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) by showing that the Fisher information matrix is operator convex as a matrix-valued function acting on densities of mixtures in R d . As an application, we establish rates for the convergence of the Fisher information matrix of the sum of weighted i.i.d. Gaussian mixtures in the operator norm along the central limit theorem under mild moment assumptions.

1. Introduction 1.1. Entropy. Let X be a continuous random vector in R d with density f : R d → R + . The (differential) entropy of X is the quantity

h(X) def = - R d f (x) log f (x) dx = E -log f (X) , (1) 
where log always denotes the natural logarithm. The celebrated entropy power inequality of Shannon and Stam [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Aart | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF] (see also [START_REF] Elliott | Proof of an entropy conjecture of Wehrl[END_REF]) implies that for every independent continuous random vectors X 1 , X 2 in R d , we have

∀ t ∈ [0, 1], h √ tX 1 + √ 1 -tX 2 ≥ th(X 1 ) + (1 -t)h(X 2 ). (2) 
In general, the entropy power inequality cannot be reversed (see, e.g., the construction of [START_REF] Sergey | Entropy power inequality for the Rényi entropy[END_REF]Proposition 4]). However, reverse entropy power inequalities have been considered under different assumptions on the random vectors, such as log-concavity [START_REF] Bobkov | Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures[END_REF][START_REF] Sergey | On the problem of reversibility of the entropy power inequality[END_REF][START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF][START_REF] Madiman | Forward and reverse entropy power inequalities in convex geometry[END_REF]. It follows directly from (2) that if X 1 , X 2 are i.i.d. random vectors, then the entropy function t → h(

√ tX 1 + √ 1 -tX 2
) is minimised at t = 0 and t = 1. In the spirit of reversing the entropy power inequality, Ball, Nayar and Tkocz [START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF] raised the question of maximising this function. In particular, they gave an example of a random variable X 1 for which the maximum is not attained at t = 1 2 but conjectured that for i.i.d. log-concave random variables this function must be concave in t ∈ [0, 1], in which case it is in particular maximised at t = 1 2 . It is worth noting that the conjectured concavity would also be a strengthening of the entropy power inequality for i.i.d. random variables, as [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF] amounts to the concavity condition for the points 0, t, 1. So far, no special case of the conjecture of [START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF] seems to be known.

In this work, we consider (centered) Gaussian mixtures, i.e. random variables of the form

X = Y Z, ( 3 
)
where Y is an almost surely positive random variable and Z is a standard Gaussian random variable, independent of Y . The resulting random variable can be seen as a centered Gaussian with random variance Y 2 and has density of the form

∀ x ∈ R, f X (x) = E 1 √ 2πY 2 e -x 2 2Y 2 . ( 4 
)
In particular, as observed in [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF], (4) combined with Bernstein's theorem readily implies that a symmetric random variable X is a Gaussian mixture if and only if x → f X ( √ x) is completely monotonic on (0, ∞). Therefore, distributions with density proportional to e -|x| p , symmetric pstable random variables, where p ∈ (0, 2], and the Cauchy distribution are Gaussian mixtures. Let us mention that Costa [START_REF] Costa | A new entropy power inequality[END_REF] also considered symmetric stable laws to prove a strengthened version of the entropy power inequality that fails in general.

Our first result proves the concavity of entropy conjectured in [START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF] for Gaussian mixtures.

Theorem 1. Let X 1 , X 2 be independent Gaussian mixtures. Then the function

t -→ h √ tX 1 + √ 1 -tX 2 (5) is concave on the interval [0, 1].
Theorem 1 will be a straightforward consequence of a more general result for the Rényi entropy of a weighted sum of n Gaussian mixtures. Let n-1 be the standard simplex in R n ,

n-1 def = (π 1 , . . . , π n ) ∈ [0, 1] n : π 1 + • • • + π n = 1 . ( 6 
)
The Rényi entropy of order α 1 of a random vector X with density f is given by

h α (X) def = 1 1 -α log R d f α (x) dx , (7) 
and h 1 (X) is simply the Shannon entropy h(X). We will prove the following general concavity.

Theorem 2. Let X 1 , . . . , X n be independent Gaussian mixtures. Then, the function

n-1 (a 2 1 , . . . , a 2 n ) -→ h α n i=1 a i X i (8)
is concave on n-1 for every α ≥ 1.

When n = 2 and α = 1, Theorem 2 reduces exactly to Theorem 1.

In [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]Theorem 8], it was shown that if X 1 , . . . , X n are i.i.d., then the function ( 8) is Schur concave, namely that if (a 1 , . . . , a n ) and (b 1 , . . . , b n ) are two unit vectors in R n , then

(a 2 1 , . . . , a 2 n ) m (b 2 1 , . . . , b 2 n ) =⇒ h α n i=1 a i X i ≥ h α n i=1 b i X i , (9) 
for any α ≥ 1, where m is the majorisation ordering of vectors (see [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]). As the unit vector with all coordinates equal to 1 n is majorised by any other vector in n-1 , (9) implies that the function [START_REF] Blachman | The convolution inequality for entropy powers[END_REF] achieves its maximum on the main diagonal for Gaussian mixtures.

