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We initiate a systematic study of intrinsic dimensional versions of classical functional inequalities which capture refined properties of the underlying objects. We focus on model spaces: Euclidean space, Hamming cube, and manifolds of constant curvature. In the latter settings, our intrinsic dimensional functional inequalities improve on a series of known results and lead to new Hamilton-type matrix inequalities. Our proofs rely on scaling, tensorization, and stochastic methods.

Introduction

This work focuses on the development of intrinsic dimensional versions of classical functional inequalities. In order to explain the meaning of "intrinsic" in this context it is best to start with an important example. The logarithmic Sobolev inequality in Gauss space [START_REF] Johannes | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF][START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] asserts that for every nice-enough absolutely continuous probability measure µ on R n ,

H(µ γ n ) ≤ 1 2 I(µ γ n ), (1) 
where γ n is the standard Gaussian measure on R n . Here,

H(µ ν) def = log dµ dν dµ ( 2 
)
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is the relative entropy of µ with respect to ν and

I(µ ν) def = ∇ log dµ dν 2 dµ = |∇(dµ/ dν)| 2 dµ/ dν dν (3) 
is the relative Fisher information of µ with respect to ν, provided that ν < < µ. Gross' motivation for [START_REF] Aras | A family of Bayesian Cramér-Rao bounds, and consequences for log-concave priors[END_REF] was to find a substitute for the Euclidean Sobolev inequalities holds in infinite-dimensional spaces (which was needed in constructive quantum field theories). Sobolev inequalities have the feature that the dimension n of the ambient space R n appears explicitly in the constants of the inequalities, which leads to triviality upon taking the limit n → ∞. In contrast, the constant 1/2 appearing in (1) is dimension-free, leading to (1) being well-defined in infinite dimensions. On the other hand, as was already observed by Stam [START_REF] Johannes | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF], [START_REF] Aras | A family of Bayesian Cramér-Rao bounds, and consequences for log-concave priors[END_REF] can in fact be improved if the dimension n is taken into account. To see this improvement we first apply a standard change of measure (see [START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF]) which shows that (1) is equivalent to

H(µ λ n ) -H(γ n λ n ) ≤ I(µ λ n ) -n 2 , ( 4 
)
where λ n is the Lebesgue measure on R n . The dimensional log-Sobolev inequality of [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF],

H(µ λ n ) -H(γ n λ n ) ≤ n 2 log I(µ λ n ) n , (5) 
improves upon (4) as can be seen from the inequality log s ≤ s -1 for s ∈ (0, ∞). It is clear that when the Fisher information is large, [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF] provides an exponential refinement over [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF]. Despite this quantitative improvement, [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF] suffers from a lack of sensitivity to the intrinsic dimension of µ. To see this, suppose that µ is of the form dµ(x 1 , . . . , x n ) = d μ(x 1 , . . . , x k ) dγ n-k (x k+1 , . . . , x n ),

where k < n and μ is an absolutely continuous probability measure on R k . Then [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF] rephrased in terms of μ asserts that

H( μ λ k ) -H(γ k λ k ) ≤ n 2 log 1 + I( μ λ k ) -k n , (6) 
which deteriorates to (4) as the ambient dimension n increases, despite the fact that the intrinsic dimension k of µ is fixed. In other words, [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF] is insensitive to the structure of µ. In [27, p. 12], Dembo showed that (5) can be further improved to an inequality which captures the intrinsic dimension of µ:

H(µ λ n ) -H(γ n λ n ) ≤ 1 2 log det I(µ λ n ), (7) 
where

I(µ ν) def = (∇(dµ/ dν)) ⊗2 dµ/ dν dν (8) 
is the relative Fisher information matrix of µ with respect to ν. Observe that I(µ ν) = tr I(µ ν), [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] and thus [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] improves on (5) by the elementary inequality log det C ≤ n log tr C n which holds for every n × n positive semidefinite matrix C. In particular, both sides of [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] behave additively with respect to product measures: Plugging in dµ = d μ dγ n-k into [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] yields

H( μ λ k ) -H(γ k λ k ) ≤ 1 2 log det I( μ λ k ) ( 10 
)
which captures correctly the intrinsic dimension of µ. More generally, by considering the eigenvalues of the Fisher information matrix, [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] can quantify the extent to which µ degenerates along each eigenvector direction. The goal of this work is to initiate a systematic study of intrinsic dimensional versions of classical functional inequalities. We focus on some important model spaces: Euclidean space, Hamming cube, and space forms (manifolds of constant sectional curvature). These model spaces have historically played a crucial role in the development of functional inequalities and their study has been the impetus leading to fruitful generalizations and abstractions; see the monograph [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. In view of the richness of the subject, our intrinsic dimensional functional inequalities on these spaces improve on multiple classical inequalities from the literature. The tools required to establish intrinsic dimensional functional inequalities in each of the models spaces will depend on the unique characteristics of the space itself: scaling (Euclidean space), tensorization (Hamming cube), and stochastic methods (space forms). In the rest of the introduction we will review each of these methods and present examples of the intrinsic dimensional functional inequalities which follow. We defer the statements of many of our results to the main body of the paper; see the following brief summary: Part 1. Euclidean and product spaces: scaling and tensorization

• Logarithmic Sobolev inequalities for homogeneous measures (Section 2.2).

• Bayesian Cramér-Rao bounds (Section 2.3).

• Gagliardo-Nirenberg-Sobolev inequalities (Section 3).

• Beckner inequalities (Section 4).

• q-logarithmic Sobolev inequalities (Section 5).

• Nonlinear logarithmic Sobolev inequalities in product spaces (Section 7). Part 2. Space forms: stochastic methods

• Local logarithmic Sobolev inequalities on space forms (Section 9).

• Local logarithmic Sobolev inequalities and Hamilton's matrix inequalities on nonpositively curved space forms (Section 10).

1.1. Euclidean spaces: scaling. Most classical functional inequalities on R n are coordinatefree results phrased in a coordinate-dependent way. As such, they can often be substantially refined when expressed in a suitable basis. Concretely, the correct basis is found by performing a change of variables of the form x → Ax and then optimizing over a prescribed class of symmetries A ∈ G ⊆ GL n . Let us remark that explicit improvements of this form can be obtained only when it is possible to solve these optimization problems, which is not always the case. These improvements are moreover motivated by the study of equality cases. When a functional inequality has a non-constant function h : R n → R as an equality case, then the refined inequality obtained in the manner described above would be saturated by all functions of the form h A (x) = h(Ax), where A ∈ G. This principle has already been applied by Dembo [START_REF] Dembo | Information inequalities and uncertainty principles[END_REF] in the case of the Gaussian logarithmic Sobolev inequality (see also [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF][START_REF] Bez | Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand's cost inequality[END_REF] and Section 2 below). In the first part of the paper we shall present more applications of this idea to other important functional inequalities in Euclidean space and further consequences.

