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Abstract. Theoretical physics is largely the mathematical development of simple

ideas guided by experiments. The uncertainty principle, local symmetry, the standard

model, path integrals and general relativity are examples as will be illustrated in this

pedagogical paper.

1. The uncertainty principle

In a lecture at Brookhaven National Laboratory in the summer of 1963, Robert

Oppenheimer explained the simple ideas that underlie the uncertainty principle:

• To use an instrument to measure the position of something, the instrument must

be attached to a known position.

• To use the recoil of an instrument to measure the momentum of something, the

instrument must be free to recoil.

Since an instrument can not simultaneously be both attached and free, one can’t

simultaneously measure position and momentum to arbitrary accuracy. The limit is

∆x∆p ≥ ~
2
. (1)

One can use the uncertainty principle to estimate microscopic quantities. For

example, setting the product of the average values of r and p equal to ~, one has

1/r = p/~ which gives the energy of the ground state of hydrogen as

E0 =
p2

2m
− e2

r
=

p2

2m
− e2p

~
. (2)

Its minimum is at p = me2/~. So

E0 =
(me2)2

2m~2
− (me2)2

m~2
= −mc

2

2

e4

~2c2
= −mc

2

2
α2 (3)

which is the nonrelativistic result.
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Figure 1: How ∆x∆p ≥ ~
2

suggests ∆φ∆L ≥ ~
2
.

One may apply the uncertainty principle as in Fig. 1 and so derive an uncertainty

relation for angle and angular-momentum:

~
2
≤ ∆x∆p =

∆x

r
(r∆p) = ∆φ∆L ≈ ∆L. (4)

This says that particles must have spins greater than ~/2. Apart from the spinless Higgs

particle, the known elementary particles obey this inequality having as they do spins

~/2, ~ and 2~. But why are they spinning? Why isn’t the Higgs?

For a system of several degrees of freedom qn, pn, the uncertainty principle (1) is

generalized to

[qn, pm] = i~ δnm. (5)

In quantum field theory, these relations become

[φn(t,x), φ̇†(t,y)] = i~ δnm δ(x− y) for bosons and

{ψn(t,x), ψ†m(t,y)} = ~ δnm δ(x− y) for fermions.
(6)

2. Simplicity ⇐⇒ symmetry

The complexity of a thing is the length of its shortest description. The complexity of a

circle of radius r is at most the length of its equation x2 + y2 = r2. The complexity of

an arbitrary squiggle is at least twice the number of its pixels. The O(2) symmetry of

the circle makes it simpler than a squiggle.

The complexity of a sphere of radius r is less than the length of its equation

x2 + y2 + z2 = r2. (7)

A rambutan has less symmetry and more complexity. The O(3) symmetry of the sphere

makes it simpler.
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The smallest things are presumably the simplest and the most symmetrical.

Elementary particles are the smallest things we know of. They must be simple. They

must be the simplest because they have the least room for complexity. They must be

symmetrical.

3. Symmetry and conservation

Symmetry implies conservation. In mechanics, symmetry under rotations and under

translations in time and space implies conservation of angular momentum, energy and

momentum.

In field theory, if an action density L(φα, ∂iφα) depends upon the spacetime

coordinates xi only through the fields φα(x) and their derivatives ∂iφα(x), then the

energy-momentum tensor

T ik =
∑
i

∂L

∂∂iφα

∂φα
∂xk
− δikL is conserved ∂iT

i
k = 0. (8)

4. Global symmetry

A global symmetry transformation changes fields in the same way at every spacetime

point x. In the global U(1) symmetry transformation

ψ(x)→ ψ′(x) = eiqθψ(x) (9)

or (
ψ′1(x)

ψ′2(x)

)
=

(
cos(qθ) sin(qθ)

− sin(qθ) cos(qθ)

)(
ψ1(x)

ψ2(x)

)
, (10)

the charge q and the angle θ are independent of x.

This symmetry conserves charge.