As any permutationally invariant concave function is Schur concave (see [28, p. 97]), (9) follows from Theorem 2. On the other hand, the function x 1 • • • x n is permutationally invariant and Schur concave on R n + (see [28, p. 115]) but it is evidently not concave on the hyperplane [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]Theorem 8].

x 1 + • • • + x n = 1 when n ≥ 3. Therefore, Theorem 2 is a strict refinement of
We note in passing that, while the conclusion of Theorem 1 has been conjectured in [START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF] to hold for every i.i.d. log-concave random variables X 1 , X 2 , the conclusion of Theorem 2 cannot hold for this class of variables. In [START_REF] Madiman | Two remarks on generalized entropy power inequalities[END_REF], Madiman, Nayar and Tkocz constructed a symmetric log-concave random variable X for which the Schur concavity [START_REF] Bobkov | Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures[END_REF] does not hold for i.i.d. copies of X and thus, as a consequence of [28, p. 97], the concavity of Theorem 2 must also fail.

1.2. Fisher Information. Let X be a continuous random vector in R d with smooth density f : R d → R + . The Fisher information of X is the quantity

I(X) def = R d |∇f (x)| 2 f (x) dx = E ρ(X) 2 , ( 10 
)
where ρ(x)

def = ∇f (x) f (x)
is the score function of X. Fisher information and entropy are connected by the classical de Bruijn identity (see, e.g., [START_REF] Aart | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF]), due to which most results for Fisher information are formally stronger than their entropic counterparts. In particular, the inequality

∀ t ∈ [0, 1], 1 
I( √ tX 1 + √ 1 -tX 2 ) ≥ t I(X 1 ) + 1 -t I(X 2 ) (11) 
of Blachman and Stam [31,[START_REF] Blachman | The convolution inequality for entropy powers[END_REF], which holds for all independent random vectors X 1 , X 2 in R d , implies the entropy power inequality (2). In the spirit of the question of Ball, Nayar and Tkocz [START_REF] Ball | A reverse entropy power inequality for log-concave random vectors[END_REF] and of the result of [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF], we raise the following problem.

Question 3. Let X 1 , . . . , X n be i.i.d. Gaussian mixtures. For which unit vectors (a 1 , . . . , a n ) in R n is the Fisher information of n i=1 a i X i minimised? While Question 3 still remains elusive, we shall now explain how to obtain some useful bounds for the Fisher information of mixtures. In order to state our results in the greatest possible generality, we consider random vectors which are mixtures of centered multivariate Gaussians. Recall that the Fisher information matrix of a random vector X in R d is given by

I(X) ij def = R d i f (x) j f (x) f (x) dx, (12) 
where f : R d → R + is the smooth density of X, so that I(X) = trI(X). Let F d ⊂ L 1 (R d ) be the space of smooth probability densities on R d . By abuse of notation, we will also write I(f ) and I(f ) to denote the Fisher information and Fisher information matrix respectively of a random vector with smooth density f on R d . In his recent treatise on estimates for the Fisher information, Bobkov made crucial use of the convexity of the Fisher information functional I(X) as a function of the density of the random variable X, see [START_REF] Sergey | Upper bounds for Fisher information[END_REF]Proposition 15.2]. For our purposes we shall need the following matricial extension of this. 

F d I(g) dπ(g), ( 13 
)
provided that F d I(g) op dπ(g) < ∞. Here denotes the positive semi-definite ordering of matrices.

We propose the following definition of Gaussian mixtures in arbitrary dimension.

Definition 5. A random vector X in R d is a (centered) Gaussian mixture if X has the same distribution as YZ, where Y is a random symmetric d × d matrix which is almost surely positive definite and Z is a standard Gaussian random vector in R d , independent of Y.

As in the scalar case, a Gaussian mixture X in R d has density of the form

∀ x ∈ R d , f X (x) = E 1 det( √ 2πY) e -|Y -1 x| 2 /2 . ( 14 
)
Employing Proposition 4 for Gaussian mixtures we deduce the following bound.

Corollary 6. Fix d ∈ N and let X be a random vector in R d admitting a Gaussian mixture representation YZ. Then, we have

I(X) E (YY T ) -1 . ( 15 
)
This upper bound should be contrasted with the general lower bound

I(X) Cov(X) -1 = EYY T -1 , ( 16 
)
where the first inequality is the multivariate Crámer-Rao bound [START_REF] Bickel | Mathematical statistics-basic ideas and selected topics[END_REF]Theorem 3.4.4].

1.2.1.

Quantitative CLT for the Fisher information matrix of Gaussian mixtures. Equality in the Cramér-Rao bound ( 16) is attained if and only if X is Gaussian. The deficit in the scalar version of this inequality is the relative Fisher information I(X Z) between X and Z and may be interpreted as a strong measure of distance of X from Gaussianity. In particular, in view of Gross' logarithmic Sobolev inequality [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] and Pinsker's inequality [START_REF] Pinsker | Information and information stability of random variables and processes[END_REF][START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF][START_REF] Kullback | A lower bound for discrimination information in terms of variation (corresp.)[END_REF], closeness in relative Fisher information implies closeness in relative entropy and a fortiori in total variation distance. Therefore, a very natural question is under which conditions and with what rate the relative Fisher information of a weighted sum tends to zero along the central limit theorem, thus offering a strenthening of the entropic central limit theorem [START_REF] Barron | Entropy and the central limit theorem[END_REF]. As an application of Corollary 6, we obtain a bound for a matrix analogue of the relative Fisher information of Gaussian mixtures. Here and throughout, • op denotes the operator norm of a square matrix.

