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ABSTRACT 45 

 46 

Sedentary behaviors (SB) are characterized by a low energy expenditure while in a 47 

sitting or reclining posture. Evidence relevant to understanding the physiology of SB can 48 

be derived from studies employing several experimental models: bed rest, 49 

immobilization, reduced step count, and reducing/interrupting prolonged SB. We 50 

examine the relevant physiological evidence relating to body weight and energy 51 

balance, intermediary metabolism, cardiovascular and respiratory systems, the 52 

musculoskeletal system, the central nervous system, and immunity and inflammatory 53 

responses. Excessive and prolonged SB can lead to insulin resistance, vascular 54 

dysfunction, shift in substrate use towards carbohydrate oxidation, shift in muscle fiber 55 

from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass 56 

and strength, and bone mass, and increased total body fat mass and visceral fat depot, 57 

blood lipid concentrations, and inflammation. Despite marked differences across 58 

individual studies, longer-term interventions aimed at reducing/interrupting SB have 59 

resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist 60 

circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL 61 

concentrations, systolic blood pressure, and vascular function in adults and older adults. 62 

There is more-limited evidence on other health-related outcomes and physiological 63 

systems, and for children and adolescents. Future research should focus on the 64 

investigation of molecular and cellular mechanisms underpinning adaptations to 65 

increasing and reducing/ interrupting SB and the necessary changes in SB and physical 66 

activity to impact physiological systems and overall health in diverse population groups. 67 
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CLINICAL HIGHLIGHTS 68 

 69 

1) Sedentary behavior (SB; time spent sitting) occupies a high proportion of adults’ 70 

waking hours and its effects can be examined distinctly from lack of exercise or 71 

physical activity (PA).  72 

2) The average energy cost of common SBs ranges between 1.0 and 1.5 METs. Energy 73 

expenditure, heart rate, skeletal muscle blood flow and contractile activity are higher 74 

during sitting than when reclining, but lower than in a standing position and during PA 75 

of any intensity.  76 

3) Prolonged and uninterrupted SB leads to insulin resistance, vascular dysfunction, 77 

shift in substrate use towards carbohydrate oxidation, shift in muscle fiber from 78 

oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass 79 

and strength, and bone mass, and increased total body fat mass and visceral fat 80 

depot, blood lipid concentrations, and inflammation.  81 

4) From a physiological perspective, there are impacts of SB on physiological responses 82 

that relate to those of physical inactivity, i.e., too little exercise. Even though such 83 

effects are similar, high volumes of SB can have adverse physiological impacts even 84 

in the presence of large volumes of aerobic and/or resistance exercise. 85 

5) Acutely, reducing/interrupting SB improves postprandial glucose and insulin 86 

responses, systolic blood pressure, mean arterial pressure, and lower limb vascular 87 

function. In the longer-term, there are small improvements on body weight, waist 88 

circumference, percent body fat, fasting glucose, HbA1c and HDL concentrations, 89 
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systolic blood pressure, and vascular function. Evidence is more limited for other 90 

health outcomes and physiological systems. 91 

6) Reducing/interrupting SB improves body composition, intermediary metabolism, and 92 

cardiovascular health outcomes, but effects are small, albeit marginally clinically 93 

meaningful. Most studies have been conducted in healthy population groups (i.e., 94 

outcomes within normal ranges) and larger effects may be observed in unhealthy 95 

populations.  96 

7) The ‘sit less, move more and exercise’ focus of contemporary public health guidelines 97 

is a consensus based primarily on epidemiological findings, and further experimental 98 

evidence is needed to elucidate the physiological effects of interventions combining 99 

exercise and reduction/interruptions to SB. Nevertheless, reducing/interrupting SB is 100 

a low-risk strategy of clinical and population health relevance, and can serve as a 101 

stepping stone to regular participation in moderate-to-vigorous intensity PA. 102 
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1. INTRODUCTION 103 

 104 

Sedentary behavior (SB) is defined as any waking behavior characterized by a low 105 

energy expenditure (≤1.5 metabolic equivalent of task [MET]) while sitting or lying down 106 

(1). Driven by environmental, economic, social, and technological changes, SB is now 107 

understood to be a major component of the human movement spectrum that can impact 108 

health adversely (2, 3). In adults and older adults, time spent sedentary can range from 109 

5 to 11.5 h/day (4-7).  110 

 Particular attention has been given to SB only since the early 2000’s when the 111 

term “inactivity physiology” (i.e., acute and chronic physiological effects of SB [non-112 

exercise activity deficiency]) was put forward by Hamilton and colleagues as a separate 113 

research field from exercise physiology (8-10). This shift was motivated by experimental 114 

findings demonstrating key differences in mechanisms driving skeletal muscle 115 

lipoprotein lipase (LPL) responses between physical inactivity and exercise compared to 116 

normal standing and ambulatory activity in rats (8, 9). The rapid accumulation of 117 

experimental evidence on SB over the past 20 years has built upon these early insights, 118 

with greater attention being directed at understanding the health consequences of daily 119 

hours spent sedentary and the countermeasure strategies aimed at 120 

reducing/interrupting time spent sedentary.  121 

 This review provides a perspective on: (i) how to characterize SB; (ii) the pros 122 

and cons of the currently available experimental models employed in the investigation of 123 

physiology of SB; (iii) the physiological effects of variations in SB and potential 124 

underlying mechanisms; and, (iv) the gaps that currently exist in the scientific 125 
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understanding of the physiology of SB. For a broad and practically-informed 126 

perspective, we address the extent to which the physiological evidence base can help to 127 

further focus and sharpen public health and clinical practice guidelines, extending 128 

beyond the well-understood and accepted ‘exercise more’ message, towards a more 129 

comprehensive ‘sit less, move more and exercise’ message. 130 

 131 

2. AN OPERATIONAL FRAMEWORK FOR SEDENTARY BEHAVIOR PHYSIOLOGY 132 

RESEARCH 133 

 134 

The term SB, derived from the Latin word sedere (‘to sit’), refers to any waking behavior 135 

posture (1) (see TABLE 1 for key terms in SB research). First, we discuss key features 136 

and themes of SB research. This operational framework provides guidance for more in-137 

depth considerations on the physiology of SB later in the review. 138 

 139 

-------------------------------- INSERT TABLE 1 ABOUT HERE -------------------------------- 140 

 141 

2.1. Characteristics of sedentary behavior 142 

SBs are identified based on their physiological and postural characteristics. 143 

Physiologically, the average energy cost of common types of SB ranges between 1.0 144 

and 1.5 METs in healthy adults (11) during fasting (12-14) and postprandial states (15, 145 

16), as measured by indirect calorimetry (12-15) or by whole-room calorimetry (16). 146 

Overall, energy expenditure during sitting is higher than reclining (13, 16), but lower 147 



 8 

than standing (12, 13) and lower than all intensities of physical activity (PA) (15). For 148 

heart rate (HR), similar responses are observed (12, 14).  149 

In skeletal muscle, increased contractile activity is required to sustain standing 150 

and ambulatory activities (17); consequently, blood flow increases and the metabolic 151 

demands of the contracting muscles are accommodated (18). In contrast, muscle 152 

contractile activity during sitting postures (as measured by electromyographic [EMG] 153 

activity) is significantly lower than for standing and ambulatory activities (14, 17, 19). 154 

EMG activity in the quadriceps and hamstring muscle groups is ~2.0-2.5, ~7.0-10.5 and 155 

~18.0 times higher during standing, walking and stair climbing in daily living settings, 156 

respectively, as compared to sitting (17, 19). To match the reduced metabolic demands 157 

of low muscle activity, skeletal muscle blood flow is also significantly lower and less 158 

variable during sitting as compared to standing and ambulatory activities (18, 20, 21). 159 

Elements pertaining to SB that may explain the differential impacts of SB on 160 

health outcomes include frequency, intensity, time, and type, the so-called FITT 161 

principle (TABLE 2) (22). Engagement in SB can be accordingly described and 162 

monitored, which aligns with and builds on the FITT principle for exercise prescription. 163 

These key postural, physiological, and behavioral features are what define/characterize 164 

SB and should be considered explicitly in SB research. 165 

 166 

-------------------------------- INSERT TABLE 2 ABOUT HERE -------------------------------- 167 

 168 

2.2. Sedentary behavior versus physical inactivity 169 
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The term ‘sedentary’ had previously been used interchangeably with physical inactivity 170 

to denote insufficient levels of moderate-to-vigorous intensity PA (MVPA), i.e., not 171 

achieving the current PA guidelines (1). However, SB and physical inactivity are now 172 

viewed as being separate entities on a continuum of human movement and non-173 

movement behaviors (1). According to this definition, a person could be classified as 174 

being both highly sedentary and physically active. This points to four distinct 175 

classifications: being physically active and highly sedentary, physically active and 176 

slightly sedentary, physically inactive and highly sedentary, or physically inactive and 177 

slightly sedentary (FIGURE 1). The importance of addressing the behavioral phenotype 178 

of both excessive SB and physical inactivity is now embodied in contemporary public 179 

health PA guidelines (2, 23). 180 

 181 

---------------------------------- INSERT FIGURE 1 ABOUT HERE ----------------------------------- 182 

 183 

From a physiological perspective, differentiating between ‘SB’ and ‘physical 184 

inactivity’ may initially seem rather semantic. Indeed, reviews have already summarized 185 

the evidence to date on numerous physiological responses of increasing SB (24-29) 186 

and it is evident that many of these relate to the responses following imposed physical 187 

inactivity (30-33). Even though the effects of SB and physical inactivity are generally in 188 

a similar direction (deleterious), excessive participation in SB has been shown to result 189 

in adverse effects even in the presence of large volumes of aerobic and/or resistance 190 

exercise (a sedentary yet physically active condition) (34). Exercising (above current PA 191 

guidelines) during bed rest does not necessarily counteract, or only partially 192 
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counteracts, some of the adverse effects of large volumes of SB in healthy adults (34). 193 

These findings point not only to likely independent adverse health effects of SB, but also 194 

to the potential benefits of regular non-exercise activity and/or muscle contractions.  195 

 196 

2.3. Sedentary behavior physiology research: The seminal role of ‘inactivity 197 

physiology’ and animal studies 198 

The term ‘inactivity physiology’ was first proposed in the early 2000’s as a separate field 199 

and distinct from exercise physiology (8, 10, 35). The premise was that excessive SB 200 

was not the same as lack of exercise and that SBs have their own unique physiological 201 

consequences. 202 

Research in the ‘inactivity physiology’ context has been examined primarily using 203 

hindlimb unloading and wheel lock methodologies in rats. The key objective of these 204 

studies was to better understand how increasing SB and imposing physical inactivity (or 205 

rather hypodynamia and hypokinesia) may trigger maladaptations linked to chronic 206 

diseases. Here, key findings pertinent to SB physiology are summarized. 207 

Hindlimb unloading models involve suspending rodents by their tail, thereby 208 

preventing any weight-bearing activities of the lower limbs. Hindlimb unloading studies 209 

have reported rapid development of insulin resistance (increased glucose-insulin index) 210 

after one day of limb suspension (36). Notably, glucose transport activity and 211 

intramuscular triglycerides were significantly lower in soleus muscle, but not in extensor 212 

digitorum longus after one day of limb suspension, which was driven by increases in 213 

p38 mitogen-activated protein kinase expression (MAPK), known to negatively interact 214 

with insulin signaling cascade (36). This suggests that those muscles which 215 
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predominantly contain type 1 fibers are more susceptible to maladaptations related to 216 

increasing SB than muscles composed of type 2 fibers predominantly. This has also 217 

been shown in humans following periods of bed rest. For example, plantar flexor and 218 

monoarticular knee extensor muscles were found to be more affected than hip 219 

extensor/adductor muscles after head-down bed rest (HDBR) and horizontal bed rest 220 

(37-40). In contrast, the biarticular knee extensor and hip flexor rectus femoris, other 221 

anteromedial hip muscles and short head of biceps femoris were found to be 222 

comparatively less affected by horizontal bed rest (37). Notably, faster rates of muscle 223 

atrophy were observed in anti-gravity muscles and those that are more intensively 224 

required for standing and walking (37). Similarly, myosin heavy chain (MHC) distribution 225 

in the skeletal muscle shifted from slow-twitch (MHC I) towards hybrid (I/IIa and IIa/IIx) 226 

and fast-twitch (IIa and IIx) fiber types in vastus lateralis following 35-84 days of HDBR 227 

and horizontal bed rest (41-43). Similar alterations in slow and hybrid fibers, but not fast 228 

fibers, were observed in soleus muscle after 84 days of HDBR (42). 229 

Hamilton and colleagues showed that distinctive physiological pathways are 230 

activated with hindlimb unloading, particularly LPL activity, which seems to remain 231 

largely unaffected by MVPA (44). Rat skeletal muscle triglyceride uptake was reduced 232 

by 75% and LPL protein expression and enzymatic activity were rapidly suppressed 233 

during acute (1-18 h) and chronic (~10 h/day over 11 days) periods of hindlimb 234 

unloading (44). Alterations in heparin-released and intracellular LPL activity decreased 235 

mono-exponentially in both the soleus (type 1) and red quadriceps (predominantly type 236 

2) muscles after 12 hours of limb unloading. These alterations were rapidly reversed 237 

with light-intensity contractile activity in both soleus and quadriceps muscles (9, 44, 45). 238 
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Interestingly, MVPA/exercise training did not enhance LPL regulation in type 1 muscles 239 

and type 2 muscles that were not recruited during running (8, 46). In type 1 muscles 240 

recruited during running, there was an increase in heparin-released LPL activity, LPL 241 

mRNA level, and LPL protein mass (8, 46). Additionally, heparin-released LPL activity 242 

was ten-fold less in the soleus and quadriceps muscles and two-fold less in the rectus 243 

femoris muscle of rats subjected to 12-hour limb unloading as compared with low-244 

intensity ambulatory controls (44). The absence of changes in LPL activity in the heart 245 

and diaphragm, both muscles with high oxidative capacity, also suggested loss of 246 

muscle LPL activity was constrained to unused muscles (44).  247 

Despite changes in LPL activity, no changes were observed in skeletal muscle 248 

LPL gene expression following acute (1-18 h) and sustained (~10 h/day over 11 days) 249 

periods of hindlimb unloading (45). However, Zderic and Hamilton (47) demonstrated 250 

that skeletal muscle differentially expresses at least 17 genes involved in homeostasis 251 

in humans and rats. Of particular interest, Lipid Phosphatase-1 (LPP1/PAP2A), a key 252 

gene for degradation of prothrombotic and proinflammatory lysophospholipids, was 253 

suppressed locally in muscle tissue after 12 hours of hindlimb unloading in rats, and 254 

after 12 hours of prolonged sitting in humans (47). Of note, exercise was ineffective at 255 

counteracting this decrease in both species (47).  256 

Wheel lock models involve periods of habitual or voluntary activity (3-6 weeks; 257 

typically, 5-10 km/day of running) which is suddenly restricted (i.e., running wheel 258 

locked) to permit only minimal movement within the cage for up to 7 days. While daily 259 

wheel running increased insulin-dependent glucose uptake in isolated skeletal muscle, 260 

a rapid decrease in insulin sensitivity was reported following only 2 days of wheel lock in 261 
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rats (48). This reduction in insulin-dependent glucose transport was associated with 262 

reduced activation of the insulin-signaling pathway and glucose transporter 4 (GLUT-4) 263 

protein content. Pronounced gains in intra-abdominal fat mass (25 to 48%) were also 264 

reported following 1 week of wheel lock (49, 50). Interestingly, lowering food intake 265 

during wheel lock did not significantly change fat mass increase compared to the rats 266 

that were fed ad libitum, indicating that fat storage was the result of SB and physical 267 

inactivity per se, rather than positive energy balance (49). Despite providing important 268 

initial insights for SB research, wheel lock models are considered to be extreme models 269 

of inactivity in which animals transit from very high daily amounts of exercise to 270 

sedentariness/inactivity. Therefore, it may be more a model of detraining from exercise 271 

rather than a model to study adaptations to increasing SB.  272 

Evidence from ‘inactivity physiology’ studies using hindlimb unloading, and wheel 273 

lock methodologies have been instrumental in laying the foundation for experimental 274 

studies related to SB and physical inactivity physiology in humans by providing initial 275 

evidence on the potential adverse effects and underpinning mechanisms associated 276 

with these behaviors as compared to habitual activity and exercise.  277 

 278 

2.4. Role of sedentary behavior in health and disease 279 

Extensive epidemiological evidence has highlighted that excessive daily time in SB is 280 

associated with increased risk of early mortality and chronic diseases, including obesity, 281 

type 2 diabetes, cardiovascular disease, metabolic syndrome, certain type of cancers, 282 

and others (4, 51-59). Yet mechanisms involved in this increased risk are poorly 283 

understood.  284 
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A systematic review synthesized current knowledge of the associations of SB 285 

with gene expression and epigenetic modifications in children and adolescents. Overall, 286 

evidence is still limited, but some studies suggest candidate genes and non-coding 287 

ribonucleic acids (RNAs) that are linked to/regulated by SB, including higher miRNA-288 

222 and miRNA-146a levels (related to angiogenesis and inflammation), and 289 

methylation at HSD11B2 promoter (related to stress/cortisol metabolism) (60). 290 

Additionally, screen time was a significant moderator in the association of the 291 

rs9939609 single nucleotide polymorphism (SNP) located on the fat mass and obesity-292 

associated gene (FTO) with metabolic syndrome clustered cardiometabolic risk score in 293 

children and adolescents of low cardiorespiratory fitness (61). In adults, FTO SNP 294 

rs9939609 was significantly associated with self-reported time spent in SB, and 295 

sedentary time partially mediated the association between FTO and body mass index 296 

(BMI) (62). In contrast, another study demonstrated that the association between 297 

objectively measured SB and FTO SNP rs17817449 was fully attenuated by BMI in 298 

adults, suggesting the association between SB and FTO was explained by adiposity 299 

(63). Although the mechanisms through which FTO increases BMI and adiposity have 300 

not been elucidated, knockout mice models suggest that FTO may be involved in 301 

energy homeostasis via regulation of energy expenditure (64). 302 

Ascribing causality from observational evidence is difficult. To overcome this 303 

limitation some studies have used Mendelian randomization, which is a well-established 304 

tool that employs genetic variants as instrumental variables for exposures (e.g., SB and 305 

PA). Since the genetic variants are randomly assigned during meiosis, Mendelian 306 

randomization can minimize confounding and reverse causation, potentially providing 307 
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stronger evidence for causal inference (65). Overall, findings from Mendelian 308 

randomization studies are aligned with those from observational studies.  309 

Totals of 136, 43 and 5 genetic SNPs have been found to be associated with 310 

leisure-time TV watching, computer use, and driving, respectively. Genetically predicted 311 

duration of TV watching was positively associated with risk of myocardial infarction, 312 

heart failure and atrial fibrillation, which remained significant after adjustments for 313 

genetically predicted PA. Associations between computer time use and driving and 314 

cardiovascular diseases were inconsistent and non-significant (66). Similarly, another 315 

study identified a total of 89 genetic SNPs that were associated with TV watching. 316 

Genetically predicted duration of TV watching, but not computer use and driving, was 317 

positively associated with risk of developing type 2 diabetes (67). A study using 318 

individual-level data from 130,957 females identified 6 SNPs as predictors of 319 

participation in SB. Females with genetic variants predisposing them to a higher time in 320 

SB had a higher risk of hormone-receptor-negative and in situ breast cancer. Sub-321 

analysis suggested that SB and PA independently influence risk of breast cancer (68). 322 

Finally, a genome-wide association study (GWAS) of PA and SB provided some 323 

insights into underlying mechanism and roles in disease prevention (69). Eighty-eight 324 

loci (89 independent SNPs) were associated with leisure screen time, 8 loci for SB at 325 

work, and none for SB during commuting. Authors observed significant genetic 326 

correlation between high leisure screen time and higher adiposity-related traits, 327 

particularly fat percentage, and poor cardiometabolic status, including higher 328 

triglycerides, cholesterol, fasting glucose and insulin concentrations, and odds of type 2 329 

diabetes, coronary artery disease, cancer, worsened mental health outcomes, and 330 
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decreased longevity. Additionally, Mendelian randomization has consistently shown that 331 

leisure screen time and BMI causally influence each other, with the causal role of 332 

leisure screen time in BMI being two-to-threefold larger than the effect of BMI on leisure 333 

screen time. In this same study, tissue and cell-type enrichment analysis has also 334 

suggested a role for visual information processing and the reward system in leisure 335 

screen time. Leisure screen time-associated loci were mildly enriched for genes whose 336 

expression in skeletal muscle is altered by resistance exercise training. Forty-six 337 

candidate genes pointed to pathways related to endocytosis, locomotion, and 338 

myopathy, but in vivo models are required to confirm or refuse a role in SB. Overall, 339 

such causal inferences can support public health message that increasing MVPA and 340 

reducing SB mitigate risk of multiple chronic diseases (69). 341 

The summary of available literature highlights the small evidence base with 342 

respect to the mechanisms behind the relationship between SB, health, and disease. 343 

Very few genes and genetic regions have been studied in SB research. Despite the 344 

limited evidence, Mendelian randomization studies provide genetic support for a causal 345 

relationship between SB and risk of chronic diseases. There is a need for larger cohort 346 

studies and randomized controlled trials using ‘omics’ approaches (e.g., genomics, 347 

epigenomics, transcriptomics, proteomics, and metabolomics) to better understand the 348 

molecular mechanisms underlying the effects of SB on heath and disease.  349 

 350 

2.5. The influence of sedentary behaviors on the relationship between 351 

exercise and health outcomes 352 
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Recent experimental evidence indicates excessive sedentary time also affects the 353 

relationship between participation in MVPA/exercise and health benefits (70-74).  354 

Coyle and colleagues have demonstrated adverse effects of excessive 355 

participation in SB on postprandial metabolic responses and metabolic benefits of acute 356 

exercise (72-74). Two or four days of prolonged sitting (>14 h/day and ~1,650 steps) 357 

resulted in increased postprandial plasma triglyceride responses regardless of energy 358 

intake, compared to 4 days of standing/walking (~8.4 h/day of SB and ~17,000 359 

steps/day) in healthy, physically active males. Importantly, this altered response was not 360 

attenuated by a subsequent acute 1-hour bout of MVPA (~67% VO2max) performed at 361 

1700h of day 4 (72). Using a similar study design, Akins and colleagues (73) 362 

demonstrated that acute exposure to prolonged sitting (~13.5 h/day of sitting and 363 

<4,000 steps/day) not only prevented the traditional exercise-related benefits in 364 

postprandial triglycerides responses, but also improvements in postprandial plasma 365 

glucose and insulin responses in healthy adults. Furthermore, Burton & Coyle (74) 366 

compared postprandial plasma triglycerides responses to an acute exercise bout after 2 367 

days of low (~2,500 steps/day), limited (~5,000 steps/day), or normal (~8,500 steps/day) 368 

daily step count to determine the range of step counts that elicited this blunted 369 

postprandial metabolic response to acute exercise. Following low and limited step 370 

counts, postprandial triglyceride responses were elevated by 22-23% and whole-body 371 

fat oxidation was reduced by 14-19% as compared to normal step count in healthy 372 

adults (74). This finding indicates that altered metabolic responses to acute exercise 373 

can occur in those taking ~5,000 steps/day or lower. 374 
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These studies provide initial insights into a unique perspective that excessive SB 375 

might be a health hazard, not only via the physiological maladaptations that occur 376 

during sitting, but also by impacting the health benefits provided by MVPA/exercise. 377 

Collectively, these findings highlight the need for: (i) addressing large amounts of time 378 

spent in SB to minimize/counteract its adverse effects; (ii) examining the physiological 379 

responses and adaptations within and across each of these distinct behavioral 380 

constructs, as there may be differential, additive and/or interacting physiological effects 381 

to consider.  382 

These are research questions that arise from SB physiology that have not been 383 

pursued by exercise and physical inactivity physiology. A key feature in SB research 384 

has been to focus on shifting the balance of participation in SB towards LPA, rather than 385 

solely focusing on MVPA. This has also been included in the development of 386 

countermeasures to specifically address SB, with a growing body of experimental 387 

studies aiming to reduce and interrupt prolonged SB with various types of PA (75-79). 388 

The understanding of the physiological impact of the interdependent relationships 389 

between SB, LPA and MVPA is a more recent focus and available evidence has been 390 

limited to the abovementioned studies. In the next subsection, the pros and cons of the 391 

relevant experimental models will be discussed in the context of their potential 392 

implications for investigations of the physiology of SB. 393 

 394 

2.6. Experimental models with relevance for sedentary behavior research 395 

SB-induced physiological changes in humans can be inferred from a variety of 396 

experimental models – bed rest, limb immobilization/casting, reduced daily step count, 397 
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reducing/interrupting prolonged sitting, and others (e.g., detraining, confinement, and 398 

natural experiments) – that collectively induce variations in time spent in SB (FIGURE 399 

2). Each of these approaches can provide complementary information related to the 400 

impacts of SB on health outcomes. Identifying and understanding the different goals, 401 

methodologies and assumptions that can be made under these models is fundamental 402 

when attempting to generalize their findings to SB physiology research. 403 

 404 

-------------------------------- INSERT FIGURE 2 ABOUT HERE -------------------------------- 405 

 406 

2.6.1. Bed rest  407 

Bed rest is a common practice within medical treatment for selected conditions. In 408 

research, bed rest was initially developed in the context of space exploration as a 409 

ground-based model used to mimic on Earth the physiological effects of microgravity. 410 

The bed rest model is characterized by a postural change (lying down or lying down 411 

combined with head tilt [i.e., HDBR]) and lack of muscle contraction for extended 412 

periods of time. In the quest of mitigating the adverse health effects of microgravity on 413 

the body, space agencies have developed and tested countermeasures during bed rest 414 

studies including different exercise training protocols (30, 34, 80-85). 415 

Beyond the interest in space science, bed rest models have implications for SB 416 

and physical inactivity research. Bed rest has the advantage of taking place in a highly 417 

controlled environment, which allows accurate monitoring of the activity performed and 418 

of food intake. The degree of physical inactivity observed during bed rest may be seen 419 

as too extreme compared with that seen in the general population, who spend more 420 
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time sitting with some level of body movement rather than strictly lying down. However, 421 

because of upper body movements and fidgeting movements in the bed, the PA level 422 