5. Local U(1) symmetry

The electric and magnetic fields of Maxwell and Faraday

Ei = c

(
∂A0

∂xi
− ∂Ai
∂x0

)
and Bi =

1

2
εijk

(
∂Ak
∂xj
− ∂Aj
∂xk

)
= (∇×A)i (11)

have a special symmetry. They are the 4-curl of the vector potential Ak

Fik =
∂Ak
∂xi
− ∂Ai
∂xk

= −Fki (12)

and so are unchanged by the gauge transformation

Ak(x)→ A′k(x) = Ak(x) + ∂kθ(x) (13)
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in which the angle θ(x) is an arbitrary function of x.

The action density ψ†γk∂kψ, in which {γi, γk} = ηik and η = diag(−1, 1, 1, 1), is

not invariant under the local, i.e., spacetime dependent, transformation

ψ′(x) = e−iqθ(x) ψ(x)

A′i(x) = Ai(x) + ∂iθ(x).
(14)

But the Dirac action density ψ†γk (∂k + iqAk)ψ is invariant because the derivative of

the exponential e−iqθ(x) is canceled by the change in the vector potential Ai(x)

−iq(∂kθ) e−iqθ ψ + iq(∂kθ) e
−iqθ ψ = 0. (15)

This cancellation happens because the ordinary derivative ∂kψ in the action density

ψ†γk∂kψ has been replaced by the “covariant” derivative (∂k + iqAk)ψ. Thus the local

symmetry (14) requires ψ(x) to interact with Ai(x).

This local U(1) symmetry of classical electrodynamics allows the angle θ(x) to vary

arbitrarily with the spacetime point x and that in turn requires the field ψ(x) to interact

with the gauge field Ak(x). This symmetry foreshadowed other local symmetries which

require other interactions. In fact, all the known interactions are exactly those required

by the known local symmetries.

6. Local nonabelian symmetry

Yang Chen-Ning and Robert Mills generalized local symmetry from the U(1) of

electrodynamics (14) to SU(2). That was a big step forward.

Steven Weinberg, Sheldon Lee Glashow and Abdus Salam explained the electroweak

interactions in terms of the group SUL(2)⊗UY (1). They replaced the simple derivative

∂kΨ of a complex doublet Ψ such as

Ψ =

(
ν

e

)
or Ψ =

(
u

d

)
(16)

with the “covariant” derivative

DkΨ(x) =

(
∂k + ig

σ ·W (x)

2
+ ig′

Y Bk(x)

2

)
Ψ(x) (17)

in which σ is the triplet of Pauli matriecs.

The subscript L on SUL(2) means that the gauge bosons W (x) interact with the

left-handed quark and lepton fields and not with the right-handed quark and lepton

fields. Thus the electroweak interactions are lopsided and are not invariant under

reflections, x→ −x, i.e., they do not conserve parity.
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7. Quantum chromodynamics

Murray Gell-Mann and George Zweig explained the strong interactions in terms of the

group SU(3) which acts on “color” triplets of quarks. For example, the local SUc(3)

transformation of the u quark triplet (ur, ug, ub) is

Ψ′(x) =

ur(x)

ug(x)

ub(x)


′

= U(x)

ur(x)

ug(x)

ub(x)

 = U(x) Ψ(x) (18)

in which U(x) is a 3 × 3 unitary matrix of unit determinant, i.e., U †(x)U(x) = 1 and

detU(x) = 1.

This local symmetry requires that the ordinary derivative ∂k in the action density

Ψ†γk∂kΨ be replaced by the covariant derivative DkΨ = (∂i + iAi(x)) Ψ(x) in which

Ai(x) is the linear combination

Ai(x) =
8∑

a=1

taA
a
i (x). (19)

The resulting action density Ψ†(x)γk (∂i + iAi(x)) Ψ(x) is invariant under the local

SUc(3) transformation (18), and that invariance requires that the quarks Ψ(x) interact

with the gluons Aai (x).

The interactions of the standard model are exactly those required by

local gauge invariance.

8. General relativity

Einstein realized that we have no way of knowing which system of coordinates is

the “true” or “best” system of coordinates. He concluded that we should write the

equations of physics in such a way that they are the same in all coordinate systems. His

implementation of these simple ideas was general relativity.