Theorem 7. Fix d ∈ N, δ ∈ (0, 1] and let X 1 , . . . , X n be i.i.d. random vectors in R d , each admitting a Gaussian mixture representation YZ as above. Assume also that

E YY T 1+δ op < ∞ and E YY T -1 1+δ op < ∞. ( 17 
)
Then, for every unit vector a = (a 1 , . . . , a n ) in R n the weighted sum

S n = n i=1 a i X i satisfies Cov(S n ) 1 2 I(S n )Cov(S n ) 1 2 -I d op ≤ C(Y) log δ (d + 1) a 2δ 1+δ 2+2δ , ( 18 
)
where C(Y) is a constant that depends only on the moments of YY T op . There is a vast literature on quantitative versions of the central limit theorem. The first to obtain efficient bounds for the relative Fisher information of weighted sums were Artstein, Ball, Barthe and Naor [START_REF] Shiri Artstein | On the rate of convergence in the entropic central limit theorem[END_REF] (see also the work [START_REF] Johnson | Fisher information inequalities and the central limit theorem[END_REF] of Johnson and Barron) who obtained a O( a 4 4 ) upper bound on I(S n X), where S n = n i=1 a i X i for X 1 , . . . , X n i.i.d. random variables satisfying a Poincaré inequality. In particular, this bound reduces to the sharp rate O( 1 n ) on the main diagonal. Following a series of works on the relative entropy of weighted sums [START_REF] Sergey | Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem[END_REF][START_REF] Sergey | Berry-Esseen bounds in the entropic central limit theorem[END_REF], Bobkov, Chistyakov and Götze investigated in [START_REF] Sergey | Fisher information and the central limit theorem[END_REF] upper bounds for the relative Fisher information along the main diagonal under finite moment assumptions. More specifically, their main result asserts that if E|X 1 | s < ∞ for some s ∈ (2, 4), then

I 1 √ n n i=1 X i Z = O 1 n s-2 2 +o(1) , ( 19 
)
where the n o (1) term is a power of log n, provided that the Fisher information of the sum is finite for some n. The exponent s-2 2 is sharp in this estimate. Moreover, it is also shown in [START_REF] Sergey | Fisher information and the central limit theorem[END_REF] that if EX 4 1 < ∞, then the relative Fisher information decays with the optimal O( 1 n ) rate of convergence. This is a far-reaching extension of the results of [START_REF] Shiri Artstein | On the rate of convergence in the entropic central limit theorem[END_REF][START_REF] Johnson | Fisher information inequalities and the central limit theorem[END_REF] on the main diagonal as the Poincaré inequality assumption in particular implies finiteness of all moments.

The scalar version of Theorem 7 (corresponding to d = 1) is in various ways weaker than the results of [START_REF] Sergey | Fisher information and the central limit theorem[END_REF]. Firstly, it applies only within the class of Gaussian mixtures and it requires the finiteness of a negative moment of the random variable besides a positive one. Moreover, even if these assumptions are satisfied, the bound (18) yields the rate O( 1 n c δ ) with c δ = δ 2 (1+δ) 2 along the main diagonal if X has a finite 2 + 2δ moment. This is weaker than the sharp O( 1n δ+o [START_REF] Shiri Artstein | On the rate of convergence in the entropic central limit theorem[END_REF] ) which follows from [START_REF] Sergey | Fisher information and the central limit theorem[END_REF]. On the other hand, Theorem 7 applies to general coefficients beyond the main diagonal and, in contrast to [START_REF] Shiri Artstein | On the rate of convergence in the entropic central limit theorem[END_REF][START_REF] Johnson | Fisher information inequalities and the central limit theorem[END_REF], does not require the finiteness of all positive moments. More importantly though, ( 18) is multi-dimensional bound with a subpolynomial dependence on the dimension d. To the best of our knowledge, this is the first such bound for the relative Fisher information matrix of a weighted sum and it would be very interesting to extend it to more general classes of random vectors and to obtain sharper rates.

The logarithmic dependence on the dimension in Theorem 7 is a consequence of a classical result of Tomczak-Jaegermann [START_REF] Tomczak-Jaegermann | The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 ≤ p < ∞)[END_REF] on the uniform smoothness of Schatten classes. While Theorem 7 is stated in terms of the operator norm, the proof yields an upper bound for any operator monotone matrix norm (see Remark 13) in terms of its Rademacher type constants.
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Concavity of entropy

This section is devoted to the proof of Theorem 2. We shall make use of the standard variational formula for entropy which asserts that if X is a continuous random variable, then

h(X) = min E[-log g(X)] : g : R → R + is a density function . ( 20 
)
Proof of Theorem 2. We start with the Shannon entropy, which corresponds to α = 1. Fix two unit vectors (a 1 , . . . , a n ) and