(i.e., the ratio between total and resting energy expenditures) measured during bed rest 423 

studies is similar to that of sedentary individuals (i.e., 1.4 to 1.5) (86, 87). In contrast, 424 

strict bed rest involves prolonged exposures to the lying down position, which distinctly 425 

affects organs and physiological systems as compared to the free-living context, where 426 

sitting is the most predominant type of SB. For example, lower-limb muscles and 427 

weight-bearing muscles are more affected than upper limbs and non-weight-bearing 428 

muscles during bed rest (37, 88, 89). Shift of fluid from the lower to upper part of the 429 

body is a unique adaptation to the lying down position, particularly in HDBR (90), which 430 

may distinctly affect cardiovascular and central nervous systems which is in contrast to 431 

how SB manifests in the free-living context.  432 

 433 

2.6.2. Immobilization 434 

Limb immobilization/casting models are characterized by periods during which a limb is 435 

physically immobilized (91, 92). In the case of lower-limb immobilization, participants 436 

are commonly supported by crutches and asked to refrain from weight-bearing activity 437 

on the immobilized leg. Consequently, there is an extensive restriction of motion for the 438 

target limb with a reduction in habitual ambulatory activity, which ultimately results in 439 

local muscle disuse (91). The main focus of contemporary studies has been to 440 

investigate mechanisms underlying muscle disuse atrophy (92, 93), particularly related 441 

to aging (94-97), and identifying potential countermeasures (97-99). 442 



 21 

Lower-limb immobilization models can be useful to investigate local muscle 443 

disuse since movements in the casted leg are tightly controlled during the protocol. Of 444 

importance for SB research, the lower-limb immobilization protocol likely induces 445 

increases in sedentary time. This can be presumed from free-living studies showing a 446 

higher sedentary time and lower PA during casting due to lower- or upper-limb fractures 447 

compared to healthy peers (100) or previous PA level (101). Similar to bed rest studies, 448 

immobilization protocols impose extreme changes in PA and SB levels. Additionally, the 449 

absence of control for PA level requires cautious interpretation of findings on systemic 450 

alterations in organs and systems other than the impacted limb.  451 

 452 

2.6.3. Reduced daily step count  453 

Reduced step count models have a focus on addressing how physical inactivity 454 

(reduced daily movement) is manifested in the daily lives of the majority of the 455 

population. For reference, median daily steps count in adult and older adult populations 456 

is typically around 5,000 (102). However, it is common that people may intermittently 457 

transition to lower daily step count. Reduced steps models aim to mimic such transitions 458 

by reducing participants’ daily ambulatory activity from normal to sub-normal levels 459 

(103-106). Most protocols aim to reduce the total amount of daily steps to ~1,500 460 

steps/day (range: 750 to 5,000) (105, 107-113). While the subsequent reduction in PA 461 

does not constitute complete disuse, it is plausible to assume that even short-term 462 

exposure to such periods of physical inactivity may have profound physiological 463 

consequences (109). 464 
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The main strength of reduced steps models is that they induce changes that are 465 

more similar to typical reductions in ambulatory activity that can occur in daily living due 466 

to hospitalization (740 to 2620 steps/day) (114, 115) as compared to strict bed rest, but 467 

it is less severe than those observed due to sickness (i.e., influenza-like symptoms; 468 

average of 924 steps/day) (116). The measure of PA level used in these studies has 469 

almost exclusively been step count. SB is not typically the focus and only a few have 470 

accurately reported increases in sedentary time during the step reduction protocols 471 

(106, 112, 113, 117), with inferences made about changes in sedentary time as a 472 

consequence of reductions seen in time spent in ambulatory activities.  473 

 474 

2.6.4. Reducing and interrupting prolonged sedentary behavior 475 

Experimental models aimed at reducing and/or interrupting sitting time in laboratory-476 

based and free-living settings are a relatively new approach. A key distinction here from 477 

the experimental models described above is the ‘solution focused’ treatment paradigm 478 

whereby typically physically inactive/sedentary individuals modify their typical low PA 479 

level to a higher PA level (118). Most reducing/interrupting prolonged SB models are 480 

acute in nature (most lasting >2 hours but <24 hours) (75-77, 119, 120). There is a 481 

growing number of multi-days (≤4 days) (121-124) to longer-term clinical trials (2 weeks 482 

to 36 months) (78, 79).  483 

Acute and multi-day protocols have utilized a control condition of imposed 484 

prolonged sitting and one or more experimental conditions involving, for example, a 485 

single continuous bout of activity and/or frequent, short bouts of activity (often referred 486 

to as ‘breaks’) (75-77). These experimental conditions may vary in terms of frequency, 487 
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intensity, duration, and type of activity used to interrupt sitting (20, 75-77). Acute models 488 

targeting reducing/interrupting prolonged SB can provide insights on the physiological 489 

effects and underlying mechanisms of such strategies. These studies have been 490 

typically conducted in highly controlled research environments, which allows accurate 491 

monitoring of potential confounders, including PA level. Consequently, the control 492 

condition (prolonged sitting) and experimental conditions (activity protocols) are typically 493 

unrepresentative of daily living activity patterns (125). To date, it is still uncertain 494 

whether some of the acute adaptations observed within this experimental model can be 495 

sustained over time (78) and whether maladaptations to sitting are an impairment to, or 496 

a sign of plasticity of, the physiological systems; e.g., health being defined as the ability 497 

of our body to cope with daily-life challenges (i.e., phenotypic flexibility) (126). 498 

Longer-term clinical trials have generally incorporated a control condition, in 499 

which sedentary/physically inactive participants are instructed to maintain their lifestyle, 500 

or have received usual care, and an experimental group, in which participants undergo 501 

an intervention to reduce/interrupt SB (78, 79). Longer-term randomized clinical trials 502 

can provide useful information on the longer-term dose-response effects of 503 

reducing/interrupting on health outcomes. Due to the nature of these studies, 504 

effectiveness of interventions at reducing/interrupting sedentary time, adherence to 505 

intervention, and duration, frequency and intensity of interruptions to SB must be closely 506 

monitored, as these factors likely affects the effects of such interventions on health 507 

outcomes. 508 

 509 
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2.7. Semantic considerations for interpreting the evidence that can be 510 

pertinent to sedentary behavior research 511 

In this review, SB is defined based on both physiological and postural features (see 512 

subsection 2.1) and is being considered as a distinct behavior that coexists with 513 

physical inactivity in daily living. In studies where SB cannot be separated from physical 514 

inactivity due to methodological limitations, the evidence that we will now consider 515 

below will be discussed in light of study limitations and noted as a consequence of both 516 

behaviors. Given the interdependent nature of SB, LPA and MVPA and the lack of 517 

studies focusing on this interrelationship, changes in SB and PA level will be reported 518 

whenever original studies or meta-analyses reported such changes. This information 519 

will be particularly useful to triangulate available evidence to better understand potential 520 

differential, additive and/or interacting effects of behaviors on physiological outcomes. 521 

The duration of SB interventions will also be reported as we address the relevant 522 

findings. The terms ‘acute’ and ‘multi-days’ will be used for studies lasting hours to ≤14 523 

days. The term ‘longer-term’ will be used for studies lasting >2 weeks to years.  524 

Adaptations to physical inactivity are not the opposite of adaptations to 525 

exercise/PA (8-10, 127). Accordingly, evidence from studies using models for increasing 526 

SB will be discussed separately from those of models aimed at reducing/interrupting 527 

SB. The consequences of increasing SB will be discussed using evidence from bed 528 

rest, bed rest combined with exercise, immobilization/casting, reduced daily steps, and 529 

acute studies that included a condition imposing prolonged SB. In contrast, the effects 530 

of reducing/interrupting SB will be discussed using evidence from acute and longer-term 531 

studies that include at least one condition aimed at reducing/interrupting SB with 532 
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multiple active bouts. Because of the limitations associated with bed rest models, 533 

evidence from bed rest related to whole-body outcomes will not be discussed herein. 534 

However, given the absence of evidence from other human models of increased SB, 535 

bed rest data will be used to inform the potential mechanistic underpinnings of 536 

excessive and prolonged SB. Evidence from detraining, confinement, and natural 537 

experiments have not been used either, as study findings are constrained by limitations 538 

related to study design, targeted population (e.g., athletes, those highly physically 539 

active), and the lack of control for sedentary time. 540 

Finally, SB research studies to date have included a variety of population groups. 541 

Therefore, the use of some key terms has been standardized over the next sections to 542 

facilitate the discussion of available evidence. Adult and older adult groups have been 543 

defined according to age cut points used by the original studies (‘adults’: 18-59 or 18-544 

64; ‘older adults’: ≥60 or ≥65 years old). The term ‘children’ has been used for 5-12 545 

years old and ‘adolescents’ for 13-17 years old. With respect to health status, the term 546 

‘healthy’ will be used to refer to population groups without any existing medical 547 

condition. Otherwise, health status or condition (e.g., overweigh, obesity, type 2 548 

diabetes) will be reported along with study findings. The sex of participants will be 549 

reported for studies that included females or males only. Sex-neutral terms will be used 550 

in studies that included participants from both sexes.  551 

The considerations outlined above in Section 2 provide perspectives and caveats 552 

of relevance to the evidence we address below for each of the relevant major bodily 553 

systems and processes. Accordingly, in the following sections (3 to 8), we examine the 554 

relevant physiological evidence relating to: body weight and energy balance; 555 



 26 

intermediary metabolism; cardiovascular and respiratory systems; the musculoskeletal 556 

system; the central nervous system; and immunity and inflammatory responses. 557 

 558 

3. BODY WEIGHT AND ENERGY BALANCE 559 

 560 

3.1. Body mass and composition 561 

 562 

3.1.1. Increasing sedentary behavior 563 

 564 

3.1.1.1. Evidence from longer-term studies 565 

Fourteen days of reduced step count (from 10,501 to 1,344 steps/day) reduced leg lean 566 

mass (~0.5 kg) and increased intra-abdominal fat mass (7%), but not total fat mass in 567 

healthy male adults (108, 109). Other studies (14 to 20 days; from ~11,500 to 2,000 568 

steps/day) have shown similar alterations in healthy male adults, but also revealed 569 

increases in total and percent body fat (~3 to 14%) (106, 107, 128). Interestingly, 570 

alterations in body composition observed after 14 days of reduced step count (81% 571 

reduction from baseline plus a 3.7 h/day increase in sedentary time) returned to 572 

baseline levels after resuming habitual PA for 14 days in healthy adults with or without a 573 

first-degree relative with type 2 diabetes (112). Although inconsistent across studies, 574 

most step reduction protocols were detrimental for at least one body composition-575 

related outcome in healthy older adults (105, 110, 129, 130). Fourteen days of reduced 576 

step count (from ~9,000 to 3,000 steps/day) also resulted in intramuscular 577 

(nuclear/myofibrillar fraction) ceramides accumulation (~20%) in healthy older adults 578 

(130). 579 
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 580 

3.1.1.2. Clinical significance 581 

Increases in body fat mass induced by models involving increased SB are likely 582 

clinically relevant. Specifically, increases in body fat mass reported in reduced step 583 

studies (3 to 14%) are considerably more pronounced than longitudinal changes 584 

observed in the general population. A populational cohort study showed an ~1% (0.7 585 

kg) increase in body fat mass over the course of 12 years (131). Of concern, measures 586 

of adiposity (BMI, visceral fat mass or central adiposity and body fat percentage) are 587 

positively associated with increased risk of all-cause, cardiovascular disease and 588 

cancer mortality (132), and 21 major chronic diseases (133).  589 

 590 

3.1.2. Reducing and interrupting sedentary behavior 591 

 592 

3.1.2.1. Evidence from longer-term studies 593 

A meta-analysis has analyzed data from longer-term studies investigating the effects of 594 

SB interventions conducted in free-living settings on adiposity outcomes. Intervention 595 

duration ranged between 2 weeks and 36 months, and the average change in total 596 

sedentary time was -28.6 min/day (78). There were small significant reductions in body 597 

weight (-0.6 kg), waist circumference (-0.7 cm) and percent body fat (-0.3%) in adults 598 

and older adults, but no changes have been reported in BMI, total body fat and total fat-599 

free mass (78). Another meta-analysis investigating the effects of SB interventions 600 

(range: 6 to 24 weeks) on body composition demonstrated significant decreases in total 601 

sedentary time (-64 min/day) and increases in walking time (27 min/day), but no 602 
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significant changes in time spent standing and in MVPA (134). Authors noted small 603 

significant decreases in percent body fat (-0.7%) and waist circumference (-1.5 cm) 604 

following SB interventions, but no changes in body weight and BMI in clinical population 605 

groups (those with overweight, obesity, type 2 diabetes, cardiovascular, 606 

neurological/cognitive, and musculoskeletal diseases) (134).  607 

A meta-analysis of studies aiming to replace SB with standing time (mean follow-608 

up: 3.8 months) demonstrated a significant increase in total standing time (1.3 h/day) in 609 

adults. This was associated with a significant decrease in total body fat mass (-0.75 kg), 610 

but no changes in body weight and waist circumference (135). Finally, a systematic 611 

review of studies implementing workplace SB interventions in apparently healthy and 612 

overweight/obese desk-based office workers demonstrated that the effects of workplace 613 

interventions on body composition have been inconsistent across studies. Only 11 out 614 

of 29 studies reported improvements in measures of adiposity, with most studies 615 

showing no changes following SB interventions (136).  616 

In children, an 8-month, school-based intervention using height-adjustable desks 617 

in the classroom was ineffective at reducing classroom and total daily SB (137). 618 

Consequently, no significant changes were observed on BMI z-score and waist 619 

circumference (137). However, other longitudinal studies demonstrated that when 620 

coupled with increases in PA, reducing SB prevents unhealthy weight gain. The socio-621 

ecological French ICAPS (Intervention Centered on Adolescents' Physical activity and 622 

Sedentary behavior) study (138) concomitantly targeted PA and SB through a 4-year 623 

multi-level intervention that focused on the school and family of the children and the 624 

children themselves. Compared to the controls (no intervention), pupils who received 625 
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the intervention were more active, less sedentary and gained less weight throughout the 626 

4 year-study (138). Importantly, these changes in physical behavior and the prevention 627 

of weight gain were maintained 2.6 years after the end of the intervention with the 628 

highest efficacy in the most sedentary adolescents (139). 629 

In summary, it is evident that findings are inconsistent across studies and meta-630 

analyses. It is not clear whether type, intensity, and frequency of interruptions to sitting 631 

differentially affect body composition outcomes, nor if there are specific factors that 632 

mediate adaptations in body composition following SB interventions (e.g., age, sex, 633 

BMI, population group). 634 

Reducing/interrupting SB vs continuous MVPA/exercise. A small-scale, 12-week, 635 

multifactorial, pilot study examined both the independent and the combined effects of 636 

exercise training (40-65% heart rate reserve, i.e., moderate to vigorous intensity) and 637 

reducing SB (replace SB with standing and LPA plus increasing daily step count by 5-638 

10%) on body composition in adults with overweight/obesity (140). Compared to control, 639 

both exercise training and exercise training combined with reducing SB significantly 640 

changed SB and PA level (no change in SB + 27 min/day increase in MVPA and -7.3% 641 

of daily hours in SB + 45 min/day increase in MVPA, respectively). This resulted in a 642 

significant decrease in BMI (-0.5 and -1.1 kg/m2, respectively), body weight (-2.3 and -643 

3.4 kg, respectively) and total body fat (-1.0 and -1.4%, respectively). The addition of 644 

interruptions to SB did not result in greater improvements in body composition 645 

compared with exercise training only (140). No changes in body composition outcomes 646 

were observed in the group reducing SB only (140).  647 
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Another small-scale, 6-month pilot study examined the effects of a stepping 648 

protocol during TV commercial (brisk walking around the room during at least 90 min of 649 

TV programming at least 5 days/week) versus brisk walking for 30 min/day (at least 5 650 

days/week) in adults with overweight/obesity (141). After 6 months of intervention, both 651 

protocols increased the number of daily steps and decreased time watching TV (2,994 652 

vs 2,956 steps/day and -1.2 vs -1.4 h/day, respectively) as well as TV-related energy 653 

intake (-282 vs -517 kcals/day, respectively). Both interventions significantly reduced 654 

percent body fat (-1.0 vs -0.9%, respectively), waist circumference (-2.5 vs -1.6 cm, 655 

respectively) and hip circumference (-1.9 vs -1.2 cm, respectively) at the 6-month time-656 

point, but neither changed body weight and BMI (141). In contrast, 4 weeks of 657 

interventions aimed at reducing SB (-53 min/day in SB with no change in MVPA) or 658 

increasing MVPA to at least 30 min day (+16 min/day of MVPA with no change in SB) 659 

did not lower BMI and waist circumference in physically inactive adults with obesity 660 

(142). 661 

 662 

3.1.2.2. Clinical significance 663 

There is some evidence of small to trivial improvements in body mass and composition 664 

(body weight [-0.6 kg], waist circumference [-0.7 to -1.5 cm] and percent body fat [-0.3 665 

to -0.7%]) associated with reducing/interrupting SB. Mixed results have also been 666 

reported across original studies and meta-analyses. Despite intervention effects being 667 

small and likely not clinically relevant, it is important to highlight that mean baseline BMI 668 

ranged between 25 and 30 kg/m2 and study duration varied between 6 to 24 weeks in 669 

available meta-analyses (78, 134). It has been suggested that the weight loss induced 670 
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by 1-year exercise programs is more pronounced in those with existing obesity as 671 

compared to individuals with overweight (1.1 to 1.5 kg less than individuals with obesity) 672 

(143). It is not clear whether baseline BMI, other measures of adiposity and duration of 673 

intervention may have affected responses to reducing/interrupting SB interventions.  674 

Reducing SB and increasing LPA without increasing engagement in 675 

MVPA/exercise does not seem to be an effective strategy to improve markers of 676 

adiposity as compared to traditional, continuous exercise (141, 142). These findings 677 

indicate that reducing/interrupting SB with PA in higher intensities might be required to 678 

improve markers of adiposity in those with overweight/obesity. As recently reviewed 679 

thoroughly (144), reducing/interrupting SB is likely not effective at inducing weight loss, 680 

like exercise, but may prevent unhealthy weight gain. Future studies will also need to 681 

investigate whether changes in SB/LPA trigger spontaneous behavioral and 682 

physiological compensatory responses (e.g., decrease in activity and/or non-activity 683 

energy expenditures, increase in appetite and food intake) like those observed following 684 

the initiation of exercise training and thought to minimize the effect of exercise on body 685 

weight (145, 146), as further discussed in the next topics. 686 

 687 

3.2. Total energy expenditure 688 

 689 

3.2.1. Increasing sedentary behavior 690 

 691 

3.2.1.1. Evidence from multi-day studies 692 
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Participation in high levels of SB results in lower energy expenditure and PA levels. For 693 

example, 7 days of exposure to a highly sedentary condition in free-living (increased 694 

sedentary time and limited participation in PA of any intensity) significantly reduced 695 

energy expenditure (-15% in MET-hour/week estimated from a validated accelerometer) 696 

(147). 697 

 698 

3.2.1.2. Evidence from longer-term studies 699 

In a clinical study requiring physically active, but not trained, lean male adults to refrain 700 

from PA for 1 month, total daily energy expenditure decreased by 8% due to a drop in 701 

activity-related energy expenditure only (127). 702 

 703 

3.2.2. Reducing and interrupting sedentary behavior 704 

 705 

3.2.2.1. Evidence from acute studies 706 

Experimental studies have demonstrated that both standing and ambulatory 707 

interruptions to prolonged sitting time increased energy expenditure in adults, as a 708 

function of the duration, intensity and modality used (148-150). Interestingly, the 709 

increased energy utilization in response to frequent 2-minute moderate-intensity walking 710 

interruptions to sitting was maintained for ~4 minutes after every walking bout in adults. 711 

When repeated throughout the day, performing 28 minutes of interruptions to sitting 712 

resulted in ~70 minutes of elevated energy utilization over 7 hours (150).  713 

 714 

3.2.2.2. Evidence from longer-term studies 715 
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It is still unclear whether SB reducing/interruption interventions may result in 716 

compensatory changes in total energy expenditure and/or energy balance over the 717 

longer term. A study demonstrating the differential impact of low- and moderate-718 

intensity training provides some relevant insights (151). Moderate-intensity aerobic 719 

exercise training (60% VO2reserve) tended to increase total energy expenditure in female 720 

adults with overweight/obesity compared to low-intensity training (40% VO2reserve) 721 

matched for energy expenditure over 3 months of intervention. Exercise energy 722 

expenditure was almost entirely compensated (96%). Interestingly, greater energy 723 

compensation was observed in the moderate-intensity group than in the low-intensity 724 

group (161% vs 49%) (151). Participants in the low-intensity group spent more time 725 

walking and less time lying down compared to the moderate-intensity group. These 726 

behavioral and energetic differences translated into about 1 kg weight gain in the 727 

moderate-intensity group versus 1 kg weight loss in the low-intensity group (151). The 728 

clinical significance of these findings is still unclear. 729 

 730 

3.3. Energy intake and appetite 731 

 732 

3.3.1. Increasing sedentary behavior 733 

 734 

3.3.1.1. Evidence from acute studies 735 

Granados and colleagues (152) showed that 1 day of sitting decreased energy 736 

expenditure without a reduction in appetite in adults, suggesting this would favor a 737 

positive energy balance. This is consistent with findings that demonstrated no 738 
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compensatory decline in ad libitum food intake in response to large reductions in energy 739 

expenditure (~24%) in healthy male adults (153). Another study (154) also 740 

demonstrated that energy intake during 1 day of decreased energy expenditure (275 741 

steps/day) was comparable to energy intake during higher PA levels (equivalent to ~1.5 742 

and 2.1 resting metabolic rate) in healthy male adults.  743 

 744 

3.3.1.2. Evidence from longer-term studies 745 

While there is no evidence on the impact of a reduced step count protocol on appetite 746 

regulation, 14 days of reduced step count (81% reduction from baseline) did not 747 

significantly alter fasting adiponectin and leptin levels in health male adults (108). 748 

Acute experimental findings indicate that increasing SB can result in positive 749 

energy balance, yet caution is warranted when interpreting the clinical relevance of 750 

these findings, as acute changes in appetite may not affect weight control in the longer-751 

term. Longer-term investigation into the effects of increasing SB on energy balance is 752 

warranted. 753 

Potential mechanisms. Several hormones are involved in the regulation of 754 

appetite and feeding behavior. A study demonstrated a significant decrease in 755 

adiponectin levels (~21%; a hormone associated with increased sensation of hunger) in 756 

healthy male adults following 16 days of horizontal bed rest, but no changes in other 757 

appetite-regulating hormones (ghrelin, peptide YY [PYY], glucagon-like peptide 1 [GLP-758 

1], and leptin) (155). In a 2-month HDBR study in females fasting leptin was negatively 759 

associated with the spontaneous decrease in energy intake, thus suggesting a 760 

relationship between PA, leptin and food intake (86).  761 
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 762 

3.3.2. Reducing interrupting sedentary behavior 763 

 764 

3.3.2.1. Evidence from acute studies 765 

Over a 12-hour period, performing hourly 5-minute vigorous-intensity walking bouts (60-766 

65% VO2peak, total: 60 minutes) resulted in lower perceived hunger (~23%) in the mid-767 

afternoon hours as compared to prolonged sitting and an energy-matched moderate-768 

intensity continuous walking bout (60-65% VO2peak, total: 60 minutes) in adults with 769 

obesity, but did not affect PYY levels (156). Changes in perceived hunger were not 770 

observed for continuous exercise (60-65% VO2peak, total: 60 minutes) followed by 771 

prolonged sitting (156). Another study demonstrated that, while frequent 5-minute 772 

moderate-walking interruptions (perceived effort: 12 – 13 “somewhat hard”, total: 30 773 

minutes) did not affect hunger and desire for food consumption, this strategy resulted in 774 

lower food cravings (~6%) compared to prolonged sitting in healthy adults (157). This 775 

was not observed for continuous exercise (perceived effort: 12 – 13 “somewhat hard”, 776 

total: 30 minutes) followed by prolonged sitting (157). Furthermore, while interrupting 777 

sitting with 2-minute light or moderate-intensity walking bouts every 20 minutes 778 

(perceived effort: 6–9 “very light” and 12–14 “somewhat hard”, respectively; total: 28 779 

minutes) did not alter appetite, it resulted in reduced relative energy intake (39 and 780 

120%, respectively) that was not compensated for in a subsequent meal in healthy 781 

adults, which could have important implications for weight management (158). In 782 

contrast, other studies showed no alterations in appetite measures, ad libitum intake 783 

and circulating gut hormone concentrations following interruptions to sitting in healthy 784 
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adults (158-160). It is not clear whether type, intensity, and frequency of interruptions to 785 

sitting can differentially affect energy intake and appetite. 786 

 787 

3.3.2.2. Evidence from longer-term studies 788 

Replacing prolonged sitting time with regular standing bouts at the workplace (a 21% 789 

reduction of workplace sedentary time) reduced dietary intake (~10%) in sedentary, 790 

adult office workers after 4 weeks of intervention (161). It remains unclear the extent to 791 

which this reduction in caloric intake impacted measures of adiposity and other 792 

cardiometabolic outcomes. Longer-term investigation into the effects of 793 

reducing/interrupting SB on appetite and food intake is warranted. 794 

 795 

4. INTERMEDIARY METABOLISM  796 

 797 

4.1. Glucose metabolism 798 

 799 

4.1.1. Increasing sedentary behavior 800 

 801 

4.1.1.1. Evidence from acute and multi-day studies 802 

Experimental findings show that in healthy adults as little as 1 day of exposure to SB 803 

(~17 h/day of SB) combined with energy surplus reduced whole-body insulin sensitivity 804 

(-39%), but did not change fasting glucose and insulin concentrations, as compared to a 805 

minimal sitting condition (~6 hours of sitting). Importantly, reducing energy intake to 806 

match energy demand during prolonged sitting significantly attenuated, but did not fully 807 
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mitigate, the decline in insulin action (-18%) (162). This finding indicates that excessive 808 

sitting might be detrimental for insulin sensitivity irrespective of energy balance. Seven 809 

days of exposure to a highly sedentary condition (increased sedentary time and limited 810 

participation in PA of any intensity) did not alter fasting glucose and insulin 811 

concentrations in healthy-lean adults (147). Increasing SB significantly increased 2-hour 812 

post-load insulin concentration (38.8 uIU∙mL-1) and reduced insulin sensitivity (-17.2%), 813 

as assessed by a composite insulin sensitivity index. Changes in time spent in 814 

prolonged sedentary bouts (>30 and 60 continuous minutes), but not in LPA and MVPA, 815 

were positively associated with 2-hour post-load insulin concentrations (147). 816 