1.1.1. Beckner inequalities. In [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF], Beckner proved that any smooth function u ∈ C ∞ 0 (R n ) satisfies the estimates

∀ p ∈ [1, 2), u 2 L 2 (γ n ) -u 2 L p (γ n ) ≤ (2 -p) ∇u 2 L 2 (γ n ) . ( 11 
)
This family of inequalities interpolates between the Gaussian Poincaré inequality (corresponding to p = 1) and Gross' logarithmic Sobolev inequality [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] which arises as a limit when p → 2 -. We refer to the influential work of Latała and Oleszkiewicz [START_REF] Latała | Between Sobolev and Poincaré[END_REF] as well as [9, Section 7.6] for examples of Beckner-type inequalities satisfied by non-Gaussian measures. In [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF]Corollary 4], Dolbeault and Toscani proposed a dimensional refinement of Beckner's inequality [START_REF] Barthe | Modified logarithmic Sobolev inequalities on R[END_REF] for functions satisfying a second moment normalization condition. More specifically, they showed that if a function u ∈ C ∞ 0 (R n ) satisfies the normalization condition

R n |x| 2 u(x) 2 dγ n (x) = n u 2 L 2 (γ n ) , ( 12 
) then ∀p ∈ [1, 2), u 2 L 2 (γ n ) ϕ p,n         1 - u 2 L p (γ n ) u 2 L 2 (γ n )         ≤ ∇u 2 L 2 (γ n ) , ( 13 
)
where the function ϕ p,n is given by

∀ s ∈ (0, 1), ϕ p,n (s) def = n 4 (1 -s) - 2p n(2-p) -1 . ( 14 
)
Observe that (13) improves upon [START_REF] Barthe | Modified logarithmic Sobolev inequalities on R[END_REF] up to the value of the implicit constant as

∀ s ∈ (0, 1), ϕ p,n (s) ≥ p 2(2 -p) log 1 1 -s ≥ p 2(2 -p) • s. ( 15 
)
The improvement [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF] becomes particularly substantial when

u L p (γ n ) < < u L 2 (γ n ) .
In the spirit of the matricial refinement [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] over the dimensional logarithmic Sobolev inequality [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF], we present the following refinement of (13) for functions whose second moment matrix is appropriately normalized.

Theorem 1. Fix n ∈ N and let u ∈ C ∞ 0 (R n ) be such that ∀ i, j ∈ {1, . . . , n}, R n x i x j u(x) 2 dγ n (x) = δ ij u 2 L 2 (γ n ) , ( 16 
)
where δ ij is the Kronecker delta. Then, we have

∀ p ∈ [1, 2), u 2 L 2 (γ n ) -u 2 L p (γ n ) u 2 L 2 (γ n ) ≤ 1 -        det        4 u 2 L 2 (γ n ) R n (∇u) ⊗2 dγ n + Id n               - 2-p 2p . ( 17 
)
Applying the inequality det C ≤ trC n n and rearranging, we see that ( 17) strengthens [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF].

1.1.2. Gagliardo-Nirenberg-Sobolev inequalities. Fix n ∈ N. The Gagliardo-Nirenberg inequality [START_REF] Gagliardo | Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF] asserts that for every p, q, r, s ∈ [1, ∞) and θ ∈ [0, 1] satisfying the constraint

1 p = θ q + 1 r - 1 n (1 -θ), (18) 
there exists a universal (optimal) constant C p,q,r,s > 0 such that every

u ∈ C ∞ 0 (R n ) satisfies u L p (R n ) ≤ C p,q,r,s u θ L q (R n ) ∇u 1-θ L r (R n ; n s ) , ( 19 
)
where we use the standard notation

∇u L r (R n ; n s ) =        R n n i=1 | i u(x)| s r/s dx        1/r . ( 20 
)
In the special case r ∈ (1, n) and θ = 0, inequality [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF] boils down to the classical Sobolev inequality [START_REF] Sergeȋ | On a theorem in functional analysis[END_REF][START_REF] Sergeȋ | Applications of functional analysis in mathematical physics[END_REF]. The endpoint case r = 1 and θ = 0 was due to [START_REF] Gagliardo | Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF] and the corresponding optimal constant for s = 2 was found by Federer, Fleming and Rishel [START_REF] Federer | Normal and integral currents[END_REF][START_REF] Fleming | An integral formula for total gradient variation[END_REF]. The optimal constant in the range r ∈ (1, n) and θ = 0 for s = 2 was discovered by Aubin and Talenti [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. The logarithmic Sobolev inequality (4) can be obtained as an endpoint case of the Gagliardo-Nirenberg-Sobolev inequality [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF] with the optimal constant when s = 2 (see [START_REF] Del | The optimal Euclidean L p -Sobolev logarithmic inequality[END_REF]Section 1]). Finally, the optimal constant C p,q,r,s for general parameters was found by Cordero-Erausquin, Nazaret and Villani in [22, Section 3]. In this paper, we present a refined inequality for r = s.

Theorem 2. Let p, q, r ∈ [1, ∞), θ ∈ [0, 1]
and C p,q,r,r > 0 be such that [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF] is satisfied for all functions u ∈ C ∞ 0 (R n ) with r = s under the constraint [START_REF] Sergey | Entropy bounds and isoperimetry[END_REF]. Then, for every u ∈ C ∞ 0 (R n ), we have

u L p (R n ) ≤ C p,q,r,r n 1-θ r u θ L q (R n ) n j=1 j u L r (R n ) 1-θ n . ( 21 
)
The inequality [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF] improves on [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF] by the arithmetic mean-geometric mean inequality so Theorem 2 asserts that Euclidean Gagliardo-Nirenberg-Sobolev inequalities, that is, inequalities of the form [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF] with the choice of parameter r = 2, self-improve via scaling. In particular, [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF] captures the fact (absent from [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF]) that i u ≡ 0 on R n implies that u ≡ 0 under any L s -integrability assumption for u 1.2. Product spaces: tensorization. If (Ω, π) is a probability space, then for a measurable function f : Ω → R + we shall denote its entropy with respect to π by

Ent π [f ] def = Ω f log f dπ - Ω f dπ log Ω f dπ . ( 22 
)
The usefulness of logarithmic Sobolev inequalities in probability and geometry stems largely from the fact that entropy satisfies a simple yet powerful tensorization principle, rendering them dimension-free estimates [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF]. In the interesting work [START_REF] Polyanskiy | Improved log-Sobolev inequalities, hypercontractivity and uncertainty principle on the hypercube[END_REF], Polyanskiy and Samorodnitsky introduced a family of more general inequalities for Markov semigroups called nonlinear logarithmic Sobolev inequalities (see also [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF][START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF][START_REF] Max | On the similarity of the entropy power inequality and the Brunn-Minkowski inequality[END_REF][START_REF] Edward | Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians[END_REF][START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF][START_REF] Miclo | Une majoration sous-exponentielle pour la convergence de l'entropie des chaînes de Markov à trou spectral[END_REF][START_REF] Samorodnitsky | A modified logarithmic Sobolev inequality for the Hamming cube and some applications[END_REF] for previous occurrences of such estimates in the literature and applications). Let {P t } t≥0 be a Markov semigroup acting on measurable functions f : Ω → R with stationary measure π. Following [START_REF] Polyanskiy | Improved log-Sobolev inequalities, hypercontractivity and uncertainty principle on the hypercube[END_REF], we say that {P t } t≥0 satisfies the (p, Φ)-LSI, where p ≥ 1 and Φ : R + → R + is a concave, continuous function with Φ(0) = 0, if for every measurable function f :

Ω → R + , we have Ent π [f p ] ≤ E π [f p ]Φ E(f , f p-1 ) E π [f p ] , ( 23 
)
where

