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Introduction

Let {-1, 1} n be the n-dimensional discrete hypercube equipped with the Hamming metric ∀ x, y ∈ {-1, 1} n , ρ(x, y) = 1 2

n i=1 |x(i) -y(i)|, (1) 
where x = (x(1), . . . , x(n)) and y = (y(1), . . . , y(n)). The purpose of the present paper is to investigate certain metric properties of the Hamming cube via heat flow methods.

1.1. Dimensionality of Hamming metrics. If (M, d M ) is a metric space and (Y , • Y ) is a normed space, we say that M embeds into Y with bi-Lipschitz distortion at most D ∈ [1, ∞), if there exists a mapping f : M → Y satisfying

∀ p, q ∈ M, d M (p, q) ≤ f (p) -f (q) Y ≤ Dd M (p, q). ( 2 
)
The least D ≥ 1 for which such an embedding exists will be denoted by c Y (M). The rapidly growing field of metric dimension reduction aims to uncover conditions under which given families of metric spaces admit (or do not admit) embeddings into low-dimensional normed spaces with prescribed properties. Without attempting to survey this vast area, we note that important contributions have been made on low-dimensional embeddings of finite subsets of Hilbert space [START_REF] Johnson | Extensions of Lipschitz mappings into a Hilbert space[END_REF], arbitrary finite metric spaces [START_REF] Johnson | On Lipschitz embedding of finite metric spaces in low-dimensional normed spaces[END_REF][START_REF] Arias-De-Reyna | Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces[END_REF][START_REF] Matoušek | Note on bi-Lipschitz embeddings into normed spaces[END_REF][START_REF] Matoušek | On the distortion required for embedding finite metric spaces into normed spaces[END_REF], discrete hypercubes [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF][START_REF] Lee | Metric structures in L 1 : dimension, snowflakes, and average distortion[END_REF], diamond graphs [START_REF] Brinkman | On the impossibility of dimension reduction in l 1[END_REF][START_REF] Lee | Embedding the diamond graph in L p and dimension reduction in L 1[END_REF][START_REF] Naor | Impossibility of dimension reduction in the nuclear norm[END_REF], Laakso graphs [START_REF] Gupta | Bounded geometries, fractals, and low-distortion embeddings[END_REF][START_REF] Lee | Metric structures in L 1 : dimension, snowflakes, and average distortion[END_REF], ultrametric spaces [START_REF] Bartal | Dimension reduction for ultrametrics[END_REF], series-parallel graphs [START_REF] Brinkman | Vertex cuts, random walks, and dimension reduction in series-parallel graphs[END_REF], recursive cycle graphs [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF], Heisenberg-type metrics [START_REF] Lafforgue | A doubling subset of L p for p > 2 that is inherently infinite dimensional[END_REF][START_REF] Naor | Foliated corona decompositions[END_REF], p variants of thin Laakso structures [START_REF] Bartal | On the impossibility of dimension reduction for doubling subsets of p[END_REF][START_REF] Baudier | No dimension reduction for doubling subsets of q when q > 2 revisited[END_REF] and expander graphs [START_REF] Naor | A spectral gap precludes low-dimensional embeddings[END_REF][START_REF] Naor | An average John theorem[END_REF]. We refer to the survey [START_REF] Naor | Metric dimension reduction: a snapshot of the Ribe program[END_REF] for more bibliographic information and to [START_REF] Indyk | Algorithmic applications of low-distortion geometric embeddings[END_REF][START_REF] Linial | Finite metric-spaces-combinatorics, geometry and algorithms[END_REF][START_REF] Santosh | The random projection method[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF] for a sample of algorithmic applications.

The first to study the bi-Lipschitz embeddability of hypercubes into normed spaces was Enflo. In the seminal work [START_REF] Enflo | On the nonexistence of uniform homeomorphisms between L p -spaces[END_REF], he introduced the notion of roundness of a metric space and used it to show that any embedding of the Hamming cube {-1, 1} n into an L p (µ) space, where p ∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF], incurs bi-Lipschitz distortion at least n 1-1/p (see also [START_REF] Enflo | On a problem of Smirnov[END_REF][START_REF] Enflo | On infinite-dimensional topological groups[END_REF] for additional early results along these lines). More specifically, Enflo proved that if p ∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF], then any mapping of the form f : {-1, 1} n → L p (µ) satisfies the estimate (µ) dσ n (x) ≤ n i=1 {-1,1} n f (x)-f x(1), . . . , -x(i), . . . , x(n) p L p (µ) dσ n (x), [START_REF] Arias-De-Reyna | Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces[END_REF] where σ n is the uniform probability on {-1, 1} n . This readily implies that if f has bi-Lipschitz distortion D, then D ≥ n 1-1/p . In the follow-up work [START_REF] Enflo | On infinite-dimensional topological groups[END_REF], he raised an influential problem by asking for which normed spaces (X, • X ), inequality (3) is satisfied for X-valued functions f up to a multiplicative constant T , independent of the choice of f or the dimension n. Restricting this requirement to linear functions f (x) = n i=1 x i v i , one recovers the necessary condition

{-1,1} n f (x)-f (-x) p L p
{-1,1} n n i=1 x i v i p X dσ n (x) ≤ T p n i=1 v i p X , (4) 
which must be satisfied for every n ∈ N and vectors v 1 , . . . , v n ∈ X. If a normed space X satisfies (4), we say that X has Rademacher type p and the least constant T is denoted by T p (X). After decades of substantial efforts (see [START_REF] Bourgain | On type of metric spaces[END_REF][START_REF] Pisier | Probabilistic methods in the geometry of Banach spaces[END_REF][START_REF] Naor | Remarks on non linear type and Pisier's inequality[END_REF][START_REF] Hytönen | Pisier's inequality revisited[END_REF][START_REF] Eskenazis | On Pisier's inequality for UMD targets[END_REF]), Ivanisvili, van Handel and Volberg resolved Enflo's problem in the breakthrough work [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] by proving the sufficiency of this condition, namely that any normed space of Rademacher type p also has Enflo's nonlinear type p. Consequently, any bi-Lipschitz embedding of {-1, 1} n into a normed space X of Rademacher type p incurs distortion at least a constant multiple of T p (X) -1 n 1-1/p . We note in passing that, conversely, a classical theorem of Pisier [START_REF] Pisier | Sur les espaces de Banach qui ne contiennent pas uniformément de l 1 n[END_REF] implies that if X does not have type p for any p > 1, then {-1, 1} n embeds into X with bi-Lipschitz distortion at most 1 + ε, for any ε > 0. Independently of this line of research, the beautiful (but perhaps overlooked) work [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF] of Oleszkiewicz established a nonembeddability result for discrete hypercubes in the context of dimensionality reduction. Following Ball, Carlen and Lieb [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF], we say that a normed space is p-uniformly smooth, where p ∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF], if there exists a constant S > 0 such that

∀ x, y ∈ X, x p X + y p X 2 ≤ x + y 2 p X + S p x -y 2 p X ; (5) 
the least such constant S is denoted by S p (X). A well-known tensorization argument due to Pisier [START_REF] Pisier | Martingales with values in uniformly convex spaces[END_REF] shows that T p (X) ≤ S p (X), yet there exist examples of normed spaces X for which

T p (X) < ∞ whereas S p (X) = ∞ for p ∈ (1, 2]
, see [START_REF] Pisier | Espaces L p applications radonifiantes et géométrie des espaces de Banach[END_REF][START_REF] James | Nonreflexive spaces of type 2[END_REF][START_REF] Pisier | Random series in the real interpolation spaces between the spaces v p[END_REF]. The main result of Oleszkiewicz's paper [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF] asserts that the distortion required to embed {-1, 1} n into a finite-dimensional normed space X satisfies

c X {-1, 1} n ≥ sup p∈[1,2] n S p (X) min{n, dim(X)} 1/p (6) 
(see also [START_REF] Bárány | On some combinatorial questions in finite-dimensional spaces[END_REF] for a precursor of this result for linear embeddings). This substantially improves the bound c X ({-1, 1} n ) sup p∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF] T p (X) -1 n 1-1/p which follows from [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF], at least for spaces X with p-smoothness constant S p (X) 1 and dimension dim(X) < < n.