He required the equations of physics to remain the same under arbitrary

transformations of the four coordinates of spacetime

xi → x′i(t, x, y, z). (20)

To achieve this symmetry, he replaced the simple derivative ∂`V
k of a vector V k with

the covariant derivative

∂`V
k → D`V

k = ∂`V
k + Γki` V

i (21)

in which the Christoffel symbol is

Γki` = 1
2
gkn (∂`gni + ∂ign` − ∂ngi`) (22)
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and gik(x) is the metric of spacetime. The replacement (21) requires the vector V k (and

eventually every other field) to interact with the gravitational field gik(x).

In empty space, particles fall along geodesics independently of their masses

0 = δS = −mδ

∫ √
−gikdxidxk =⇒ 0 =

d2xk

dτ 2
+ Γki`

dxi

dτ

dx`

dτ
. (23)

General relativity was verified by measurements of the precession of Mercury and

of the bending of light by the Sun as observed by Eddington during the eclipse of 1919.

It is said that when a journalist asked Eddington if it were true that only three

people understood general relativity, Eddington replied, “Who’s the other one?”

Figure 2: Eclipse of 1919 (ESO/Landessternwarte Heidelberg-Königstuhl/F. W. Dyson,

A. S. Eddington, &amp; C. Davidson).

It can be helpful to visualize the points p(x) = p(x0, x1, x2, x3) of our curved

spacetime as embedded in a flat Minkowski spacetime Mn of n ≥ 4 dimensions. The

four derivatives ∂ip(x) are then n-dimensional vectors in Mn tangent to our curved

spacetime. The displacement of a point p(x) due to changes dxi in the four coordinates

is dp = ei dx
i, and the invariant squared displacement ds2 is the Minkowski dot-product

ds2 = dp · dp = (eidx
i) · (ekdxk) ≡ gik dx

idxk (24)
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Figure 3: Albert Einstein and Arthur Eddington in 1930 (Royal Astronomical

Society/Science Photo Library).

in which the metric of spacetime gik(x) appears as the dot-product of the tangent vectors

ei(x) and ek(x)

gik(x) = ei(x) · ek(x) =
∑
a,b

e ai (x) ζab e
b
k (x) =

∑
a

σa e
a
i (x) e a

k (x). (25)

Here σa = ±1, and ζ is the diagonal metric of Mn.

One may visualize the Friedmann-Lemâıtre-Robinson-Walker metric for a finite,

closed universe

gik(t, r, θ, φ) =


−c2 0 0 0

0 a2/(1− r2/L2) 0 0

0 0 a2 r2 0

0 0 0 a2 r2 sin2 θ

 (26)

as the points

p(t, r, θ, φ) =
(
ct, a
√
L2 − r2, ar sin θ cosφ, ar sin θ sinφ, ar cos θ

)
(27)
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in M5 with metric

ζ = diag(−1, 1, 1, 1, 1) =


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 . (28)

Similarly, one may visualize the FLRW metric for an infinite, open universe

gik(t, r, θ, φ) =


−c2 0 0 0

0 a2/(1 + r2/L2) 0 0

0 0 a2 r2 0

0 0 0 a2 r2 sin2 θ

 (29)

as the points

p(t, r, θ, φ) =
(
ct, a
√
L2 + r2, ar sin θ cosφ, ar sin θ sinφ, ar cos θ

)
(30)

in M5 with metric ζ = diag(−1,−1, 1, 1, 1). In terms of the tangent vectors ei and

ek = gk`e`, the Christoffel symbol (22) is Γki` = ek · ∂`ei.

9. Einstein the humanist

Einstein had a way with words:

• I never think of the future. It comes soon enough.

• Once we accept our limits, we go beyond them.

• Any fool can know. The point is to understand.

• Imagination is more important than knowledge.

• Two things are infinite. The universe and human stupidity — I’m not so sure about

the universe.

• I never teach my pupils; I only provide the conditions in which they can learn.

• Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will

live its whole life believing that it is stupid.