E(•, •) is the Dirichlet form corresponding to {P t } t≥0 . As usual, the term E(f , f p-1 ) is interpreted as E(f , log f ) in the endpoint case p = 1.
In [55, Theorem 1], the authors proved a dimensional tensorization property for nonlinear log-Sobolev inequalities asserting that if {P t } t≥0 satisfies the (p, Φ)-LSI, then for any n ≥ 1, the product semigroup {P ⊗n t } t≥0 with stationary measure π n satisfies the p, nΦ(

1 n •) -LSI: Ent π n [f p ] ≤ nE π n [f p ]Φ E(f , f p-1 ) nE π n [f p ] . ( 24 
)
By considering functions f of the form f (x 1 , . . . , x n ) = f (x 1 , . . . , x k ), for k < n, we see that [START_REF] Edward | Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians[END_REF] suffers from the problem of incorporating the ambient dimension n into the constant, thus ignoring the structure of f . In the Euclidean setting, we overcame this issue by finding the correct basis via an optimization procedure over the cone of positive semidefinite matrices. In contrast, such an approach is not suitable on the Hamming cube due to its discrete nature. Our solution to this problem is to refine tensorization instead of scaling. Indeed, as a consequence of a more general tensorization principle (see Theorem 18 below), we shall prove the following stronger nonlinear logarithmic Sobolev inequality for product spaces.

Theorem 3. Let (Ω, π, {P t } t≥0 ) be a stationary Markov semigroup satisfying the (p, Φ)-LSI for some p ≥ 1 and some concave, continuous function Φ : R + → R + with Φ(0) = 0. Then, for any n ≥ 1, every measurable function f :

Ω n → R + satisfies Ent π n [f p ] ≤ E π n [f p ] n i=1 Φ         E π n E i (f , f p-1 ) E π n [f p ]         , ( 25 
)
where E i (•, •) is the Dirichlet form associated with the i-th component of the semigroup {P ⊗n t } t≥0 . It follows readily from Jensen's inequality that

n i=1 Φ         E π n E i (f , f p-1 ) E π n [f p ]         ≤ nΦ E(f , f p-1 ) nE π n [f p ] , ( 26 
)
where E(•, •) is the Dirichlet form associated to {P ⊗n t } t≥0 and thus (25) indeed strengthens [START_REF] Edward | Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians[END_REF]. Moreover, in [55, Theorems 4 and 6], the authors found the optimal functions Φ p such that the (p, Φ p )-LSI is satisfied on the one-dimensional Hamming cube {0, 1} equipped with the uniform measure. Tensorizing their result via Theorem 3, one deduces an improved nonlinear logarithmic Sobolev inequality on the Hamming cube {0, 1} n . 1.3. Space forms: stochastic methods. In order to explain our intrinsic dimensional functional inequalities on space forms we first recall the notion of local logarithmic Sobolev inequalities. Starting with the Euclidean setting, fix T ≥ 0, x ∈ R n , and let dµ dλ n = f P T δ x P T f (x) where δ x is the Dirac mass at x, f : R n → R is a nonnegative function, and {P t } t≥0 is the Euclidean heat semigroup given by P t h(x) := h(x + √ tz)dγ n (z). Plugging µ into (5) yields (after integration by parts and using the explicit form of P T δ x ),

P T (f log f )(x) -P T f (x) log P T f (x) ≤ T 2 P T ∆f (x) + n 2 P T f (x) log 1 - T n P T (f ∆ log f )(x) P T f (x) . ( 27 
)
The inequality [START_REF] Dembo | Information inequalities and uncertainty principles[END_REF] is the local dimensional logarithmic Sobolev inequality on R n [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF]. While [START_REF] Dembo | Information inequalities and uncertainty principles[END_REF] provides an upper bound on the (local) entropy, the reverse local dimensional logarithmic Sobolev inequality [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] provides a lower bound,

P T (f log f )(x) -P T f (x) log P T f (x) ≥ T 2 P T ∆f (x) - n 2 P T f (x) log 1 + T n ∆ log P T f (x) . ( 28 
)
Analogously, we can use [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF], instead of (5), to get the local intrinsic dimensional logarithmic Sobolev inequality on R n ,

P T (f log f )(x) -P T f (x) log P T f (x) ≤ T 2 P T ∆f (x) + 1 2 P T f (x) log det Id n -T P T (f ∇ 2 log f (x)) P T f (x) , ( 29 
)
which improves on [START_REF] Dembo | Information inequalities and uncertainty principles[END_REF]. As for a reverse local intrinsic dimensional logarithmic Sobolev inequality in R n , we will establish below (Theorem 32) that

P T (f log f )(x) -P T f (x) log P T f (x) ≥ T 2 ∆P T f (x) - 1 2 P T f (x) log det Id n + T ∇ 2 log P T f (x) , ( 30 
)
which improves on [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF].

Turning to the manifold setting, local dimensional logarithmic Sobolev inequalities exist on manifolds in forms which account for both the dimension of the manifold as well as the Ricci curvature [START_REF] Bakry | The Li-Yau inequality and applications under a curvaturedimension condition[END_REF]. In light of the existence of the local intrinsic dimensional logarithmic Sobolev inequalities on Euclidean spaces [START_REF] Yu | Information contained in a sequence of observations[END_REF] and [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF], we wish to understand whether such inequalities can also exist on manifolds. Upon closer inspection, however, it is clear that inequalities such as [START_REF] Yu | Information contained in a sequence of observations[END_REF] and [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF] cannot hold if the only curvature information given pertains to the Ricci tensor. On a conceptual level, the difference between the dimensional and intrinsic dimensional inequalities is that the former provide information about the trace of the Fisher information matrix, while the latter provide information about the full spectrum. Hence, while information on the trace of the Riemann tensor, i.e., Ricci curvature, suffices to yield a dimensional inequality, information on the full Riemann tensor, i.e., sectional curvature, should be required to give an intrinsic dimensional inequality.

A concrete manifestation of this intuition is exhibited by the inequalities of Li-Yau and Hamilton [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF][START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF]. As was realized in [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF], the reverse local dimensional logarithmic Sobolev inequality [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF] implicitly implies the Li-Yau inequality on R n ,

∀x ∈ R n , -∆ log P T f (x) ≤ n T , ( 31 
)
since the argument in the log term of (28) must be nonnegative. Analogously, the reverse local intrinsic dimensional logarithmic Sobolev inequality (30) implies Hamilton's inequality,

∀x ∈ R n , -∇ 2 log P T f (x) 1 T Id n , ( 32 
)
where is the order of positive semidefinite matrices. In the manifold setting, the Li-Yau inequality, which is a statement about the trace of the Hessian of log P T f , holds under a nonnegativity assumption on the trace of the Riemann tensor, namely the Ricci tensor [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF][START_REF] Yu | Sharp Li-Yau-type gradient estimates on hyperbolic spaces[END_REF]. Indeed, Bakry and Ledoux [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF] (see also the follow-up work [START_REF] Bakry | The Li-Yau inequality and applications under a curvaturedimension condition[END_REF]) established (reverse) local dimensional logarithmic Sobolev inequalities on manifolds with nonnegative Ricci curvature which imply the Li-Yau inequality. In contrast, Hamilton's inequality, which is a statement about the Hessian of log P T f , requires the manifold to have nonnegative sectional curvature (and also to be Einstein), which is an assumption on the full spectrum of the Riemann tensor [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF]. It follows that if local intrinsic dimensional logarithmic Sobolev inequalities were to hold, then information about the sectional curvature should be provided.

