOccipital Junction 2 74 54
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Posterior Cingulate Cortex

Area 7m 92 90
Parieto-Occipital Sulcus Area 1 89 65

PreCuneus Visual Area 82 70
Area 31pd 70 68

Area ventral 23 a+b 64 70
Parieto-Occipital Sulcus Area 2 66 62

Area 31p ventral 73 34
Dorsal Transitional Visual Area 65 41

Area dorsal 23 a+b 28 26
Area 31a 29 26

ProStriate Area 34 12
RetroSplenial Complex 9 12

Superior Parietal Cortex

Medial Area 7P 88 92
Lateral Area 7P 77 90
Medial Area 7A 80 68

Medial IntraParietal Area 72 53
Anterior IntraParietal Area 4 78

Area Lateral IntraParietal dorsal 16 56
Area 7PC 20 43

Lateral Area 7A 27 27
Ventral IntraParietal Complex 22 23

Area Lateral IntraParietal ventral 8 13

Inferior Parietal Cortex

Area PGi 74 78
Area PGp 56 66

Area IntraParietal 0 72 49
Area PGs 45 53

Area IntraParietal 1 37 49
Area PFm Complex 20 62
Area IntraParietal 2 24 57
Area PF Complex 32 43
Area PF opercular 31 4

Area PFt 2 26

Early Auditory Cortex

Lateral Belt Complex 78 48
ParaBelt Complex 61 43

Primary Auditory Cortex 10 27
Area PFcm 20 16

RetroInsular Cortex 10 4

Dorsal Stream Visual Cortex

Sixth Visual Area 62 60
Area V3A 56 37

IntraParietal Sulcus Area 1 64 21
Area V3B 49 19
Area V6A 13 28

Seventh Visual Area 24 0

Lateral Temporal Cortex

Area PHT 65 54
Area TE1 anterior 16 2
Area TE1 posterior 13 6

Area TG dorsal 11 4
Area TE1 Middle 13 0
Area TG Ventral 9 0

MT+Complex and Neighboring Visual Areas

Area FST 47 56
Area V3CD 43 29

Area PH 12 21
Medial Superior Temporal Area 3 22

Area Lateral Occipital 3 20 3
Primary Visual Cortex (V1) Primary Visual Cortex 45 38

Early Visual Cortex
Second Visual Area 31 27
Third Visual Area 18 23
Fourth Visual Area 7 5

Premotor Cortex

Rostral Area 6 42 14
Area 55b 20 32

Area 6 anterior 18 23
Premotor Eye Field 30 4
Frontal Eye Fields 11 13

Dorsal area 6 3 12
Ventral Area 6 5 4

Paracentral Lobular and Mid Cingulate Cortex Area 23c 16 26
Supplementary and Cingulate Eye Field 10 0

Inferior Frontal Cortex

Area 45 25 6
Area IFJp 17 12
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Area 44 16 13
Area 47l (47 lateral) 21 0

Ventral Stream Visual Cortex VentroMedial Visual Area 3 8 22
VentroMedial Visual Area 2 11 4

Medial Temporal Cortex ParaHippocampal Area 3 9 5
ParaHippocampal Area 2 8 2

Dorsolateral Prefrontal Cortex
Inferior 6-8 Transitional Area 3 14

Superior Frontal Language Area 10 3
Area anterior 9-46v 11 0

Somatosensory and Motor Cortex Area 2 1 10
Posterior Opercular Cortex Area OP4/PV 12 0

Insular and Frontal Opercular Cortex Area Frontal Opercular 5 12 0
Anterior Cingulate and Medial Prefrontal Cortex Area p32 7 2

Supplementary Table 2. Proportions of vertices within brain areas, at each hemisphere, whose activation significantly
differs between Raiders and Clips tasks. Only areas with a proportion of significant vertices ≥ 5%, in both hemispheres
taken together, are listed in the table. Names of areas and regions as well as their correspondence were obtained from the
cortical parcellation of Glasser et al. (2016)55. We note that only areas displaying higher magnitude of activation for Raiders
than Clips are reported in the table, since no areas with ≥ 5% of significant vertices (in both hemispheres) were found for the
opposite direction.