• I know not with what weapons World War III will be fought, but World War IV

will be fought with sticks and stones.

• The most beautiful thing we can experience is the Mysterious.

10. Path integrals

Feynman’s path integrals are based on two simple ideas. One is that for an infinitesimal

interval dt the time-evolution operator exp(−iHt/~) for a non-relativistic particle is

approximately

e−iHdt/~ = e−i(p
2/2m+V (q))dt/~ ≈ e−ip

2dt/2m~e−iV (q)dt/~. (31)
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The other is that the amplitude for the particle to go from position qa to position q1 in

time dt is

〈q1|e−ip
2dt/2m~e−iV (q)dt/~|qa〉 = 〈q1| e−ip

2dt/2m~
∫ ∞
−∞
|p′〉〈p′| dp′ e−i V (q) dt/~|qa〉

= e−i V (qa) dt/~
∫ ∞
−∞

e−ip
′2dt/2m~ ei(q1−qa) p

′/~ dp
′

2π~

=
( m

2πi~dt

)1/2
exp

{
i

[
m

2

(
q1 − qa
dt

)2

− V (qa)

]
dt

~

}
.

(32)

To link two of these matrix elements together, one integrates over the complete set of

outer products |q1〉〈q1|

〈q2|
(
e−ip

2dt/2m~e−iV (q)dt/~
)2
|qa〉

=
m

2πi~dt

∫ ∞
−∞

exp

[
i

(
mq̇2a

2
− V (q1) +

mq̇2a
2
− V (qa)

)
dt

~

]
dq1

where now q̇a = (q1−qa)/dt and q̇1 = (q2−q1)/dt. By stitching together n = (tb− ta)/dt
time intervals each of length dt and letting n → ∞, we get the path integral for a

particle of mass m to go non-relativistically from qa to qb in time t

〈qb|e−iHt/~|qa〉 =
( m

2πi~dt

)n/2∫
exp

(
i

~

∫ [m
2
q̇2(t)− V (q(t))

]
dt

)
≡
∫
eiS[q]/~Dq.

(33)

Here the action is the integral S[q] =
∫
L(q, q̇) dt. The amplitude is the integral over all

paths from qa to qb each weighted by the phase exp(iS[q]/~).

The amplitude for any state |Ψ〉 to become |Φ〉 in time t is the integral over the

fields A that represent all processes that go from |Ψ〉 to |Φ〉 weighted by the phase

exp(iS/~) in which S[A] is the action of the process

〈Φ|e−itH/~|Ψ〉 =

∫
eiS[A]/~DA. (34)

11. Supersymmetry

All the predictions of the standard model and of general relativity have been verified

experimentally.

In contrast, supersymmetry predicts that every particle of spin s has a superpartner

of spin s±~/2. None have been observed, although they could be lurking at much higher

energies.
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12. Mysteries

The most beautiful thing we can experience is the Mysterious. We now have two huge

mysteries:

1. Dark matter, i.e., invisible matter, is 84% of all matter.

2. Dark energy is 68% of the energy of the universe.

What are they?

And we have other mysteries. Why the Higgs? Why does it couple so weirdly? Why

are the electroweak interactions so lopsided?

13. Interactions with right-handed fields

One way to balance the gauge group SUL(2) is to add the gauge group SUR(2) with a

triplet of gauge bosons (W+
R ,W

0
R,W

−
R ) that interact only with right-handed quarks and

leptons. One also would add a new Higgs field HR that transforms under SUR(2)⊗UY ′(1)

in which the new weak hypercharge Y ′ has the eigenvalues of Y but with left and right

interchanged.

There would be a total of seven new fields — three WR’s and the four components

of the SUR(2) doublet HR. They would have to be very heavy or couple very weakly or

both.

14. Summary

The equations of the standard model are invariant under the local symmetries

SUc(3) ⊗ SUL(2) ⊗ UY (1) and also under the general coordinate transformations of

general relativity. All the known interactions—the strong, weak, electromagnetic, and

gravitational interactions—are required by these local symmetries.
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