In this work we establish local intrinsic dimensional logarithmic Sobolev inequalities as well as Hamilton-type matrix inequalities for space forms: Euclidean spaces, spheres, and hyperbolic spaces. In addition to serving as the model spaces for functional inequalities on manifolds, these spaces are the simplest non-trivial examples of manifolds where we could hope for local intrinsic dimensional logarithmic Sobolev inequalities to hold. The methods of scaling and tensorization which worked, respectively, for Euclidean spaces and product spaces no longer apply on curved spaces as they lack product and homogeneity structures. Hence, we take a different route and build on the stochastic approach of Lehec [START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF][START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF] and Eldan, Lehec, and Shenfeld [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF] towards logarithmic Sobolev inequalities. We start by stating our local intrinsic dimensional logarithmic Sobolev on space forms while deferring precise definitions to Part 2. 

         A = -e -nκT P T ∇ 2 f (x) -1 n P T ∆f (x) • g B = (n-1)κ 2 - ∆P T f (x) n • g. (33) 
Then, we have the local intrinsic dimensional logarithmic Sobolev inequality

P T (f log f )(x) -P T f (x) log P T f (x) ≤ 1 2 T 0 tr e C(t)-C(T ) g + E µ ∇ log f ⊗2 T t e 2C(s)-2C(T ) ds -1 E µ ∇ log f ⊗2 e C(t)-C(T ) dt, ( 34 
)
and the reverse local intrinsic dimensional logarithmic Sobolev inequality

P T (f log f )(x) -P T f (x) log P T f (x) ≥ 1 2 T 0 tr e C(t)-C(0) g -∇ log P T f (x) ⊗2 t 0 e 2C(s)-2C(0) ds -1 ∇ log P T f (x) ⊗2 e C(t)-C(0) dt. ( 35 
)
As will become clear from the proof of Theorem 4, the theorem is not optimal and follows from a more powerful "master " matrix differential inequality (section 10.3). There are other inequalities which can be deduced from the master matrix differential inequality, specifically in space forms with nonpositive sectional curvature. In particular, we prove Hamilton-type matrix inequalities for the heat equation: Theorem 5. Let (M, g) be an n-dimensional Riemannian manifold with constant nonpositive sectional curvature κ ≤ 0. Let {P t } t≥0 be the associated heat semigroup and let f : M → R be a positive function. Then, for every x ∈ M and every T ≥ 0, if, either κ = 0, or κ < 0 and

4 n 2 κ ∆P T f (x) P T f (x) = 1, then -∇ 2 log P T f (x) 1 T Id n ∀x ∈ M. (36) Further, if 4 n 2 κ ∆P T f (x) P T f (x) > 1, then -∇ 2 log P T f (x) nκ 2        4 n 2 κ ∆P T f (x) P T f (x) -1 cot         nκT 2 4 n 2 κ ∆P T f (x) P T f (x) -1         -1        Id n . ( 37 
)
In flat space, where κ = 0, Theorem 5 reduces to [START_REF] Fleming | An integral formula for total gradient variation[END_REF], namely, Hamilton's matrix inequality [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF]Corollary 4.4]. In hyperbolic spaces, Theorem 5 is completely new. The constraint 4 n 2 κ ∆P T f (x) P T f (x) > 1 is natural. Indeed, Theorem 5 is a matrix version of the improved Li-Yau inequality of Bakry, Bolley, and Gentil-see Remark 34.

Going beyond matrix inequalities, we can use our master matrix differential inequality to obtain another form of local intrinsic dimensional logarithmic Sobolev inequalities. Theorem 6. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature κ < 0 with the associated heat semigroup {P t } t≥0 . Fix T > 0, x ∈ M, a smooth positive function f : M → R with M f dP T δ x = 1, and let µ be the probability measure with dµ dP T δ x = f . Then, with

λ def = n 2 κ 2 4 4 n 2 κ ∆P T f (x) -1 , α i def =                arctan 1 √ λ σ i + nκ 2 if λ < 0, - 2 
2σ i +nκ if λ = 0, arctanh -1 √ -λ σ i + nκ 2 if λ > 0, ( 38 
)
we have the local intrinsic dimensional logarithmic Sobolev inequality

P T (f log f )(x) -P T f (x) log P T f (x) ≤ - P T ∆f (x) 2 - n 2 κT 2 - 1 2                n i=1 log cos(α i ) cos( √ λT +α i ) if λ > 0 n i=1 log α i T +α i if λ = 0 n i=1 log cosh(α i ) cosh( √ -λT +α i ) if λ < 0 ( 39 
)
where {σ i } n i=1 are the eigenvalues of E µ [-∇ 2 log f ], and the reverse local intrinsic dimensional logarithmic Sobolev inequality

P T (f log f )(x) -P T f (x) log P T f (x) ≥ - P T ∆f (x) 2 - n 2 κT 2 + 1 2                n i=1 log cos(α i ) cos( √ λT +α i ) if λ > 0 n i=1 log α i T +α i if λ = 0 n i=1 log cosh(α i ) cosh( √ -λT +α i ) if λ < 0 ( 40 
)
where {σ i } n i=1 are the eigenvalues of -∇ 2 log P T f (x).
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Part 1. Euclidean and product spaces: scaling and tensorization

Logarithmic Sobolev inequalities in Euclidean spaces and Cramér-Rao bounds

In this section we discuss strengthenings of logarithmic Sobolev inequalities for measures on Euclidean spaces by means of scaling. In addition, we derive an application of these inequalities to Bayesian Cramér-Rao bounds.

2.1. Warm-up: Gross' inequality. The Euclidean reformulation (4) of the logarithmic Sobolev inequality in Gauss space [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] asserts that if f : R n → R + is a probability density, then

R n f (x) log f (x) dx -H(γ n λ n ) ≤ 1 2 R n |∇f (x)| 2 f (x) dx -n . ( 41 
)
Fix such a density f and consider the reparametrized density f A : R n → R + which is given by

f A (x) = (det A) • f (Ax)
, where A ∈ GL n is a positive definite matrix. Applying [START_REF] Knothe | Contributions to the theory of convex bodies[END_REF] for f A we get

R n f (x) log f (x) dx + log det A -H(γ n λ n ) = R n f A (x) log f A (x) dx -H(γ n λ n ) ≤ 1 2 R n |∇f A (x)| 2 f A (x) dx -n = 1 2 R n |A • ∇f (x)| 2 f (x) dx -n , (42) 
which after rearranging becomes

R n f (x) log f (x) dx -H(γ n λ n ) ≤ 1 2 R n |A • ∇f (x)| 2 f (x) dx -log det A 2 -n = 1 2 tr A 2 • I(µ λ n ) -log det A 2 -n . ( 43 
)
For the optimal choice of matrix A = I(µ λ n ) -1/2 , (43) readily becomes Dembo's inequality [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF].

Observe that in this argument we made critical use of the change of variables formula for the Lebesgue measure, i.e., that

λ n (AK) = (det A) • λ n (K) for any Borel K ⊂ R n and A ∈ GL n . While
Lebesgue is the only measure on Euclidean space satisfying such an invariance property under all linear transformations, in the next section we shall observe that a weaker self-improvement can be deduced for measures which behave well under diagonal linear maps.

2.2.