Retinotopy Study
Figure 3 shows the retinotopic organization of the visual field in the human brain elicited by the Retinotopy tasks (see Sections
Materials, Experimental Procedure, Retinotopy tasks for further details about the implementation of these classic retinotopy
paradigms). The topographic projection to the V1-4 brain areas of the top-down and left-right reversed representation in the
retina of the visual stimuli is mapped for every participant. As in Sereno et al. (1995)36, the polar angle of this projection is
obtained from conditions pertaining to the Wedge task (left column), whereas its eccentricity is obtained from those pertaining
to the Ring task (right column). Overall, one can clearly notice a consistent spatial encoding of the visual field through these
polar coordinates across all individuals.

Usage Notes
Our results show that functional-imaging data featuring the hthird release of the IBC dataset reflect response to behavior
during performance of the corresponding tasks. We also show the feasibility of extracting the same type of data derivatives
—i.e. contrast maps— from tasks pertaining to different types of experimental designs. Concretely, we demonstrate that
cognitive networks of functional data collected from naturalistic paradigms can be extracted using FastSRM —an unsupervised
data-driven method— without explicitly model features of the stimuli. This is particularly useful toward computational
efficiency in high-dimensional regimes thanks to various shortcuts described in37. In addition, we demonstrate that results
obtained for every task—which are adapted from previous studies— are in agreement with the ones originally reported.

The collection of new data continues till Fall 2023 and, thus, a final release is expected in 2024. Tasks featuring these
releases will comprise not only other sensory modalities in greater depth but also high-order cognitive modules that will
complement those from past releases. For instance, we plan to attain a better coverage of the auditory system with the inclusion
of tasks on tonotopy, auditory language comprehension and listening of naturalistic sounds. Other tasks on biological motion,
motor inhibition, finger tapping, visual perception (e.g. color, scenes and faces), stimulus salience, working memory, emotional
memory, spatial navigation, risk-based decision making, reward processing, language and arithmetic processing will also
integrate these future releases.

Although the IBC dataset is dedicated foremost to task-fMRI data, future releases will be also dedicated to resting-state
fMRI data as well as to other MRI modalities, concretely high-resolution T1- and T2-weighted, diffusion-weighted and myelin
water fraction.

The official website of the IBC dataset (https://individual-brain-charting.github.io/docs/) can be consulted anytime for a
continuous update about its releases.

Code Availability
Metadata concerning the stimuli presented during the BOLD fMRI runs are publicly available at https://github.com/individual-
brain-charting/public_protocols. They include: (1) the task-stimuli protocols; (2) demo presentations of the tasks as video
annotations; (3) instructions to the participants; and (4) scripts to extract paradigm descriptors from log files for the GLM
estimation. Regarding the task-stimuli protocols, Clips consist in a reproduction of the protocol featuring the original study,
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Figure 3. Individual, flat and binary maps of retinotopy in the visual field. (top) The visual field is encoded through polar
coordinates: polar angle(left) and eccentricity (right). These polar coordinates are mapped on a flattened representation of the
cortical surfaces extracted from the twelve IBC subjects: sub-01, sub-04, sub-05, sub-06, sub-07 and sub-08 on the left side;
sub-09, sub-11, sub-12, sub-13, sub-14 and sub-15 on the other right side. One shall note the striking similarity of these maps
across individuals. Individual binary maps for fixed effects are displayed for every participant, using an FDR-corrected
threshold q = 0.05.
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only with minor adjustments and most of them concerned with experimental settings; Retinotopy and Raiders were re-written
from scratch in Python with no change of the design referring to the original paradigms.

The scripts used for data analysis are publicly available under the Simplified BSD license: https://github.com/individual-
brain-charting/public_analysis_code.

Full description of the experimental designs, acquisition parameters and analysis pipeline for all tasks featuring this release
as well as conditions and contrasts for the retinotopy tasks can be found on the online documentation of the IBC dataset:
https://individual-brain-charting.github.io/docs/tasks.html.
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