The first goal of the present paper is to revisit the technique used for Oleszkiewicz's nonembeddability theorem [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF], in particular proving the following mutual refinement of his result and of the recent work of Ivanisvili, van Handel and Volberg [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF].

Theorem 1. Let (X, • X ) be a finite-dimensional normed space. Then, for any n ≥ 1, we have

c X {-1, 1} n sup p∈[1,2] n T p (X) min{n, dim(X)} 1/p (7)
We emphasize that, in contrast to Oleszkiewicz's bound [START_REF] Bárány | On some combinatorial questions in finite-dimensional spaces[END_REF], Theorem 1 captures more accurately the nonembeddability of the hypercube into (finite-dimensional subspaces of) normed spaces which have Rademacher type p but are not r-smooth for any r ∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF], see [START_REF] James | Nonreflexive spaces of type 2[END_REF][START_REF] Pisier | Random series in the real interpolation spaces between the spaces v p[END_REF]. About the proof. Theorem 1 is proven by a combination of semigroup tools with a clever topological trick of [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF]. More specifically, let f : {-1, 1} n → X be a function, where X is a ddimensional normed space and d < n. An application of the Borsuk-Ulam theorem [START_REF] Matoušek | Using the Borsuk-Ulam theorem[END_REF] for the unique multilinear extension of f implies that there exists a subset σ ⊆ {1, . . . , n} with |σ | = d, a product measure ν on {-1, 1} σ and a point w ∈ {-1, 1} σ c such that

{-1,1} σ f (x, w) dν(x) = {-1,1} σ f (-x, -w) dν(x). (8) 
Then, a Poincaré inequality à la Enflo for the product measure ν (instead of the uniform measure σ d ) on the d-dimensional subcubes {-1, 1} σ × {w} and {-1, 1} σ × {-w} yields the distortion bounds of Theorem 1 (see Theorem 14 and also equation (78) below).

In the case of p-uniformly smooth spaces, Oleszkiewicz [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF] used [START_REF] Bartal | Dimension reduction for ultrametrics[END_REF] and a bootstrap argument for the Lipschitz constant of f , based on the two-point inequality [START_REF] Ball | Sharp uniform convexity and smoothness inequalities for trace norms[END_REF], to obtain [START_REF] Bárány | On some combinatorial questions in finite-dimensional spaces[END_REF]. In our case, the biased Poincaré inequality which will yield [START_REF] Bartal | On the impossibility of dimension reduction for doubling subsets of p[END_REF] is an extension of an inequality for the uniform measure that was proven in [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF]. The key technical contribution of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] was a novel representation of the time derivative of the heat flow on {-1, 1} n . Instead, we consider a Markov process having the product measure ν as stationary measure (see Section 2) and prove a formula for the time derivative of the corresponding semigroup (see Proposition 13) which extends the formula of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] (see also [START_REF] Naor | Comparison of metric spectral gaps[END_REF] below). Due to the fact that our product measure ν is no longer the stationary measure of the random walk on a group, the resulting identity lacks some homogeneity properties that were used in [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF], but nevertheless it is sufficient for the proof of the biased Poincaré inequality which is needed for our geometric application.

1.2.

A Pisier-Talagrand inequality on the biased cube. For α ∈ (0, 1) we denote by µ α the αbiased probability measure on {-1, 1} with µ α {1} = α and µ α {-1} = 1α. The proof of Theorem 1 yields as a consequence the following extension and refinement of Pisier's inequality [START_REF] Pisier | Probabilistic methods in the geometry of Banach spaces[END_REF].

Theorem 2. For every p ∈ [1, ∞) and α ∈ (0, 1), there exist K p,α , C α ∈ (0, ∞) such that the following holds. For any normed space (X, • X ) and any n ∈ N, every function

f : {-1, 1} n → X satisfies f - {-1,1} n f dµ n α L p (log L) p/2 (µ n α ;X) ≤ K p,α        {-1,1} n n i=1 δ i α i f p L p (µ n α ;X) dσ n (δ)        1/p + C α (log n + 1) {-1,1} n n i=1 δ i α i f L 1 (µ n α ;X) dσ n (δ). ( 9 
)
If additionally X is assumed to be of finite cotype, then there exists K p,α (X) ∈ (0, ∞) such that

f - {-1,1} n f dµ n α L p (log L) p/2 (µ n α ;X) ≤ K p,α (X)        {-1,1} n n i=1 δ i α i f p L p (µ n α ;X) dσ n (δ)        1/p . ( 10 
)
The (standard) definitions of Orlicz norms, cotype and discrete derivatives will be given at the main part of the article. Theorem 2 is an optimal vector-valued version of a deep logarithmic Sobolev inequality of Talagrand [START_REF] Talagrand | Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem[END_REF]. In the case of the uniform measure which corresponds to α = 1 2 , Theorem 2 was proven recently in [START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF].

1.3. Metric stable type. Besides its interest in the context of embedding theory, the work [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] of Ivanisvili, van Handel and Volberg was a major contribution to a long-standing research program in nonlinear functional analysis called the Ribe program. Put simply, the foundational idea of the program (as put forth by Bourgain [START_REF] Bourgain | The metrical interpretation of superreflexivity in Banach spaces[END_REF], who was inspired by a landmark rigidity theorem of Ribe [START_REF] Ribe | On uniformly homeomorphic normed spaces[END_REF]) is that isomorphic local properties of normed spaces can be equivalently reformulated using only distances between pairs of points, with no reference to the spaces' linear structure (see also [START_REF] Naor | An introduction to the Ribe program[END_REF][START_REF] Ball | The Ribe programme[END_REF]). In this sense, the main result of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] completes the Ribe program for Rademacher type by proving that it is equivalent to nonlinear Enflo type.

Among the various isomorphic properties studied in the local theory of normed spaces, stable type (see [START_REF] Pisier | Type" des espaces normés. In Séminaire Maurey-Schwartz 1973-1974: Espaces L p , applications radonifiantes et géométrie des espaces de Banach[END_REF][START_REF] Pisier | Une propriété du type p-stable[END_REF]) plays a prominent role, in particular due to its relation to the problem of identifying n p subspaces of Banach spaces [START_REF] Pisier | On the dimension of the l n p -subspaces of Banach spaces, for 1 ≤ p < 2[END_REF]. Recall that a symmetric random variable θ is distributed according to the standard p-stable law, where p ∈ (0, 2], if it satisfies E exp(itθ) = exp(-|t| p ) for every t ∈ R. A Banach space (X, • X ) is said to have stable type p if for every r < p, every n ∈ N and every vectors v 1 , . . . , v n ∈ X, we have

E n i=1 θ i v i r X 1/r ≤ C p,r (X) n i=1 v i p X 1/p , ( 11 
)
where the constant C p,r (X) depends only on p, r and X, but not on n or the choice of v 1 , . . . , v n , and θ 1 , θ 2 , . . . are independent standard symmetric p-stable random variables.