(b 1 , . . . , b n ) in R n . For t ∈ [0, 1], consider X t def = n i=1 ta 2 i + (1 -t)b 2 i X i and f (t) def = h(X t ), (21) 
and denote by g t : R → R + the density of X t . The statement of the theorem is equivalent to the concavity of the function

f on the interval [0, 1]. Let λ, t 1 , t 2 ∈ [0, 1] and set t = λt 1 + (1 -λ)t 2 .
By the variational formula for entropy, we have

λf (t 1 ) + (1 -λ)f (t 2 ) = λE[-log g t 1 (X t 1 )] + (1 -λ)E[-log g t 2 (X t 2 )] ≤ λE[-log g t (X t 1 )] + (1 -λ)E[-log g t (X t 2 )] (22) 
Moreover, since X i has the same distribution as the independent product Y i Z i , the stability of Gaussian measure implies the equality in distribution

X t (d) = n i=1 ta 2 i + (1 -t)b 2 i Y 2 i Z. ( 23 
)
Therefore, X t is itself a Gaussian mixture. By the characterisation of [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]Theorem 2], this is equivalent to the complete monotonicity of the function g t ( √ •). Thus, by Bernstein's theorem,

g t ( √ •)
is the Laplace transform of a non-negative Borel measure on (0, ∞) and therefore the

function ϕ t def = -log g t ( √ •
) is concave on (0, ∞). Hence, by ( 22) and ( 23), we have

λf (t 1 ) + (1 -λ)f (t 2 ) ≤ λE ϕ t n i=1 t 1 a 2 i + (1 -t 1 )b 2 i Y 2 i Z 2 + (1 -λ)E ϕ t n i=1 t 2 a 2 i + (1 -t 2 )b 2 i Y 2 i Z 2 ≤ E ϕ t n i=1 λ t 1 a 2 i + (1 -t 1 )b 2 i + (1 -λ) t 2 a 2 i + (1 -t 2 )b 2 i Y 2 i Z 2 = E ϕ t n i=1 ta 2 i + (1 -t)b 2 i Y 2 i Z 2 = E -log g t n i=1 ta 2 i + (1 -t)b 2 i X i = f (t). ( 24 
)
This completes the proof of the concavity of Shannon entropy. Next, let α > 1 and consider again t = λt 1 +(1-λ)t 2 . Denoting by ψ t = g α-1 t ( √ •) and applying the same reasoning, we get

R g α t (x) dx = R g t (x)g α-1 t (x) dx = Eg α-1 t (X t ) = E ψ t n i=1 λ t 1 a 2 i + (1 -t 1 )b 2 i + (1 -λ) t 2 a 2 i + (1 -t 2 )b 2 i Y 2 i Z 2 . ( 25 
)
Now ψ t = e -(α-1)ϕ t is log-convex and thus

R g α t (x) dx ≤ E ψ λ t n i=1 t 1 a 2 i + (1 -t 1 )b 2 i Y 2 i Z 2 ψ 1-λ t n i=1 t 2 a 2 i + (1 -t 2 2 )b 2 i Y 2 i Z 2 ≤ E g α-1 t (X t 1 ) λ E g α-1 t (X t 2 ) 1-λ (26) 
by Hölder's inequality and [START_REF] Kullback | A lower bound for discrimination information in terms of variation (corresp.)[END_REF]. By two more applications of Hölder's inequality, we get

R g t 1 (x)g t (x) α-1 dx ≤ R g α t 1 (x) dx 1 α R g α t (x) dx α-1 α (27)
and

R g t 2 (x)g t (x) α-1 dx ≤ R g α t 2 (x) dx 1 α R g α t (x) dx α-1 α . ( 28 
)
Combining ( 26), ( 27) and ( 28) we thus obtain

R g α t (x) dx 1 α ≤ R g α t 1 (x) dx λ α R g α t 2 (x) dx 1-λ α ( 29 
)
which is exactly the claimed concavity of Rényi entropy.

Remark 8. One may wonder whether Theorem 2 can be extended to Gaussian mixtures on R d in the sense of Definition 5. A repetition of the above argument in this setting would require the validity of the inequality

∀ λ ∈ (0, 1), g λA + (1 -λ)Bz ≤ g √ Az λ g √ Bz 1-λ ( 30 
)
where g : R d → R + is the density of a Gaussian mixture, A and B are positive semidefinite d × d matrices and z is a vector in R d . The validity of (30) for a Gaussian density with arbitrary covariance is equivalent to the operator concavity of the matrix function

f (X) def = √ XY √ X ( 31 
)
for an arbitrary positive semidefinite matrix Y . The following counterexample to this statement was communicated to us by Léonard Cadilhac. As the function f takes values in the cone of positive semidefinite matrices, operator concavity is equivalent to operator monotonicity (see the proof of [6, Theorem V.2.5]). Take two non-negative matrices

A, Y such that Y A but Y 2 A 2 . Then, the corresponding function f (X) = √ XY √ X satisfies f (Y ) = Y 2 and f (A) = √ AY √ A A 2 since Y A. Therefore, f (Y ) f (A)
and thus f is not operator monotone or concave.