Logarithmic Sobolev inequalities for homogeneous measures. Let p 1 , . . . , p n ≥ 0. An absolutely continuous measure ρ on R n with density w : R n → R + is called (p 1 , . . . , p n )-homogeneous if for every t 1 , . . . , t n > 0,

∀ x = (x 1 , . . . , x n ) ∈ R n , w(t 1 x 1 , . . . , t n x n ) = t p 1 1 • • • t p n n w(x 1 , . . . , x n ). ( 44 
)
Theorem 7. Fix c 1 , c 2 > 0, n ∈ N, p 1 , . . . , p n ≥ 0 and let ρ be a (p 1 , . . . , p n )-homogeneous measure such that for any Borel probability measure µ on R n ,

H(µ ρ) ≤ c 1 I(µ ρ) + c 2 . ( 45 
)
Then, for any Borel probability measure µ on R n with positive differentiable density f , we have

H(µ ρ) ≤ 1 2 n k=1 (1 + p k ) log 2ec 1 1 + p k R n ( k f (y)) 2 f (y) dρ(y) + c 2 . ( 46 
)
The existence of homogeneous measures ρ satisfying inequalities of the form [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF], as well as more general entropy-energy inequalities follows, for instance, from [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Proposition 7.3.1].

Proof of Theorem 7. Let f = dµ dρ be an arbitrary positive function with ρ-integral equal to 1 and fix t 1 , . . . , t n > 0. The measure µ t with density

x → f t (x) = t 1+p 1 1 • • • t 1+p n n f (t 1 x 1 , . . . , t n x n ) with respect to ρ is a probability measure, as n i=1 t 1+p i i R n f (t 1 x 1 , . . . , t n x n )w(x) dx = n i=1 t p i i R n f (y)w(t -1 1 y 1 , . . . , t -1 n y n ) dy = 1, (47) 
where we made the change of variables (y 1 , . . . , y n ) = (t 1 x 1 , . . . , t n x n ). We have,

H(µ t ρ) = n i=1 t 1+p i i R n f (t 1 x 1 , . . . , t n x n )        log f (t 1 x 1 , . . . , t n x n ) + n k=1 (1 + p k ) log t k        w(x) dx = n i=1 t p i i R n f (y)        log f (y) + n k=1 (1 + p k ) log t k        w(t -1 1 y 1 , . . . , t -1 n y n ) dy = H(µ ρ) + n k=1 (1 + p k ) log t k .
Similarly, assuming in addition that f is differentiable, for every k ∈ {1, . . . , n} we have

k f t (x) = t k i t 1+p i i k f (t 1 x 1 , . . . , t n x n ) and thus I(µ t ρ) = n k=1 t 2 k • n i=1 t 1+p i i R n ( k f (t 1 x 1 , . . . , t n x n )) 2 f (t 1 x 1 , . . . , t n x n ) w(x) dx = n k=1 t 2 k • n i=1 t p i i R n ( k f (y)) 2 f (y) w(t -1 1 y 1 , . . . , t -1 n y n ) dy = n k=1 t 2 k R n ( k f (y)) 2 f (y) dρ(y). (48) 
Therefore, applying (45) for µ t and reorganizing the terms, we deduce that

H(µ ρ) ≤ inf t 1 ,...,t n ≥0        c 1 n k=1 t 2 k R n ( k f (y)) 2 f (y) dρ(y) - n k=1 (1 + p k ) log t k + c 2       
.

It is now elementary to check that the above infimum is attained when

∀ k ∈ {1, . . . , n}, t 2 k = 1 + p k 2c 1 R n ( k f (y)) 2 f (y) dρ(y) -1 (49) 
and plugging this choice of parameters completes the proof.

Specifically for Lebesgue measure, Theorem 7 implies that if µ has differentiable density f ,

H(µ λ n ) -H(γ n λ n ) ≤ 1 2 n k=1 log R n ( k f (y)) 2 f (y) dy , ( 50 
)
which is weaker than Dembo's inequality [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] in view of the elementary estimate det C ≤ s C ss which holds for all positive semidefinite matrices C. On the other hand, (50) combined with Jensen's inequality implies [START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF]. We refer to [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF][START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF][START_REF] Bakry | Dimension dependent hypercontractivity for Gaussian kernels[END_REF][START_REF] Bakry | The Li-Yau inequality and applications under a curvaturedimension condition[END_REF] for further dimensional logarithmic Sobolev inequalities and applications to Li-Yau-type estimates [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF], hypercontractivity [START_REF] Nelson | A quartic interaction in two dimensions[END_REF][START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF][START_REF] Nelson | The free Markoff field[END_REF][START_REF] Beckner | Inequalities in Fourier analysis[END_REF][START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF] and heat kernel estimates [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF][START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF].

2.3.

A Bayesian Cramér-Rao bound. In [START_REF] Aras | A family of Bayesian Cramér-Rao bounds, and consequences for log-concave priors[END_REF], Aras, Lee, Pananjady and Courtade observed that logarithmic Sobolev inequalities formally imply Bayesian Cramér-Rao bounds, thus extending some results of Efroimovich [START_REF] Yu | Information contained in a sequence of observations[END_REF] for Gaussian measures. In this section, we investigate similar applications of intrinsic dimensional log-Sobolev inequalities in the spirit of ( 46) and [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF].

Following [START_REF] Aras | A family of Bayesian Cramér-Rao bounds, and consequences for log-concave priors[END_REF], we work in the setting of parametric statistics. Let {µ θ } θ∈R n be a family of probability measures on a measurable space (Ω, F). Assume moreover that there exists a dominating σ -finite measure λ on Ω such that µ θ has a positive density with respect to λ,

∀ θ ∈ R n , dµ θ (x) = f (x; θ) dλ(x). ( 51 
)
We shall assume throughout that each function θ → f (x; θ) is smooth and that

Ω ∇ θ f (x; θ) dλ(x) = 0 ( 52 
)
for almost every θ ∈ R n . The Fisher information of the parametric family {µ θ } θ∈R n is

∀ θ ∈ R n , J(θ) def = Ω |∇ θ f (x; θ)| 2 f (x; θ) dλ(x). (53) 
Finally, if π is a probability measure on R n , we denote the mutual information of π with the family {µ θ } θ∈R n by

I π; {µ θ } def = R n Ω f (x; θ) log       f (x; θ) R n f (x, φ) dπ(φ)       dλ(x) dπ(θ). ( 54 
)
The main result of [1, Theorem 1] specified to the standard Gaussian measure γ n asserts that for every absolutely continuous probability measure π on R n ,

I π; {µ θ } + H(π γ n ) ≤ 1 2 I(π γ n ) + R n J(θ) dπ(θ) . ( 55 
)
Inequality ( 55) implies the Gaussian logarithmic Sobolev inequality (1) since choosing µ θ = λ independently of θ, the terms I(π; {µ θ }) and J(θ) both vanish. We present inequalities in the spirit of ( 55) for homogeneous measures satisfying a log-Sobolev inequality of the form [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]. 

Theorem 8. Fix c 1 , c 2 > 0, n ∈ N,
H(µ ρ) ≤ c 1 I(µ ρ) + c 2 . ( 56 
)
Then, for every parametric family {µ θ } θ∈R n and every absolutely continuous measure π on R n whose density with respect to ρ is h : R n → R + , we have

I π; {µ θ } + H(π ρ) ≤ 1 2 n k=1 (1 + p k ) log 2ec 1 1 + p k R n ( k h(θ)) 2 h(θ) dρ(θ) + R n Ω ( θ k f (x; θ)) 2 f (x; θ) dλ(x) dπ(θ) + c 2 . ( 57 
)
Observe that the terms inside the logarithm on the right-hand side are the k-th component of the Fisher informations I(π|ρ) and J(θ) respectively, in analogy with Theorem 7.