In the special case p = 2, p-stable random variables are Gaussians and thus stable type 2 coincides with Rademacher type 2. Moreover, any space with stable type p ∈ [1, 2) also has Rademacher type p but the converse does not necessarily hold. In fact, early results of Maurey and Pisier in the theory of type (see [START_REF] Pisier | Type" des espaces normés. In Séminaire Maurey-Schwartz 1973-1974: Espaces L p , applications radonifiantes et géométrie des espaces de Banach[END_REF]Proposition 3] and [59, Théorème 1]), show that a normed space X has stable type p ∈ [1, 2) if and only if X has Rademacher type p + ε for some ε > 0. Therefore, formally, the Ribe program for stable type p ∈ [1, 2) has been completed by [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF]: a normed space X has stable type p if and only if X has Enflo type p + ε for some ε > 0. In other words, stable type p of a normed space X can be characterized by the validity of some, a priori unknown, X-valued Poincaré-type inequality from a given family.

To amend this, we shall introduce a new nonlinear invariant called metric stable type which is again a Poincaré-type inequality for functions defined on the discrete hypercube and will serve as a metric characterization of stable type for normed spaces. If (M, d M ) is a metric space and f : {-1, 1} n → M is an M-valued function, we denote

∀ x ∈ {-1, 1} n , d i f (x) def = 1 2 d M f (x), f x(1), . . . , -x(i), . . . , x(n) . (12) 
Moreover, we shall denote the weak p norm on R n by

∀ w ∈ R n , w n p,∞ def = sup r≥0 r • #{i : |w i | ≥ r} 1/p , ( 13 
)
where #S denotes the cardinality of a finite set S.

Definition 3. A metric space (M, d M ) has metric stable type p ∈ (0, 2) with constant S ∈ (0, ∞) if for any n ∈ N, every function f : {-1, 1} n → M satisfies {-1,1} n d M f (x), f (-x) p dσ n (x) ≤ S p {-1,1} n d 1 f (x), . . . , d n f (x) p n p,∞ dσ n (x). ( 14 
) Since • n p,∞ ≤ • n
p by Markov's inequality, any space with metric stable type p also has Enflo type p with the same constant. We shall prove the following metric characterization.

Theorem 4. A normed space X has metric stable type p ∈ [1, 2) if and only if X has stable type p.

Pisier's K-convexity theorem [START_REF] Pisier | Holomorphic semigroups and the geometry of Banach spaces[END_REF], asserts that a Banach space X is K-convex if and only if it has Rademacher type p for some p > 1. In view of the aforementioned characterization of stable type [START_REF] Pisier | Type" des espaces normés. In Séminaire Maurey-Schwartz 1973-1974: Espaces L p , applications radonifiantes et géométrie des espaces de Banach[END_REF][START_REF] Pisier | Une propriété du type p-stable[END_REF], this is equivalent to X having stable type 1 and thus we derive the following metric characterization of K-convexity by a Poincaré inequality.

Corollary 5. A normed space X is K-convex if and only if X has metric stable type 1.

Embeddings. The fact that stable type of Banach spaces is a refinement of Rademacher type can also be seen at the level of (linear) embeddings. Indeed, if X is a space of Rademacher type p, then standard considerations show that the Banach-Mazur distance between n 1 and any n-dimensional subspace of X is at least a constant multiple of n 1-1/p . This estimate is sharp for X = p . On the other hand, if X has stable type p, then the characterization of [START_REF] Pisier | Type" des espaces normés. In Séminaire Maurey-Schwartz 1973-1974: Espaces L p , applications radonifiantes et géométrie des espaces de Banach[END_REF][START_REF] Pisier | Une propriété du type p-stable[END_REF] implies that X has Rademacher type r for some r > p. Hence, there exists ε(X) > 0 such that the Banach-Mazur distance between n 1 and any n-dimensional subspace of X is at least n 1-1/p+ε(X) . In the metric setting, Enflo type gives distortion lower bounds for embeddings of {-1, 1} n . More generally, given a vector w = (w 1 , . . . , w n ) ∈ R n + , consider the metric space {-1, 1} n w which is the hypercube {-1, 1} n equipped with the weighted Hamming metric

∀ x, y ∈ {-1, 1} n , ρ w (x, y) = 1 2 n i=1 w i |x(i) -y(i)|. ( 15 
)
It follows readily from the definitions that if M has Enflo type p, then any embedding of {-1, 1} n w into M incurs distortion at least a constant multiple of w n 1 / w n p . For spaces of metric stable type p, we have the following improvement for the distortion of weighted hypercubes. Proposition 6. If a metric space (M, d M ) has metric stable type p with constant S, then

∀ w ∈ R n + , c M {-1, 1} n w ≥ w n 1 S w n p,∞ . ( 16 
)
Concretely, choosing the weight vector w with w i = i -1/p , we have that w n p,∞ 1, whereas w n p (log n) 1/p , therefore any embedding of {-1, 1} n w into a metric space of Enflo type p incurs distortion at least n 1-1/p /(log n) 1/p instead of the asymptotically stronger lower bound n 1-1/p which one gets for target spaces of metric stable type p.

On the nonlinear Maurey-Pisier problem for type. A landmark theorem of Maurey and Pisier [START_REF] Maurey | Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach[END_REF] asserts that if p X ∈ [START_REF] Andoni | Near linear lower bound for dimension reduction in 1[END_REF][START_REF] Andoni | Approximate nearest neighbor search in high dimensions[END_REF] is the supremal Rademacher type of an infinite-dimensional Banach space X, then X containts the spaces n p X uniformly. In [START_REF] Pisier | On the dimension of the l n p -subspaces of Banach spaces, for 1 ≤ p < 2[END_REF], Pisier used stable type to give a much simpler proof of this important theorem, while simultaneously obtaining the following quantitative refinement: for any ε > 0 and p ∈ [1, 2), every normed space X containts a subspace which is (1 + ε)-isomorphic to d p provided that d is smaller than some explicit (unbounded) function of ε and the stable type p constant of X. When X is infinite-dimensional, this yields the result of [START_REF] Maurey | Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach[END_REF] since X does not have stable type p X by the results of [START_REF] Pisier | Type" des espaces normés. In Séminaire Maurey-Schwartz 1973-1974: Espaces L p , applications radonifiantes et géométrie des espaces de Banach[END_REF][START_REF] Pisier | Une propriété du type p-stable[END_REF].

In [START_REF] Bourgain | On type of metric spaces[END_REF], Bourgain, Milman and Wolfson introduced a notion of nonlinear type, which is now referred to as BMW type, and showed that if a metric space M does not have BMW type p for any p > 1, then c M ({-1, 1} n ) = 1 for any n ∈ N. Finding a satisfactory nonlinear Maurey-Pisier theorem for metric spaces of supremal nonlinear type p > 1 remains an open problem (see also [START_REF] Naor | Comparison of metric spectral gaps[END_REF]Section 6]). It would be interesting to understand whether the newly introduced notion of metric stable type can lead to a nonlinear version of the result of [START_REF] Pisier | On the dimension of the l n p -subspaces of Banach spaces, for 1 ≤ p < 2[END_REF]. We refer to Section 6 for further remarks and open problems which naturally arise from this work.
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Preliminaries

2.1. Probability. In this section, we outline the basics of analysis on the biased hypercube, with an emphasis on the underlying semigroup structure.

The biased measure. Recall that, for α ∈ (0, 1), the α-biased probability measure µ α on {-1, 1} is given by µ α {1} = α and µ α {-1} = 1α. Moreover, if α α α = (α 1 , . . . , α n ) ∈ (0, 1) n , then we shall denote by µ α α α the product measure

µ α 1 ⊗ • • • ⊗ µ α n on the hypercube {-1, 1} n .
The Markov process. For α ∈ (0, 1), consider the transition matrices {p α t } t≥0 on {-1, 1} given by

∀ t ≥ 0, p α t (1, 1) p α t (1, -1) p α t (-1, 1) p α t (-1, -1) = 1 -(1 -e -t )(1 -α) (1 -e -t )(1 -α) (1 -e -t )α 1 -(1 -e -t )α (17) 
Moreover, for α α α = (α 1 , . . . , α n ) ∈ (0, 1) n consider the corresponding tensor products {p α α α t } t≥0 on {-1, 1} n given by

∀ x, y ∈ {-1, 1} n , p α α α t (x, y) = n i=1 p α i t x(i), y(i) . ( 18 
)
As each p α i t is a row-stochastic 2×2 matrix with nonnegative entries, the same holds also for the 2 n × 2 n matrices p α α α t . Therefore, {p α α α t } t≥0 is the transition kernel of a time-homogeneous Markov chain

{X α α α t } t≥0 on {-1, 1} n , that is ∀ t, s ≥ 0, P X α α α t+s = y X α α α s = x = p α α α t (x, y), ( 19 
)
where x, y ∈ {-1, 1} n . We shall need the following simple facts for this process.