Convexity of Fisher information

3.1. Warm-up: the Fisher information of independent products. Before showing the general argument which leads to Proposition 4, we present a short proof for the case of mixtures of dilates of a fixed distribution which corresponds exactly to the Fisher information of a product of independent random variables. As this is a special case of Bobkov's [14, Proposition 15.2], we shall disregard rigorous integrability assumptions for the sake of simplicity of exposition. Theorem 9. Let W be a random variable with zero mean and smooth-enough density and let Y be an independent positive random variable. Then,

1 EY 2 Var(W ) ≤ I(Y W ) ≤ E I(W ) Y 2 . ( 32 
)
Proof. The first inequality is the Cramér-Rao lower bound. Suppose that W has density e -V with V nice enough. Then, X has density

f (x) def = E 1 Y e -V x Y ( 33 
)
and thus, differentiating under the expectation and using Cauchy-Schwarz, we get

f (x) 2 = E V ( x Y ) Y 2 e -V x Y 2 ≤ E 1 Y e -V x Y E V ( x Y ) 2 Y 3 e -V x Y = f (x) E V ( x Y ) 2 Y 3 e -V x Y . (34) Thus, I(X) = R f (x) 2 f (x) dx ≤ R E V ( x Y ) 2 Y 3 e -V x Y dx = E 1 Y 2 R V ( x Y ) 2 Y e -V x Y dx = E 1 Y 2 E V (W ) 2 = E I(W ) Y 2 . 3.2.
Proof of Proposition 4. We start by proving the two-point convexity of I.

Proposition 10. The Fisher information matrix is operator convex on

F d , that is, for f 1 , f 2 ∈ F d , ∀ θ ∈ [0, 1], I θf 1 + (1 -θ)f 2 θI(f 1 ) + (1 -θ)I(f 2 ). ( 35 
)
Proof. First we claim that the function R : R d × R + → R d×d , given by R(x, λ) = xx T λ is jointly operator convex. To prove this, we need to show that for every θ ∈ (0, 1), x, y ∈ R d and λ, µ > 0,

R(θx + (1 -θ)y, θλ + (1 -θ)µ) θR(x, λ) + (1 -θ)R(y, µ). ( 36 
)
After rearranging, this can be rewritten as

θ(1 -θ) λ 2 xx T + µ 2 yy T -λµxy T -λµyx T 0, (37) 
which is true since it is equivalent to (λxµy)(λxµy) T 0.

Since the Fisher information matrix can be written as

I(f ) = R d R ∇f (x), f (x) dx, (38) 
the conclusion follows by the convexity of R and the linearity of ∇ and .

In order to derive the general Jensen inequality of Proposition 4 from Proposition 10, we will use a somewhat involved compactness argument that was invoked in [START_REF] Sergey | Fisher information and the central limit theorem[END_REF]. We point out that these intricacies arise since the space F d of smooth densities in R d is infinite-dimensional. As our argument shares similarities with Bobkov's, we shall only point out the necessary modifications which need to be implemented. We stard by proving the following technical lemma.

Lemma 11. Let X, {X k } k≥1 be random vectors in R d such that X k ⇒ X weakly. (i) If sup k I(X k ) op < ∞, then for every x ∈ S d-1 , I(X)x, x ≤ lim inf k→∞ I(X k )x, x . ( 39 
)
(ii) Moreover, we always have

I(X) op ≤ lim inf k→∞ I(X k ) op . ( 40 
)
Proof. We start with (39). It clearly suffices to show that any subsequence of {X k } has a further subsequence for which the conclusion holds. If I(X k ) op ≤ I < ∞ for all k ≥ 1, then

I(X k ) = tr(I(X k )) ≤ d I(X k ) op ≤ dI < ∞. ( 41 
)
Write f k and f for the densities of X k and X respectively. Choose and fix any subsequence of {f k }. By the proof of [10, Proposition 14.2], using the boundedness of Fisher informations, there is a further subsequence, say f k j , for which f k j → f and ∇f k j → ∇f a.e. as j → ∞. Therefore

lim j→∞ ∇f k j (u)∇f k j (u) T f k j (u) x, x I {f k j (u)>0} = ∇f (u)∇f (u) T f (u) x, x I {f (u)>0} ( 42 
)
for almost every u. Integration with respect to u, linearity and Fatou's lemma yield (39).

To prove (40), fix a subsequence X k j for which the lim inf in (40) is attained. Then the subsequence satisfies sup j I(X k j ) op < ∞ and thus by (39) for every x ∈ S d-1 we have

I(X)x, x ≤ lim inf j→∞ I(X k j )x, x ≤ lim inf j→∞ I(X k j ) op = lim inf k→∞ I(X k ) op . ( 43 
)
Taking a supremum over x ∈ S d-1 concludes the proof as I(X) is positive semi-definite.

Equipped with the lower semi-continuity of I, we proceed to the main part of the proof.