Proof of Theorem 8. Consider the function f : Ω → R + given by

∀ x ∈ Ω, f (x) def = R n f (x; θ) dπ(θ) (58) 
and observe that

Ω f (x) dλ(x) = Ω R n f (x; θ) dπ(θ) dλ(x) = R n Ω dµ θ (x) dπ(θ) = 1. (59) 
Moreover, for x ∈ Ω, consider the function h x : R n → R + given by

∀ θ ∈ R n , h x (θ) def = h(θ)f (x; θ) f (x) (60) 
and notice that the measure ν x on R n with dν x (θ) = h x (θ) dρ(θ) is a probability measure since

ν x (R n ) = R n h(θ)f (x; θ) f (x) dρ(θ) = R n f (x; θ) f (x) dπ(θ) (58) = 1. ( 61 
)
By Theorem 7 and the assumption on ρ, for every x ∈ Ω we have

H(ν x ρ) ≤ 1 2 n k=1 (1 + p k ) log 2ec 1 1 + p k R n ( k h x (θ)) 2 h x (θ) dρ(θ) + c 2 . ( 62 
)
Integrating this inequality with respect to the probability measure f (x) dλ(x), we get

Ω H(ν x ρ)f (x) dλ(x) ≤ 1 2 n k=1 (1 + p k ) Ω log 2ec 1 1 + p k R n ( k h x (θ)) 2 h x (θ) dρ(θ) f (x) dλ(x) + c 2 ≤ 1 2 n k=1 (1 + p k ) log 2ec 1 1 + p k Ω R n ( k h x (θ)) 2 h x (θ) f (x) dρ(θ) dλ(x) + c 2 , ( 63 
)
where the last line follows from Jensen's inequality. Moreover, by definition we have

Ω H(ν x ρ)f (x) dλ(x) = Ω R n h(θ)f (x; θ) log h(θ)f (x; θ) f (x) dρ(θ) dλ(x) = R n h(θ) log h(θ) dρ(θ) + R n Ω f (x; θ) log f (x; θ) f (x) dλ(x) dπ(θ) = H(π ρ) + I π; {µ θ } . ( 64 
)
Similarly, computing the integral on the right-hand side of ( 63), gives

Ω R n ( k h x (θ)) 2 h x (θ) f (x) dρ(θ) dλ(x) = Ω R n f (x; θ) k h(θ) + h(θ) θ k f (x; θ) 2 h(θ)f (x; θ) dρ(θ) dλ(x) = R n ( k h(θ)) 2 h(θ) Ω f (x; θ) dλ(x) dρ(θ) + 2 R n k h(θ) Ω θ k f (x; θ) dλ(x) dρ(θ) + R n h(θ) Ω ( θ k f (x; θ)) 2 f (x; θ) dλ(x) dρ(θ) (52) = R n ( k h(θ)) 2 h(θ) dρ(θ) + R n Ω ( θ k f (x; θ)) 2 f (x; θ) dλ(x) dπ(θ).
Combining everything, we deduce the desired inequality.

Remark 9. In the case of the Gaussian measure ρ = γ n , we have at our disposal the intrinsic dimensional logarithmic Sobolev inequality [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF]. Repeating the same proof mutatis mutandis while replacing [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] with [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF], we conclude that for any probability measure π on R n whose density with respect to γ n is h : R n → R + , and for every parametric family {µ θ } θ∈R n , we have

I π; {µ θ } +H(π γ n ) ≤ trM 2,π -n 2 + 1 2 log det 2Id n +I(π γ n )+ R n Ω (∇ θ f (x; θ)) ⊗2 f (x; θ) dλ(x) dπ(θ)-M 2,π ,
where M 2,π = θ ⊗2 dπ(θ). This recovers a result of Efroimovich [29, Theorem 5]. Combining the inequalities log det C ≤ n log trC n and log y ≤ y -1, which hold for all y > 0 and all n × n positive definite matrices C, we see that Efroimovich's inequality is a strengthening of (55).

Gagliardo-Nirenberg-Sobolev inequalities

In this section we shall prove Theorem 2:

Theorem 10. Let p, q, r ∈ [1, ∞), θ ∈ [0, 1] and C p,q,r,r > 0 be such that u L p (R n ) ≤ C p,q,r,r u θ L q (R n ) ∇u 1-θ L r (R n ; n r ) ( 65 
)
is satisfied for all functions u ∈ C ∞ 0 (R n ) under the constraint 1 p = θ q + 1 r - 1 n (1 -θ). ( 66 
)
Then, for every u ∈ C ∞ 0 (R n ), we have

u L p (R n ) ≤ C p,q,r,r n 1-θ r u θ L q (R n ) n j=1 j u L r (R n ) 1-θ n . ( 67 
)
Proof. Fix t = (t 1 , . . . , t n ) ∈ R n + and consider the function u t ∈ C ∞ 0 (R n ) given by ∀ x = (x 1 , . . . , x n ) ∈ R n , u t (x) def = u(t 1 x 1 , . . . , t n x n ). (68) 
Then, for s ≥ 1 we have

u t L s (R n ) = R n |u(t 1 x 1 , . . . , t n x n )| s dx 1/s = n j=1 t -1/s j u L s (R n ) ( 69 
)
and

∇u t r L r (R n ; n r ) = n i=1 R n i u t r L r (R n ) = n i=1 t r i n j=1 t -1 j i u r L r (R n ) . (70)
Therefore, applying (65) to u t and rearranging, we deduce that

u L p (R n ) ≤ C p,q,r,r n j=1 t j 1 p -θ q -1-θ r u θ L q (R n ) n i=1 t r i i u r L r (R n ) 1-θ r (66) = C p,q,r,r n j=1 t j -1-θ n u θ L q (R n ) n i=1 t r i i u r L r (R n ) 1-θ r (71)
for every t 1 , . . . , t n > 0. Choosing

t i = i u -1 L r (R n ) ( 72 
)
gives the desired inequality (67).

Beckner inequalities

In this section we shall prove Theorem 1:

Theorem 11. Fix n ∈ N and let u ∈ C ∞ 0 (R n ) be such that ∀ i, j ∈ {1, . . . , n}, R n x i x j u(x) 2 dγ n (x) = δ ij u 2 L 2 (γ n ) , ( 73 
)
where δ ij is the Kronecker delta. Then, we have

∀ p ∈ [1, 2), u 2 L 2 (γ n ) -u 2 L p (γ n ) u 2 L 2 (γ n ) ≤ 1 -det        4 u 2 L 2 (γ n ) R n (∇u) ⊗2 dγ n + Id n        - 2-p 2p . ( 74 
)
For the proof of Theorem 11 we shall use the intrinsic dimensional logarithmic Sobolev inequality [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] which takes the following simple form for appropriately normalized functions in Gauss space.