In a crossover randomized trial, healthy adults performed 10 days of reduced 817 

steps (from 12,154 to 4,275 steps/day, with a 10% increase in SB) while consuming a 818 

control diet (16% protein, 64% carbohydrate, 20% fat; 80% of daily energy need) or a 819 

high-protein diet (30% protein, 50% carbohydrate, 20% fat; 80% of daily energy need) 820 

(163). Independent of diet, there were no changes in fasting glucose and insulin 821 

concentrations, and post-load glucose and insulin responses in healthy adults following 822 

step reduction. However, in another study 10 days of step reduction resulted in reduced 823 

insulin sensitivity along with increases in carbohydrate oxidation measured in response 824 

to an OGTT (73). Combining step reduction with overfeeding also increased fasting 825 

glucose and insulin concentrations, post-load 2-hour glucose concentrations, and post-826 

load glucose responses in healthy male adults (163), thus suggesting that energy 827 

surplus exacerbates the metabolic deteriorations triggered by exposures to both SB and 828 

physical inactivity.  829 

 830 
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4.1.1.2. Evidence from longer-term studies 831 

Fourteen days of reduced step count (from 10,501 to 1,344 steps/day) resulted in rapid 832 

decreases in whole-body (~58%) and peripheral insulin sensitivity (~17%) in healthy 833 

male adults (108, 109), which was accompanied by a significant reduction in insulin-834 

stimulated pAktthr308/total Akt protein expression (108). Similar alterations have been 835 

observed in healthy adults with/without a first-degree relative with type 2 diabetes (112) 836 

and older adults (130, 164). Reducing daily step count (3 days, from 12,956 to 4,319 837 

steps/day) increased postprandial (30 to 90 minutes after a meal) glucose responses (6 838 

to 9%) and glycemic variability (33 to 97%) in healthy adults as assessed by continuous 839 

glucose monitors, despite the absence of changes in post-load glucose responses 840 

following an oral glucose tolerance test (117). Twenty days of reduced steps (from 841 

14,000 to 3,000 steps/day) increased total glucose oxidation in healthy physically active 842 

male adults, which was associated with a significant decrease in nonprotein respiratory 843 

quotient during an oral glucose tolerance test (106), which indicates the development of 844 

metabolic inflexibility (i.e., the inability of the body to adjust substrate use to changes in 845 

substrate availability). While no changes have been reported for fasting glucose 846 

concentrations following step reduction protocols in healthy adults (106-108, 117), some 847 

studies demonstrated increases in fasting insulin concentrations (106, 107, 117). The 848 

absence of changes in glycemia may reflect compensatory increased insulin levels in 849 

response to reduced step count. Resuming habitual daily activities was sufficient to 850 

restore whole-body insulin sensitivity to baseline levels in healthy adults and older 851 

adults (107, 112, 165).  852 
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Potential mechanisms. Short- to longer-term exposures (3 to 90 days) to 853 

horizontal bed rest and HDBR are associated with reduced whole-body insulin 854 

sensitivity (166, 167), altered fuel selection towards the use of carbohydrate (166, 168), 855 

and metabolic inflexibility that precedes the development of glucose intolerance (168). 856 

Some mechanisms have been proposed including changes in body composition, body 857 

fat repartition, alterations in lipid content, oxidative stress, and capillary density (169). 858 

While some have been confirmed, controversial results have been obtained for others. 859 

For example, 60 days of HDBR induced fat accumulation in skeletal muscle (170) and 860 

with low-grade inflammation (171). However, Shur and colleagues (172) failed to 861 

demonstrate an increase in intramyocellular lipid content following 3 and 56 days of 862 

HDBR, which was not confounded by positive energy balance unlike previous studies 863 

(173, 174). Similarly, after one week of bed rest, reduced insulin sensitivity was 864 

observed along with reduced oxidative capacity but not increases in muscle lipid level or 865 

degree of saturation, markers of oxidative stress or reductions in capillary density, 866 

suggesting other mechanisms are likely at play (88). Pronounced transcriptomic 867 

changes of the skeletal muscle metabolic pathways have also been proposed. Shur and 868 

colleagues (172) reported extensive changes in mRNA abundance in gene targets 869 

controlling carbohydrate metabolism (40 transcripts) after only 3 days of HDBR. These 870 

changes preceded the modifications in whole-body fuel selection and the reduction in 871 

muscle glycogen storage. Another study demonstrated similar alterations in the 872 

expression of genes associated with insulin resistance and fuel metabolism following 9 873 

days of bed rest (175). Additionally, bed rest-induced reduction in insulin sensitivity has 874 

been accompanied by reduced skeletal muscle GLUT-4, hexokinase II, protein kinase B 875 
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(Akt) 1, and Akt2 proteins content, and decreased insulin-stimulated glycogen synthase 876 

(GS) activity and Akt signaling (176). These findings suggest that both decreased 877 

glucose transport and decreased nonoxidative glucose metabolism in skeletal muscle 878 

contribute to changes in carbohydrate metabolism (FIGURE 3). 879 

 880 

---------------------------------- INSERT FIGURE 3 ABOUT HERE ----------------------------------- 881 

 882 

4.1.1.3. Clinical significance 883 

Excessive SB has been positively associated with increased 2-hour post-load glucose 884 

and fasting insulin concentrations in the general population, independent of participation 885 

in MVPA (177, 178). Experimental models imposing periods of increased sedentary 886 

time in both adults and older adults consistently induced alterations in whole-body and 887 

peripheral insulin sensitivity (-17 to -58%), but not in fasting glucose concentrations. The 888 

clinical significance of these findings is unclear. However, the dramatic reduction in 889 

insulin action within days of increased prolonged SB is relevant given that SB is the 890 

most prevalent behavior (8.3 to 11.5 h/day) (4) and alterations in markers of glucose 891 

control are associated with greater risk for cardiovascular disease and events even in 892 

those without diabetes (179, 180).  893 

 894 

4.1.2. Reducing and interrupting sedentary behavior 895 

 896 

4.1.2.1. Evidence from acute and multi-day studies 897 
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Acutely, interrupting sitting with frequent, short bouts of LPA improved postprandial 898 

glucose responses by 17.5% and insulin responses by 25.1% compared to prolonged, 899 

uninterrupted sitting in both healthy and metabolically impaired adults and older adults, 900 

as evidenced by meta-analysis (75). These results have been corroborated by other 901 

meta-analyses that have included studies investigating other types (e.g., standing still, 902 

walking, and simple resistance activities) and intensities (e.g., light, moderate and 903 

vigorous intensity) of interruptions to sitting (Cohen’s d for glucose and insulin: -0.26 to -904 

0.83 favoring intervention) (76, 77, 181). However, it should be noted that some original 905 

studies have not demonstrated changes in postprandial glucose and/or insulin 906 

responses following at least one of the interruptions to SB protocols (standing, simple 907 

resistance activities, LPA to VPA walking) compared to prolonged sitting (21, 123, 124, 908 

182-196). 909 

Reducing/interrupting sitting for 3 to 4 days reduced postprandial glucose (121, 910 

197) and insulin responses (122-124, 197) in adults and older adults with 911 

overweight/obesity and type 2 diabetes (PA intensity and duration: 3.2 km/h, 2.8 METs, 912 

total: 34 min/day (121); perceived effort 13 “somewhat hard”, total: 45 min/day (124); 913 

93-95 steps/min, total: 3.1-4.1 h/day of standing and 3.1-4.9 h/day of stepping (122, 914 

123, 197)). However, results have been more inconsistent for postprandial glucose 915 

responses following interruptions to sitting with standing/LPA (122, 123) and moderate 916 

PA (MPA) (124). No changes were observed in fasting glucose concentrations following 917 

3 days of interrupting SB with standing or LPA (121-123, 197) and MPA (124), but 918 

reductions in fasting insulin concentration were reported in adults with overweight (-1.8 919 

mIU/L) (122) and type 2 diabetes (-13 pmol/L) (197). Despite these inconsistencies, 920 
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insulin sensitivity improved after 3 days of interrupting SB (12-29%) (122-124, 197). 921 

Interestingly, 3 days of interrupting prolonged sitting with regular 2-minute bouts of light-922 

intensity walking (pace: 3.2 km/h, 2.8 METs, perceived effort: 6–11 “fairly light”; total: 28 923 

minutes) sustained, but did not further enhance, improvements in postprandial glucose 924 

(-4%; estimated average concentration: 103 mg/dL following interruptions vs 107 mg/dL 925 

following prolonged sitting) and insulin responses (-12%; estimated average 926 

concentration: 262 pmol/L following interruptions vs 297 pmol/L following prolonged 927 

sitting) observed on the first day of intervention (121).  928 

Both light- and moderate-intensity bouts improved postprandial glucose and 929 

insulin responses, while standing interruptions did not significantly affect these 930 

responses (76, 181, 198, 199). A pooled analysis of three acute laboratory-based trials 931 

also showed that the estimated energy cost of interruptions to sitting was associated 932 

with lower postprandial glucose and insulin responses in a dose dependent manner in 933 

sedentary adults with overweight or obesity. Specifically, light- and moderate-walking 934 

interruptions (3.2 and 5.8 km/h; 2.8 and  ~4.3 METs, respectively; 2-minute bouts every 935 

20 minutes, total: 28 minutes), but not standing still, significantly reduced postprandial 936 

responses of both markers compared to prolonged sitting (200). Yet, a meta-analyses 937 

(181) and a few original studies (201-203) suggested standing interruptions are effective 938 

at improving glucose responses.  939 

As for frequency of the active interruptions, results have been inconsistent across 940 

studies. Interrupting prolonged sitting with 6-minute bouts of simple resistance activities 941 

every 60 minutes (squatting, calf raises; total: 36 minutes) was more effective at 942 

decreasing postprandial glucose responses (-21%, estimated average concentration: 943 
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193 mg/dL following interruptions vs 203 mg/dL following prolonged sitting) in adults 944 

and older adults with type 2 diabetes compared to a higher frequency of interruptions 945 

(i.e., 3-minute bouts every 30 minutes, total: 39 minutes) and 8 hours of prolonged 946 

sitting (186), for which no differences were observed. Additionally, less-frequent 947 

interruptions to sitting acutely improved glycemic control in the 4-hour period following 948 

lunch, while more-frequent interruptions were likely more beneficial for nocturnal 949 

glucose control, as assessed by continuous glucose monitors over 22 hours (204). No 950 

differences were noted for mean glucose and other markers of glucose variability 951 

between interruptions and prolonged sitting (204). Other studies also showed similar 952 

inconsistencies for glucose and insulin responses across different frequencies of 953 

interruptions to SB compared to prolonged sitting (188, 192, 205). In addition, Duran 954 

and colleagues (206) suggested higher frequency and higher duration of light-walking 955 

interruptions to sitting (3.2 km/h, 2.8 METs; 5 minutes every 30 minutes, total: 70 956 

minutes) should be considered when targeting improvements in glycemic responses in 957 

healthy adults and older adults. This strategy significantly attenuated postprandial 958 

glucose responses as compared to sedentary control (total: 8 hours), and conditions 959 

with lower frequency (every 60 minutes, total: 35 minutes) and lower duration (1 minute, 960 

total: ~7 or 14 minutes) of interruptions to sitting, for which no changes were observed 961 

(206). To date, available evidence is not sufficient to draw clear-cut conclusions on the 962 

dose-response relationship between the frequency of the active bouts to interrupt 963 

prolonged sitting and post-prandial glycemia and insulinemia, and further studies are 964 

needed. 965 
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Subgroup analyses in original studies showed that attenuations in the magnitude 966 

of reductions in postprandial glucose (122, 199, 207) and/or insulin (199) responses are 967 

more pronounced in females than in males following interruptions to sitting as compared 968 

to prolonged sitting, which was corroborated by meta-analytic evidence (77). 969 

Additionally, meta-regressions revealed that higher BMI is significantly associated with 970 

greater reductions in postprandial glucose and insulin responses following interruptions 971 

to sitting as compared to prolonged sitting (77). Pooled data from three randomized 972 

crossover trials showed that those with higher underlying levels of fasting insulin and 973 

insulin resistance may derive greater reductions in postprandial insulin responses from 974 

regularly interrupting prolonged sitting than their healthier counterparts. Similarly, those 975 

with poorer fasting glucose and β-cell function may derive greater reductions in 976 

postprandial glucose responses from performing walking interruptions to sitting (208). 977 

These findings have been corroborated by subgroup analyses in two meta-analyses 978 

indicating that improvements on glycemia were more prominent in metabolically 979 

impaired adults and older adults compared to healthy counterparts (75, 77). Moreover, 980 

McCarthy and colleagues (209) demonstrated that reductions in postprandial glucose 981 

responses were more pronounced in those with lower cardiorespiratory fitness (25th and 982 

50th centiles) following light-intensity walking interruptions to sitting (3.0 km/h, 2.0 983 

METs, 5-minute bouts every 30 minutes, total: 1 hour) (209). Altogether these findings 984 

show that females, those with higher BMI, higher insulin resistance and lower 985 

cardiorespiratory fitness may derive greater benefit from interrupting sitting with respect 986 

to glucose metabolism. 987 
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Results have been mixed in children and adolescents. Interrupting sitting with 3-988 

minute bouts of moderate-intensity walking (heart rate at 80% of ventilatory threshold, 989 

total: 18 minutes) significantly reduced postprandial insulin responses (-21%; estimated 990 

average concentration: 92 mIU/dL following interruptions vs 117 mIU/dL following 991 

prolonged sitting), but not glucose responses, in children with overweight/obesity 992 

compared to 3 hours of prolonged sitting (210). Insulin sensitivity, as assessed by the 993 

Matsuda index, was also greater during the interruption protocol (17%) (210). In 994 

healthy-weight children, this same interruption protocol significantly reduced 995 

postprandial glucose (-7%; estimated average concentration: 105 mg/dL following 996 

interruptions vs 112 mg/dL following prolonged sitting) and insulin (-32%; estimated 997 

average concentration: 30 uU/mL following interruptions vs 45 uU/mL following 998 

prolonged sitting) responses compared to 3 hours of prolonged sitting (211). 999 

Furthermore, in healthy children and adolescents, both light-intensity walking 1000 

interruptions to sitting (30% VO2peak, 2-minute every 20 minutes, total: 42 minutes) and 1001 

interruptions combined with two 20-minute bouts of moderate-intensity walking did not 1002 

affect postprandial glucose and insulin responses compared to 8 hours of prolonged 1003 

sitting (212). 1004 

Reducing/interrupting SB vs continuous MVPA/exercise. Acute (8 to 9 hours) 1005 

reductions in postprandial glucose responses were more pronounced following frequent 1006 

light-walking interruptions to sitting (total: 30 – 42 minutes) compared to a continuous 1007 

bout of activity (total: 30 minutes) in healthy and at-risk adults and older adults (213-1008 

215). However, other studies did not observe such differences between patterns of 1009 

activity (216-219). Frequent moderate-intensity interruptions were more effective at 1010 
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improving postprandial glucose and insulin responses than a single, continuous bout of 1011 

moderate-intensity activity when compared to prolonged sitting (Cohen’s d: -0.69 and -1012 

0.47 versus -0.16 and -0.22, respectively), as evidenced by meta-analysis (198). 1013 

Another meta-analysis demonstrated similar results for postprandial glucose responses, 1014 

but no differences were observed for insulin responses (77). In multi-day studies (2 to 4 1015 

days), reducing/interrupting SB was shown to be more effective at reducing fasting 1016 

insulin, 24-hour glucose responses and duration of hyperglycemia episodes, but not 1017 

other markers of glucose metabolism (e.g., fasting glucose), compared to continuous 1018 

exercise in adults and older adults with type 2 diabetes (93 steps/min, total: 4.1 h/day of 1019 

standing and 3.1 h/day of stepping vs 50-60% Wmax, total: 1 h/day) (197). In healthy 1020 

adults and adults with overweight/obesity, there were no differences between patterns 1021 

of activity in markers of glucose metabolism (124, 220).  1022 

Potential mechanisms. The effects of interrupting sedentary time on glucose 1023 

control are likely related to a greater reliance upon carbohydrate oxidation as fuel. Acute 1024 

studies (6 to 9 hours) in healthy adults (214, 218) showed that the lower glucose 1025 

response following light- (25% VO2max, total: 3.5 hours) and moderate- (~46% VO2max, 1026 

total: 30 minutes) walking interruptions to sitting compared to prolonged sitting (214, 1027 

218) was associated greater total carbohydrate oxidation. De Jong and colleagues 1028 

(124) also demonstrated in adults with overweight or obesity that hourly 5-minute bouts 1029 

of moderate-walking interruptions during sitting (perceived effort 13 “somewhat hard”, 1030 

total: 45 min/day) primarily relies upon carbohydrate as fuel over 24 h after 4 days of 1031 

intervention as compared to prolonged sitting and a time-matched continuous bout of 1032 

brisk walking. This effect does not appear to be related to energy expenditure and 1033 
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balance, but rather to increasing the frequency of muscle contractions spread across 1034 

the day. However, these differences in substrate use were not accompanied by 1035 

changes in fasting and postprandial glucose responses (124).  1036 

The skeletal muscle is the largest glucose consuming organ of the body (221) 1037 

and the largest lean tissue mass in adults without obesity (222). Lack of muscle 1038 

contractions have been one of the proposed mechanisms for SB-related impairments in 1039 

glucose metabolism. During periods of SB, skeletal muscle accounts for only 15% of 1040 

whole-body glucose (223), whereas it accounts for more than 80% of the insulin-1041 

stimulated glucose disposal and is quantitatively the most dominant tissue during 1042 

exercise (221). Hamilton and colleagues (224) developed a physiological method of 1043 

muscle contractile activity to magnify and sustain soleus oxidative metabolism (~88% 1044 

type I slow-twitch fibers) through performing ‘soleus push ups’ (~1.3 and 1.7 METs, 50 1045 

to 100 contractions/min). Sustained continuous soleus contractile activity improved 1046 

systemic metabolic regulation, by reducing 3-hour post-load glucose and insulin 1047 

responses (-39-52% and -41-60%, respectively) and 2-hour post-load glucose 1048 

concentration (-29-46 mg/dL) in adults and older adults (BMI: 20-43 kg/m2). Sustained 1049 

contractions also increased energy demand (91 kcal/h above sedentary control) and 1050 

local carbohydrate oxidation (100-200 mg/min above sedentary control) (224). These 1051 

findings indicate that increasing local contractile activity in small oxidative muscles can 1052 

be a potent strategy for improving systemic metabolic regulation. 1053 

 In the skeletal muscle, 5 hours of frequent, walking interruptions during sitting 1054 

(3.2 km/h, 2.8 METs, 2-minute bouts every 20 minutes, total: 28 minutes) altered 1055 

expression of 10 genes involved in carbohydrate metabolism, including increased gene 1056 
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expression of dynein light chain (DYNLL1), which may regulate translocation of the 1057 

GLUT-4, and pyruvate dehydrogenase kinase 4 (PDK-4), which inhibits the pyruvate 1058 

dehydrogenase complex and increases glucose utilization in adults with 1059 

overweight/obesity (225). Five hours of interrupting prolonged sitting with light- and 1060 

moderate-intensity walking (3.2 km/h, 2.8 METs and 5.8 km/h, ~4.3 METs, respectively; 1061 

2-minute bouts of walking every 20 minutes, total: 28 minutes) further resulted in an 1062 

upregulation of the contraction-stimulated glucose uptake pathway (i.e., adenosine 1063 

monophosphate-activated protein kinase (AMPK)-mediated), while three consecutive 1064 

days of interrupting sitting resulted in a transition towards upregulation of the insulin-1065 

mediated glucose uptake pathway (i.e., Akt-mediated) along with greater capacity for 1066 

glycogen synthesis (i.e., increase in total GSK3β protein expression) in the skeletal 1067 

muscle of adults with overweight/obesity (226). In contrast, there were no differences in 1068 

pAS160Thr642/AS160 ratio and GLUT4 protein expression in the skeletal muscle of post-1069 

menopausal females with rheumatoid arthritis following light-intensity walking 1070 

interruptions to sitting (~25% heart rate reserve, 3-minute bouts every 30 minutes, total: 1071 

42 minutes) compared to 8 hours of prolonged sitting (213). Finally, although acute 1072 

exposure to moderate-intensity active interruptions in adults with overweight/obesity 1073 

was associated with increased gene expression of complex V of the electron transport 1074 

chain indicating greater capacity for ATP production (226), four days of moderate-1075 

walking interruptions to sitting (perceived effort: 12–13 “somewhat hard”, 5-minute bouts 1076 

every hour, total: 45 minutes/day) did not elicit changes in mitochondrial respiration in 1077 

presence of carbohydrates (227); of note this later measurement was performed in 1078 

fasting state and >12 hours after the last active interruption. Notably, pathways 1079 
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associated with muscle contraction transcription signaling, namely oxidative 1080 

phosphorylation and sirtuin signaling expression, were enhanced in the skeletal muscle 1081 

of these same participants when compared to a highly sedentary condition, as indicated 1082 

by pathway enrichment analysis with RNA sequencing data (227).  1083 

In the subcutaneous abdominal adipose tissue, interrupting prolonged sitting with 1084 

light-intensity walking (3.2 km/h, 2.8 METs, 2-minute bouts of walking every 20 minutes, 1085 

total: 28 minutes) led to a downregulation of pathways linked to carbohydrate oxidation 1086 

and upregulation of pathways linked to lipid oxidation in adults with overweight/obesity 1087 

as compared to prolonged sitting and moderate-intensity walking interruptions. In 1088 

contrast, genes associated with glucose oxidation were upregulated in the moderate-1089 

intensity walking condition (5.8 km/h, ~4.3 METs, 2-minute bouts of every 20 minutes, 1090 

total: 28 minutes) (228).  1091 

These studies provided the first insights into the muscle regulatory systems and 1092 

molecular processes underlying the effects of interrupting prolonged sitting on glucose 1093 

metabolism (FIGURE 4). 1094 

 1095 

-------------------------------- INSERT FIGURE 4 ABOUT HERE -------------------------------- 1096 

 1097 

4.1.2.2. Evidence from longer-term studies 1098 

A meta-analysis examined findings from longer-term studies investigating the effects of 1099 

SB interventions conducted in free-living settings on glucose/insulin outcomes. 1100 

Intervention duration ranged between 2 weeks and 36 months, and the average change 1101 

in total sedentary time was -28.6 min/day (78). There was a small significant decrease 1102 
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in fasting insulin concentration (-1.42 pM), but no changes in fasting glucose 1103 

concentration and HbA1c (78). Another meta-analysis investigating the effects of SB 1104 

interventions (range: 6 to 24 weeks) on markers of glucose metabolism demonstrated 1105 

significant decreases in total sedentary time (-64 min/day) and increases in walking time 1106 

(27 min/day), but no significant changes in time spent standing and in MVPA (134). 1107 

Authors noted a small significant decrease in HbA1c (-0.2%), but no change in fasting 1108 

glucose concentration in individuals with overweight, obesity, type 2 diabetes, 1109 

cardiovascular, neurological/cognitive, or musculoskeletal diseases (134). A meta-1110 

analysis of studies aiming to replace SB with standing time (mean follow-up: 3.8 1111 

months) demonstrated a significant increase in total standing time (1.3 h/day) in adults 1112 

along with significant decreases in fasting glucose (-2.53 mg/dL) and insulin (-2.30 1113 

mg/dL) concentrations (135). A systematic review of studies implementing workplace 1114 

SB interventions in apparently healthy and overweight/obese desk-based office workers 1115 

found that the effects of workplace interventions on markers of glucose metabolism 1116 

have been inconsistent across studies. Only 6 out of 15 studies reported improvements 1117 

in at least one glucose metabolism-related outcomes, while most studies showed no 1118 

changes (136). Furthermore, three weeks of frequent active interruptions to sitting 1119 

(increase of 744 steps/day from baseline, with no changes reported for SB) reduced 1120 

mean fasting glucose levels (-0.34 mmol/L) and glucose variability (-2%) in highly 1121 

sedentary adults with obesity, but did not improve glucose tolerance, insulin sensitivity, 1122 

post-load glucose responses, and average interstitial glucose concentrations (229). 1123 

Altogether, it becomes evident that results on the effects of reducing/interrupting 1124 

SB on markers of glucose metabolism are mostly inconsistent across studies and meta-1125 
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analyses. It is not clear whether type, intensity, and frequency of interruptions to sitting, 1126 

characteristics of population groups and/or duration of intervention affect responses to 1127 

reducing/interrupting SB interventions. 1128 

Reducing/interrupting SB vs continuous MVPA/exercise. A small-scale, 12-week, 1129 

multifactorial, pilot-study examined both the independent and combined effects of 1130 

exercise training (40-65% hear rate reserve, i.e., moderate to vigorous intensity) and 1131 

reducing SB (replace SB with standing and LPA plus increasing daily step count by 5-1132 

10%) on markers of insulin action in adults with overweight/obesity (140). Exercise 1133 

training combined with reducing SB (-7.3% of daily hours in SB and + 45 min/day 1134 

increase in MVPA) was the most effective intervention to improve markers of insulin 1135 

action. This approach improved insulin sensitivity (17.8%), as assessed by a composite 1136 

insulin-sensitivity index, and decreased 2-hour insulin concentration (-30.5 uIU·mL−1) 1137 

and post-load glucose responses (-19.4%). Reducing SB alone (-4.8% of daily hours in 1138 

SB, +28 min/day in MVPA) reduced fasting insulin concentrations (-3.6 uIU·mL−1) but, 1139 

surprisingly, concomitantly increased 2-hour glucose (+26.5 mg/dL). In contrast, 1140 

exercise training alone (no change in SB + 27 min/day increase in MVPA) did not 1141 

improve any marker of insulin action. In addition, exercise and SB interventions, when 1142 

performed independently, did not affect fasting and post-load glycemia (140). Similarly, 1143 

4 weeks of interventions aiming at reducing SB (-53 min/day in SB with no change in 1144 