Proof of Proposition 4. Inequality (35) may be extended to arbitrary finite mixtures by induction, that is if p 1 , . . . , p N ≥ 0 satisfy n i=1 p i = 1, then

I N i=1 p i f i N i=1 p i I(f i ). ( 44 
)
We need to extend (44) to arbitrary mixtures. We write

F d (I) = {f ∈ F d : I(f ) op ≤ I} and F d (∞) = ∪ I F d (I)
. By the assumption F d I(g) op dπ(g) < ∞, we deduce that the measure π is supported on F d (∞). We shall prove that

∀x ∈ S d-1 , I F d g dπ(g) x, x ≤ F d I(g)x, x dπ(g). ( 45 
)
Fix x ∈ S d-1 and I ∈ N. By the operator convexity of the Fisher information matrix (Proposition 10), the functional 

f → I(f )x, x (46) 
I 1 π(F d (I)) F d (I) g dπ(g) x, x ≤ 1 π(F d (I)) F d (I) I(g)x, x dπ(g). ( 47 
)
Denoting by f I the density on the left-hand side of the inequality, we have that f I converges weakly to the density F d g dπ(g) as I → ∞ and moreover (47) yields

∀ I ≥ I 0 , I(f I ) op ≤ 1 π(F d (I)) F d (I) I(g) op dπ(g) ≤ 2 F d I(g) op dπ(g) < ∞. (48) 
Therefore, the assumptions of (39) are satisfied for {f I } I≥I 0 and thus

I F d g dπ(g) x, x ≤ lim inf I→∞ I 1 π(F d (I)) F d (I) g dπ(g) x, x (47) 
≤ lim inf

I→∞ 1 π(F d (I)) F d (I) I(g)x, x dπ(g) = F d I(g)x, x dπ(g), (49) 
and this concludes the proof.

Proof of Corollary 6. In view of ( 14) and Proposition 4, we have

I(YZ) = I E Y 1 det( √ 2πY) e -|Y -1 • | 2 /2 E Y I(YZ) = E (YY T ) -1 , (50) 
since the Fisher information matrix of a Gaussian vector with covariance matrix Σ is Σ -1 .

CLT for the Fisher information matrix

Before delving into the proof of Theorem 7, we shall discuss some geometric preliminaries. Recall that a normed space (V , • V ) has Rademacher type p ∈ [1, 2] with constant T ∈ (0, ∞) if for every n ∈ N and every v 1 , . . . , v n ∈ V , we have

1 2 n ε∈{-1,1} n n i=1 ε i v i p V ≤ T p n i=1 v i p V . ( 51 
)
The least constant T for which this inequality holds will be denoted by T p (V ). A standard symmetrisation argument (see, for instance, [START_REF] Ledoux | Probability in Banach spaces[END_REF]Proposition 9.11]) shows that for any n ∈ N and any

V -valued random vectors V 1 , . . . , V n with E[V i ] = 0 we have E n i=1 V i p V ≤ 2T p (V ) p n i=1 E V i p V . ( 52 
)
We denote by M d (R) the vector space of all d ×d matrices with real entries. We shall consider the p-Schatten trace class S d p of d × d matrices. This is the normed space

S d p = (M d (R), • S p )
, where for a d × d real matrix A, we denote [START_REF] Tomczak-Jaegermann | The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 ≤ p < ∞)[END_REF] (see also [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF] for the exact values of the constants) asserts that if p ∈ 

A S p def = d i=1 σ i (A) p 1/p (53) and by σ 1 (A) ≥ • • • ≥ σ d (A) the singular values of A. Evidently, • op = • S ∞ . A classical result of Tomczak-Jaegermann
) ∈ R n , we have p ∈ [2, ∞) =⇒ E n i=1 b i W i 1+δ S p ≤ 2 1+δ (p -1) δ E W 1 1+δ S p b 1+δ 1+δ ( 54 
)
and p ∈ [1 + δ, 2] =⇒ E n i=1 b i W i 1+δ S p ≤ 2 1+δ E W 1 1+δ S p b 1+δ 1+δ . ( 55 
)
Moreover,

E n i=1 b i W i 1+δ op ≤ (2e) 1+δ log δ (d + 1)E W 1 1+δ op b 1+δ 1+δ ( 56 
)
Proof. We first prove (54). In view of inequality (52), it suffices to prove that the Rademacher type

(1 + δ)-constant of S d p satisfies T 1+δ (S d p ) ≤ (p -1) δ 1+δ
. Given a normed space (X, • X ) and n ∈ N, consider the linear operator T n : n p (X) → L p ({-1, 1} n ; X) given by

∀ x = (x 1 , . . . , x n ) ∈ n p (X), [T n x](ε) = n i=1 ε i x i , ( 57 
)
where ε = (ε 1 , . . . , ε n ) ∈ {-1, 1} n . Then, it follows from (51) that

T p (X) = sup n∈N T n n p (X)→L p ({-1,1} n ;X) . (58) 
In fact, if X is finite-dimensional (like S d p ) then it was shown in [START_REF] Figiel | The dimension of almost spherical sections of convex bodies[END_REF]Lemma 6.1] that the supremum is attained for some n ≤ dim(X)(dim(X)+1)/2. Either way, by complex interpolation of vector-valued L p spaces (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Section 5.6]), we thus deduce that

T 1+δ S d p ≤ T 1 S d p θ T 2 S d p 1-θ , ( 59 
)
where θ 1 + 1-θ 2 = 1 1+δ . The conclusion of (54) follows by plugging-in the value of θ and the result of [START_REF] Tomczak-Jaegermann | The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 ≤ p < ∞)[END_REF][START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF]. The proof of inequality (55) is similar, interpolating between 1 and p.