Lemma 7. Fix α α α ∈ (0, 1) n and let {X α α α t } t≥0 be a Markov process on {-1, 1} n with transition kernels {p α α α t } t≥0 . Then, {X α α α t } t≥0 is stationary and reversible with respect to µ α α α . Proof. Due to the product structure of the Markov chain, it suffices to consider the case n = 1, that is, to prove that for α ∈ (0, 1),

∀ x, y ∈ {-1, 1}, µ α (x)p α t (x, y) = µ α (y)p α t (y, x). ( 20 
)
This follows automatically by the expression [START_REF] Cordero-Erausquin | Talagrand's influence inequality revisited[END_REF] for the transition matrix. The simple fact that reversibility implies stationarity is well-known [START_REF] Levin | Markov chains and mixing times[END_REF]Proposition 1.20].

The stationary Markov process {X α α α t } t≥0 has a simple probabilistic interpretation which we shall now describe. For i = 1, . . . , n, let {N t (i)} t≥0 be n independent Poisson processes of unit rate and suppose that X α α α 0 is sampled from µ α α α independently of {N t } t≥0 . Then, at any time t > 0 for which the process N t (i) jumps for some i ∈ {1, . . . , n}, the corresponding value X α α α t (i) is updated independently from µ α i . An explicit calculation shows that this probabilistic construction gives rise exactly to the transition kernel of ( 17) and [START_REF] Eldan | Concentration on the Boolean hypercube via pathwise stochastic analysis[END_REF].

The corresponding semigroup. Fix α α α ∈ (0, 1) n and let {P α α α t } t≥0 be the Markov semigroup associated to the process {X α α α t } t≥0 . Concretely, if X is a vector space, then for every function f : {-1, 1} n → X and t ≥ 0, we denote by

∀ x ∈ {-1, 1} n , P α α α t f (x) = E f X α α α t X α α α 0 = x . ( 21 
)
In view of the above interpretation of {X α α α t } t≥0 by means of a Poisson process, the action of the semigroup {P α α α t } t≥0 can be computed via the identity

P α α α t f = S⊆{1,...,n} P N t (i) > 0 for i ∈ S and N t (i) = 0 for i S {-1,1} S f d i∈S µ α i = S⊆{1,...,n} (1 -e -t ) |S| e -t(n-|S|) {-1,1} S f d i∈S µ α i . ( 22 
)
Lemma 8. Fix α α α = (α 1 , . . . , α n ) ∈ (0, 1) n and let {P α α α t } t≥0 be the semigroup [START_REF] Enflo | On infinite-dimensional topological groups[END_REF]. Then, the action of its generator L α α α on a function f : {-1, 1} n → X, where X is a vector space, is given by

∀ x ∈ {-1, 1} n , L α α α f (x) = - n i=1 α i i f (x) ( 23 
)
where

β i f (x) = f (x) -{-1,1} f (x 1 , . . . , x i-1 , y, x i+1 , . . . , x n ) dµ β (y) for β ∈ (0, 1).
Proof. The claim follows from the expression [START_REF] Eskenazis | On Pisier's inequality for UMD targets[END_REF] of the semigroup and the definition

∀ x ∈ {-1, 1} n , L α α α f (x) = d dt t=0 P α α α t f (x).
2.2. Topology. Apart from the probabilistic elements from analysis on biased hypercubes, the proof of Theorem 1 also has a crucial topological component, following an idea of [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF].

The Borsuk-Ulam theorem. While the Poincaré-type inequality of Enflo for X-valued functions on {-1, 1} n cannot capture the dimension of the target space X, a key part of the argument towards Theorem 1 is to show that there exists a dim(X)-dimensional subcube of {-1, 1} n along with a bias vector α α α for which the α α α-biased Poincaré inequalities (see Theorem 14 below) on this subcube and its antipodal yield much better distortion lower bounds. This will be proven using the Borsuk-Ulam theorem from algebraic topology, see [START_REF] Matoušek | Using the Borsuk-Ulam theorem[END_REF].

Theorem 9 (Borsuk-Ulam). For every continuous function g : S d → R d , where d ∈ N, there exists a point w ∈ S d such that g(w) = g(-w).

Multilinear extension and low-dimensional faces of the cube. Every function f : {-1, 1} n → X admits a unique multilinear extension on the solid cube [-1, 1] n , given by

∀ y ∈ [-1, 1] n , F(y) def = S⊆{-1,1} n 1 2 n x∈{-1,1} n f (x)w S (x) w S (y), (24) 
where w S (a) = i∈S a i , which is usually referred to as the Fourier-Walsh expansion of f . Extending f to the continuous cube allows for the use of topological methods. In what follows, we will exploit the fact that the cube [-1, 1] n is equipped with a canonical CW complex structure. Concretely, for d ∈ {1, . . . , n}, consider the subsets

C n d = x ∈ [-1, 1] n : there exists σ ⊆ {1, . . . , n} with |σ | ≥ n -d and |x(i)| = 1, ∀ i ∈ σ ( 25 
)
consisting of all -dimensional faces of [-1, 1] n for ≤ d, so that C n n = [-1, 1] n and C n 0 = {-1, 1} n . We shall use the following elementary topological fact (see [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF]Lemma 1]). 

F(h d (w)) = g(w) = g(-w) = F(h d (-w)) = F(-h d (w)) (26) 
and the conclusion follows by choosing z = h d (w) ∈ C n d .

Proof of Theorem 1

We are now ready to proceed to the main part of the proof. The main analytic component is a biased version of the key formula of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] for the time derivative of the heat flow on {-1, 1} n . Given t ≥ 0, α ∈ (0, 1) and an auxiliary parameter θ ∈ R, consider the matrix η α t (•, •; θ) given by

∀ t ≥ 0, η α t (1, 1; θ) η α t (1, -1; θ) η α t (-1, 1; θ) η α t (-1, -1; θ) =        e -t -θ p α t (1,1) -θ p α t (-1,1) θ-e -t p α t (1,-1) θ p α t (-1,-1)        . ( 27 
)
For future reference, we record the following straightforward properties of η α t (•, •; θ). Lemma 12. Fix t ≥ 0 and α ∈ (0, 1). Then,

∀ x ∈ {-1, 1}, θ ∈ R, p α t (x, 1)η α t (1, x; θ) + p α t (x, -1)η α t (-1, x; θ) = 0 ( 28 
)
and

min θ∈R max x∈{-1,1} p α t (x, 1)η α t (1, x; θ) 2 + p α t (x, -1)η α t (-1, x; θ) 2 = e -t (e t -1)( αp α t (-1, -1) + (1 -α)p α t (1, 1)) 2 ≤ 1 e t -1 . ( 29 
)
Proof. The centering condition (28) can be checked easily using the explicit formulas ( 17) and ( 27) of the matrices. For (29), we compute that for any θ ∈ R,

max x∈{-1,1} p α t (x, 1)η α t (1, x; θ) 2 + p α t (x, -1)η α t (-1, x; θ) 2 = max (e -t -θ) 2 p α t (1, 1)p α t (1, -1) , θ 2 p α t (-1, 1)p α t (-1, -1)
, .