MVPA) or increasing MVPA to at least 30 min/day (+16 min/day of MVPA with no 1145 

change in SB) did not change fasting glucose and HbA1c concentrations in physically 1146 

inactive adults with obesity (142). 1147 

 1148 
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4.1.2.3. Clinical significance 1149 

There is some evidence of small improvements on markers of glucose control (fasting 1150 

insulin [-1.42 pM], glucose [-2.53 mg/dL] and HbA1c [-0.2%] concentrations) associated 1151 

with reducing/interrupting SB. However, mixed results have also been reported across 1152 

original studies and meta-analyses. It is important to highlight that mean baseline levels 1153 

of fasting glucose, insulin and HbA1c were mostly within normal ranges in available 1154 

meta-analyses (78, 134, 135), which may partly explain the small magnitude of reported 1155 

changes following SB interventions. In fact, these small changes are comparable to the 1156 

findings that have been observed with continuous exercise in people without glycemic 1157 

dysfunction (230). 1158 

The most commonly used marker of glucose control in clinical practice is HbA1c. 1159 

A reduction of 0.5 to 1.0% is generally used as a cut point for clinically meaningful 1160 

change, which associates with significant reductions in risk of all-cause mortality, 1161 

myocardial infarction, stroke, and heart failure in patients with type 2 diabetes (231). 1162 

One meta-analysis of SB interventions demonstrated a 0.2% reduction in HbA1c (mean 1163 

baseline level was 6.4%) after 6 to 24 weeks of follow up (134), which is not clinically 1164 

meaningful. Interestingly, a 3-year intervention (1-month exercise counseling every 1165 

year; SB: -0.8 h/day, LPA: 0.7 h/day, and MVPA: 3 min/day) significantly reduced 1166 

HbA1c values (-0.5%) in those with type 2 diabetes compared to standard care (i.e., 1167 

general physician recommendations for increasing daily PA and decreasing SB) (232). 1168 

The highest quartile for changes in SB (-1.53 h/day and +10.5 min/day of MVPA) 1169 

significantly reduced HbA1c values (-0.85%) as compared to other quartiles, with SB 1170 

being an independent predictor of changes in HbA1c (233). Another randomized 1171 
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controlled trial aiming at increasing participation in standing and LPA (SB: -39 min/day, 1172 

standing: 39 min/day) performed a subgroup analysis in the participants who had high 1173 

fasting glucose concentrations at baseline and found effects sizes to be larger for 1174 

fasting glucose and HbA1c (-7.2 mg/dL and -0.3%, respectively) (234). Altogether, 1175 

these findings indicate that reducing/interrupting SB has the potential to improve 1176 

glucose control in those with dysglycemia and type 2 diabetes. 1177 

 1178 

4.2. Lipid metabolism  1179 

 1180 

4.2.1. Increasing sedentary behavior 1181 

 1182 

4.2.1.1. Evidence from acute and multi-day studies 1183 

Four days of exposure to a highly sedentary regime (14 hours sitting/day) did not alter 1184 

fasting blood lipids concentrations (i.e., total cholesterol, HDL, LDL, and triglycerides) in 1185 

healthy sedentary adults (123). Similar results were observed in those with overweight 1186 

and obesity (122) and type 2 diabetes (197). Seven days of exposure to a highly 1187 

sedentary condition (increased sedentary time and limited participation in PA of any 1188 

intensity) did not alter fasting blood lipids concentrations in healthy-lean adults (147). 1189 

 1190 

4.2.1.2. Evidence from longer-term studies 1191 

Fourteen days of reduced step count (from 10,501 to 1,344 steps/day) led to increased 1192 

triglyceride responses (~21%) to an oral fat tolerance test in healthy male adults (109). 1193 

A 14-day period of reduced steps (by 81%, and a 3.7 h/day increase in sedentary time) 1194 
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significantly increased fasting total cholesterol, LDL and triglycerides (by 0.5, 0.3 and 1195 

0.5 mmol/L, respectively) in healthy adults with/without a first-degree relative diagnosed 1196 

with type 2 diabetes. These changes returned to baseline levels after resuming habitual 1197 

PA for 14 days (112). Twenty days of reduced steps (from 14,000 to 3,000 steps/day) 1198 

not only worsened fasting HDL concentration but decreased total lipid oxidation and 1199 

increased fasting triglycerides concentration (0.3 mmol/L) along with de novo 1200 

lipogenesis in healthy physically active male adults (106). Periods of reduced step count 1201 

(14 days; from 9,008 to 2,994 steps/day) also resulted in increased serum and 1202 

intramuscular ceramides in healthy older adults (130). Other studies demonstrated 1203 

deleterious effects of reduced steps on blood lipids in healthy male adults (128, 235); 1204 

however, results have also been inconsistent, with some studies demonstrating no 1205 

effects (107, 108, 236). 1206 

Potential mechanisms. Results from bed rest studies have been inconsistent for 1207 

blood lipids concentrations in healthy adults and older adults, with some reporting 1208 

hypertriglyceridemia and hypercholesterolemia and others no effect (34, 166, 237). Bed 1209 

rest also impairs lipid oxidation in both fasting and postprandial states, which was 1210 

observed to be independent of detectable changes in energy balance (166) (FIGURE 1211 

3). This reduced fatty acid oxidation does not seem to be due to an impaired trafficking 1212 

towards peripheral tissue but rather to structural, metabolic, and molecular changes in 1213 

the skeletal muscle (170). For example, physical inactivity coupled with sedentariness 1214 

has been shown to reduce content of slow oxidative muscle fibers (238-240), reduce 1215 

mitochondrial density and oxidative capacity (241), and decrease the expression of 1216 

genes involved in mitochondrial function (242). Gene expression and activity of 1217 
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enzymes coupled with oxidative metabolism, such as skeletal muscle LPL, fatty acid 1218 

transporter into the myocyte (CD36) and into the mitochondria (carnitine 1219 

palmitoyltransferase I [CPT1b]) (127, 170), are also decreased (170, 242, 243). These 1220 

changes are particularly relevant following meal ingestion since they lead to decreased 1221 

clearance of dietary lipids, which can contribute to hyperlipidemia. In this line, 1222 

decreases in the oxidation of dietary saturated, but not monounsaturated, fatty acids 1223 

were observed (127, 170, 244). The changes in the oxidative rate of dietary saturated 1224 

fatty acid have been associated with lower clearance and uptake by peripheral tissues 1225 

and decreases in the gene expression of CD36, fatty acid binding protein [FABPpm], 1226 

CPT1 and acyl-CoA synthetase long chain family member 1 [ACSL1]. Despite a 1227 

reduction in adipose tissue lipolysis (245, 246), excess of plasma lipids has been shown 1228 

to enhance fat accumulation in the visceral adipose depot (247) and ectopic fat storage 1229 

in muscle, liver and bone (170, 248-250). Fat accumulation is known to impair the 1230 

function of the tissues. In this line, a recent study in non-human primates (Macaques) 1231 

showed that 42 days of HDBR altered transcriptome signatures with up-regulation of 1232 

genes in lipid metabolisms in liver samples, revealing mildly disturbed fatty acid 1233 

metabolism (251). In humans, indices of fatty liver such as high levels of plasma 1234 

transaminases (252) have been associated with increased de novo lipogenesis (106), 1235 

an index of hepatic insulin resistance. 1236 

 1237 

4.2.1.3. Clinical significance 1238 

Excessive SB has been positively associated with increased fasting triglyceride 1239 

concentrations and decreased fasting HDL concentrations in the general population, 1240 
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independent of participation in MVPA (253-255). Some detrimental changes in blood 1241 

lipids have been reported in reduced step count studies in both adults and older adults, 1242 

but results have been inconsistent. The clinical significance of these findings is unclear. 1243 

 1244 

4.2.2. Reducing and interrupting sedentary behavior 1245 

 1246 

4.2.2.1. Evidence from acute and multi-day studies 1247 

Findings from single and multi-day experimental studies examining the effects of 1248 

interrupting prolonged sitting on fasting (122, 123, 147, 197) and postprandial lipid 1249 

concentrations (75-77) have been less consistent than those observed for glucose and 1250 

insulin responses. Some original studies failed to show improvements in triglycerides 1251 

following at least one of the interruptions to SB compared to prolonged sitting (121, 124, 1252 

186, 188, 190, 191, 201, 207, 213, 214, 256). Two meta-analyses (75, 76) indicated no 1253 

effect of standing, light- and moderate-intensity activity interruptions to sitting on 1254 

postprandial triglycerides responses in healthy and metabolically impaired adults and 1255 

older adults compared to prolonged, uninterrupted sitting. In contrast, one meta-analysis 1256 

(77) indicated a small significant effect (Cohen’s d: -0.26 favoring intervention) of 1257 

interruptions to sitting on postprandial triglycerides in healthy and metabolically impaired 1258 

adults and older adults compared to prolonged, uninterrupted sitting. This was mainly 1259 

driven by the evidence from multi-day studies, which may suggest an additive effect of 1260 

interruptions to sitting on blood lipids (77).  1261 

The magnitude of changes in triglyceride responses following interruptions to 1262 

sitting have been reported to be independent of the intensity of PA interruptions 1263 
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(standing vs light- vs moderate-intensity interruptions), as indicated by subgroup 1264 

analysis (76). For frequency of interruptions to sitting, there were no differences in 1265 

postprandial triglycerides responses following light-intensity walking interruptions to 1266 

sitting every 20, 60 and 120 minutes (30% VO2max, total: 48 minutes) in male adults with 1267 

central obesity (188). Similarly, there were no differences between low- and high-1268 

frequency simple resistance activities interruptions to sitting (squatting, calf raises, total: 1269 

36 minutes; or moderate-intensity walking, i.e., 65% VO2peak, total: 30 minutes) on 1270 

postprandial triglycerides responses in adults and older adults with type 2 diabetes 1271 

(186) and in healthy female adults (192). It is unclear whether the type of interruptions 1272 

to sitting differentially affect markers of lipid metabolism. 1273 

The magnitude of changes in triglyceride responses following interruptions to 1274 

sitting were not affected by meal composition, BMI, and population characteristics, as 1275 

indicated by subgroup analysis and meta-regressions (76, 77). Interestingly, fasting 1276 

triglycerides had a negative quadratic association with postprandial triglyceride 1277 

responses to a single, moderate-walking bout followed by intermittent light-walking 1278 

interruptions compared to prolonged sitting in healthy older adults. This may imply that 1279 

those with high triglyceride levels were more resistant to intervention-induced reductions 1280 

in triglycerides responses (378). 1281 

In children with normal weight or overweight/obesity, interrupting sitting with 3-1282 

minute bouts of moderate-intensity walking (heart rate at 80% of ventilatory threshold, 1283 

total: 18 minutes) did not affect postprandial triglycerides and free fatty acids responses 1284 

compared to 3 hours of prolonged sitting (210, 211). Similarly, light-intensity walking 1285 

interruptions to sitting (30% VO2peak, 2-minute every 20 minutes, total: 42 minutes) did 1286 
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not affect postprandial triglyceride, HDL and LDL responses in healthy children and 1287 

adolescents compared to 8 hours of prolonged sitting (212).  1288 

Regarding other markers of lipid metabolism, acute and multi-day studies (6 1289 

hours to up to 4 days) indicate no changes in postprandial concentrations of free fatty 1290 

acids (124, 215, 217, 218, 220, 257), 3-hydroxybutyrate, apolipoproteins C-II and C-III 1291 

(257), apolipoproteins B-48 and B-100, total ketone bodies, and acetoacetic acid (215) 1292 

following interruptions to sitting (standing and moderate-intensity walking) in healthy 1293 

adults, adults with overweight/obesity and postmenopausal females.  1294 

Reducing/interrupting SB vs continuous MVPA/exercise. Acutely (7 to 9 hours), a 1295 

continuous bout of PA (moderate intensity, total: 30 minutes) in the morning was more 1296 

effective at attenuating postprandial triglyceride responses than frequent standing (45-1297 

minute interruptions every 15 minutes, total: 4.5 hours) (257), moderate-walking (46% 1298 

VO2max, 1.6-minute interruptions every 28 minutes, total: 30 min) (214) and vigorous-1299 

cycling (70% VO2max, 6-minute interruptions every 40 minutes, total: 30 minutes) (258) 1300 

interruptions to sitting in healthy adults. In contrast, other studies did not report such 1301 

differences between patterns of activity (213, 215, 216, 218) or showed a superiority of 1302 

interruptions to sitting at decreasing postprandial triglyceride responses in healthy and 1303 

at-risk adults and older adults (217, 219). A meta-analysis summarizing acute evidence 1304 

demonstrated no differences between interruptions to sitting and a continuous bout of 1305 

activity on postprandial triglycerides responses (77), but activity protocols were not 1306 

always matched for duration and energy expenditure. In multi-day studies (2 to 4 days), 1307 

reducing/interrupting SB was shown to be as effective as continuous exercise in 1308 

reducing fasting triglyceride concentrations in adults and older adults with type 2 1309 
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diabetes (197). In healthy adults and adults with overweight and obesity, there were no 1310 

differences between interruptions to sitting and continuous activity in postprandial 1311 

triglycerides and free fatty acids responses (124, 220).  1312 

Potential mechanisms. As expected, a single continuous bout of PA leads to 1313 

increases in total fat oxidation compared to a sedentary control, while greater reliance 1314 

upon carbohydrate was shown following interruptions to sitting in healthy adults and 1315 

adults with overweight/obesity (124, 214). Peddie and colleagues (214) observed a 1316 

significant reduction in postprandial triglyceride responses following a single moderate-1317 

intensity walking bout (~46% VO2max, total: 30 minutes) compared to prolonged sitting 1318 

and interruptions to sitting (214, 218). Despite changes in substrate use, De Jong and 1319 

colleagues (124) failed to detect reductions in fasting and postprandial triglycerides 1320 

responses following a continuous bout of activity (perceived effort 13 “somewhat hard”, 1321 

total: 45 min/day). It is likely that glycogen storage was partly depleted when performing 1322 

continuous PA, thus allowing lipids to be oxidized for energy expenditure and glycogen 1323 

pools to be refilled, which likely did not occur during brief interruptions to sitting as 1324 

glucose was constantly available and competing against lipids. Additionally, 1325 

postprandial responses of markers for hepatic fatty acid oxidation (total ketone bodies 1326 

and acetoacetic acid) were elevated following continuous exercise, but not interruptions 1327 

to sitting. This indicates increased hepatic fatty acid oxidation and reduced availability of 1328 

triglycerides for incorporation into VLDL with exercise (215). 1329 

It is difficult to explain the inconsistencies in the acute effects of 1330 

reducing/interrupting SB on postprandial triglyceride responses. Based on findings from 1331 

animal models, it has been hypothesized that the lack of muscle contraction during 1332 
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exposures to increased SB reduces skeletal muscle LPL mass and activity and alters 1333 

lipid metabolism (8, 44). Of note, these defects were reversible only with light-intensity 1334 

contractile activity but not MVPA/exercise (9, 44). No change was observed in serum 1335 

inactive monomeric LPL protein concentrations following standing interruptions to sitting 1336 

in healthy males (257) and in plasma pre-heparin LPL concentrations following walking 1337 

interruptions to sitting in postmenopausal females (215). Similarly, no changes in LPL 1338 

gene expression were reported following frequent light- to moderate-intensity walking 1339 

interruptions to sitting (over 5 to 8 hours, 2-3-minute bouts every 20-30 minutes) in the 1340 

skeletal muscle of adults with overweight/obesity (225) and postmenopausal females 1341 

with rheumatoid arthritis (213). One possibility is that the pattern and frequency of 1342 

activity used in published studies were insufficient to elicit changes in LPL enzymatic 1343 

activity.  1344 

 1345 

4.2.2.2. Evidence from longer-term studies 1346 

A meta-analysis examined data from longer-term studies of the effects of SB 1347 

interventions conducted in free-living settings on blood-lipid outcomes. Intervention 1348 

duration ranged between 2 weeks and 36 months, and the average change in total 1349 

sedentary time was -28.6 min/day (78). There was a small significant increase in HDL 1350 

(0.04 mM), but no change in total cholesterol, LDL and triglycerides, in response to 1351 

interrupting/reducing SB interventions (78). Another meta-analysis investigating the 1352 

effects of SB interventions (range: 6 to 24 weeks) showed that lipid profile was not 1353 

ameliorated despite significant decreases in total sedentary time (-64 min/day) and 1354 

increases in walking time (27 min/day) in individuals with overweight, obesity, type 2 1355 
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diabetes, cardiovascular, neurological/cognitive, or musculoskeletal diseases (134). A 1356 

meta-analysis of studies aiming at replacing SB with standing time (mean follow-up: 3.8 1357 

months) showed that significant increases in total standing time (1.3 h/day) in adults 1358 

had no effect on lipid profile (135). Another systematic review of studies also concluded 1359 

that SB interventions did not improve blood lipids in most published studies (13 out of 1360 

18 studies) (136). Furthermore, skeletal muscle lipidome was largely unaffected after 1361 

three weeks of an intervention consisting of frequent active interruptions to sitting 1362 

(increase of 744 steps/day from baseline, no change in SB) in adults with central 1363 

obesity (229). 1364 

Taken these data together, it is evident that results on the effects of 1365 

reducing/interrupting SB on markers of lipid metabolism are inconsistent across studies 1366 

and meta-analysis. It is not clear whether type, intensity, and frequency of interruptions 1367 

to sitting, characteristics of population groups and/or duration of intervention influence 1368 

the responses to reducing/interrupting SB interventions. 1369 

Reducing/interrupting SB vs continuous MVPA/exercise. A small-scale, 12-week, 1370 

multifactorial, pilot-study examined both the independent and the combined effects of 1371 

exercise training (40-65% hear rate reserve, i.e., moderate to vigorous intensity) and 1372 

reducing SB (replace SB with standing and LPA plus increasing daily step count by 5-1373 

10%) on blood lipids in adults with overweight/obesity (140). Reducing SB with non-1374 

exercise PA (-4.8% of daily hours in SB, +28 min/day in MVPA) and exercise training 1375 

combined with reducing SB (-7.3% of daily hours in SB + 45 min/day increase in MVPA) 1376 

did not change fasting total cholesterol, HDL, and triglycerides concentrations. In 1377 

contrast, exercise training only (no change in SB, + 27 min/day increase in MVPA) 1378 
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significantly reduced triglyceride concentrations (-0.4 mmol∙L-1) (140). Four weeks of 1379 

intervention aiming at reducing SB (-53 min/day in SB with no change in MVPA) or 1380 

increasing MVPA to at least 30 min/day (+16 min/day of MVPA with no change in SB) 1381 

did not improve HDL, LDL and triglyceride concentrations in physically inactive adults 1382 

with obesity (142). 1383 

 1384 

4.2.2.3. Clinical significance 1385 

There is some evidence of small improvements, likely not clinically meaningful, on 1386 

fasting HDL (0.04 mM) concentrations associated with reducing/interrupting SB. 1387 

However, no consistent improvements have been reported for other blood lipids. It is 1388 

important to highlight that those studies within available meta-analyses reported mean 1389 

baseline values for all fasting blood lipids within normal ranges (78, 134), which may 1390 

contribute to the small magnitude of changes reported following SB interventions. 1391 

Putting these results into perspective with the effects of continuous exercise, the small 1392 

benefit for HDL is comparable to the increases in HDL associated with supervised 1393 

aerobic exercise in adults and older adults with type 2 diabetes (259). A meta-analysis 1394 

also demonstrated continuous aerobic exercise decreased fasting triglycerides 1395 

concentrations (-6.8 mg/dL), but not total cholesterol, LDL and HDL, in adults and older 1396 

adults with overweight/obesity (260). The current evidence indicates that 1397 

reducing/interrupting SB has marginal effects on fasting blood lipids. Longer-term 1398 

investigations into the effects of reducing/interrupting SB on blood lipids is warranted, 1399 

particularly in individuals with dyslipidemia. 1400 

 1401 
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4.3. Protein metabolism 1402 

 1403 

4.3.1. Increasing sedentary behavior 1404 

 1405 

4.3.1.1. Evidence from longer-term studies 1406 

Most evidence related to the effects of changing sedentary and physically-active 1407 

behaviors on protein metabolism has focused on skeletal muscle. In order to further 1408 

understand how sedentary-induced hypokinesia may affect protein metabolism in 1409 

skeletal muscle, it is important to acknowledge that muscle mass is regulated by an 1410 

intricate and coordinated balance between daily fluctuations in muscle protein synthesis 1411 

and breakdown (i.e., muscle protein balance) (261, 262). While breakdown is 1412 

considered somewhat stable in non-pathological conditions, muscle protein synthesis is 1413 

modulated by anabolic stimuli such as PA and nutrition (261, 262). This indicates that 1414 

SB-related mechanical unloading of muscles may lead to muscle wasting (263, 264). 1415 

Step reduction (~80% reduction from baseline) for 14 days resulted in a 1416 

significant decrease in postprandial myofibrillar protein synthetic rate (-25 to -50%) in 1417 

older adults (105, 110). This also seems to be the case in clinical populations, in which 1418 

reducing step count (7,362 to 991 steps/day) significantly reduced measures of the 14-1419 

day integrated rates of muscle protein synthesis (~-12%) in older adults with overweight 1420 

and prediabetes, which remained lower after resuming habitual activity for 14 days 1421 

(164). Using a unilateral leg model, Devries and colleagues (105) demonstrated that the 1422 

step reduction-induced decrease in postprandial myofibrillar protein synthetic rate can 1423 

be fully mitigated in older adults by performing unilateral resistance exercise training (3 1424 
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times/week) while performing step reduction. A study employing 14 days of unilateral 1425 

immobilization also showed reduced post-absorptive muscle protein synthesis (-27%) in 1426 

healthy adults (93). 1427 

Potential mechanisms. Bed rest studies indicate the loss of body protein with 1428 

physical inactivity/SB is predominantly due to a decrease in muscle protein synthesis 1429 

(265). This latter was associated with reductions in lean mass (-1.7%) following 14 days 1430 

of HDBR (265). 1431 

 1432 

4.3.1.2. Clinical significance 1433 

The pronounced reductions in muscle protein synthesis (-12 to 50%) following periods 1434 

of increased SB are likely relevant. The physiological and clinical impact of increasing 1435 

SB on skeletal muscle will be further discussed in topic 6.1. 1436 

 1437 

4.3.2. Reducing and interrupting sedentary behavior 1438 

 1439 

4.3.2.1. Evidence from acute studies 1440 

Acutely, myofibrillar protein synthesis was greater following light-walking (1.9 km/hour, 1441 

<2.8 METs, 2 minutes of walking every 30 minutes, total: 30 minutes) and squatting 1442 

interruptions to sitting (15 body-weight squats every 30 minutes, total: 225 repetitions) 1443 

as compared to 7.5 hours of prolonged sitting in healthy adults (~47% and ~20%, 1444 

respectively) (266). The increases in myofibrillar protein synthesis are comparable to 1445 

those observed following an acute bout of structured resistance exercise (~40%) in 1446 

healthy male adults (267). Additionally, rpS6Ser240/244 phosphorylation was greater in 1447 
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squatting interruptions compared to prolonged sitting, but no differences were observed 1448 

for other anabolic signaling protein targets (4E-BP1Thr37/46, eEF2Thr56, mTORSer2448, 1449 

ERK1/2Thr202/Tyr204) (266). This could suggest that the squats interruptions resulted in the 1450 

stimulation of translation initiation and myofibrillar protein synthesis. In contrast, walking 1451 

had no effect on any anabolic signaling protein targets, which may be related to a lower 1452 

activation of the vastus lateralis during walking compared to squatting (268). It is not 1453 

clear whether type, intensity, and frequency of interruptions to sitting differentially affect 1454 

markers of protein metabolism. 1455 

As for whole-body nutrient oxidation, De Jong and colleagues (124) showed that 1456 

frequent 5-minute bouts of brisk walking at every hour (total: 45 min/day) increased 1457 

protein oxidation (11.4%) during the sleeping period (8 hours) as compared to the 1458 

sedentary condition (67% of waking hours) in people with overweight/obesity. The 1459 

authors suggest that the greater disappearance in protein may reflect the use of protein 1460 

for gluconeogenesis to replenish muscle glycogen, as the short bouts of activity likely 1461 

triggered the use and replenishment of glycogen stores, thus enhancing glycogen 1462 

turnover (124).  1463 

 It has been proposed that muscle hypertrophy following resistance exercise 1464 

occurs as a result of summed periods of repeated acute exercise-induced positive 1465 

protein balance where muscle protein synthesis exceeds muscle protein breakdown 1466 

(269). As such, the practical relevance of acute increases in myofibrillar protein 1467 

synthesis (20-47%) seen following aerobic and resistance activity interruptions to sitting 1468 

and the extension of skeletal muscle remodeling should be addressed in future longer-1469 

term studies.  1470 
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 1471 

5. CARDIOVASCULAR AND RESPIRATORY SYSTEMS 1472 

 1473 

5.1. Hemodynamics 1474 

 1475 

5.1.1. Increasing sedentary behavior 1476 

 1477 

5.1.1.1. Evidence from acute studies 1478 

A seated posture creates bends in major blood vessels, such as the femoral and 1479 

popliteal arteries, which may result in turbulent blood flow patterns (270, 271). Also, 1480 

such posture not only results in diminished skeletal muscle contractile activity that aids 1481 

in venous return via the muscle pump, but also detrimentally affects blood flow and 1482 

vascular shear stress (physiological stressors that may underlie the health benefits of 1483 

PA on the endothelium) (24). In healthy adults, shear rate in the lower limbs, but not in 1484 

the upper limbs, is reduced after only 30 minutes of uninterrupted sitting (20, 272). After 1485 

approximately 2 hours, blood pools in the calf and whole-blood leg viscosity is also 1486 

reduced (273). After 3 hours, blood flow in lower limbs is decreased in parallel with a 1487 

further reduction in shear rate, as evidenced by meta-analysis (20). Although most of 1488 

the evidence suggests that prolonged sitting detrimentally affects peripheral 1489 

hemodynamics (274), some studies have demonstrated no alterations in blood flow 1490 

(275) and retrograde shear rate (276, 277) in healthy males following 3-5 hours of 1491 

uninterrupted sitting. 1492 
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A meta-analysis reported that exposures to prolonged, uninterrupted sitting 1493 

resulted in significant increases in systolic blood pressure (3.2 mmHg) and mean 1494 

arterial pressure (3.3 mmHg) among adults and older adults, but diastolic blood 1495 

pressure was unaffected (119). In contrast, another meta-analysis demonstrated no 1496 

change in mean arterial pressure following exposures to prolonged sitting >3 hours (20). 1497 