Finally, to deduce (56), note that for any A ∈ M d (R),

A op ≤ A S p ≤ d 1/p A op ( 60 
)
and thus plugging p = log(d + 1) + 1 in (54) we derive the desired inequality.

Equipped with these inequalities, we can now proceed to the main part of the proof.

Proof of Theorem 7. Since ES n = 0 and Cov(S n ) = EYY T , we have

Cov(S n ) 1 2 I(S n )Cov(S n ) 1 2 -I d op ≤ EYY T op I(S n ) -EYY T -1 op , ( 61 
)
using that for any PSD matrices A, B, AB op ≤ A op B op and A

1 2 op = A 1 2
op . Now, S n is a Gaussian mixture itself and it satisfies

S n = n i=1 a i Y i Z i (d) = n i=1 a 2 i Y i Y T i 1/2 Z, ( 62 
)
Corollary 6 yields the estimate

I(S n ) E n i=1 a 2 i Y i Y T i -1 . ( 63 
)
Moreover by the multivariate Cramér-Rao lower bound [7, Theorem 3.4.4], we have

I(S n ) EYY T -1 (64) 
and thus the matrix in the right-hand side of (61) is positive semi-definite. Therefore, since • op is increasing with respect to the matrix ordering on positive matrices, (63) and (64) yield

I(S n ) -EYY T -1 op ≤ E n i=1 a 2 i Y i Y T i -1 -EYY T -1 op . ( 65 
)
For i = 1, . . . , n consider the i.i.d. random matrices

W i def = Y i Y T i -EYY T and denote the event E ε def = n i=1 a 2 i W i op ≤ ε .
To bound the probability of the complement of E ε , notice that

P{E c ε } = P n i=1 a 2 i W i 1+δ op > ε 1+δ ≤ 1 ε 1+δ E n i=1 a 2 i W i 1+δ op (56) ≤ 2e ε 1+δ log δ (d + 1)E W 1 1+δ op a 2+2δ 2+2δ .
(66)

Moreover, since E W 1 1+δ op ≤ 2 1+δ E YY T 1+δ op ,we get the bound

P{E c ε } ≤ 4e ε 1+δ log δ (d + 1)E YY T 1+δ op a 2+2δ 2+2δ . ( 67 
)
Next, we write

E n i=1 a 2 i Y i Y T i -1 = E n i=1 a 2 i Y i Y T i -1 I E ε + E n i=1 a 2 i Y i Y T i -1 I E c ε ( 68 
)
and use the triangle inequality to get

E n i=1 a 2 i Y i Y T i -1 -EYY T -1 op ≤ E n i=1 a 2 i Y i Y T i -1 -EYY T -1 I E ε op + P{E c ε } EYY T -1 op + E n i=1 a 2 i Y i Y T i -1 I E c ε op . ( 69 
)
To control the first term in (69), we use Jensen's inequality for • op to get

E n i=1 a 2 i Y i Y T i -1 -EYY T -1 I E ε op ≤ E n i=1 a 2 i Y i Y T i -1 -EYY T -1 op I E ε ≤ EYY T -1 op E n i=1 a 2 i Y i Y T i -1 op n i=1 a 2 i Y i Y T i -EYY T op I E ε = EYY T -1 op E n i=1 a 2 i Y i Y T i -1 op n i=1 a 2 i W i op I E ε , (70) 
where the second line follows from the inequality

X -1 -Y -1 op ≤ X -1 op Y -1
op X -Y op for positive matrices X, Y . Now, by the definition of the event E ε the last factor is at most ε and thus we derive the bound

E n i=1 a 2 i Y i Y T i -1 -EYY T -1 I E ε op ≤ EYY T -1 op E n i=1 a 2 i Y i Y T i -1 op ε. (71) 
Finally, the function A → A -1 is operator convex on positive matrices, thus

n i=1 a 2 i Y i Y T i -1 n i=1 a 2 i Y i Y T i -1 and EYY T -1 E YY T -1 . ( 72 
)
Applying the operator norm on both sides, plugging this in (71) and using the triangle inequality after taking the expectation, we conclude that

E n i=1 a 2 i Y i Y T i -1 -EYY T -1 I E ε op ≤ E YY T -1 op 2 ε. ( 73 
)
In view of (67) and (72), the second term in (69) is bounded by

P{E c ε } EYY T -1 op ≤ 4e ε 1+δ log δ (d + 1)E YY T 1+δ op E YY T -1 op a 2+2δ 2+2δ . ( 74 
)
To bound the third term in (69), we use Jensen's inequality and (72) to get

E n i=1 a 2 i Y i Y T i -1 I E c ε op ≤ E n i=1 a 2 i Y i Y T i -1 op I E c ε (72) ≤ E n i=1 a 2 i Y i Y T i -1 op I E c ε ≤ E n i=1 a 2 i Y i Y T i -1 op I E c ε ( 75 
)
where the last estimate follows from the triangle inequality. Now, by Hölder's inequality,