(

) 30 
As this is the maximum of two quadratic functions in θ, its minimum is attained at the point θ * where they intersect in the interval (0, e -t ), namely at

θ * = e -t αp α t (-1, -1) αp α t (-1, -1) + (1 -α)p α t (1, 1) . ( 31 
)
The first equality in ( 29) is immediate, whereas for the inequality we compute

e -t (e t -1)( αp α t (-1, -1) + (1 -α)p α t (1, 1)) 2 ≤ e -t (e t -1)(αp α t (-1, -1) + (1 -α)p α t (1, 1)) = e -t (e t -1) 1 -(1 -e -t )(α 2 + (1 -α) 2 ) ≤ 1 e t -1 , ( 32 
)
where both inequalities follow from the convexity of x → x 2 .

The key technical ingredient in the proof of Theorem 1 is the following identity.

Proposition 13. Fix n ∈ N, α α α = (α 1 , . . . , α n ) ∈ (0, 1) n , t ≥ 0 and θ 1 , . . . , θ n ∈ R. Then, for every function f : {-1, 1} n → X, where X is a vector space, we have

∀ x ∈ {-1, 1} n , L α α α P α α α t f (x) = -E n i=1 η α i t x(i), X α α α t (i); θ i α i i f (X α α α t ) X α α α 0 = x . ( 33 
)
Proof. In view of [START_REF] Eskenazis | Diamond convexity: a bifurcation in the Ribe program[END_REF] and the product structure of the process {X α α α t } t≥0 , it suffices to check the claim for n = 1, namely that for every β ∈ (0, 1), θ ∈ R and f : {-1, 1} → X,

∀ x ∈ {-1, 1}, e -t β f (x) = P β t β f (x) = E η β t (x, X β t ; θ) β f (X β t ) X β 0 = x , ( 34 
)
where the first equality follows from the probabilistic representation [START_REF] Eskenazis | On Pisier's inequality for UMD targets[END_REF]. Taking into account that β β f (1) + (1β) β f (-1) = 0, this amounts to the system of equations

       e -t = p β t (1, 1)η β t (1, 1; θ) - β 1-β p β t (1, -1)η β t (1, -1; θ) e -t = - 1-β β p β t (-1, 1)η β t (-1, 1; θ) + p β t (-1, -1)η β t (-1, -1; θ) (35)
which can be easily verified by direct computation. Theorem 14. Fix p ∈ [1, 2] and let (X, • X ) be a normed space of Rademacher type p. Then, for any n ∈ N and α α α = (α 1 , . . . , α n ) ∈ (0, 1) n , every function

f : {-1, 1} n → X satisfies {-1,1} n f (x) - {-1,1} n f dµ α α α p X dµ α α α (x) ≤ 2πT p (X) p n i=1 {-1,1} n α i i f (x) p X dµ α α α (x). ( 36 
)
Proof. Writing

f (x) - {-1,1} n f dµ α α α = P α α α 0 f (x) -P α α α ∞ f (x) = - ∞ 0 L α α α P α α α t f (x) dt (37) 
and using Jensen's inequality and Proposition 13, we see that for θ 1 (t), . . . , θ n (t) ∈ R,

      {-1,1} n f (x) - {-1,1} n f dµ α α α p X dµ α α α (x)       1/p ≤ ∞ 0       {-1,1} n L α α α P α α α t f (x) p X dµ α α α (x)       1/p dt = ∞ 0       {-1,1} n E n i=1 η α i t x(i), X α α α t (i); θ i (t) α i i f (X α α α t ) X α α α 0 = x p X dµ α α α (x)       1/p dt ≤ ∞ 0       E n i=1 η α i t X α α α 0 (i), X α α α t (i); θ i (t) α i i f (X α α α t ) p X       1/p dt, (38) 
where in the last expectation X α α α 0 is distributed according to µ α α α . Now, by the reversibility of the chain, this expectation can be written as

E n i=1 η α i t X α α α 0 (i), X α α α t (i);θ i (t) α i i f (X α α α t ) p X = {-1,1} n y∈{-1,1} n p α α α t (x, y) n i=1 η α i t y(i), x(i); θ i (t) α i i f (x) p X dµ α α α (x). (39) 
Fixing x ∈ {-1, 1} n , equation ( 28) asserts that each η α i t (y(i), x(i); θ i (t)) is a centered random variable when y(i) is distributed according to p α i t (x(i), •). Therefore, as p α α α t (x, •) is a product measure, the Rademacher type condition for sums of centered independent random vectors (see [START_REF] Ledoux | Probability in Banach spaces[END_REF]Proposition 9.11]) yields the bound

{-1,1} n y∈{-1,1} n p α α α t (x, y) n i=1 η α i t y(i), x(i); θ i (t) α i i f (x) p X dµ α α α (x) ≤ 2T p (X) p {-1,1} n n i=1 y(i)∈{-1,1} p α i t x(i), y(i) η α i t y(i), x(i); θ i (t) p α i i f (x) p X dµ α α α (x) ≤ 2T p (X) p n i=1 {-1,1} n y(i)∈{-1,1} p α i t x(i), y(i) η α i t y(i), x(i); θ i (t) 2 p/2 α i i f (x) p X dµ α α α (x), (40) 
where we also used that p ≤ 2. Now, choosing the θ i (t) which minimize the quantity in the left-hand side of (29) with bias α i , and combining (38), ( 39) and ( 40), we conclude that

      {-1,1} n f (x)- {-1,1} n f dµ α α α p X dµ α α α (x)       1/p ≤ 2T p (X) ∞ 0       n i=1 {-1,1} n α i i f (x) p X dµ α α α (x)       1/p dt √ e t -1 , ( 41 
)
which is precisely the desired estimate.

Equipped with the biased Poincaré inequality of Theorem 14, we can conclude the proof.

Proof of Theorem 1. Let X = (R d , • X ) be a d-dimensional normed space and suppose that

f : {-1, 1} n → X is a function such that ∀ x, y ∈ {-1, 1} n , ρ(x, y) ≤ f (x) -f (y) X ≤ Dρ(x, y) ( 42 
)
for some D ≥ 1. The conclusion of the theorem follows from [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] when d ≥ n so we shall assume that d < n. Let F : [-1, 1] n → X be the multilinear extension of f given by [START_REF] Gupta | Bounded geometries, fractals, and low-distortion embeddings[END_REF]. Then, F is clearly continuous as a polynomial and therefore, by Lemma ∈ (0, 1) d and notice that, by the multilinearity of F, we have the identity

∀ x ∈ {-1, 1} d , h ± (x) = f ± x(
{-1,1} d h + (x) dµ α α α z (x) = F(z) = F(-z) = {-1,1} d h -(x) dµ α α α z (x). ( 44 
)
Therefore, by the triangle inequality and Theorem 14 we get

{-1,1} d h + (x) -h -(x) p X dµ α α α z (x) ≤ 2 p-1 {-1,1} d h + (x) -F(z) p X + h -(x) -F(-z) p X dµ α α α z (x) ≤ 2 2p-1 πT p (X) p d i=1 {-1,1} d 1+z(i) 2 i h + (x) p X + 1+z(i) 2 i h -(x) p X dµ α α α z (x). ( 45 
)
Now, in view of the lower Lipschitz condition (42), we clearly have

h + (x)-h -(x) X = f x(1), . . . , x(d), z(d+1), . . . , z(n) -f -x(1), . . . , -x(d), -z(d+1), . . . , -z(n) X ≥ n
for every x ∈ {-1, 1} d . On the other hand, for a fixed i ∈ {1, . . . , d} and β = 1+z(i) 2 , we have

{-1,1} β i h + (x) p X dµ β (x(i)) = β β i h + (x(1), . . . , 1, . . . , x(d)) p X + (1 -β) β i h + (x(1), . . . , -1, . . . , x(d)) p X = β(1 -β) p + (1 -β)β p h + (x(1), . . . , 1, . . . , x(d)) -h + (x(1), . . . , -1, . . . , x(d)) p X ≤ D p 2 p
, where in the last equality we used that p ≤ 2 along with the upper Lipschitz condition [START_REF] Matoušek | On the distortion required for embedding finite metric spaces into normed spaces[END_REF]. The same bound also holds for h -. Integrating the last two inequalities and combining them with [START_REF] Mendel | Metric cotype[END_REF], we deduce that n p ≤ (2πT p (X)) p dD p , (46) which completes the proof of the theorem.