Lemma 12. Let u ∈ C ∞ 0 (R n ) be such that u L 2 (γ n ) = 1 and ∀ i, j ∈ {1, . . . , n}, R n x i x j u(x) 2 dγ n (x) = δ ij . ( 75 
)
Then, we have

Ent γ n [u 2 ] ≤ 1 2 log det 4 R n (∇u) ⊗2 dγ n + Id n . ( 76 
) Proof. Let u ∈ C ∞ 0 (R n ) satisfy the assumptions of the lemma and define f (x) = u(x) 2 exp(-|x| 2 /2) (2π) n/2
which is the density of a probability measure µ on R n . Then, we have

H(µ λ n )-H(γ n λ n ) = Ent γ n [u 2 ]- 1 2 R n |x| 2 u(x) 2 dγ n (x)- n 2 log 2π+ n 2 log 2πe (75) = Ent γ n [u 2 ]. ( 77 
)
On the other hand, for k ∈ {1, . . . , n}, we compute

k f (x) = 2u(x) k u(x) -x k u(x) 2 e -|x| 2 /2 (2π) n/2 (78)
and thus for i, j ∈ {1, . . . , n}, we get

I(µ λ n ) ij = 4 R n i u j u dγ n -2 R n x j i u(x)+x i j u(x) u(x) dγ n (x)+ R n x i x j u(x) 2 dγ n (x). ( 79 
)
For i j, integration by parts gives 2

R n x j i u(x)u(x) dγ n (x) = R n i x j u(x) 2 dγ n (x) = R n x i x j u(x) 2 dγ n (x) (75) = 0, (80) 
whereas for i = j, again by integration by parts, 2

R n x i i u(x)u(x) dγ n (x) = R n i x i u(x) 2 dγ n (x)- R n u(x) 2 dγ n (x) = R n x 2 i u(x) 2 dγ n (x)-1 (75) = 0.
Plugging the above in (79) and using (75) again for the last term, we deduce that

I(µ λ n ) = 4 R n (∇u) ⊗2 dγ n + Id n (81)
and the conclusion of the lemma follows from [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF].

Equipped with Lemma 12, we proceed to the proof of Theorem 1.

Proof of Theorem 11. Assume, without loss of generality, that u L 2 (γ n ) = 1. Combining a lemma of Dolbeault and Toscani [28, Lemma 5] (see also [START_REF] Latała | Between Sobolev and Poincaré[END_REF]) with Lemma 12, we get that

1 u 2 L p (γ n ) = u 2 L 2 (γ n ) u 2 L p (γ n ) ≤ exp 2 -p p Ent γ n [u 2 ] (76) ≤ det 4 R n (∇u) ⊗2 dγ n + Id n 2-p 2p . ( 82 
)
Therefore,

1 -u 2 L p (γ n ) ≤ 1 -det 4 R n (∇u) ⊗2 dγ n + Id n - 2-p 2p , ( 83 
)
which is the desired estimate under the normalization u L 2 (γ n ) = 1.

q-logarithmic Sobolev inequalities

Following Bobkov and Zegarlinski [START_REF] Sergey | Entropy bounds and isoperimetry[END_REF] (see also [START_REF] Barthe | Modified logarithmic Sobolev inequalities on R[END_REF]) we say that a probability measure µ on the real line satisfies the q-logarithmic Sobolev inequality with constant C > 0 if for any

f ∈ C ∞ 0 (R) we have Ent µ [|f | q ] ≤ C R |f (x)| q dµ(x). ( 84 
)
Standard tensorization principles show that if (84) holds, then for any

f ∈ C ∞ 0 (R n ), Ent µ n [|f | q ] ≤ C n i=1 R n | i f (x)| q dµ n (x), ( 85 
)
where

µ n = µ ⊗ µ ⊗ • • • ⊗ µ is the product measure of i.i.d. coordinates distributed like µ.
In particular, it has been established in [START_REF] Sergey | Entropy bounds and isoperimetry[END_REF]Corollary 5.6] (see also [START_REF] Sergey | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF]Section 5]) that the measure µ p with density 1

Z p e -|x| p , where p > 2, satisfies the q-logarithmic Sobolev inequality for q = p p-1 with some constant C q > 1. In order to investigate scale-invariant refinements of (85) for this family of measures in the spirit of (50), we first need to formulate them as Euclidean inequalities.

Theorem 13. For any q ∈ (1, 2), there exists a constant Cq > 0 such that for any n ∈ N and any probability measure µ on R n with positive differentiable density g,

H(µ λ n ) ≤ Cq n i=1 R n i g(x) g(x) q + |x i | q q-1 dµ(x). ( 86 
)
Proof. For p = q q-1 > 2 consider the probability measure dµ p (x) = e -|x| p Z p on R, where the normalizing constant is Z p = 2Γ (1 + 1/p) > 2. Let µ be a probability measure on R n with differentiable density g : R n → R + and consider the function f : R n → R + given by

∀ x ∈ R n , f (x) = Z n/q
p g(x) 1/q e x p p /q , (87) which satisfies R n f (x) q dµ n p (x) = 1. Therefore, the q-logarithmic Sobolev inequality for µ n p applied to the function f implies that

1 Z n p R n f (x) q e -x p p log f (x) q dx = Ent µ n p [f q ] ≤ C q Z n p n i=1 R n | i f (x)| q e -x p p dx. ( 88 
)
Observe that 1

Z n p R n f (x) q e -x p p log f (x) q dx = R n g(x) log Z n p g(x)e x p p dx = H(µ λ n ) + R n x p p dµ(x) + log Z n p , (89) 
and for i ∈ {1, . . . , n},

1 Z n p R n | i f (x)| q e -x p p dx = 1 q q R n i g(x) g(x) + psign(x i )|x i | p-1 q dµ(x). ( 90 
)
Therefore, rearranging (88) we deduce that

H(µ λ n ) ≤ C q q q n i=1 R n i g(x) g(x) + psign(x i )|x i | p-1 q dµ(x) - n i=1 R n |x i | p dµ(x) -log Z n p ≤ Cq n i=1 R n i g(x) g(x) q + |x i | p dµ(x) (91) 
for some different constant Cq > 0 and the proof is complete.

This Euclidean weakening of the q-logarithmic Sobolev inequality (85) for µ n p makes it amenable to refinements via scaling. Theorem 14. For any q ∈ (1, 2) and p = q q-1 , there exists a constant Cq > 0 such that for any n ∈ N and any probability measure µ on R n ,

H(µ λ n ) ≤ n i=1 inf t i >0 Cq t q i R n i g(x) g(x) q dµ(x) + Cq t p i R n |x i | p dµ(x) -log t i . ( 92 
)
Proof. Fix t 1 , . . . , t n > 0 and consider the probability measure µ t whose density is given by x →

g t (x) def = t 1 • • • t n g(t 1 x 1 , . . . , t n x n ).
Then, we have

H(µ t λ n ) = H(µ λ n ) + n i=1 log t i ( 93 
)
and for every i ∈ {1, . . . , n},

R n i g t (x) g t (x) q + |x i | p dµ t (x) = R n       t q i i g(x) g(x) q + |x i | p t p i       dµ(x). ( 94 
)
Therefore, applying (86) to µ t and rearranging, we deduce that

H(µ λ n ) ≤ n i=1 Cq t q i R n i g(x) g(x) q dµ(x) + Cq t p i R n |x i | p dµ(x) -log t i ( 95 
)
and taking an infimum over t 1 , . . . , t n > 0 completes the proof.