Some studies also failed to observe sitting-induced alterations in systolic (190, 278-1498 

281), diastolic pressure (195, 278, 282-284), and mean arterial pressure (281, 285-1499 

288). In addition, 7 days of reduced step count (~9,000 to ~6,000 steps/day) did not 1500 

modify systolic and diastolic blood pressure and mean arterial pressure in healthy-active 1501 

adults (289).  1502 

Five days of reduced steps (from ~12,000 to 4,000 steps/day) did not affect 1503 

femoral or brachial artery blood flow responses (104), nor did it alter shear rate in 1504 

healthy-active male adults (103). 1505 

Changes in catecholamines have been inconsistent across studies; some 1506 

indicated no changes and others small increases in plasma/serum concentrations in 1507 

adults and older adults following 7-8 hours of prolonged sitting (284, 290, 291). 1508 

Increased lower leg and foot venous pressure/swelling was also observed after 1509 

prolonged sitting, possibly impairing the regulation of capillary fluid filtration and edema 1510 

formation in the feet (292).  1511 

Potential mechanisms. Atherosclerotic plaques have been reported to commonly 1512 

manifest near arterial bifurcations, which is at least partially due to an unfavorable local 1513 

hemodynamic environment (293). The seated position may mimic a similar environment 1514 

to arterial bifurcations due to the ‘bent artery’ morphology created by 90-degree angles 1515 
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in the hip and knees. Acute evidence revealed that as little as 3 hours of leg bending, 1516 

similar to sitting, produces detrimental hemodynamic changes in the popliteal artery as 1517 

compared with a straight limb (294). Therefore, the ‘bent artery’ position induced by 1518 

sitting may be a key contributor of changes in hemodynamics (274). 1519 

 1520 

5.1.1.2. Evidence from longer-term studies 1521 

Unilateral leg immobilization (12 days) did not induce changes in blood pressure, mean 1522 

blood flow in carotid, femoral and popliteal arteries in the immobilized leg versus the 1523 

non-immobilized leg in healthy adults (295). However, mean blood velocity (~22%) and 1524 

vessel shear rate (~35%) in femoral artery were increased in the immobilized leg (295). 1525 

Hemodynamic adaptations to lower-limb immobilization seem to be constrained to 1526 

peripheral arteries, not altering large central arteries (295). 1527 

Fourteen days of step reduction (~82% reduction from baseline combined or not 1528 

with unilateral low-load resistance exercise training, 3 times/week) did not alter 1529 

superficial femoral artery blood flow during both fasted and fed state in healthy older 1530 

males (105). Systolic blood pressure increased by 4 mmHg following a 14-day step 1531 

reduction protocol (81% reduction from baseline; +3.7 h/day in sedentary time) in 1532 

healthy adults with/without a first-degree relative with type 2 diabetes but returned to 1533 

baseline after resuming habitual activity for 14 days (112). Diastolic blood pressure 1534 

remained unchanged during step reduction and recovery periods (112).  1535 

 1536 

5.1.1.3. Clinical significance 1537 
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Acute exposures to prolonged sitting resulted in significant increases in systolic blood 1538 

pressure (3.2 mmHg) and mean arterial pressure (3.3 mmHg) among adults and older 1539 

adults (119). Similar increases (4 mmHg) were reported following 14 days of reduced 1540 

step count in healthy adults with/without a first-degree relative with type 2 diabetes 1541 

(112). While it is unclear whether these detrimental changes are sustained over time, 1542 

the magnitude of these increases in blood pressure are likely to be clinically significant if 1543 

maintained. For some perspective, at population level, 1 to 10 mmHg increases in mean 1544 

systolic blood pressure are associated with increases in cardiovascular diseases 1545 

incidence (296) and mortality (296, 297) and stroke mortality (298).  1546 

 1547 

5.1.2. Reducing and interrupting sedentary behavior 1548 

 1549 

5.1.2.1. Evidence from acute studies 1550 

A meta-analysis of acute randomized crossover trials showed that interruptions to sitting 1551 

(aerobic, simple resistance activities and standing) reduced systolic blood pressure by 1552 

4.4 mmHg and diastolic blood pressure by 2.4 mmHg versus prolonged sitting (119). A 1553 

meta-analysis demonstrated no change in systolic and diastolic blood pressure 1554 

following standing interruptions to sitting compared to prolonged sitting in adults and 1555 

older adults (181), suggesting interruptions at higher intensities may be necessary to 1556 

affect blood pressure. However, mixed results have been reported by original studies. A 1557 

systematic review summarized findings from acute randomized crossover studies 1558 

investigating blood pressure responses to different intensities of interruptions to sitting 1559 

in adults and older adults at risk for type 2 diabetes (299). Five out of ten studies found 1560 
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significant improvements in blood pressure responses following light-intensity 1561 

interruptions, and three out of five studies demonstrated reductions following moderate-1562 

to-vigorous-intensity interruptions (299). In contrast, only one out of six studies found 1563 

reductions in blood pressure following standing interruptions to prolonged sitting (299), 1564 

indicating that standing interruptions might be less effective at improving blood pressure 1565 

responses. 1566 

Regarding the type of interruptions to sitting, the decreases in systolic blood 1567 

pressure were mainly driven by studies implementing aerobic activity interruption 1568 

strategies, as evidenced by a meta-analysis (119). In terms of frequency, interrupting 1569 

prolonged sitting with 3-minute or 6-minute bouts of simple resistance activities every 30 1570 

or 60 minutes (squatting, calf raises; total: 36-39 minutes) did not elicit changes in blood 1571 

pressure responses compared to 8 hours of prolonged sitting in adults and older adults 1572 

with type 2 diabetes (283). Similarly, there were no differences in blood pressure 1573 

responses following high (2-minute bouts every 20 minutes, total: 30 minutes) and low 1574 

frequency (10-minute bouts every 60 minutes, total: 50 minutes) of standing bouts 1575 

compared to 6 hours of prolonged sitting in older adults (195). In addition, Duran and 1576 

colleagues (206) suggested light-walking interruptions to sitting (3.2 km/h, 2.8 METs) of 1577 

high and low frequency (every 30 and 60 minutes, respectively) and high and low 1578 

duration (5- and 1-minute interruptions, respectively) can be considered when targeting 1579 

improvements in blood pressure responses in adults and older adults. These strategies 1580 

significantly attenuated systolic blood pressure responses (-3 to -5 mmHg) as compared 1581 

to sedentary control (total: 8 hours), and there were no differences between high/low 1582 

frequencies and durations of interruptions to sitting protocols (206). Both high and low 1583 
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frequencies of single resistance activity interruptions (squatting, calf raises; every 30 vs 1584 

60 minutes, total: 36-39 minutes) significantly increased blood flow (125 and 114%, 1585 

respectively) and shear rate (87 and 98%, respectively) in adults and older adults with 1586 

type 2 diabetes as compared to 8 hours of prolonged sitting (283).  1587 

Reductions in systolic and diastolic blood pressure responses were more 1588 

pronounced in older females than older males in response to a 30-min bout of exercise 1589 

followed by frequent, brief light-intensity walking bouts as compared to 8 hours of 1590 

uninterrupted sitting (291). This finding suggests that females might benefit more from 1591 

performing exercise plus interruption to sitting strategy. 1592 

In preadolescent children, interrupting sitting with light-, moderate- and high-1593 

intensity walking (25, 50 and 75% heart rate reserve, respectively; 2-minute bouts every 1594 

20 minutes, total: 40 minutes) did not alter systolic and diastolic blood pressure 1595 

responses compared to 8 hours of prolonged sitting (300). 1596 

Simple resistance activity interruptions to sitting (squatting, calf raises; 3-minute 1597 

bouts every 30 minutes, total: 27 minutes) resulted in increased resting blood flow 1598 

(~43%) and shear rate (~98%) in the femoral, but not brachial artery, compared to 5 1599 

hours uninterrupted sitting in adults with overweight and obesity (279). Interruptions to 1600 

sitting with calisthenic exercises (squats, arm circles, calf raises; 2-minute interruptions 1601 

every 20 minutes, total: 6 minutes) increased shear rate in the brachial artery (~16%) in 1602 

healthy adults (287). Performing simple leg movements such as fidgeting was also 1603 

sufficient to attenuate sitting-induced decreases in popliteal artery blood flow (-19% vs -1604 

29%) and shear rate (-22% vs -43%) in healthy adults (301). Finally, brief walking 1605 

interruptions to sitting (3.2 and 5.8 km/h; 2.8 and ~4.3 METs, respectively; 2-minute 1606 
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bouts every 20 minutes, total: 28 minutes) may also play an important role at improving 1607 

concentration of hemostatic and/or pro-coagulant risk factors (e.g., fibrinogen, 1608 

hematocrit, and hemoglobin) (302). 1609 

Reducing/interrupting SB vs continuous MVPA/exercise. A 30-minute bout of 1610 

moderate-intensity walking (71% maximum heart rate), but not regular 2-minute bouts of 1611 

moderate- or vigorous-intensity walking (53 and 79% maximum heart rate; total: 42 and 1612 

16 minutes, respectively), significantly reduced ambulatory systolic blood pressure (-3 1613 

mmHg) in adults with overweight/obesity compared to 9 hours of prolonged sitting (303). 1614 

Similarly, a 30-minute bout of moderate-intensity walking (55% heart rate reserve) 1615 

reduced systolic blood pressure responses in the 4-hour period after exercise in 1616 

postmenopausal females with rheumatoid arthritis (47% participants had hypertension), 1617 

which was not observed following 3-minute boults of light-intensity walking every 30 1618 

minutes (24% heart rate reserve, total: 42 minutes) (213). Interestingly, resting systolic 1619 

blood pressure was significantly lower in the morning after performing both a single bout 1620 

and multiple 3-minute bouts of brisk walking every 30 minutes (41-42% VO2max, total: 30 1621 

minutes) compared to a sedentary condition (-7 and -8 mmHg, respectively) in healthy 1622 

male adults (304). Finally, a single 30-minute bout of moderate-intensity walking (65-1623 

75% maximum heart rate) was effective at reducing systolic and diastolic blood 1624 

pressure in older adults (-3 and -1 mmHg, respectively). Performing regular 3-minute 1625 

light-intensity walking interruptions every 30 minutes (3.2 km/h, 2.8 METs; total: 36 1626 

minutes) after exercising further reduced systolic blood pressure (-5 mmHg) but not 1627 

diastolic blood pressure (291). 1628 

 1629 
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5.1.2.2. Evidence from longer-term studies 1630 

A meta-analysis has summarized data from longer-term studies investigating the effects 1631 

of SB interventions conducted in free-living (-28.6 min/day of SB). Performing 1632 

interruptions to sitting resulted in a small but significant reduction in systolic, but not 1633 

diastolic, blood pressure (-1.1 mmHg) compared to control groups in both apparently 1634 

healthy and clinical populations (78). Nonetheless, other meta-analyses of studies 1635 

involving clinical population groups (134) and focused on reducing/interrupting SB with 1636 

standing in adults and older adults (135) showed no change in blood pressure following 1637 

intervention. A systematic review of workplace reducing/interrupting sitting interventions 1638 

showed that only five out of 22 studies reported reductions in systolic blood pressure 1639 

and two observed drops in diastolic blood pressure (136).  1640 

In children, an 8-month, school-based intervention using height-adjustable desks 1641 

in the classroom was ineffective at reducing classroom and total daily SB (137). 1642 

Consequently, no significant changes were observed on systolic and diastolic blood 1643 

pressure (137). 1644 

Regarding other hemodynamic parameters, the effect sizes for increases in 1645 

shear rate in the femoral and brachial arteries following an 8-week intervention to 1646 

reduce/interrupt SB at work (-38 min/8-hour workday of sedentary time and +35 min/8-1647 

hour workday of standing time) were considered small (Cohen’s d: 0.31 and 0.23) (305). 1648 

In a 16-week non-randomized trial, an intervention to reduce sitting (-60 min/day of 1649 

sedentary, +36 min/day of standing and +30 min/day of walking time) resulted in 1650 

increased femoral artery antegrade shear rate (~14%), but not in basal blood flow or 1651 
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retrograde shear rate, among those (≥55 years old) with increased cardiovascular risk 1652 

(306). 1653 

In summary, the effects of reducing/interrupting SB on hemodynamics are 1654 

inconsistent across studies and meta-analysis. It is not clear whether type, intensity, 1655 

and frequency of interruptions to sitting, characteristics of population groups and/or 1656 

duration of intervention affect responses to reducing/interrupting SB interventions. 1657 

Reducing/interrupting SB vs continuous MVPA/exercise. A small-scale, 12-week, 1658 

multifactorial, pilot-study examined both the independent and the combined effects of 1659 

exercise training (40-65% hear rate reserve, i.e., moderate to vigorous intensity) and 1660 

reducing SB (replace SB with standing and LPA plus increasing daily step count by 5-1661 

10%) on blood pressure in adults with overweight/obesity (140). Reducing SB with LPA 1662 

(-4.8% of daily hours in SB, +28 min/day in MVPA) resulted in significant decreases in 1663 

systolic and diastolic blood pressure (-4.7 and -4.0 mmHg, respectively). Interestingly, 1664 

exercise training (no change in SB + 27 min/day increase in MVPA) and exercise 1665 

training combined with reducing SB (-7.3% of daily hours in SB + 45 min/day increase in 1666 

MVPA) significantly reduced systolic (-7.0 and –5.9 mmHg, respectively), but not 1667 

diastolic, blood pressure. There were no between-group differences with respect to 1668 

improvements in systolic blood pressure (140). In contrast, 4 weeks of multiple 1669 

interventions aimed at reducing SB (-53 min/day in SB with no change in MVPA) or 1670 

increasing MVPA to at least 30 min day (+16 min/day of MVPA with no change in SB) 1671 

had no effect on blood pressure in physically inactive adults with obesity (142). 1672 

 1673 

5.1.2.3. Clinical significance 1674 
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Blood pressure is one of the most commonly used hemodynamic parameters in clinical 1675 

practice. There is some evidence of small improvements in systolic blood pressure (-1.1 1676 

mmHg) associated with reducing/interrupting SB (78). Such benefits were not observed 1677 

for diastolic blood pressure. It is important to highlight that mean baseline blood 1678 

pressure of the participants were typically within normal ranges in available meta-1679 

analyses (78, 134), which may reflect the small magnitude of reported changes 1680 

following SB interventions. Importantly, these small changes in systolic blood pressure 1681 

are comparable to those shown to be associated with continuous aerobic exercise and 1682 

resistance exercise training in people with normal blood pressure (-0.6 to -0.8 mmHg) 1683 

(307). In contrast, exercise training could be more effective at reducing diastolic blood 1684 

pressure (-1.1 to -3.3 mmHg) (307). Despite the small effects of reducing/interrupting 1685 

SB, even discrete reductions in blood pressure (e.g., 2 mmHg) are relevant at a 1686 

population level, as they have been shown to be associated with significant reductions 1687 

in the risk of all-cause, coronary diseases and stroke mortality (12,000 lives saved per 1688 

year) (308). 1689 

Evidence on the effects of reducing/interrupting SB on blood pressure in 1690 

individuals with hypertension is still scarce. An analysis of pooled data from 4 acute 1691 

randomized crossover trials indicated that blood pressure reductions were of greater 1692 

magnitude in adults with overweight/obesity and hypertension (~-10 to -13 vs -2 to -7 1693 

mmHg) following intermittent light-walking or simple resistance activity interruptions to 1694 

sitting (3.2 km/h, 2.8 METs, or body-weight squatting and calf raises; 3-minute bouts 1695 

every 30 minutes, total: 36 minutes) compared to those without hypertension (24). 1696 

Additionally, in a 12-month randomized controlled trial, individuals who were 1697 
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randomized to the group STAND+ (sit to stand desk plus goal of ≥30 minutes of 1698 

additional LPA) significantly reduced sitting time by -59.2 min/8-hour workday compared 1699 

to the group MOVE+ (goal of ≥30 minutes of additional LPA). These changes in physical 1700 

behavior resulted in non-significant changes in cardiometabolic outcomes (234). A 1701 

subgroup analysis in individuals with dysglycemia (baseline blood pressure: 135/83 1702 

mmHg) revealed larger reductions in systolic blood pressure (-6.6 mmHg) for 1703 

participants randomized to STAND+ compared to MOVE+ (234). Altogether, these 1704 

findings indicate that reducing/interrupting SB has the potential to improve blood 1705 

pressure to a greater extent in those with hypertension. 1706 

 1707 

5.2. Cardiovascular function and structure  1708 

 1709 

5.2.1. Increasing sedentary behavior 1710 

 1711 

5.2.1.1. Evidence from acute studies 1712 

Prolonged sitting may induce endothelial dysfunction (i.e., the inability of the blood 1713 

vessels to dilate appropriately) and oxidative stress (309, 310). Padilla and colleagues 1714 

(272) observed that 3 hours of uninterrupted sitting attenuated popliteal artery shear 1715 

rate (~75%) in healthy adults, but this reduction was not paralleled by a concomitant 1716 

reduction in flow-mediated dilation (FMD). Conversely, Thosar and colleagues (276) 1717 

reported a reduction in the superficial femoral artery FMD (~2.5 %FMD) following 3 1718 

hours of uninterrupted sitting. Restaino and colleagues (311) also demonstrated that 1719 

prolonged sitting for 6 hours impairs lower-limb FMD (~5 %FMD), but not upper-limb. 1720 
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This is possibly because upper limb movement was not restricted in this study. These 1721 

results are corroborated by meta-analytic findings showing that acute exposures to 1722 

prolonged sitting result in reduced lower-limb (~2 to 5 %FMD), but not upper-limb, 1723 

vascular function in healthy adults (20, 120). Notably, no significant reductions were 1724 

observed for exposures that were shorter than 2 hours of uninterrupted sitting (20). 1725 

Additionally, some studies reported increases in artery stiffness, as measured by pulse 1726 

wave velocity (PWV). Carotid-to-femoral PWV was increased in healthy adults following 1727 

3 hours of prolonged sitting (288, 312) and carotid-to-ankle PWV has been also shown 1728 

to increase in adults with overweight/obesity and elevated blood pressure following 10 1729 

hours of prolonged sitting (313). However, these increases are rather marginal and 1730 

likely not clinically relevant (314). Despite this evidence, some studies have not 1731 

observed alterations in markers of macrovascular function (e.g., FMD (281, 283) and 1732 

PWV (281, 313, 315)).  1733 

 Some studies demonstrated that microvascular reactivity is blunted following 1.5-1734 

6-hour exposures to prolonged sitting in both upper and lower extremities, as evidenced 1735 

by reductions in peak blood flow and blood flow area under the curve (AUC) (282, 288, 1736 

311, 316-319). Studies also demonstrated impairments in tissue oxygenation index 1737 

recovery rate during reactive hyperemia after ~3 hours of prolonged sitting (281, 315, 1738 

320). However, some studies demonstrated alteration in markers of microvascular 1739 

function (e.g., shear rate (279) and blood flow area under the curve (AUC) (319)). 1740 

Seven days of lower-limb immobilization resulted in reductions in femoral artery 1741 

base diameter (~5%) and vascular conductance (~23%), and increases in vascular 1742 
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resistance (~35%) in healthy male adults, but all parameters returned to baseline levels 1743 

after resuming habitual activity for 14 days (321).  1744 

Five days of reduced step count (~12,000 to ~3,500 steps/day) reduced popliteal 1745 

artery (-3 %FMD), but not brachial artery, FMD in healthy male adults (103). 1746 

Conversely, base diameter was decreased in the brachial artery (~5%, suggestive of 1747 

inward vascular remodeling), but not in the popliteal artery (103). Additionally, 1748 

CD31+/CD42b– endothelial microparticles concentration (a marker of endothelial 1749 

apoptosis) increased significantly by ~490% after 5 days of reduced activity (103).  1750 

Potential mechanisms. The seated posture results in greater amount of low and 1751 

oscillatory shear rates in the lower extremities conduit arteries (272, 276, 277, 288, 311, 1752 

316). Both oscillatory and low shear stress can increase endothelial cell-derived 1753 

reactive oxygen species (ROS) and downregulate endothelial nitric oxide synthase 1754 

(eNOS) expression and production of NO (a potent dilator released from endothelial 1755 

cells) (322, 323). It has also been proposed that increased endothelin-1 concentrations 1756 

(ET-1, a potent vasoconstrictor) may upregulate ROS and reduce total plasma nitrate 1757 

and nitrite, markers of NO bioavailability (29). Increases in ET-1 concentrations, but not 1758 

NO bioavailability, have been shown following exposures to prolonged sitting (279, 1759 

315). However, others did not report such increases in ET-1 concentrations (283, 312). 1760 

 1761 

5.2.1.2. Evidence from longer-term studies 1762 

Unilateral leg immobilization for 12 days reduced femoral and popliteal arteries mean 1763 

diameter (~7% and 14%, respectively) but did not change resting carotid artery diameter 1764 
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in healthy adults (295). Popliteal artery FMD increased in the immobilized leg (~7 1765 

%FMD), but not in the non-immobilized leg (295). 1766 

 1767 

5.2.1.3. Clinical significance 1768 

Acute exposures to prolonged sitting resulted in significant decreases in lower-limb (-2 1769 

to -5 %FMD), but not upper-limb, in healthy adults (20, 120). Similar decreases in 1770 

vascular function (-3 %FMD) have been reported following 5 days of reduced step count 1771 

in healthy male adults (103). FMD is a predictor of cardiovascular events in the general 1772 

population (324). However, it is unclear whether these detrimental changes are likely to 1773 

be sustained over time and whether upper limb FMD might also be impacted by SB.  1774 

 1775 

5.2.2. Reducing and interrupting sedentary behavior 1776 

 1777 

5.2.2.1. Evidence from acute studies 1778 

Three meta-analyses have summarized the effects of interrupting sitting on FMD (20, 1779 

120, 325). Two of those indicated that vascular dysfunction can be mitigated by 1780 

interrupting prolonged sitting with aerobic, standing or simple resistance activities when 1781 

compared to prolonged sitting (1.5 to 5 hours) (120, 325). These short-term 1782 

interventions improved FMD by 1.5 to 1.9 %FMD (120, 325), and increased shear rate 1783 

by 12.7 S-1 in adults and older adults (325). In contrast, the most recent meta-analysis 1784 

demonstrated a small, non-significant effect of PA interruptions to sitting on FMD (20). 1785 

Of note, some original studies failed to show improvements in lower- and/or upper-limb 1786 
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FMD following at least one of the interruptions to SB compared to prolonged sitting (21, 1787 

279, 280, 283, 287, 326, 327). 1788 

Meta-regressions revealed that higher BMI is significantly associated with greater 1789 

reductions in FMD responses following interruptions to sitting as compared to prolonged 1790 

sitting (325), indicating that those with higher BMI may benefit more from interrupting 1791 

sitting. Subgroup analysis also indicated that aerobic and simple resistance activities 1792 

may be more effective than standing interruptions at improving FMD, but this 1793 

comparison did not reach statistical significance due to the low number of included 1794 

studies (120). Regarding frequency of interruptions to sitting, interrupting prolonged 1795 

sitting with 3-minute of simple resistance activities every 30 minutes (squat, calf raises; 1796 

total: 39 minutes) was more effective at increasing FMD in the femoral artery in adults 1797 

and older adults with type 2 diabetes compared to a lower frequency of interruptions 1798 

(i.e., squatting, calf raises; 6-minute bouts every 60 minutes, total: 36 minutes), for 1799 

which FMD did not change (283). It is not clear whether intensity of interruptions 1800 

differentially affects FMD responses.  1801 

Reducing/interrupting SB vs continuous MVPA/exercise. Continuous exercise (60 1802 

min/day of MVPA), but not substituting sitting with 5-6 h/day of LPA, over 4 days 1803 

improved circulating markers of endothelial disfunction in adults with normal weight, 1804 

overweight and type 2 diabetes (328).  1805 

Potential mechanisms. It has been suggested that changes in vascular function 1806 

may be mediated by decreases in plasma ET-1 concentration (279, 315) and increases 1807 

in plasma nitrate/nitrite concentration and NO bioavailability/endothelin-1 ratio (315). 1808 

Change in these biomarkers, along with increased skeletal muscle activity and other 1809 
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systemic changes (reduced postprandial glucose responses, blood lipids, inflammatory 1810 

markers, and sympathetic nervous system activity) are thought to be the potential 1811 

mechanisms underpinning the effects of reducing/interrupting SB on cardiovascular 1812 

function (FIGURE 5) (26, 329). 1813 

 1814 

-------------------------------- INSERT FIGURE 5 ABOUT HERE -------------------------------- 1815 

 1816 

5.2.2.2. Evidence from longer-term studies 1817 

Only four longer-term trials have investigated the effects of reducing/interrupting SB with 1818 

standing, walking and/or other types of PA on vascular function (325). A meta-analysis 1819 

summarizing the available evidence showed a significant increase in FMD (0.93 %FMD) 1820 

in adults and older adults following 8 to 16 weeks of intervention (325). However, this 1821 

beneficial effect was mainly driven by one study (305), with other studies suggesting no 1822 

change in lower- and/or upper-limb FMD following reducing/interrupting SB (305, 306, 1823 

330). 1824 

 1825 

5.2.2.3. Clinical significance 1826 

There is some evidence of improvements on brachial and lower-limb vascular function 1827 

(0.93 %FMD) associated with reducing/interrupting SB. This change is likely to be 1828 

clinically meaningful, given that a 1% increase in FMD is significantly associated with a 1829 

17% decrease in future risk of cardiovascular events (331, 332). However, the effects of 1830 

reducing/interrupting SB on vascular function appear to be less pronounced relative to 1831 

those observed for aerobic, resistance and combined exercise training (+2.1 to 2.8 1832 
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%FMD) in adults and older adults (333). Despite this initial evidence indicating a 1833 

potential benefit of reducing/interrupting SB, the evidence base is still limited, and future 1834 

studies are needed to elucidate the effects of reducing/interrupting SB on vascular 1835 

function and the factors that mediate intervention effects.  1836 

 1837 

5.3. Cardiorespiratory fitness 1838 

 1839 

5.3.1. Increasing sedentary behavior 1840 

 1841 

5.3.1.1. Evidence from longer-term studies 1842 

Fourteen days of reduced step count (10,501 to 1,344 steps/day) resulted in a 6.6% 1843 

decline in VO2max in healthy male adults, which was significantly correlated with 1844 

reductions in daily steps (108). Other studies showed similar results in healthy adults 1845 