Remark 15. The identity of Proposition 13 in the case of the uniform measure σ n (which was obtained in [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF]) is simpler. Let ξ 1 (t), . . . , ξ n (t) be i.i.d. random variables distributed according to µ β(t) , where β(t) = 1+e -t 2 . Then, for any point x ∈ {-1, 1} n , the corresponding unbiased process {X t (i)} t≥0 with X 0 = x has distribution equal to x(i)ξ i (t) at time t. Thus applying formula [START_REF] Ledoux | Probability in Banach spaces[END_REF] 

with α i = 1 2 and θ i (t) = e -t
2 , we recover the usual identity

∀ x ∈ {-1, 1} n , LP t f (x) = -E n i=1 ξ i (t) -e -t e t -e -t • i f xξ(t) , ( 47 
)
where xξ(t) = (x(1)ξ 1 (t), . . . , x(n)ξ n (t)), as was proven in [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF].

Proof of Theorem 2

Recall that a normed space (X,

• X ) has cotype q ∈ [2, ∞) with constant C ∈ (0, ∞) if for every n ∈ N and v 1 , . . . , v n ∈ X, we have {-1,1} n n i=1 x i v i q X dσ n (x) ≥ 1 C q n i=1 v i q X . ( 48 
)
We say that X has finite cotype if it has cotype q for some q ∈ [2, ∞).

The proof of Theorem 2 is similar to the arguments of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF][START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF] using as input the new identity [START_REF] Ledoux | Probability in Banach spaces[END_REF] for the time derivative of the biased semigroup {P α α α t } t≥0 . In view of that, we shall omit various simple details and we will be less attentive with the values of the implicit constants.

We start by proving the (weaker) biased Pisier inequality, in which the Orlicz norm on the left hand side of the conclusions of Theorem 2 is replaced by an L p norm. Theorem 16. For every α ∈ (0, 1), there exists K α ∈ (0, ∞) such that the following holds when p ∈ [1, ∞). For any normed space (X, • X ) and any n ∈ N, every function

f : {-1, 1} n → X satisfies f - {-1,1} n f dµ n α L p (µ n α ;X) ≤ K α (log n + 1)        {-1,1} n n i=1 δ i α i f p L p (µ n α ;X) dσ n (δ)        1/p . ( 49 
)
If additionally X is assumed to be of finite cotype, then there exists K p,α (X) such that

f - {-1,1} n f dµ n α L p (µ n α ;X) ≤ K p,α (X)        {-1,1} n n i=1 δ i α i f p L p (µ n α ;X) dσ n (δ)        1/p . ( 50 
)
Proof. Let α α α = (α, . . . , α) and without loss of generality assume that f dµ α α α = 0. We start by proving the general inequality [START_REF] Naor | Metric dimension reduction: a snapshot of the Ribe program[END_REF]. Notice that, by convexity,

L α α α f L p (µ α α α ;X) (23) 
≤

n i=1 α i f L p (µ α α α ;X) ≤ 2n f L p (µ α α α ;X) , (51) 
where the last inequality follows from the definitions of α i . Therefore,

∀ t ≥ 0, e -tL α α α f L p (µ α α α ;X) ≤ ∞ m=0 t m m! L m α α α f L p (µ α α α ;X) ≤ ∞ m=0 (2nt) m m! f L p (µ α α α ;X) = e 2nt f L p (µ α α α ;X) .
Since P α α α t = e tL α α α for t ≥ 0, this inequality applied to P α α α t f with t = 1 n implies that f L p (µ α α α ;X) ≤ e 2 P α α α 1/n f L p (µ α α α ;X) . (

Similarly to [START_REF] Linial | Finite metric-spaces-combinatorics, geometry and algorithms[END_REF] and (39), we thus have

f L p (µ α α α ;X) ≤ e 2 P α α α 1/n f L p (µ α α α ;X) . ≤ e 2 ∞ 1/n         {-1,1} n y∈{-1,1} n p α α α t (x, y) n i=1 η α t y(i), x(i); θ i (t) α i f (x) p X dµ α α α (x)         1/p dt (53) 
Fix t ≥ 0 and x ∈ {-1, 1} n . Since p α α α t (x, •) is a product measure, the centering condition [START_REF] James | Nonreflexive spaces of type 2[END_REF] gives

y∈{-1,1} n p α α α t (x, y) n i=1 η α t y(i), x(i); θ i (t) α i f (x) p X ≤ 2 p {-1,1} n y∈{-1,1} n p α α α t (x, y) n i=1 δ i η α t y(i), x(i); θ i (t) α i f (x) p X dσ n (δ). (54) 
To prove [START_REF] Naor | Metric dimension reduction: a snapshot of the Ribe program[END_REF], set θ i (t) = e -t 2 and observe that by the contraction principle [START_REF] Ledoux | Probability in Banach spaces[END_REF]Theorem 4.4], we can further bound this quantity by

2 p y∈{-1,1} n p α α α t (x, y) {-1,1} n n i=1 δ i η α t y(i), x(i); e -t 2 α i f (x) p X dσ n (δ) ≤ 2 p max χ,ψ∈{-1,1} η α t ψ, χ; e -t 2 p {-1,1} n n i=1 δ i α i f (x) p X dσ n (δ). (55) 
It is now elementary to check that we have max

χ,ψ∈{-1,1} η α t ψ, χ; e -t 2 α      1 t ,
for t ∈ (0, 1) e -t , for t ≥ 1 [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF] and thus combining all the above we get

f L p (µ α α α ;X) α 1 1/n dt t + ∞ 1 e -t dt •        {-1,1} n n i=1 δ i i f p L p (µ α α α ;X) dσ n (δ)        1/p , ( 57 
)
which readily concludes the proof of [START_REF] Naor | Metric dimension reduction: a snapshot of the Ribe program[END_REF].

For the proof of (50), we combine ( 38) and ( 39) with (54) to get

f L p (µ α α α ;X) ≤ 2 ∞ 0         {-1,1} 2n y∈{-1,1} n p α α α t (x, y) n i=1 δ i η α t y(i), x(i); e -t 2 α i f (x) p X dσ n (δ) dµ α α α (x)         1/p dt.
Fix x ∈ {-1, 1} n and t ≥ 0. Denoting by I(x) = {i : x(i) = 1}, the inner term is bounded above by

{-1,1} n y∈{-1,1} n p α α α t (x, y) n i=1 δ i η α t y(i), x(i); e -t 2 α i f (x) p X dσ n (δ) ≤ 2 p-1 {-1,1} I(x) y∈{-1,1} I(x) p α α α t (x, y) i∈I(x) δ i η α t y(i), 1; e -t 2 α i f (x) p X dσ I(x) (δ) + 2 p-1 {-1,1} I(x) c y∈{-1,1} I(x) c p α α α t (x, y) i I(x) δ i η α t y(i), -1; e -t 2 α i f (x) p X dσ I(x) c (δ). (58) 
When y ∈ {-1, 1} I(x) is distributed according to p α α α t (x, •) and δ is a uniformly random sign, the random variables δ i |η α t (y(i), 1; e -t 2 )|, i ∈ I(x), are independent and identically distributed. Therefore, standard comparison principles going back to works of Maurey and Pisier (see, e.g., [START_REF] Ledoux | Probability in Banach spaces[END_REF]Proposition 9.14]) show that if X has cotype q < ∞ and r > max{p, q}, then {-1,1} I(x) y∈{-1,1} 