E n i=1 a 2 i Y i Y T i -1 op I E c ε ≤ E n i=1 a 2 i Y i Y T i -1 op 1+δ 1 1+δ P{E c ε } δ 1+δ ≤ E YY T -1 1+δ op 1 1+δ P{E c ε } δ 1+δ , ( 76 
)
where the last line follows from the triangle inequality in L 1+δ . Combining this with (75) and (67) we thus conclude that

E n i=1 a 2 i Y i Y T i -1 I E c ε op ≤ 4e ε δ log δ 2 1+δ (d + 1) E YY T 1+δ op δ 1+δ E YY T -1 1+δ op 1 1+δ a 2δ 2+2δ .
Plugging this bound along with (73) and ( 74) in (69), we get that for every ε > 0,

E n i=1 a 2 i Y i Y T i -1 -EYY T -1 op Y ε + log δ (d + 1) a 2+2δ 2+2δ ε 1+δ + log δ 2 1+δ a 2δ 2+2δ ε δ (77)
where the implicit constant depends only on the moments of YY T op . Finally, the (almost) optimal choice ε = a 2δ 1+δ 2+2δ yields the desired bound. Remark 13. We insisted on stating Theorem 7 as a bound for the operator norm of the (normalised) Fisher information matrix of S n but this is not necessary. An inspection of the proof reveals that given any norm • on M d (R) which is operator monotone, i.e.

0 A B =⇒ A ≤ B ( 78 
)
and satisfies the ideal property

∀ A, B ∈ M d (R), AB ≤ A op B , ( 79 
)
we can derive a bound of the form

Cov(S n ) 1 2 I(S n )Cov(S n ) 1 2 -I d ≤ C Y, • a 2δ 1+δ 2+2δ ( 80 
)
for random matrices Y satisfying [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF]. The implicit constant depends on moments of YY T and YY T op and on the Rademacher type (1 + δ)-constant of • . These conditions are, in particular, satisfied for all S d p norms and the corresponding type constant is subpolynomial in d for p ≥ 1 + δ.

Remark 14. As was already mentioned in the introduction, bounding the relative Fisher information of a random vector automatically implies bounds for the relative entropy in view of the Gaussian logarithmic Sobolev inequality [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF]. However, bounds for the Fisher information matrix allow one to get better bounds for the relative entropy using more sophisticated functional inequalities which capture the whole spectrum of I(X). We refer to [START_REF] Eskenazis | Intrinsic dimensional functional inequalities on model spaces[END_REF] for more on this kind of inequalities.

Finally, we present some examples of Gaussian mixtures related to conditions [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF].

Examples. 1. Fix p ∈ (0, 2) and consider the random variable X p with density c p e -|x| p , where x ∈ R. It was shown in [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]Lemma 23] that X can be expressed as

X p (d) = (2V p 2 ) -1 2 Z, ( 81 
)
where V p 

Proposition 4 .

 4 Fix d ∈ N. If π is a Borel probability measure on F d , then I F d g dπ(g)

  is convex and by Lemma 11 lower semi-continuous on F d (I). Again by operator convexity, the set F d (I) is convex and by Lemma 11 it is closed. Now we may repeat exactly the same proof as in [10, Proposition 15.1, Steps 1-2], but working with the functional I(f )x, x instead of the Fisher information I(f ), to obtain (45) if the measure π is supported on F d (I).To derive inequality (45) in general, fix I 0 large enough such that π(F d (I 0 )) > 1 2 and for I ≥ I 0 write the inequality (45) for the restriction of π to F d (I), namely

√ p - 1 .Lemma 12 .

 112 [START_REF] Shiri Artstein | On the rate of convergence in the entropic central limit theorem[END_REF][START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF], then S d p has Rademacher type p constant T p S d p = 1 and if p ≥ 2, then S d p has Rademacher type 2 constant T 2 S d p ≤ We shall use the following consequence of this. Fix n, d ∈ N and let W 1 , . . . , W n be i.i.d. random d × d matrices with E[W i ] = 0. For any δ ∈ (0, 1] and any vector b = (b 1 , . . . , b n

2 has density proportional to t -1 2 g p 2 (

 22 t) and g a is the density of the standard positive a-stable law. The moments of Y p = V -1/2

  It is well-known (see, for instance[START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF] Lemma 23]) that for p ∈ (0, 2), the standard symmetric p-stable random variable X p can be written as + 2δ moment for any value of p, so Theorem 7 does not apply.

			X p	(d) = (2G p 2	)	1 2 Z,	(84)
	where G p/2 is a standard positive not have a finite 2	p 2 stable random variable. In this setting, the factor G	1 2 p 2	does
		p	then satisfy
		2					
								∞
	∀α ∈ R,	EY α p = EV -α/2 p 2	= κ p	0	t -α+1 2 g p 2	(t) dt,	(82)
	for some κ p > 0. Since positive β ∈ -∞, p 2 , the assumptions (17) are satisfied when p 2 -stable random variables have finite β-moments for all powers
		min{2δ + 2, -2δ -2} > -p -1	(83)
	or, equivalently, δ <						

p-1 2 . Therefore, Theorem 7 applies for these variables when p ∈ (1, 2).
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