(107, 112). Importantly, VO2max returned to baseline levels by simply resuming habitual 1846 

activity for 14 days (107, 112). 1847 

 1848 

5.3.1.2. Clinical significance 1849 

Increasing SB results in profound decreases in VO2max in healthy adults (e.g., -6.6% in 1850 

14 days). Changes observed over 14 days of increased SB are dramatically accelerated 1851 

compared to age-related decline in VO2max per decade (~10%, regardless of PA level) in 1852 

females and males (334). Given low cardiorespiratory fitness is significantly associated 1853 

with increased risk for all-cause mortality and cardiovascular events (335, 336), these 1854 

findings hold important clinical implications for those who may undergo periods of 1855 
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reduced activity, bed rest or immobilization. In contrast, it is important to highlight these 1856 

alterations can be reverted after resuming habitual daily activities (107, 112). 1857 

 1858 

5.3.2. Reducing and interrupting sedentary behavior  1859 

 1860 

5.3.2.1. Evidence from acute studies 1861 

Acutely, regular sit-to-stand transitions (stand up and return to a seated position every 1 1862 

minute for 10 minutes) significantly increased VO2max by ~32% in healthy adults as 1863 

compared to 10 minutes seated in a chair motionless (3.86 vs. 2.93 ml∙kg-1∙min-1) (12).  1864 

 1865 

5.3.2.2. Evidence from longer-term studies 1866 

A 3-year randomized controlled trial involving physically inactive and sedentary 1867 

individuals with type 2 diabetes compared 1-month exercise counseling every year or 1868 

standard care (233). In an ancillary analysis, when participants were divided into 1869 

quartiles based on changes in PA and SB irrespective of experimental arm, the highest 1870 

quartile for changes in SB (-1.53 h/day) presented a significant increase in VO2max (4.49 1871 

ml∙kg-1∙min-1). Importantly, increases in time spent in SB were negatively associated 1872 

with changes in VO2max, which was independent from time spent in MVPA (233). This 1873 

finding indicates that reducing sedentary time, leading to substantial increases in total 1874 

PA may be sufficient to improve cardiorespiratory fitness in a highly physically inactive 1875 

and sedentary, at-risk population group.  1876 

Reducing/interrupting SB vs continuous MVPA/exercise. In a small-scale, 12-1877 

week, multifactorial, pilot-study involving 57 sedentary, overweight/obese males and 1878 
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females, Keadle and colleagues (140) examined both the independent and the 1879 

combined effects of exercise training (40-65% heart rate reserve, i.e., moderate to 1880 

vigorous intensity) and reducing SB (replace SB with standing and LPA plus increasing 1881 

daily step count by 5-10%) on VO2max. Compared to control, both exercise training (no 1882 

change in SB, +27 min/day in MVPA) and exercise training combined with reducing SB 1883 

(-7.3% of daily hours in SB, +45 min/day in MVPA) improved VO2max by ~10% (2.5 1884 

ml∙kg-1∙min-1 and 2.9 ml∙kg-1∙min-1, respectively). Additionally, changes in VO2max 1885 

resulting from reducing SB only (-4.8% of daily hours in SB, +28 min/day in MVPA) were 1886 

not statistically significant (0.2 ml∙kg-1∙min-1) (140), indicating that improvements in 1887 

VO2max may depend on the PA intensity. Four weeks of an intervention to reduce SB (-1888 

53 min/day in SB with no change in MVPA) resulted in significant increases in VO2max 1889 

(1.9 ml∙kg-1∙min-1) in physically inactive adults with obesity (142). This improvement in 1890 

VO2max was comparable to the effects of an intervention aiming to increase MVPA to at 1891 

least 30 min day (2.2 ml∙kg-1∙min-1; +16 min/day of MVPA with no change in SB) (142). 1892 

 1893 

5.3.2.3. Clinical significance 1894 

Significant increases in VO2max (1.9 to 4.4 ml∙kg-1∙min-1) have been reported following 1895 

interventions to reduce/interrupt SB (-1 to 1.5 h/day) (142, 233). Despite these findings, 1896 

evidence is still limited, and future studies are needed to elucidate the effects of 1897 

reducing/interrupting SB on cardiorespiratory fitness, the clinical significance of these 1898 

improvements, and the mediating factors (e.g., intensity of PA replacing SB). 1899 

 1900 

6. MUSCULOSKELETAL SYSTEM 1901 
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 1902 

6.1. Skeletal muscle  1903 

 1904 

6.1.1. Increasing sedentary behavior 1905 

 1906 

6.1.1.1. Evidence from longer-term studies 1907 

Skeletal muscle contractile activity during sitting is significantly lower than for standing 1908 

and ambulatory activities (14, 17, 19). As discussed in subtopic 4.3.1, existing studies 1909 

are reasonably consistent in showing impaired anabolic responses after different 1910 

periods and forms of SB. Significant losses in muscle mass have been consistently 1911 

reported after only a few days of exposure to increased SB, regardless of study model.  1912 

Computed tomography scans revealed ~2% decrements in quadriceps cross-1913 

sectional area (CSA) after only 5 days of a knee-immobilization protocol in healthy older 1914 

males (337). After 14 days of full-leg casting, both young and older males had 1915 

experienced significant decreases (~5 to 9%) in quadriceps muscle volume as assessed 1916 

by magnetic resonance imaging (MRI) (95). Longer time periods have also been studied 1917 

(e.g., 3.5 months), and muscle fiber CSA of the vastus lateralis was shown to be 1918 

dramatically reduced (-24 to -51% depending on fiber type) in older males submitted to 1919 

full-leg immobilization after total knee arthroplasty, when compared to control, physically 1920 

inactive individuals (338). Notably, initial quadriceps CSA was positively associated with 1921 

the magnitude of muscle atrophy following 14 days of lower limb immobilization in 1922 

females, but not in males (339). These findings highlight possible sex-based differences 1923 
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in skeletal muscle adaptations to immobilization, in which females with higher pre-1924 

immobilization muscle mass are more likely to present with muscle loss. 1925 

Several studies have demonstrated that daily step reductions (~67 to 87% 1926 

reduction from baseline) resulted in lean mass decrements varying between 0.5 to 4.5% 1927 

in healthy male adults (107-109, 235). Fourteen days of reduced daily steps (from 5,962 1928 

to 1,413 steps/day) elicited a 4% decrease in lower-limb fat-free mass in healthy older 1929 

adults (110). Furthermore, using a unilateral leg model, Devries and colleagues (105) 1930 

demonstrated that 14 days of step reduction resulted in an ~1.3% loss of leg fat-free 1931 

mass in healthy older males. Performing concomitant unilateral resistance exercise 1932 

counteracted maladaptations by increasing fat-free mass (~1.4%) in the exercised leg. 1933 

In addition, MHC distribution in the skeletal muscle shifted from slow-twitch (MHC I) 1934 

towards hybrid and fast-twitch (IIa) fiber types in vastus lateralis following 20 days of 1935 

reduced steps (from 14,000 to 3,000 steps/day) in healthy male adults (106), which has 1936 

also been observed following periods of bed rest (41-43). 1937 

Potential mechanisms. Bed rest studies showed that both decreased muscle 1938 

protein synthesis and increased muscle protein breakdown contribute to skeletal muscle 1939 

loss in healthy individuals and for those with chronic disease conditions (340, 341). 1940 

Skeletal muscle homeostasis is tightly controlled by numerous anabolic and catabolic 1941 

pathways, though the precise interconnection and biological actions of these actors still 1942 

need to be fully elucidated (342) (FIGURE 6). In muscle atrophy conditions, several 1943 

anabolic signaling pathways may be suppressed, including phosphoinositide 3-kinase 1944 

(PI3K)-Akt-mechanistic target of rapamycin 1 (mTORC1), β2-adrenergic, wingless/int1-1945 

frizzled (WNT/FZD), calcineurin, hippo, and/or bone morphogenetic protein (BMP). In 1946 
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contrast, several catabolic signaling pathways may be overactivated, including 1947 

transforming growth factor-β (TGF-β), AMPK, nuclear factor kappa light chain enhancer 1948 

of activated β cells (NF-κβ), glucocorticoid receptors, angiotensin, IL-6-janus 1949 

kinases/signal transducers and activators of transcription (JAK/STAT), kinin, 1950 

sphingolipids, notch, and/or activating transcription factor 4 (ATF4)-endoplasmic 1951 

reticulum stress (342-345). Finally, recent a study showed that diminished mitochondrial 1952 

energetics, lipid remodeling and increased H2O2 emission in hindlimb muscles of mice 1953 

were early features preceding loss of muscle function (346). In addition, the shift in 1954 

MHC distribution from slow-twitch towards hybrid and fast-twitch following bed rest (41-1955 

43) may contribute to muscle fatigue, dependance upon muscle glycogen as fuel, and 1956 

reduced capacity for fat oxidation (347).  1957 

 1958 

---------------------------------- INSERT FIGURE 6 ABOUT HERE -----------------------------------  1959 

 1960 

6.1.1.2. Clinical significance 1961 

Increasing SB results in profound decreases (1.3 to 9%) in skeletal muscle or fat-free 1962 

mass in adults and older adults. Changes observed over a few days of increased SB 1963 

are comparable to muscle mass decreases (~3 to 8%) over a decade after the age of 30 1964 

(348, 349). Given that low muscle mass is significantly associated with increased risk 1965 

for all-cause mortality (350), these findings could hold important clinical implications for 1966 

those who may undergo periods of reduced activity, bed rest or immobilization and for 1967 

older adults who present higher rates of muscle mass loss compared to younger 1968 

individuals (348).  1969 
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 1970 

6.1.2. Reducing and interrupting sedentary behavior 1971 

 1972 

6.1.2.1. Evidence from longer-term studies 1973 

Five studies investigated the longer-term effects (4 to 16 weeks) of reducing/interrupting 1974 

SB on fat-free mass. Four of them showed no effect in adult office workers and adults 1975 

and older adults with type 2 diabetes (351-354). In contrast, a 3-month cluster 1976 

randomized trial conducted in 161 adult office workers significantly reduced sedentary 1977 

time by 35 min/8-hour workday compared to control individuals (n=131), which was 1978 

primarily driven by an increase in standing time. After intervention, there was an 1979 

increase in total fat-free mass (0.5 kg) in the intervention group compared to the control 1980 

group (355).  1981 

Overall, longer-term findings related to the effects of reducing/interrupting 1982 

prolonged sitting on skeletal muscle mass have been inconsistent. The extent to which 1983 

reducing/interrupting SB increases muscle mass remains unclear. Future experimental 1984 

studies are warranted to investigate whether reducing/interrupting SB and which type 1985 

and intensity of PA can meaningfully impact skeletal muscle mass. 1986 

 1987 

6.2. Muscle strength and functioning 1988 

 1989 

6.2.1. Increasing sedentary behavior 1990 

 1991 

6.2.1.1. Evidence from longer-term studies 1992 
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Two weeks of unilateral whole leg casting significantly impaired muscle function by ~16-1993 

31% in both adults and older male adults, as measured by maximal voluntary 1994 

contraction, peak torque, specific force, and rate of force development (95). 1995 

Interestingly, four weeks of rehabilitation (unilateral resistance training, 3 times/week) 1996 

after a 2-week immobilization restored muscle function in both age groups (95). Another 1997 

study found that as little as 5 days of knee immobilization resulted in an 8-9% reduction 1998 

in muscle strength in healthy older males (337). Four weeks of unilateral lower limb 1999 

suspension (99% reduction in daily step count) reduced isometric force during plantar 2000 

flexion and knee extension tasks by ~15-25% and increased isometric fluctuations for 2001 

both tasks by ~12-22%. In contrast, no change was observed in EMG activity for soleus 2002 

and gastrocnemius muscles (356). 2003 

Reduction in daily steps (75% reduction from baseline) for 14 days impaired 2004 

muscle strength by ~8% in healthy older adults. In contrast, a rehabilitation program of 2005 

the same length (i.e., 14 days) was shown to be ineffective in restoring physical function 2006 

(130), indicating that this population may be at higher risk for accelerated age-related 2007 

loss in muscle mass/function after transitions to reduced activity levels. Nonetheless, 2008 

the literature is inconsistent, with other studies having failed to show muscle strength 2009 

decrements in response to step reduction in older adults (105, 110, 164).  2010 

 2011 

6.2.1.2. Clinical significance 2012 

Increasing SB results in significant decreases in skeletal muscle strength (8 to 25%) in 2013 

both adults and older adults. Changes observed with increased SB are comparable to 2014 

annual decreases in grip and knee extension/flexion (2.2 to 3.1% and 3.6 to 5.0%, 2015 
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respectively) observed in older adults (357, 358). Given that low muscle strength is 2016 

independently associated with increased risk for all-cause mortality regardless of 2017 

muscle mass and participation in SB and leisure time PA (350), these findings could 2018 

hold important clinical implications for those who may be exposed to periods of reduced 2019 

activity, bed rest or immobilization, and for older adults who may be more susceptible 2020 

than younger adults to muscle loss after increased SB (359).  2021 

 2022 

6.2.2. Reducing and interrupting sedentary behavior 2023 

 2024 

6.2.2.1. Evidence from longer-term studies 2025 

A previous described, a 3-year randomized controlled trial involving physically inactive 2026 

and sedentary individuals with type 2 diabetes compared 1-month exercise counseling 2027 

every year to standard care. Participants in the intervention group experienced a 2028 

significant reduction in sedentary time (-0.9 h/day) and increase in LPA (0.8 h/day) and 2029 

MVPA (8 min/day), which resulted in improved lower body strength (~19%) as 2030 

compared to the control group (232). Additionally, participants were divided into 2031 

quartiles based on changes in PA and SB irrespective of experimental arm. The highest 2032 

quartile for changes in SB (-1.53 h/day and +10.5 min/day of MVPA) did not have 2033 

different isometric muscle strength in the upper body (shoulder press) but did have 2034 

significantly greater lower body strength (leg extension) as compared to other quartiles, 2035 

which may have been driven by the higher participation in PA of any intensity observed 2036 

in this quartile (233). Interestingly, age was negatively and positively associated with 2037 

intervention-induced changes in upper and lower body strength, respectively (233). 2038 



 91 

In relation to physical functioning, a Cochrane systematic review and meta-2039 

analysis of interventions aiming at reducing SB (1 week to 1 year) in community-2040 

dwelling older adults showed low-certainty evidence related to reductions in sedentary 2041 

time (-45 min/day versus control group, which was not significant) and improvements in 2042 

physical function following intervention (2 studies; changes in gait speed and physical 2043 

function as assessed by a physical performance battery were not significant) (360). 2044 

Another meta-analysis, including interventions aimed at increasing participation in PA 2045 

(52 min/week) and reducing SB (-58 min/day) among older adults showed a small, 2046 

significant increase in physical functioning (standard mean difference: 0.21) compared 2047 

to the control group (361). In patients with rheumatoid arthritis, a 4-month motivational 2048 

intervention aimed at reducing SB (-1.6 h/day of sedentary, 1.3 h/day of standing and 2049 

+0.5 h/day of stepping time) resulted in increased physical functioning (31%) as 2050 

assessed by a disease-specific questionnaire (362). Notably, this effect was sustained 2051 

up to 18 months after the end of the intervention (363).  2052 

Only a few studies have investigated the effects of reducing/interrupting prolonged 2053 

sitting on muscle function. Given the limited number of studies, the extent to which 2054 

reducing/interrupting SB increases muscle strength and functioning and the associated 2055 

clinical significance remain unclear.  2056 

 2057 

6.3. Bone 2058 

 2059 

6.3.1. Increasing sedentary behavior 2060 

 2061 
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6.3.1.1. Evidence from longer-term studies 2062 

Increased resorption and decreased formation are considered to be the primary 2063 

drivers of immobilization-induced bone loss in weight-bearing bones (364). 2064 

Experimental studies have consistently shown significant alterations in bone parameters 2065 

when exposed to periods of increased SB. Lower-limb suspension has been used as a 2066 

model for such investigations, and 24 days of unilateral lower-limb suspension induced 2067 

losses in bone (tibia: 0.3 to 0.9%) of healthy male adults comparable to those seen after 2068 

bed rest (365).  2069 

Potential mechanisms. Markers of bone resorption (urine: hydroxyproline, 2070 

deoxypyridinoline, and N-telopeptide of type I collagen; serum: type I collagen 2071 

carboxytelopeptide) were significantly increased during bed rest, returning to baseline 2072 

levels after resuming ambulation (366). 2073 

The effects of bone loss and recovery during/following disuse are unclear in older 2074 

adults and individuals with osteopenia/osteoporosis. This should be addressed by future 2075 

studies, particularly given the known negative effect of aging on cellular and molecular 2076 

processes throughout the different stages of bone fracture healing (367). 2077 

 2078 

6.3.1.2. Clinical significance 2079 

Limb immobilization results in profound decreases in bone mineral density (~1%), 2080 

primarily in weight-bearing bones in adults. These alterations are likely to be clinically 2081 

significant given that the changes observed over 24 days of immobilization are 2082 

comparable to annual bone loss (~1%) in older adults (357). These findings hold 2083 

important clinical implications for those who may undergo bed rest and immobilization 2084 
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periods due to injury and for older adults, particularly postmenopausal females who 2085 

present higher rates of bone loss compared to males of similar age (357).  2086 

 2087 

6.3.2. Reducing and interrupting sedentary behavior 2088 

To our knowledge, no experimental study has investigated the effects of 2089 

reducing/interrupting SB on bone metabolism, which is a promising area to be 2090 

addressed in future studies. 2091 

 2092 

7. CENTRAL NERVOUS SYSTEM 2093 

 2094 

7.1. Central and peripheral neural effects 2095 

 2096 

7.1.1. Increasing sedentary behavior 2097 

 2098 

7.1.1.1. Evidence from acute studies 2099 

Four to six hours of exposure to prolonged, uninterrupted sitting decreased middle 2100 

cerebral artery blood flow velocity and cerebrovascular conductance (~3 to 6%) in 2101 

healthy adults with desk-based job as compared to baseline levels, indicating impaired 2102 

dynamic cerebral autoregulation (368, 369). Three hours of exposure to prolonged, 2103 

uninterrupted sitting resulted in reductions in cerebrovascular conductance index (~8%) 2104 

in individuals (≥55 years old) with increased cardiovascular risk (306). In contrast, 3 2105 

hours of uninterrupted sitting (with low or high mental activity) did not change cerebral 2106 

blood flow in older adults, but increased blood pressure (mean arterial pressure: 8.6 2107 
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mmHg) and cerebrovascular resistance (~13%), which are known to negatively impact 2108 

brain health in the long-term (370). Additionally, 3 hours of prolonged, uninterrupted 2109 

sitting did not affect corticospinal excitability in adult office workers (371) nor cerebral 2110 

vasomotor reactivity in individuals with increased cardiovascular risk (306).  2111 

Exposure to prolonged sitting did not change plasma concentrations of brain-2112 

derived neurotrophic factor (BDNF), catecholamines and related precursors or 2113 

metabolites (norepinephrine, epinephrine, dopamine, DOPA, and dihydroxyphenylglycol 2114 

[DHPG]) (284). Interestingly, changes in total fatigue levels were significantly associated 2115 

with increased DHPG and decreased DOPA concentrations over 4 hours of prolonged 2116 

sitting, which may reflect alterations in the sympathetic nervous system in response to 2117 

prolonged exposures to sitting (284).  2118 

Potential mechanisms. It has been proposed that there may be involvement of 2119 

altered cerebral glucose utilization due to increased postprandial glucose responses 2120 

(28, 75-77); altered cortical perfusion and oxygen delivery due to alterations in cerebral 2121 

(306, 368, 369) and peripheral vascular function (20, 120, 325), and in the supply of 2122 

BDNF (372); and increased levels of inflammatory markers and reactive oxygen species 2123 

(310, 373-375). Importantly, all these factors are recognized contributors to cognitive 2124 

decline and dementia (28, 376, 377) (FIGURE 7). With respect to glucose utilization, 2125 

altered cerebral glucose utilization seems to be a response to increased circulating 2126 

glucose concentration. Acute hyperglycemia leads to a reduction in regional cerebral 2127 

blood flow and a spike in insulin levels to facilitate glucose clearance. Together, these 2128 

two factors favor a glucose nadir. The glucose nadir can impair endocrine counter-2129 
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regulation to a subsequent dip in glucose, thus exaggerating the hypoglycemic episode 2130 

(28). 2131 

SB and physical inactivity have also been shown to alter hippocampal 2132 

mitochondrial and synaptic function in rats. Using selective breeding for physical 2133 

inactivity, male and female sedentary Low Voluntary Runners, wild type, and High 2134 

Voluntary Runner rats underwent cognitive behavioral testing, analysis of hippocampal 2135 

neurogenesis and mitochondrial respiration, and molecular analysis of the dentate 2136 

gyrus. Preference for physical inactivity (i.e., Low Voluntary Runners) resulted in major 2137 

detriments to cognition (spatial learning and memory), brain mitochondrial respiration 2138 

(coupled and uncoupled respiration), and neurogenesis (reduced AMPA receptor 2139 

subunit GluA1 protein levels, which is suggested to be an initiator of Alzheimer’s 2140 

disease pathogenesis) compared to wild type and High Voluntary Runner rats. Of note, 2141 

a significant sex-effect was noted - these differences were essentially noted in females 2142 

with males being more comparable to the wild type rats (378). These findings provide 2143 

evidence that selective breeding for physical inactivity has a heritable and detrimental 2144 

effect on brain health and females appear to be more susceptible. 2145 

 2146 

---------------------------------- INSERT FIGURE 7 ABOUT HERE ----------------------------------- 2147 

 2148 

  Future studies are required to better understand longer-term adaptations 2149 

associated to increased SB on cerebrovascular function.  2150 

 2151 

7.1.2. Reducing and interrupting sedentary behavior 2152 
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 2153 

7.1.2.1. Evidence from acute studies 2154 

Mixed findings have been reported related to alterations in cerebral blood flow 2155 

responses when interrupting prolonged sitting. Carter and colleagues (368) showed that 2156 

2-minute walking interruptions every 30 minutes during sitting, but not 8-minute 2157 

interruptions every 120 minutes (3.6 km/h, ~2.8-3.0 METs; total: 16 minutes), increased 2158 

middle cerebral artery blood flow velocity in healthy-sedentary adults when compared to 2159 

prolonged sitting over 4 hours (0.6 vs -1.2 vs -3.2 cm/s, respectively) (368). In contrast, 2160 

while a single 30-minute exercise bout (65-75% maximum heart rate) increased middle 2161 

cerebral artery blood flow velocity (2 cm/s) in healthy older adults compared to 2162 

prolonged sitting, adding frequent light-intensity walking interruptions (3.2 km/h, 2.8 2163 

METs; 3-minute bouts every 30 minutes, total: 36 minutes) following the exercise bout 2164 

did not counteract the sitting-induced decrease in mean middle cerebral artery blood 2165 

flow velocity over the 6.5-hour period following exercise (379). Three hours of frequent 2166 

walking interruptions (self-selected pace; 2-minute bouts every 30 minutes, total: 12 2167 

minutes) during sitting with low or high mental activity (watch TV vs cognitive puzzles) 2168 

did not change cerebral blood flow in older adults compared to prolonged, uninterrupted 2169 

sitting (370). It also did not counteract the sitting-induced increase in cerebrovascular 2170 

resistance. Frequent, 2-minute light-intensity walking interruptions every 30 minutes of 2171 

sitting (self-selected pace, total: 10 minutes) prevented sitting-induced reductions in 2172 

cerebral blood flow velocity and cerebrovascular conductance index in individuals (≥55 2173 

years old) with increased cardiovascular risk as compared to 3 hours of prolonged 2174 
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sitting (306). Other markers of cerebrovascular flow and function were not affected by 2175 

interruptions to sitting (306). 2176 

Bojsen‑ Møller and colleagues (371) showed that 3-minute simple resistance 2177 

activities interruptions every 30 minutes of sitting (body-weight squatting, calf raises; 2178 

total: ~15 minutes) increased corticospinal excitability in adult office workers compared 2179 

to 3 hours of prolonged sitting, suggesting that interruptions to sitting may promote 2180 

corticospinal neuroplasticity. In contrast, short interval intracortical inhibition was 2181 

unchanged following interruptions to sitting (371). 2182 

Interrupting prolonged sitting with light-intensity walking (3.2 km/h, 2.8 METs; 3-2183 

minute bouts every 30 minutes, total: 30 minutes) did not change plasma concentration 2184 

of BDNF and, catecholamines and its precursors or metabolites as compared to 7 hours 2185 

of prolonged, uninterrupted sitting in overweight and obese adults (284). In contrast, 2186 

performing a single 30-minute exercise bout (65-75% maximum heart rate) with or 2187 

without subsequent light-walking interruptions to sitting (3.2 km/h, 2.8 METs; 3-minute 2188 

bouts every 30 minutes, total: 36 minutes) increased serum BDNF responses (by 160 2189 

and 175%, respectively) over 8 hours in older adults, relative to prolonged sitting (372). 2190 

In contrast, no differences were observed for salivary cortisol levels between sitting 2191 

interrupted with a 6-minute single bout of high-intensity interval training (~84% 2192 

maximum heart rate) and uninterrupted sitting in healthy male adults (380). Similarly, no 2193 

differences were reported for urinary catecholamines and cortisol concentrations 2194 

between six hourly 5-min bouts of moderate-walking interruptions to sitting (perceived 2195 

effort: 12 – 13 “somewhat hard”, total: 30 minutes) and uninterrupted sitting in healthy-2196 
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sedentary adults (157). It is not clear whether type, intensity, and frequency of 2197 

interruptions to sitting differentially affect central and peripheral neural effects. 2198 

 2199 

7.1.2.2. Evidence from longer-term studies 2200 

The effect size for decreasing sedentary time can be considered large following an 8-2201 

week e-health intervention to reduce/interrupt SB at the workplace versus a control 2202 

condition (-38 min/8-hour workday of sedentary time and +35 min/8-hour workday of 2203 

standing time) (305). As for changes in cerebrovascular function, large effects were 2204 

observed for the change in gain (Cohen’s d: 1.25) and normalized gain (Cohen’s d: 2205 