       1 t 1-1 r , for t ∈ (0, 1) e -t , for t ≥ 1 . ( 60 
)
In view of the convergence of the integrals

1 0 dt t 1-1 r + ∞ 1 e -t dt r 1, (61) 
combining [START_REF] Pisier | Une propriété du type p-stable[END_REF], the corresponding estimate on I(x) c and (58), we finally get

f L p (µ α α α ;X) r,α,X         {-1,1} n {-1,1} n i∈I(x) δ i α i f (x) p X + i I(x) δ i α i f (x) p X dσ n (δ) dµ α α α(x)         1/p . Now, if F, G are two independent centered X-valued random vectors, then E F + G p X ≥ max E F F + E G [G] p X , E G E F [F] + G p X = max E F p X , E G p X . ( 62 
)
Therefore, [START_REF] Pisier | On the dimension of the l n p -subspaces of Banach spaces, for 1 ≤ p < 2[END_REF] and this concludes the proof of the theorem.

      {-1,1} n {-1,1} n i∈I(x) δ i α i f (x) p X + i I(x) δ i α i f (x) p X dσ n (δ) dµ α α α(x)       1/p        {-1,1} n n i=1 δ i α i f (x) p L p (µ α α α ;X) dσ n (δ)        1/p
We now proceed to discuss the vector-valued L p logarithmic Sobolev inequality of Theorem 2. Recall that given a function f : (Ω, µ) → X, we define the L p (log L) a Orlicz norm of f as

f L p (log L) a (µ;X) = inf γ > 0 : Ω f (ω) p X γ p log a e + f (ω) p X γ p dµ(ω) ≤ 1 . ( 64 
)
In the case of the unbiased cube, Theorem 2 was proven recently in [START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF] and the proof used as a black box the unbiased analogue of Theorem 16 which is due to [START_REF] Pisier | Probabilistic methods in the geometry of Banach spaces[END_REF][START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF]. As the modifications which are required to derive Theorem 2 from Theorem 16 in the biased case are almost mechanical, we shall only offer a high-level description of the proof.

Sketch of the proof of Theorem 2. Given a scalar-valued function h : {-1, 1} n → R, we denote by Mh : {-1, 1} n → R + the asymmetric gradient of h, given by

∀ x ∈ {-1, 1} n , Mh(x) = n i=1 i h(x) 2 + 1/2 , ( 65 
)
where a + = max{a, 0} for a ∈ R. A combination of the triangle inequality with a technical result of Talagrand [67, Proposition 5.1] on the biased cube implies that if a vector-valued function f : {-1, 1} n → X satisfies f dµ n α = 0, then

f L p (log L) p/2 (µ n α ;X) p,α M f X L p (µ n α ;X) + f L 1 (µ n α ;X) . ( 66 
)
The second term can be controlled by the right hand side of ( 9) or (10) using the results of Theorem 16. For the first term, we use the key pointwise inequality of [START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF], asserting that

∀ x ∈ {-1, 1} n , M f X (x) ≤ √ 2       {-1,1} n n i=1 δ i i f (x) p X dσ n (δ)       1/p . ( 67 
)
To further upper bound this by the square function where i is replaced by α i , observe that

α i f (x) ∈ 2α i f (x), 2(1 -α) i f (x) (68) 
and thus the contraction principle and integration in x yield the desired conclusions.

Proof of Theorem 4

In this section we shall prove the equivalence of stable type and metric stable type for norms. The key ingredient in the proof is the following characterization of stable type (see, e.g., [START_REF] Ledoux | Probability in Banach spaces[END_REF]Proposition 9.12 (iii)]) which goes back at least to [START_REF] Marcus | Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes[END_REF].

Lemma 17. A Banach space (X, • X ) has stable type p ∈ [1, 2) if and only if there exists a constant ST p (X) ∈ (0, ∞) such that for every n ∈ N and every vectors v 1 , . . . , v n ∈ X, we have

{-1,1} n n i=1 x i v i p X dσ n (x) ≤ ST p (X) p v 1 X , . . . , v n X p n p,∞ . ( 69 
)
Proof of Theorem 4. It is clear from Lemma 17 that any normed space with metric stable type p also has stable type p. For the converse implication, we treat the case p = 1 separately.

Assuming that X has stable type 1, it follows from [START_REF] Pisier | Une propriété du type p-stable[END_REF] that it also has nontrivial Rademacher type and thus (in view of [START_REF] Pisier | Sur les espaces de Banach qui ne contiennent pas uniformément de l 1 n[END_REF]) finite cotype. Therefore, by the X-valued Pisier inequality with a dimension-free constant of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF], we get

{-1,1} n f (x) -f (-x) X dσ n (x) ≤ 2 {-1,1} n f (x) - {-1,1} n f dσ n X dσ n (x) X {-1,1} n {-1,1} n E n i=1 δ i i f (x) X dσ n (δ) dσ n (x). (70) 
Applying Lemma 17 conditionally on x ∈ {-1, 1} n , we can further bound this quantity as

{-1,1} n {-1,1} n E n i=1 δ i i f (x) X dσ n (δ) dσ n (x) ≤ ST 1 (X) {-1,1} n 1 f (x) X , . . . , n f (x) X n 1,∞ dσ n (x) (71) 
and this proves the converse implication since

d i f (x) = i f (x) X .
While this proof extends to all values of p, in the case p > 1 we present a more cumbersome argument which avoids the X-valued Pisier inequality and thus gives better dependence on parameters of X. For t ≥ 0, let ξ 1 (t), . . . , ξ n (t) be i.i.d. random variables distributed according to µ β(t) , where β(t) = 1+e -t 2 , and denote by η i (t) = ξ i (t)-e -t e t -e -t . Then, it follows from the semigroup argument leading to [START_REF] Linial | Finite metric-spaces-combinatorics, geometry and algorithms[END_REF] along with identity (47) of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] and Jensen's inequality that

      {-1,1} n f (x) -f (-x) p X dσ n (x)       1/p ≤ 2       {-1,1} n f (x) - {-1,1} n f dσ n p X dσ n (x)       1/p ≤ 2 ∞ 0       {-1,1} n E n i=1 η i (t) i f (x) p X dσ n (x)       1/p dt (72)
Fixing x ∈ {-1, 1} n , the independent random vectors η 1 (t) 1 f (x), . . . , η n (t) n f (x) are centered. Thus, by standard symmetrization estimates, we can further bound the last term by

2 ∞ 0       {-1,1} n E n i=1 η i (t) i f (x) p X dσ n (x)       1/p dt ≤ 4 ∞ 0       {-1,1} n E n i=1 δ i η i (t) i f (x) p X dσ n (x)       1/p dt, (73) 
where the expectation on the right hand side is with respect to (δ i , η i (t)), where the δ i are uniformly random signs, independent of the η i (t). Therefore, conditioning first on the values of η 1 (t), . . . , η n (t) and using Lemma 17 for the integrand, we get

E n i=1 δ i η i (t) i f (x) p X ≤ ST p (X) p E n i=1 η i (t) i f (x) X e i p n p,∞ , (74) 
where {e 1 , . . . , e n } is the standard basis of R n . It is well-known that, since p > 1, n p,∞ is isomorphic to a normed space up to constants depending only on p. Moreover, it has finite cotype with a constant independent of n (for instance because it can be realized as a real interpolation space between n 1 and n 2 , see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Section 5.3]). Therefore, using again the comparison principle [33, Proposition 9.14], we have

E n i=1 η i (t) i f (x) X e i p n p,∞ p η 1 (t) p L r E n i=1 δ i i f (x) X e i p n p,∞ = η 1 (t) p L r 1 f (x) X , . . . , n f (x) X p n p,∞ (75) 
for any r > max{r , p}, where r is the cotype of n p,∞ . Combining all the above along with the fact that t → η 1 (t) L r is integrable for any r < ∞, we conclude the proof. It is worth emphasizing that this proof shows additionally that the metric stable type constant of X is proportional to the parameter ST p (X) of ( 69) up to constants depending only on p, provided that p > 1.