0.91). Effect sizes were considered small to moderate for all other outcomes (Cohen’s 2206 

d: 0.00 to 0.74), indicating little to no improvements in cerebrovascular function 2207 

following intervention among healthy adult office workers (305). In a 16-week non-2208 

randomized trial, an intervention to reduce sitting (-60 min/day of sedentary, +36 2209 

min/day of standing and +30 min/day of walking time) resulted in increased resting 2210 

cerebral blood flow velocity (~6%) and cerebrovascular conductance index (4%) among 2211 

individuals (≥55 years old) with increased cardiovascular risk (306); no alterations in 2212 

cerebral autoregulation, cerebral vasomotor reactivity and cardiac baroreflex sensitivity 2213 

were observed. These findings indicate an overall increase in cerebral perfusion after 2214 

SB reduction intervention. 2215 

 2216 

7.1.2.3. Clinical significance 2217 

Small increases in cerebral blood flow, but not cerebrovascular function, have been 2218 

reported following 16 weeks of reducing/interrupting SB (306). It is important to highlight 2219 
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that these improvements are in line with those observed following exercise programs in 2220 

older adults (381, 382). It should be noted that even conditions such as Alzheimer’s 2221 

disease do not markedly affect cerebrovascular function (383). This highlights the 2222 

robustness of the cerebrovascular system to regulate fluctuations in cerebral blood flow 2223 

and may justify the small magnitude of changes observed following PA/SB 2224 

interventions. Given the limited number of studies, the extent to which 2225 

reducing/interrupting SB alters cerebrovascular flow and function, as well as the clinical 2226 

significance of these findings remain imprecise. Future studies are required to better 2227 

understand adaptations associated to reducing/interrupting SB in the central nervous 2228 

system. 2229 

 2230 

7.2. Cognitive performance 2231 

 2232 

7.2.1. Increasing sedentary behavior 2233 

 2234 

7.2.1.1. Evidence from acute studies 2235 

Eight hours of prolonged, uninterrupted sitting decreased working memory, executive 2236 

function, and visual learning in healthy older adults as compared to exercise followed by 2237 

prolonged sitting and exercise combined with frequent light-walking interruptions to 2238 

sitting (372). In contrast, 6 hours of exposure to prolonged, uninterrupted sitting did not 2239 

affect cognitive function in healthy, sedentary adults (369). Other acute studies also 2240 

indicate that acute exposures to prolonged, uninterrupted sitting (3 to 7 hours) do not 2241 

affect cognitive function in adults and older adults (284, 380, 384, 385). For the acute 2242 
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context, whilst prolonged sitting decreases cerebral blood flow (368, 369), prefrontal 2243 

cortex perfusion and oxygen delivery to specific brain regions is maintained (386), which 2244 

may preserve cognitive performance. Future studies are required to better understand 2245 

longer-term adaptations associated to increased SB on cognitive performance. 2246 

 2247 

7.2.2. Reducing and interrupting sedentary behavior 2248 

 2249 

7.2.2.1. Evidence from acute studies 2250 

Findings on the effects of interrupting prolonged sitting on cognitive performance have 2251 

been highly inconsistent. Interrupting sitting with bouts of standing, light- or moderate-2252 

intensity walking improved some cognitive performance components in three studies, 2253 

namely attention (387, 388), executive function (387), working memory (372, 388), and 2254 

psychomotor function (388) in adults and older adults. In contrast, six hourly 5-min 2255 

bouts of moderate-intensity walking (perceived effort: 12 – 13 “somewhat hard”, total: 30 2256 

minutes) did not affect cognitive function in healthy-sedentary adults compared to 2257 

prolonged sitting and a time-matched continuous bout of moderate-intensity walking 2258 

(perceived effort: 12 – 13 “somewhat hard”) (157). No changes in cognitive performance 2259 

following interruptions to sitting have been reported in other studies (157, 206, 284, 369, 2260 

380, 384, 385, 389, 390). Nonetheless, none of these studies showed detrimental 2261 

effects of interruptions to sitting on cognitive performance. It is not clear whether type, 2262 

intensity, and frequency of interruptions to sitting differentially affect cognitive 2263 

performance.  2264 

 2265 



 101 

7.2.2.2. Evidence from longer-term studies 2266 

An 8-week e-health intervention to reduce/interrupt SB within the workplace resulted in 2267 

large reductions in sedentary time (-38 min/8-hour workday of sedentary time and +35 2268 

min/8-hour workday of standing time). Effect sizes were considered small for changes in 2269 

work productivity (Cohen’s d: 0.47) and concentration/focus (Cohen’s d: 0.00), 2270 

indicating little to no improvements following intervention among healthy adult office 2271 

workers (305). In adults (≥50 years old) with knee osteoarthritis, an intervention aimed 2272 

at increasing MVPA and reducing SB did not significantly increase working memory and 2273 

episodic memory (391). Changes in MVPA and SB were not associated with changes in 2274 

cognitive function during the study protocol (391). 2275 

 2276 

7.2.2.3. Clinical significance 2277 

Acute and longer-term findings related to the effects of interrupting prolonged sitting on 2278 

cognitive performance have been highly inconsistent. It remains unclear the extent to 2279 

which reducing/interrupting SB alters cognitive function, but studies indicate that this 2280 

strategy does not negatively affect cognition. Longer-term investigation into the effects 2281 

of reducing/interrupting SB on cognitive performance is warranted. 2282 

 2283 

8. IMMUNE SYSTEM 2284 

 2285 

8.1. Immunity and inflammatory responses 2286 

 2287 

8.1.1. Increasing sedentary behavior 2288 



 102 

 2289 

8.1.1.1. Evidence from acute and multi-day studies 2290 

Two experimental studies reported that an acute 3-to-5-hour exposure to prolonged 2291 

sitting increased plasma IL-6 (by ~38 to 50%) concentrations in healthy adults (392) and 2292 

adults with central obesity (393); IL-6 is a pleiotropic cytokine with a broad range of 2293 

inflammatory, immune, and hematopoietic effects. However, three other studies showed 2294 

no change in this pro-inflammatory marker after 7-8 hours of uninterrupted sitting in 2295 

healthy adults (369), adults with overweight or obesity (284), and postmenopausal 2296 

females with rheumatoid arthritis (213). Another study reported significant decreases in 2297 

high-sensitivity C-reactive protein (~91%) concentration following 6 hours of prolonged, 2298 

uninterrupted sitting (369). In the adipose tissue, uninterrupted sitting increased gene 2299 

expression of IL-6 and Monocyte Chemoattractant Protein-1 (MCP1), but not of Tumor 2300 

Necrosis Factor-alpha (TNF-α) and IL-18 (393). 2301 

In a two-day crossover trial, healthy male adults performed prolonged sitting (for 2302 

7 hours), standing (6 times, for a 45-minute period each time, for 7 hours) or moderate-2303 

intensity exercise (60% maximum heart rate, total: 30 minutes) on day 1, and remained 2304 

seated for 6 hours on day 2 (310). On day 1, plasma superoxide dismutase 2305 

concentration increased by ~13% during 7 hours of prolonged sitting as compared to 2306 

standing and exercise conditions, but no difference was observed for biological 2307 

antioxidant potential and catalase concentrations. Postprandial concentrations of serum 2308 

derivatives of reactive oxygen metabolites tended to be higher than in fasting state 2309 

following 6 hours of prolonged sitting on day 2 (310). 2310 

 2311 
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8.1.1.2. Evidence from longer-term studies 2312 

Fourteen days of steps count reduction (81% reduction from baseline) did not alter 2313 

fasting plasma TNF, IL-6, IL-15, and adiponectin concentration in healthy male adults 2314 

(108). In healthy older adults, a 14-day step reduction protocol (~70 to 76% reduction 2315 

from baseline) resulted in increases in plasma C-reactive protein (110, 164), IL-6 (164) 2316 

and TNF-α concentrations (110, 164). Surprisingly, cytokine levels remained elevated 2317 

throughout a 14-day recovery period (164). In the skeletal muscle, 14 days of step count 2318 

reduction (from ~9,000 to 3,000 steps/day) increased expression of key proteins in 2319 

inflammatory signaling pathways (i.e., c-Jun N-terminal kinase [JNK], NF-kβ inhibitor-α 2320 

[Ikβα] and toll-like receptor 4 [TLR4]) (130) and macrophages infiltration in healthy older 2321 

adults, likely due to an increase in transient muscle edema and/or minor myofiber 2322 

damage (165). 2323 

 2324 

8.1.1.3. Clinical significance 2325 

Exposures to prolonged SB increased some inflammatory markers, including plasma C-2326 

reactive protein, IL-6 and TNF-α concentrations, in both adults and older adults. It is 2327 

unclear whether these detrimental changes are clinically meaningful and sustained over 2328 

time. Given that low-grade inflammation is important in the pathogenesis of 2329 

cardiovascular and other chronic diseases (394, 395), longer-term studies should 2330 

further investigate whether the altered inflammatory responses following increased SB 2331 

are associated with alterations in other physiological systems. 2332 

 2333 

8.1.2. Reducing and interrupting sedentary behavior 2334 
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 2335 

8.1.2.1. Evidence from acute and multi-day studies 2336 

Little is known about the effects of reducing/interrupting SB on inflammatory markers 2337 

and the immune system. For instance, plasma/serum IL-6 responses were not affected 2338 

by frequent, short bouts of light- and moderate-intensity walking interruptions to sitting 2339 

as compared to 5.5 to 8 hours of prolonged, uninterrupted sitting in adults and older 2340 

adults (213, 284, 393). Regarding the other cytokines, frequent, 3-minute light-intensity 2341 

walking interruptions to sitting (24% heart rate reserve, total: 42 minutes) decreased 2342 

plasma IL-1β (~21%) and IL-10 (~17%) and increased IL-1ra (~25%) concentrations, 2343 

but did not change IL-4, IL-6, IL-8, IL-17, and IFN-γ, compared to 8 hours of prolonged 2344 

sitting in post-menopausal females with rheumatoid arthritis (213). These acute 2345 

responses were not observed with the traditional single 30-minute bout of moderate-2346 

intensity walking (55% heart rate reserve) performed early in the morning (213). In a 2347 

crossover trial, performing multiple standing bouts (6 times, total: 4.5 hours) or a 2348 

moderate-intensity exercise bout (60% maximum heart rate, total: 30 minutes) protected 2349 

against the increase in plasma superoxide dismutase observed following 7 hours of 2350 

prolonged sitting in healthy male adults, with no differences between standing 2351 

interruptions and continuous exercise trials (310). It is not clear whether type, intensity, 2352 

and frequency of interruptions to sitting differentially affect markers of inflammation and 2353 

oxidative stress. 2354 

Regular light-intensity and simple resistance activity interruptions to sitting over 7 2355 

hours (3.2 km/h, 2.8 METs or body-weight squatting, calf raises; 3-minute bouts every 2356 

30 minutes, total: 36 minutes) increased plasma lysoalkylphosphatidylcholine 2357 
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(associated with anti-inflammatory pathways) and alkenylphosphatidylcholine 2358 

(associated with antioxidant capacity), and decreased diacylglycerols and 2359 

triacylglycerols (associated with pro-inflammatory pathways) concentrations, but did not 2360 

affect other lipid species and subspecies, in adults and older adults with 2361 

overweight/obesity and type 2 diabetes (396). In contrast, a 30-minute bout of 2362 

moderate-intensity walking (55% heart rate reserve), but not light-intensity walking 2363 

interruptions to sitting (24% heart rate reserve, 3-minute bouts every 30 minutes, total: 2364 

42 minutes), modified serum concentration of 6 lipid classes and subclasses in a 2365 

direction that indicates reduction in inflammation and platelet activation, and increase in 2366 

antioxidant capacity in post-menopausal females with rheumatoid arthritis (213). 2367 

Moderate-intensity walking interruptions to sitting over 5 hours (5.8 km/h, ~4.3 2368 

METs; 2-minute bouts every 20 minutes, total: 28 minutes) resulted in increased 2369 

Nicotamide N-methyltransferase (NNMT; modulates anti-inflammatory and antioxidative 2370 

pathways) gene expression in the skeletal muscle as compared to prolonged, 2371 

uninterrupted sitting in adults with overweight/obesity (225). In subcutaneous abdominal 2372 

adipose tissue, interrupting sitting with light-intensity walking hours (3.2 km/h, 2.8 METs; 2373 

2-minute bouts every 20 minutes, total: 28 minutes) resulted in upregulation of immune 2374 

function and downregulation of inflammatory pathways (total of 8 pathways) as 2375 

compared to uninterrupted sitting in adults with overweight/obesity (228). 2376 

 2377 

8.1.2.2. Clinical significance 2378 

Currently, evidence related to the effects of reducing/interrupting sitting is restricted to 2379 

acute exposures. Although small improvements were shown in some inflammatory 2380 
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markers, it remains unclear whether these changes are clinically meaningful and 2381 

sustained over time. Longer-term investigation into the effects of reducing/interrupting 2382 

SB on inflammatory responses is warranted, particularly in population groups 2383 

characterized by a low-grade inflammatory profile and/or high-grade systemic 2384 

inflammation. 2385 

 2386 

9. SUMMARY OF PHYSIOLOGICAL IMPACTS AND FUTURE DIRECTIONS 2387 

 2388 

The rapid accumulation of epidemiological and experimental evidence on SB over the 2389 

past 20 years has provided a foundation for understanding the physiology of SB. To 2390 

date, evidence on the physiological effects of exposures to increased SB and the 2391 

potential impact of reducing and interrupting SB raise several pertinent questions, 2392 

research needs and opportunities. These include: 1) how evidence on physiological 2393 

consequences of SB relates to the already vast knowledge base on physical inactivity 2394 

(lack of sufficient exercise); 2) what are the effects of reducing/interrupting SB on 2395 

acute/chronic physiological processes or health outcomes and the specific mechanisms 2396 

involved; and 3) how the evolving knowledge about reducing/interrupting SB can 2397 

provide rational mechanistic bases for interventions and future clinical and public health 2398 

recommendations. Hereafter, we provide a summary of available evidence and a 2399 

perspective on some of the priority areas for future work in SB physiology. 2400 

 2401 

9.1. What are the effects of sedentary behaviors on physiological systems? 2402 
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From a physiological perspective, the evidence to date indicates the numerous 2403 

physiological responses resulting from increasing SB (TABLE 3). To summarize, 2404 

excessive and prolonged SB leads to insulin resistance, vascular dysfunction, shift in 2405 

substrate use towards carbohydrate oxidation, shift in muscle fiber from oxidative to 2406 

glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength, and 2407 

bone mass, and increased total body fat mass and visceral fat depot, blood lipid 2408 

concentrations, and inflammation. These adaptations relate to those reported for 2409 

physical inactivity (30-33, 397, 398).  2410 

 2411 

-------------------------------- INSERT TABLE 3 ABOUT HERE -------------------------------- 2412 

 2413 

A standing question is whether SB (too much sitting) and physical inactivity (too little 2414 

exercise) lead to similar or distinct adaptations in relation to the number of physiological 2415 

systems being impaired, magnitude of changes, and mechanisms. This question is 2416 

challenging to address with the current available study models. However, bed rest 2417 

studies that tested the effects of exercise training to prevent the physiological 2418 

adaptations to bed rest can provide some insights. While individuals in strict bed rest 2419 

are deficient in both LPA and MVPA, those who are concomitantly subjected to bed rest 2420 

and exercise training are only deficient in LPA. Therefore, bed rest combined with 2421 

exercise represents a model to study the adaptations and potential mechanisms of 2422 

exposures to a highly sedentary yet physically active condition. Findings from these 2423 

studies suggest excessive participation in SB results in adverse effects, at least for 2424 

some outcomes, even in the presence of large volumes of aerobic and/or resistance 2425 
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exercise, i.e., above current guidelines (34) (TABLE 4). This supports that SB and 2426 

physical inactivity likely coexist in a continuum related to energy demand and muscle 2427 

contraction, and that the magnitude of maladaptations following physical inactivity 2428 

seems to be more pronounced than those of SB in most physiological systems (34), but 2429 

it is not clear whether these behaviors differentially affect physiological systems or 2430 

present distinct underpinning mechanisms. It also highlights the potential benefits of 2431 

regular non-exercise activity and/or muscle contractions. 2432 

 2433 

-------------------------------- INSERT TABLE 4 ABOUT HERE -------------------------------- 2434 

 2435 

Our premise in this review is that the adaptations to increasing SB are not the opposite 2436 

of adaptations to reducing/interrupting SB (i.e., increasing PA). Accordingly, evidence 2437 

from each paradigm was addressed in separate sections. Notably, a few studies in 2438 

rodents and humans have shed some light on potential distinct adaptations to 2439 

increasing SB vs increasing non-exercise activity (e.g. LPA) vs MVPA/exercise training. 2440 

For example, alterations in heparin-released and intracellular LPL activity decreased 2441 

mono-exponentially in both type 1 and predominantly type 2 muscles after 12 hours of 2442 

limb unloading. These alterations were rapidly reversed with light-intensity contractile 2443 

activity in both soleus and quadriceps muscles (9, 44, 45), but MVPA/exercise training 2444 

did not enhance LPL regulation in type 1 muscles and type 2 muscles that were not 2445 

recruited during running (8, 46). In addition, LPP1/PAP2A has been proposed as a 2446 

potential gene that modulates maladaptation related to increased SB/inactivity in both 2447 

humans and rats, but exercise has been found to be ineffective at counteracting 2448 
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alterations in LPP1/PAP2A in both species (40). Finally, a clinical study compared the 2449 

effects of 2 months of exercise training in sedentary male adults with the effects of 1 2450 

month of reducing non-exercise PA (i.e., increased SB) in active male adults. Notably, 2451 

the deleterious effect of increased SB was more marked than the beneficial effects of 2452 

exercise training following current PA guidelines for dietary fat oxidation, fasting and 2453 

postprandial insulin concentration/response, postprandial triglycerides response, and 2454 

fat-free and fat mass (127). In contrast, the magnitude of changes in VO2max was more 2455 

pronounced following exercise training than increased SB (127). Altogether, these 2456 

findings suggest distinct mechanisms may underpin adaptations to increased SB and 2457 

exercise training. Further investigations are however clearly required. 2458 

It is critical that well-powered, rigorous studies are conducted to examine the 2459 

acute and chronic physiological adaptations to imposed SB. Studies aiming to 2460 

investigate the physiological consequences of imposed SB (‘problem-focused’ 2461 

approach) should focus on recruiting individuals with low sedentary time who will 2462 

experimentally modify their usual activity (low SB and high LPA) to more sedentary 2463 

states (higher SB and lower PA of any intensity). This concept is analogous to the 2464 

paradigm put forward initially by Booth and Lees (399) stating that appropriate models 2465 

of physical inactivity should utilize an approach whereby physically active individuals 2466 

become physically inactive (400). To effectively isolate the effects of physical inactivity 2467 

from those of SB, studies should focus on recruiting individuals who do not meet current 2468 

PA guidelines (150 min/week of MVPA) or perform regular exercise training. Though 2469 

bed rest can be a well-controlled and useful model to study SB physiology, studies 2470 
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should also focus on increased SB with behaviors more commonly seen in free-living 2471 

(i.e., sitting not strict lying down).  2472 

Future studies should (i) investigate whether differential changes in muscle mass 2473 

and fiber type are associated with SB-related metabolic adaptations; (ii) determine the 2474 

molecular and cellular mechanisms underpinning adaptations to increasing SB, e.g., 2475 

using ‘omics’ approaches (genomics, epigenomics, transcriptomics, proteomics, 2476 

metabolomics, etc.); (iii) implement different volumes and types of PA/exercise to 2477 

determine how much PA and/or exercise is needed to offset the adverse effects of 2478 

increased SB; (iv) include rigorous measurements and control PA level at baseline and 2479 

during the study protocol, preferably via device-based measures, which is a major 2480 

limitation of free-living studies to increase SB (i.e., reduced step count and 2481 

immobilization). Given most of available evidence is limited to healthy male adults, 2482 

future studies should focus on investigating the effects of increasing SB in females, 2483 

children, adolescents, older adults, more-diverse population groups and individuals at 2484 

risk for or with chronic conditions. This will assist in providing the strong rational 2485 

biological bases that are much needed for improving our understanding of the 2486 

physiology of SB and its multiple health consequences. 2487 

 2488 

9.2. What are the beneficial effects of reducing/interrupting sedentary 2489 

behavior? 2490 

Acutely, reducing/interrupting SB improves postprandial glucose and insulin responses, 2491 

systolic and diastolic blood pressure, and lower-limb vascular function in adults and 2492 

older adults (TABLE 5) (75-77, 119, 120, 325). In the longer term, reducing/interrupting 2493 
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SB interventions result in small improvements on body weight (-0.6 kg), waist 2494 

circumference (-0.7 to -1.5 cm), percent body fat (-0.3 to -0.7%), fasting glucose (-2.5 2495 

mg/dL), insulin (1.4 pM), HbA1c (-0.2%) and HDL (0.04 mM) concentrations, systolic 2496 

blood pressure (-1.1 mmHg), and brachial and lower-limb vascular function (0.93 2497 

%FMD) in adults and older adults (TABLE 5) (78, 134, 135, 325). There is more-limited 2498 

evidence for other health outcomes and physiological systems. Despite this initial 2499 

evidence, findings from acute and longer-term studies aimed at reducing/interrupting SB 2500 

are inconsistent with other findings of no benefit for some outcomes. Overall, effects of 2501 

reducing/interrupting SB are small, and likely not to be clinically and physiologically 2502 

meaningful in healthy population groups, but plausibly, the effects are likely to be larger 2503 

in less-healthy populations. Future studies need to investigate whether these small 2504 

improvements on health outcomes observed with reducing/interrupting sedentary 2505 

behavior associate with reduced risk of chronic diseases and early mortality.  2506 

 2507 

-------------------------------- INSERT TABLE 5 ABOUT HERE --------------------------------  2508 

 2509 

For studies focused on the consequences of reducing/interrupting SB (‘solution 2510 

focused’ treatment paradigm), the emphasis should be directed towards recruiting 2511 

physically inactive-sedentary individuals with modification of their typical low PA level 2512 

(high SB and low PA) to higher PA levels (low SB and high PA of any intensity). This 2513 

includes conducting randomized controlled trials (with appropriate control groups) of 2514 

longer duration (>12 weeks), familiarizing/habituating study participants to interventions 2515 

and study procedures, continuously monitoring the adherence to interventions, 2516 
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controlling for potential confounders during the design, conduct and analysis of the trial, 2517 

and analyzing experimental data considering both the intention to treat principle and 2518 

adherence to the interventions.  2519 

Studies should include rigorous measurements of primary, secondary, and 2520 

exploratory outcomes, and report all possible outcomes and indexes being measured 2521 

(e.g., acute studies measuring glucose concentrations should report not only AUC, but 2522 

also mean glucose concentration during the protocol). The monitoring of PA level at 2523 

baseline, preferably via device-based measures, to access eligibility and during study 2524 

follow-up can enhance scientific rigor. Longer-term, randomized controlled trials should 2525 

also combine device-based measures with self-reported (e.g., questionnaires and 2526 

diaries) to gather information on activity type and context of SB and PA (299).  2527 

Future studies should focus on reporting data by key factors, including, but not 2528 

limited to, age groups (preferably by smaller age groups, such as 5-year increments), 2529 

BMI, sex/gender, race/ethnicity, genetic profiles, menopausal and pregnancy status, 2530 

medications, dietary habits, cardiorespiratory fitness, baseline SB/PA/exercise levels, 2531 

sleep duration and quality, and populations at increased risk of or with chronic diseases, 2532 

as indicated by the 2020 World Health Organization Guidelines Development Group 2533 

(401, 402). Identifying whether such factors hold significant importance that will help 2534 

identify more ‘at risk’ population groups and those who may derive more benefits from 2535 

reducing/interrupting SB. Harmonized analysis using individual participant data and 2536 

dose-escalation trials could also be implemented to evaluate the effect of different 2537 

“doses” of SB reductions on physiological outcomes. More robust evidence on both the 2538 

direct and indirect underlying cellular and molecular mechanisms associated with 2539 
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reducing/interrupting SB is also needed. This may be garnered through the collection of 2540 

tissue samples (e.g., muscle, bone, adipose tissue), including more direct and 2541 

integrated physiological measurements, rather than surrogate markers. This will assist 2542 

in providing the strong rational biological bases that are much needed for improving our 2543 

understanding of the physiology of reducing/interrupting SB, and refining intervention 2544 

strategies and guidelines to address SB as a clinical and public health problem. 2545 

 2546 

9.3. What is the ‘optimum’ Frequency, Intensity, Time and Type of activities 2547 

when reducing/interrupting sedentary behavior? 2548 

Elements pertaining to SB FITT may influence the effects of reducing/interrupting SB on 2549 

glucose responses, which is the most-studied outcome. To summarize, it seems that 2550 

more frequent (2-6-minute bouts every 20-60 minutes) and higher-intensity (light- to 2551 

moderate-intensity) interruptions yields more pronounced improvements in relation to 2552 

postprandial glucose responses than less frequent (every 120 minutes or more) and 2553 

lower-intensity (i.e., standing still) interruptions to sitting (75-77, 181, 198, 206). Despite 2554 

being beneficial, it is still unclear whether there are differences between higher 2555 

frequencies of interruptions (e.g., every 20 minutes vs 30 minutes) or between 2556 

intensities (i.e., light vs moderate vs vigorous). There are also some inconsistencies 2557 

across original studies and meta-analysis on what is the ideal SB FITT. There is more-2558 

limited evidence on the influence of FITT elements of an intervention on changes in 2559 

health outcomes other than glycemia.  2560 

 To summarize, current evidence does not allow us to conclude what is the 2561 

desirable FITT to reducing/interrupting SB and significantly affect physiological systems 2562 
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in healthy adults and older adults, and those at-risk or with chronic diseases. The “ideal” 2563 

or "optimal" FITT of SB and PA elements is likely to be based on the requirements, 2564 

context, and activity/health status of the subpopulation, rather than a “one size fits all” 2565 

approach. However, in terms of potential countermeasures applicable to the population, 2566 

it may be that certain minimal combinations or criteria of mode or posture (e.g., active 2567 

sitting, fidgeting, acute or extended postural changes, standing, activities involving 2568 

resistance, and/or sit-to-stand transitions), volume or intensity (e.g., LPA or MVPA), or 2569 

patterning (e.g., activity bout, active around meals, or standing length/accumulation) of 2570 

physical movement are all that is required to derive physiological benefit. 2571 

 Another pertinent question is whether regular interruptions to sitting would be 2572 

more beneficial than performing the traditional continuous bout of activity. Acutely, 2573 

reductions in postprandial glucose responses are more pronounced following frequent 2574 

interruptions to sitting compared to a time-matched continuous bout of activity (77, 197, 2575 