Finally, we present the simple proof of the distortion bound [START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF].

Proof of Proposition 6. Suppose that (M, d M ) has metric stable type p with constant S and suppose that a function f

: {-1, 1} n → M satisfies ∀ x, y ∈ {-1, 1} n , sρ w (x, y) ≤ d M f (x), f (y) ≤ sDρ w (x, y) (76) 
for some constants s > 0 and D ≥ 1. Combined with the stable type assumption, this gives

s p w p n 1 (76) ≤ {-1,1} n d M f (x), f (-x) p dσ n (x) ≤ S p {-1,1} n d 1 f (x), . . . , d n f (x) p n p,∞ dσ n (x) (76) ≤ (sSD) p {-1,1} n (w 1 , . . . , w n ) p n p,∞ dσ n (x) = (sSD) p w p n p,∞ . (77) 
Rearranging gives the desired lower bound ( 16) for the distortion D. (78)

2. Such refinements of Poincaré-type inequalities for topological reasons had not been exploited since Oleszkiewicz's original work [START_REF] Oleszkiewicz | On a discrete version of the antipodal theorem[END_REF]. The last decades have seen the development of many metric inequalities on graphs which yield nonembeddability results into normed spaces. We believe that investigating whether the distortion estimates which one obtains this way can be further improved assuming upper bounds for the dimension of the target space is a very worthwhile research program. As examples, we mention the nonembeddability of graphs with large girth into uniformly smooth spaces [START_REF] Linial | Girth and Euclidean distortion[END_REF][START_REF] Naor | Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces[END_REF], of ∞ -grids into spaces of finite cotype [START_REF] Mendel | Metric cotype[END_REF] and of trees [START_REF] Bourgain | The metrical interpretation of superreflexivity in Banach spaces[END_REF][START_REF] Lee | Trees and Markov convexity[END_REF] and diamond graphs [START_REF] Johnson | Diamond graphs and super-reflexivity[END_REF][START_REF] Eskenazis | Diamond convexity: a bifurcation in the Ribe program[END_REF] into uniformly convex spaces.

3. The results of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] in fact imply that any Lipschitz embedding of {-1, 1} n into a normed space of Rademacher type p incurs p-average distortion at least a constant multiple of T p (X) -1 n 1-1/p . It would be interesting to understand whether the bound of Theorem 1 can be extended to average distortion embeddings beyond bi-Lipschitz ones. and f (x)f (y) d p = 1 when ρ(x, y) = 1. 5. The functional inequality (78) in fact implies that if θ ∈ (0, 1), then the bi-Lipschitz distortion of the θ-snowflake of {-1, 1} n into a finite dimensional normed space X satisfies c X {-1, 1} n , ρ θ n θ T p (X) min{n, dim(X)} 1/p .

(82)

6. As the reasons behind the impossibility of dimension reduction of Theorem 1 are partly topological, it is natural to ask in what other settings can one deduce similar conclusions. For instance, do d-dimensional manifolds of nonpositive or nonnegative curvature (which have Enflo type 2, see [START_REF] Ohta | Markov type of Alexandrov spaces of non-negative curvature[END_REF]) admit the same distortion bounds as normed spaces of type 2?

7.

In this paper we extended the semigroup machinery developed in [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF] to the biased cube, driven by the geometric application obtained in Theorem 1. As an aside, this led to biased versions of the vector-valued Poincaré and logarithmic Sobolev inequalities of [START_REF] Ivanisvili | Rademacher type and Enflo type coincide[END_REF][START_REF] Cordero-Erausquin | Discrete logarithmic Sobolev inequalities in Banach spaces[END_REF]. The same reasoning also yields biased extensions of the vector-valued versions of Talagrand's influence inequality [START_REF] Talagrand | On Russo's approximate zero-one law[END_REF] which were studied in [START_REF] Cordero-Erausquin | Talagrand's influence inequality revisited[END_REF] for the uniform probability measure on the hypercube. Moreover, combining the biased semigroup machinery with the arguments of [10, Section 2.5], one can derive biased versions of the isoperimetric-type inequalities of Eldan and Gross [START_REF] Eldan | Concentration on the Boolean hypercube via pathwise stochastic analysis[END_REF]. As these extensions are mostly mechanical given the material of this paper and in lack of a specific application which may follow from them, we omit them.

Lemma 10 .

 10 If d < n, there exists a continuous map hd : S d → C n d with h d (-x) = -h d (x), ∀ x ∈ S d .Combining this and the Borsuk-Ulam theorem, we deduce the following useful lemma. Lemma 11. If n, d ∈ N with d < n, then for every continuous function F : C n d → R d there exists a point z ∈ C n d such that F(z)=F(-z). Proof. Consider the function g def = F • h d : S d → R d , where h d is the function of Lemma 10. By the Borsuk-Ulam theorem and the oddness of h d , there exists a point w ∈ S d such that

  11, there exists a point z ∈ C n d such that F(z) = F(-z). As z has at least nd coordinates equal to 1 in absolute value we shall assume without loss of generality that |z(d + 1)| = . . . = |z(n)| = 1 and consider the functions h + , h -: {-1, 1} d → X which are defined as

6. Discussion and open problems 1 .X

 1 The proof of Theorem 1 in fact implies a Poincaré-type inequality for restrictions of functions f : {-1, 1} n → X if dim(X) < n, which in turn yields the refined distortion lower bounds. An inspection of the argument reveals that for every such f there exists a subset σ ⊆ {1, . . . , n} with |σ | ≤ dim(X), a point w ∈ {-1, 1} σ c and a bias vector α α α = (α i ) i∈σ ∈ (0, 1) σ such that{-1,1} σ f (x, w)-f (-x, -w) p X dµ α α α (x)≤ 2 2p-1 πT p (X) dµ α α α (x).

4 .

 4 The Poincaré inequality (78) implies that any f :{-1, 1} n → X = (R d , • X ) satisfies sup (x,y): ρ(x,y)=n n f (x)f (y) X sup (x,y): ρ(x,y)=1 f (x)f (y) X n T p (X)d

  1), . . . , ±x(d), ±z(d + 1), . . . , ±z(n) .

			(43)
	Consider also the bias vector α α α z =	1+z(1) 2 , . . . ,	1+z(d) 2

  1/p , (79) provided that d < n. This is stronger than the lower bound of Theorem 1 as it implies that f incurs large distortion only on specific pairs of points, namely those which are either antipodal or connected by an edge. Moreover though, (79) is sharp for any value of d and p. Indeed, assume without loss of generality that n d is an odd integer and consider a partition I 1 , . . . , I d of {1, . . . , n} in d parts of size n d . Then, the mapping f : {-1, 1} n → d p , where p ∈ [1, 2], given by

	∀ x ∈ {-1, 1} n ,	f (x)	def =	x i , . . . ,		x i		(80)
				i∈I 1	i∈I d		
	satisfies							
	inf (x,y): ρ(x,y)=n	f (x) -f (y) d p	= inf x∈{-1,1} n	k=1 i∈I k d	x i	p 1/p	= d 1/p	(81)