198, 213). In contrast, a continuous bout of PA in the morning is more effective at 2576 

attenuating postprandial triglycerides responses and systolic blood pressure than 2577 

frequent interruptions to sitting (213, 214, 257, 258, 303). Nonetheless, evidence on the 2578 

differential effects of frequent interruptions to sitting versus a continuous bout of 2579 

PA/exercise is still limited to acute settings, a select number of health outcomes, and 2580 

generally healthy population groups. Evidence on the combined effects of exercise and 2581 

reducing/ interrupting SB is also very limited. This is a critical gap in the literature, given 2582 

the combination of both strategies is what has been currently recommended in public 2583 

health guidelines for all age and population groups. 2584 
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Future studies should address the evidence gap on the ‘optimum’ FITT of 2585 

activities when reducing/interrupting SB, particularly in the longer term. To do so, 2586 

studies should include experimental groups with different FITT of interruptions to SB 2587 

versus a sedentary (control) group. If possible, groups should be matched for energy 2588 

expenditure and FITT elements other than the one being tested should remain 2589 

unchanged. For example, when testing the influence of frequency, total duration, 2590 

intensity, and type of activity should be the same across experimental groups. Studies 2591 

should also (i) include detailed description on how participants were instructed to 2592 

reduce/interrupt SB (as per all FITT elements); (ii) provide participants with specific and 2593 

measurable goals, so that adherence to FITT prescription can be objectively assessed; 2594 

(iii) describe how adherence was assessed and check adherence to the prescribed 2595 

intervention throughout the study protocol; (iv) report behavioral outcomes that reflect 2596 

changes in the FITT element being tested, e.g., report changes in the number of daily 2597 

interruptions to SB and number/duration of prolonged SB bouts when testing the effects 2598 

of different frequencies of interruptions to SB; and (v) report adherence to the 2599 

prescribed intervention (as per FITT elements being measured/controlled) using 2600 

objective assessment (e.g., accelerometers, HR monitors, wearables, etc.) (TABLE 2). 2601 

This will improve the study design, data analysis, reporting/data harmonization in future 2602 

studies, and hence the robustness of the findings. It will ultimately assist with refining 2603 

preventative strategies and guidelines to combat excessive SB. 2604 

10. CONCLUSIONS 2605 

 2606 
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SB is highly prevalent in daily living and most of the population is exposed, to a greater 2607 

or lesser extent, to the health risks of too much sitting. Excessive SB negatively impacts 2608 

a multitude of physiological systems, leading to insulin resistance, vascular dysfunction, 2609 

shift in substrate use towards carbohydrate oxidation, shift in muscle fiber from oxidative 2610 

to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength, 2611 

and bone mass, and increased total body fat mass and visceral fat depot, blood lipid 2612 

concentrations, and inflammation. From a physiological perspective, exposures to 2613 

increased SB result in maladaptations that are similar to those that have been reported 2614 

for physical inactivity, but generally lower in terms of magnitude.  2615 

Longer-term interventions aimed at reducing/interrupting SB have only resulted in 2616 

small improvements on body weight, waist circumference, percent body fat, fasting 2617 

glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular 2618 

function in adults and older adults. Because of inconsistencies in the reported effects of 2619 

reducing/interrupting SB, the clinical significance of these findings still remains 2620 

somewhat unclear. Although the ‘sit less, move more and exercise’ message currently 2621 

promoted by contemporary public health guidelines has received a clear general 2622 

consensus based on a growing body of epidemiological findings, further experimental 2623 

studies are needed to elucidate the physiological effects of interventions combining 2624 

exercise and reduction/interruptions to sitting. Nonetheless, reducing/interrupting SB is 2625 

a low-risk strategy and is likely relevant from a population point of view, particularly 2626 

given that it can serve as a stepping stone to increase participation in PA/exercise for 2627 

those who do not, or have significant challenges to, achieve the minimum guidelines on 2628 

MVPA. 2629 
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TABLES 

 

Table 1. Key terms and definitions in sedentary behavior and physical inactivity 

research. 

Term Definition Refs. 

Continuum of human 

movement and non-movement 

Refers to all behaviors, including sleep, sedentary 

behavior, standing, and physical activity at any intensity, 

that occurs in the 24-hour interval. Behaviors comprised 

within the continuum differ in terms of type, posture and 

physiological state – metabolic cost, oxygen 

consumption, heart rate, and skeletal muscle activity and 

blood flow – which may underpin health effects 

associated with each behavior. 

(1) 

Non-movement or stationary 

behaviors 

Any walking behavior performed in a sitting, reclining, 

lying down, or standing position with no ambulation, 

irrespective of EE. 

(1) 

Sedentary behavior Any waking behavior characterized by a low EE (≤1.5 

METs) while in a sitting, reclined or lying down posture. 
(1, 403) 

Pattern The manner in which sedentary behavior is accumulated, 

for example, timing of the day, duration and frequency of 

bouts and breaks. 

(1) 

Standing The act of one maintaining an upright position while 

supported by one’s feet. 
(1) 

Passive Any waking activity characterized by an EE ≤ 2.0 METs 

while standing without ambulation. 
(1) 
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Active Any waking activity characterized by an EE > 2.0 METs 

while standing without ambulation. 
(1) 

Movement or non-stationary 

behaviors 

Any walking behavior performed in a standing position 

with ambulation, irrespective of energy expenditure. 
(1) 

Physical activity Any bodily movement produced by the skeletal muscles 

that result in an increase in EE above resting levels. 

 

(404) 

Exercise Refers to a physical activity that is planned, structured, 

repetitive, and purposeful (i.e., aimed to increase or 

maintain one or more components of physical fitness). It 

is considered as a subcategory of physical activity. 

 

(404) 

Light-intensity physical 

activity 

Any waking behavior with an EE between 1.6 < 3.0 METs 

or the relative intensity is between 20 < 40% 

VO2max/%HRR and 40 < 55% HRmax. 

(405) 

Moderate physical activity Any waking behavior with an EE between 3.0 < 6.0 METs 

or the relative intensity is between 40 < 60% 

VO2max/%HRR and 55 < 70% HRmax. 

(405) 

Vigorous physical activity Any waking behavior with an EE between ≥ 6.0 METs or 

the relative intensity is between ≥ 60% VO2max/%HRR 

and ≥ 70% HRmax. 

(405) 

Physical inactivity Insufficient level of moderate-to-vigorous physical activity 

to meet the current physical activity recommendations 

(1, 403) 

Physical activity 

recommendations 

For adults and older adults, at least 150 min/week of 

moderate-to-vigorous physical activity or 75 min/ week of 

vigorous physical activity. For children and adolescents, 

60 min or more of moderate-to-vigorous physical activity 

daily. 

(2, 23) 
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Sedentary behavior 

recommendations 

For adults and older adults, limit the amount of time spent 

sedentary and replace sedentary time with more physical 

activity of any intensity. For children and adolescents, 

limit the amount of time spent sedentary particularly 

recreational screen time. 

(2, 23) 

Legend: EE, energy expenditure; HR, heart rate; %HRR, percentage of heart rate 

reserve; METs, metabolic equivalent. 
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TABLE 2. Sedentary behavior frequency, intensity, time, and type principle. 

Term Definition Refs. 

Frequency Refers to the number of SB bouts over a given time frame. The most 

common SB bout lengths reported in the literature are ≥30 minutes, ≥60 

minutes, and ≥120 minutes. Example: Interruptions to sitting lasting 2-3 

minutes every 20-30 minutes seems to yield greater benefits for glycemic 

control compared to prolonged, uninterrupted sitting. 

Study design, data analysis, and reporting: Include experimental groups 

with different frequency of interruptions to SB versus a more sedentary 

experimental group (control group). If possible, groups should be matched 

for duration and/or EE. Include detailed description about how participants 

were instructed about the frequency of interruptions and how adherence 

to prescribed frequency was assessed. Report changes in the number of 

daily interruptions to SB and number and duration of prolonged SB bouts. 

(192, 204, 

205) 

Intensity Refers to any waking behavior with an energy expenditure ≤1.5 MET, 

while sitting, reclining, or lying down. When focusing at reducing/ 

interrupting sedentary behavior, intensity refers to the physical activity 

used to replace sedentary behavior. Example: EE during sitting postures 

is lower than standing and all intensities of physical activity. Similar 

responses are observed for oxygen consumption and heart rate. 

Study design, data analysis, and reporting: Include experimental groups 

with different intensity of interruptions to SB versus a more sedentary 

experimental group (control group). If possible, groups should be matched 

for EE. Include detailed description about how participants were 

instructed about the intensity of interruptions and how adherence to 

prescribed intensity was assessed. Report changes in objectively 

measured daily time spent in each physical activity intensity. 

(11-16) 
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Time Refers to the total duration of time spent in SB or time spent in bouts of 

uninterrupted, prolonged sitting (i.e., consecutive minutes accumulated in 

SB – usually reported as bouts of ≥30 minutes, ≥1 hour and ≥2 hours of 

sitting). Example: Increasing sedentary time results in maladaptations in 

physiological systems. In contrast, reducing/interrupting sedentary time 

results in small benefits. 

Study design, data analysis, and reporting: Include detailed description 

about how participants were instructed to reduce/interrupt SB (as per 

other FITT elements) and how adherence to prescribed intervention was 

assessed. If possible, provide participants with specific and measurable 

goals, so adherence can be objectively assessed. Report changes in 

duration of objectively measured total daily SB and prolonged SB bouts. 

(34, 78, 134, 

135, 325) 

Type Refers to the main intention of the SB and the context in which it occurs. 

Example: SB associated with energy surplus is more detrimental than 

exposures to sedentary behavior in energy balance. 

Study design, data analysis, and reporting: Measure participation in each 

type of SB using a validated questionnaire or diary. Similarly, record types 

of physical activity that can be used to reduce/interrupt SB. If appropriate, 

design the intervention to tackle specific type/context of SB (e.g., work-

related, recreational screen time, etc.) and standardize the FITT of 

physical activities being used to reduce/interrupt SB. Report changes in 

duration of objectively measured total daily SB and prolonged SB bouts, 

and self-reported duration in each specific type/context of SB. 

(162, 370) 

Legend: EE, energy expenditure; FITT, frequency, intensity, time, and type principle; 

MET, metabolic equivalent; SB, sedentary behavior. 
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TABLE 3. Summary of acute (hours to <4 days) and longer-term (>2 weeks) effects 

(experimental/intervention) of increasing sedentary behavior in adults and older adults.  

Outcomes 

Acute effects Longer-term effects 

Mean change Refs.
a
 Mean change Refs.

a
 

Body mass and composition     

Body weight (kg) NA - -2% (108) 

Total and percentage body fat (%) NA - 3 to 14% (106, 107, 

128) 

Intra-abdominal fat mass (%) NA - 7% (108, 109) 

Glucose metabolism     

Fasting glucose (mg/dL) NA - NS (108, 147) 

2-hour post-load glucose (mg/dL) ? - NS (147) 

Postprandial glucose (%)
b
 17.5 (-26.2 to -8.7) (75)* 6 to 9% (117) 

Glycemic variability NA - 33 to 97% (117) 

Whole-body insulin sensitivity (%) -39 to -18% (162) -17% (147) 

Fasting insulin (μU/mL) NA - NS (108, 147) 

2-hour post-load insulin (μU/mL) ? - 38.8 μU/mL (147) 

Postprandial insulin (%)
b
 25.1 (-31.8 to -18.3) (75)* 32% (147) 

Lipid metabolism     

Fasting triglycerides (mg/dL) NA - 0.3 mmol/L (106, 112) 

Postprandial triglycerides (%)
b
 27% (72) 21% (109) 

Fasting total cholesterol (mmol/L) NA - 0.5 mmol/L (112) 

Fasting LDL (mmol/L) NA - 0.3 mmol/L (112) 

Fasting HDL (mmol/L) NA - -0.1 mmol/L (106) 

Hemodynamics     
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Systolic blood pressure (mmHg) 3.2 (0.6 to 5.8) (119)* 4 mmHg (112) 

Diastolic blood pressure (mmHg) NS (119)* NS (112) 

Mean arterial pressure (mmHg) 3.3 (2.2 to 4.4) (119)* ? - 

Blood flow (mL/min) -1.0 (-1.6 to -0.4) (20)* NS (105) 

Shear rate (SMD) -0.8 (-1.0 to -0.5) (20)* ? - 

Cardiovascular function     

Flow-mediated dilation (%FMD) -1.2 (-1.7 to -0.7) (20)* -3 %FMD (103) 

Base diameter (%) NS (279) -5% (103, 295) 

Cardiorespiratory fitness     

VO2max (ml∙kg
-1

∙min
-1

 or %) NA - -6.6% (107, 108, 

112) 

Musculoskeletal system     

Lean mass (%) NA - -9 to -0.5% (95, 107-

109, 337) 

Muscle strength (%) NA - -31 to -8% (95, 130, 

337, 356) 

Bone mineral density (%) NA  -0.3 to -1% (365) 

Central nervous system     

Cerebral artery blood flow (%) -6 to -3% (368, 369) ? - 

Cerebrovascular conductance (%) -8% (306) ? - 

Cerebrovascular resistance (%) 13% (370)  ? - 

Inflammatory responses     

C-reactive protein (%) -91% (369) 25 to 45% (110, 164) 

Interleukin 6 (%) 38 to 50% (392, 393)  30% (164) 

Tumor necrosis factor α (%) ? - 12 to 31% (110, 164) 
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Legend: *, evidence from meta-analyses; a, when meta-analyses are not available, key 

references are provided – refer to main document for detailed description and detailed 

information on study models; b, as measured by area under the curve; ?, no data 

available; NA, not applicable; NS, non-significant. Abbreviations: FMD, flow-mediated 

dilation; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SMC, standardized 

mean change. For meta-analyses, data are presented as mean absolute or percent 

change (95% confidence interval) from baseline to post exposure to increased 

sedentary behavior. For original studies, data are presented as mean change or the 

range of mean change from baseline to post exposure to increased sedentary behavior.
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TABLE 4. Summary of effects of increasing sedentary behavior through strict bed rest 

with or without exercise training in healthy adults.  

Outcomes Strict bed rest Bed rest with exercise* Refs. 

Fat mass and repartition    

Intra-abdominal fat mass increases counteracted (34, 247) 

Liver fat accumulation increases attenuated (34) 

Glucose metabolism    

Whole-body insulin sensitivity decreases attenuated to counteracted (34, 170, 244) 

Fasting insulin increases no effect to counteracted (34, 170, 244) 

Fasting carbohydrate oxidation increases no effect to attenuated (34) 

Postprandial carbohydrate oxidation increases no effect to counteracted (34, 244) 

Lipid metabolism    

Fasting triglycerides increases no effect (34) 

Fasting HDL decreases no effect (34) 

Fasting lipid oxidation decreases no effect to attenuated (34, 170, 244) 

Postprandial lipid oxidation decreases no effect to counteracted (34, 244) 

Cardiorespiratory fitness    

VO2max  decreases attenuated to counteracted (34, 406) 

Musculoskeletal system    

Muscle mass  decreases attenuated to counteracted (34) 

Muscle fiber type toward glycolytic increases attenuated (34) 

Mitochondrial oxidative capacity decreases attenuated  (34) 

Muscle strength decreases counteracted (42, 43, 407) 

Muscle fat storage increases no effect (170) 

Bone mineral density  decreases attenuated or counteracted (408, 409) 

Bone fat storage increases no effect to counteracted (34) 

Inflammatory responses    
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Pro-inflammatory markers  increases counteracted (34, 252, 410) 

Legend: *, protocols involved resistance exercise alone or resistance and aerobic 

exercise training. In general, combined exercise training was more effective at 

attenuating or counteracting adverse effects related to bed rest than resistance exercise 

training alone. 
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TABLE 5. Summary of acute (<24 hours) and longer-term (>2 weeks) beneficial effects 

(experimental/intervention) of reducing/interrupting sedentary behavior in adults and 

older adults, as evidenced by meta-analyses.  

Outcomes 

Acute effects Longer-term effects 

Mean difference Refs. Mean difference Refs. 

Body mass and composition     

Body weight (kg) NA - -0.6 (-0.9 to -0.2) 

NS 

(78) 

(134, 135) 

Body mass index (kg/m
2
) NA - NS (78, 134) 

Waist circumference (cm) NA 

 

- 

 

-0.7 (-1.2 to -0.2) 

-1.5 (-2.8 to -0.2) 

NS 

(78) 

(134) 

(135) 

Body fat percentage (%) NA 

 

- 

 

-0.3 (-0.5 to -0.0) 

-0.7 (-1.3 to -0.1) 

(78) 

(134) 

Fat mass (kg) NA - -0.8 (-0.9 to -0.6) 

NS 

(135) 

(78) 

Fat-free mass (kg) NA - NS (78) 

Glucose metabolism     

Fasting glucose (mg/dL) NA - -2.5 (-4.3 to -0.8) 

NS 

(135) 

(78, 134) 

Postprandial glucose (% or SMD)
a
 -17.5 (-26.2 to -8.7) 

-0.4 (-0.5 to -0.2) 

-0.5 (-0.7 to -0.4) 

-0.3 (-0.6 to -0.03) 

-0.7 (-1.0 to -0.4) 

(75) 

(76) 

(77) 

(181) 

(181) 

? 

 

 

- 

 

 

Fasting insulin (pM) NA - -1.4 (-2.8 to -0.0) 

-2.3 (-4.4 to -0.3) 

(78) 

(135) 

Postprandial insulin (% or SMD)
a
 -25.1 (-31.8 to -18.3) 

-0.4 (-0.5 to -0.2) 

-0.6 (-0.7 to -0.4) 

(75) 

(76) 

(77) 

? 

 

 

- 
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-0.8 (-1.2 to -0.5) 

NS 

(181) 

(181) 

HbA1c (%) NA - -0.2 (-0.3 to -0.04) 

NS 

(134) 

(78) 

Lipid metabolism     

Fasting triglycerides (mg/dL) NA - NS (78, 134, 

135) 

Postprandial triglycerides (SMD)
a
 -0.3 (-0.4 to -0.1) 

NS 

(77) 

(75, 76) 

? - 

Fasting total cholesterol (mg/dL) NA - NS (78, 134, 

135) 

Fasting LDL (mg/dL) NA - NS (78, 134, 

135) 

Fasting HDL (mM) NA - 0.04 (0.02 to 0.07) 

NS 

(78) 

(134, 135) 

Cardiorespiratory system     

Systolic blood pressure (mmHg) -4.4 (-7.4 to -1.5) 

NS 

(119) 

(181) 

-1.1 (-2.1 to -0.0) 

NS 

(78) 

(135) 

Diastolic blood pressure (mmHg) -2.4 (-4.5 to -0.3) (119) NS (78, 134, 

135) 

Flow-mediated dilation (%FMD) 1.5 (1.0 to 2.0) 

1.9 (0.4 to 3.4) 

NS 

(325) 

(120) 

(20) 

0.9 (0.3 to 1.6) (325) 

Pulse wave velocity (m/s) 0.02 (-0.27 to 0.32) (325) 0.27 (-0.32 to 0.87) (325) 

Shear rate (S
-1

) 12.7 (7.9 to 17.5) (325) ? - 

Legend: a, as measured by area under the curve; ?, no data available; NA, not 

applicable; NS, non-significant. Abbreviations: FMD, flow-mediated dilation; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; SMD, standard mean difference. Data 

presented as mean difference (95% confidence interval) between reducing/interrupting 

sedentary behavior and prolonged sedentary behavior/control group.
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FIGURE LEGENDS  

 

FIGURE 1. Sedentary behavior and physical inactivity operationalized as distinct 

behaviors identifies four key classifications. A person is classified as physically inactive 

if he/she engages in <150 min/week of moderate-to-vigorous intensity physical activity 

or <75 min/week of vigorous-intensity physical activity (1). Despite absence of 

consensus on the cut point to classify ‘highly’ sedentary; epidemiological evidence 

suggests a higher risk for premature mortality from ≥9.5 h/day for objectively measured 

sedentary time (4). Red boxes represent time spent in sedentary behavior, light blue 

represents time spent standing and in light-intensity physical activity, and dark blue 

represents time spent in moderate-to-vigorous intensity physical activity. The vertical 

arrow represents time spent in sedentary behavior; the horizontal arrow represents time 



 211 

spent in moderate-to-vigorous intensity physical activity. Abbreviations: LPA, light-

intensity physical activity; MVPA, moderate-to-vigorous intensity physical activity. 

 

FIGURE 2. Hypothetical representation of imposed changes in physical activity level by 

experimental models that can induce changes in time spent in sedentary behavior. 

Fluctuations in physical activity levels, such as those imposed by these experimental 

models, may result in increased or decreased risk of adverse health outcomes. For the 

pie charts, red represents sedentary behavior, light blue represents standing and light-

intensity physical activity, and dark blue represents moderate-to-vigorous intensity 

physical activity. Horizontal arrows schematically represent the direction of changes in 

physical activity and sedentary behavior. Abbreviation: MET, metabolic equivalent of 

task. 
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FIGURE 3. Metabolic cascade induced by exposures to sustained periods of strict bed 

rest. This cascade ultimately results in a plethora of adverse events, including 

development of whole-body insulin resistance, hyperglycemia, hyperinsulinemia, 

hypertriglyceridemia, metabolic inflexibility (i.e., the inability of the body to adjust 

substrate use to changes in substrate availability), and alterations on body composition 

(increased fat mass and muscle atrophy) (166). Abbreviation: FFA, free-fatty acids; 

VLDL, very low-density lipoprotein. 
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FIGURE 4. Mechanisms underlying sedentary behavior- and interruptions to sitting-

induced adaptations on carbohydrate metabolism in skeletal muscle. A) During rest (i.e., 

prolonged sitting), requirements for glucose and free fatty acids are minimal; therefore, 

delivery to skeletal muscle is low. Any glucose that does enter the myocyte is stored as 

glycogen or metabolized to ATP via glycolysis. Any free fatty acid is stored as 

intramuscular lipid or metabolized to ATP via β-oxidation. Acute exposures to prolonged 

sitting have been shown to subsequently increase postprandial glycemia (411). B) 

During short, interruptions to sitting with physical activity, muscle uses glycogen and the 

glucose available in the blood stream as the main sources of glucose for the generation 

of ATP. Acutely, frequent muscle contractions increase AMPK levels in the myocytes, 

which results in the translocation of GLUT4 to the membrane facilitating glucose uptake. 

Interruptions to sitting also increase the capacity for ATP production and glycogen 

synthesis. With glucose constantly available and competing against lipids, free-fatty acid 

oxidation is not required to be increased for ATP production. Ultimately, interruptions 
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over three days induce a transition to modulation of the insulin-dependent signaling 

pathway (226). Performing frequent, short bouts of physical activity has been shown to 

reduce postprandial glycemia (411). Legend: Differences in signaling pathways in 

Panels B are relative to Panel A, with bolded arrows representing pathways that are 

upregulated following interruptions to sitting. Abbreviations: AMPK, adenosine 

monophosphate-activated protein kinase; ATP, adenosine triphosphate; β-oxi, beta-

oxidation; ETC, electron transport chain; FAT, fatty-acid transporter; GLUT1, glucose 

transporter type 1; GLUT4, glucose transporter type 4; IR, insulin receptor. 
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FIGURE 5. Vascular responses following exposures to prolonged sedentary behavior 

and to reducing/interrupting sedentary behavior. A) Prolonged exposures to sedentary 

behavior reduce blood flow and shear stress, increasing endothelin-1 and attenuating 

nitric oxide, subsequently leading to reduced flow-mediated dilation, particularly in the 

lower limbs, and increased blood pressure. In addition, muscle inactivity, insulin 

resistance, hyperlipemia, inflammation, oxidative stress, and increased sympathetic 

nervous system activity may further augment the consequences of sedentary behavior 

on vascular health. B) Reducing/interrupting sedentary behavior may be a potential 

strategy to improve cardiovascular health by attenuating sedentary behavior-induced 

maladaptations in cardiovascular and metabolic health (26, 329). Abbreviations: ET1, 

endothelin-1; NO, nitric oxide. 
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FIGURE 6. Key anabolic and catabolic pathways in muscle atrophy conditions. Several 

anabolic pathways signaling might be suppressed in muscle atrophy conditions, 

including PI3K-Akt-mTORC1, β2-adrenergic, WNT/FZD, calcineurin, hippo, and/or BMP. 

In contrast, several catabolic pathways signaling might be overactivated, including TGF-

β, AMPK, NF-κβ, glucocorticoid receptors, angiotensin, IL-6-JAK/STAT, kinin, 

sphingolipids, notch, and/or ATF4-ER stress. Physical (in)activity and sedentary 

behavior also influence muscle protein synthesis and breakdown(342-345). 

Abbreviations: Akt, protein kinase B; AMPK, adenosine monophosphate-activated 

protein kinase; ATF4, activating transcription factor 4; BMP, bone morphogenetic 

protein; ER, endoplasmic reticulum; IL-6, interleukin 6; JAK, janus kinases; mTORC1, 

mechanistic target of rapamycin 1; NF-κβ nuclear factor kappa light chain enhancer of 
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activated β cells; PI3K, phosphoinositide 3-kinase; STAT, signal transducers and 

activators of transcription; TGF- β, transforming growth factor-β; WNT/FZD, wingless-

int1-frizzled. 

 

FIGURE 7. Cerebrovascular responses following exposures to prolonged sedentary 

behavior and to reducing/interrupting sedentary behavior. A) Exposures to prolonged 

sedentary behavior may result in decreased cerebral blood flow velocity, 

cerebrovascular reactivity, vascular activation, and increased cerebrovascular 

resistance. Additionally, poor glucose control, vascular dysfunction, low-grade 

inflammation, and altered levels of neurotrophic biomarkers and their 

precursors/metabolites may further impair brain and central nervous system function. B) 

Reducing/interrupting sedentary behaviors may be a potential strategy to attenuate 

sedentary behavior-induced maladaptations in the central nervous system function (28). 

Abbreviation: BDNF, brain-derived neurotrophic factor. 
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