Beyond linear rescalings

The simple idea of the previous sections can be summarized as follows. Let

K(f ) ≤ L(f ) (96)
be a functional inequality valid for regular enough functions f on R n and fix a subgroup of symmetries G ⊆ GL n . For a fixed f : R n → R for which inequality (96) is valid and A ∈ G, consider the function f A : R n → R given by f A (x) = f (Ax). If (96) applied to f A can be rearranged to an upper bound for K(f ) of the form

K(f ) ≤ L(f , A), ( 97 
)
then taking an infimum over A ∈ G yields a stronger inequality as (96) just amounts to the choice A = Id n . Observe that enhancing inequalities in this way, always produces a larger family of extremals. For instance, (4) becomes an equality only when µ is a translate of γ n , ( 5) becomes an equality when µ is a Gaussian measure with covariance matrix of the form σ Id n , where σ > 0, and ( 7) becomes an equality for any Gaussian measure on R n .

In this section, we will discuss the possibility of refining functional inequalities by using changes of variables via nonlinear maps and we shall illustrate this in the case of the logarithmic Sobolev inequality (4). Let T : R n → R n be a smooth diffeomorphism and for a measure µ on R n with a differentiable density f : R n → R + consider the measure µ T whose density is given by f T (x) = (f • T )(x)| det DT (x)|, where x ∈ R n and DT ∈ M n (R) is the differential of T . We need the following computations for the relative entropy and Fisher information of µ T .

Lemma 15. In the setting above,

H(µ T λ n ) = H(µ λ n ) + R n log | det DT (T -1 (x))| dµ(x) (98) 
and

I(µ T λ n ) = R n DT (T -1 (x)) • ∇f (x) f (x) + ∇ log | det DT (T -1 (x))| 2 dµ(x). ( 99 
)
The proof is a straightforward computation using a change of variables and is thus omitted. These formulas along with the fact that any absolutely continuous measure can be transported to γ n give rise to the following variational formula for relative entropy on R n . Theorem 16. Let µ be an absolutely continuous measure on R n . Then,

H(µ λ n ) -H(γ n λ n ) = min T ∈Diff(R n ) ψ(T ) (100)
with equality if T is a transport map from µ to γ n , where

ψ(T ) def = 1 2 R n DT (T -1 (x)) • ∇f (x) f (x) + ∇ log | det DT (T -1 (x))| 2 dµ(x)- R n log | det DT (T -1 (x))| dµ(x).
Proof. Applying the logarithmic Sobolev inequality (4) to µ T and using Lemma 15, we get

H(µ λ n ) + R n log | det DT (T -1 (x))| dµ(x) -H(γ n λ n ) ≤ 1 2 R n DT (T -1 (x)) • ∇f (x) f (x) + ∇ log | det DT (T -1 (x))| 2 dµ(x), (101) 
with equality only if µ T = γ n . The existence of a map T transporting µ to γ n is a classical fact in optimal transport going back to at least [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF][START_REF] Knothe | Contributions to the theory of convex bodies[END_REF] (see also [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der mathematischen Wissenschaften[END_REF]).

We are not aware of a proof of (100) which does not rely on the logarithmic Sobolev inequality [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF]. It remains very interesting to understand whether (100) can lead to stability estimates for (4), or even [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF], in the spirit of [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]Theorem 3]. Formula (100) becomes more tractable when specified to specific kinds of diffeomorphisms. For instance, when T is a product map of the form T (x) = (τ 1 (x 1 ), . . . , τ n (x n )), we get

H(µ λ n ) -H(γ n λ n ) ≤ inf τ 1 ,...,τ n ∈Diff(R) n i=1 R n        1 2 (τ i • τ -1 i ) i f f + (log |τ i • τ -1 i |) 2 -log |τ i • τ -1 i |        dµ.
(102) A similar simplified formula can be derived if T is a rotationally invariant map of the form T (x) = σ (|x|)x. The equality cases of Theorem 16 show that if µ is a product measure or a rotationally invariant measure, then the inequalities obtained by optimizing over the corresponding class of nonlinear transformations become equalities. For the case of a general probability measure µ, we pose the following question.

Question 17. Let µ be an arbitrary absolutely continuous probability measure on R n . For which collection of diffeomorphisms τ 1 , . . . , τ n ∈ Diff(R) is the infimum (102) attained?

A similar question can be asked for the optimal rotationally invariant change of variables. We have not investigated whether nonlinear changes of variables may give rise to variational formulas à la (100) when applied to other estimates like the Gagliardo-Nirenberg-Sobolev inequality (65) or Beckner's inequality [START_REF] Barthe | Modified logarithmic Sobolev inequalities on R[END_REF].

Tensorization of nonlinear logarithmic Sobolev inequalities in product spaces

Let I be a countable set, {(X i , µ i )} i∈I a family of probability spaces where X i is countable and denote their product space by (X, µ) = ( i∈I X i , ⊗ i∈I µ i ). For a point x = (x i ) i∈I ∈ X and i ∈ I, we shall denote by x ∼i the point (x j ) j i ∈ j i X j and by µ ∼i def = ⊗ j i µ j . Moreover, for a point z ∈ j i X j and a function f : X → R, we shall denote by f z : X i → R the restriction of f given by

∀ y ∈ X i , f z (y) def = f (z, y). ( 103 
)
For each i ∈ I, let B i be a functional acting on measurable functions g : j∈J X j → R for any J ⊆ I. We shall say that the family of functionals {B i } i∈I disintegrates if it satisfies the identities

∀ i ∈ I, B i f x ∼i dµ ∼i (x ∼i ) = B i (f ). ( 104 
)
Our main tensorization principle for nonlinear entropy inequalities is the following.

Theorem 18. Fix a countable set I and two collections of functionals {Q i } i∈I , {M i } i∈I which disintegrate in the above sense. Let Φ : R → R be a concave function and suppose that, for any i ∈ I, every function f i : X i → R + satisfies the inequality

Ent µ i [f i ] ≤ Q i (f i ) + E µ i [f i ]Φ M i (f i ) -Q i (f i ) E µ i [f i ] . ( 105 
)
Then, every function f :

X → R + satisfies Ent µ [f ] ≤ i∈I Q i (f ) + E µ [f ] i∈I Φ M i (f ) -Q i (f ) E µ [f ] . ( 106 
)
Proof. Combining the subadditivity of entropy and the assumptions of the theorem (including the disintegration of {Q i } i∈I ) we get that, for every f :

X → R + , Ent µ [f ] ≤ i∈I Ent µ i [f x ∼i ] dµ ∼i (x ∼i ) (105) ≤ i∈I Q i (f x ∼i ) + E µ i [f x ∼i ]Φ M i (f x ∼i ) -Q i (f x ∼i ) E µ i [f x ∼i ] dµ ∼i (x ∼i ) = i∈I Q i (f ) + E µ [f ] i∈I Φ M i (f x ∼i ) -Q i (f x ∼i ) E µ i [f x ∼i ] E µ i [f x ∼i ] E µ [f ] dµ ∼i (x ∼i ). ( 107 
) Since E µ i [f x ∼i ] dµ ∼i (x ∼i ) = E µ [f ]
, and

E µ i [f x ∼i ] ≥ 0, it follows that E µ i [f x ∼i ]
E µ [f ] dµ ∼i (x ∼i ) defines a probability measure on j i X j . Hence, by Jensen's inequality and disintegration, we get

Ent µ [f ] ≤ i∈I Q i (f ) + E µ [f ] i∈I Φ M i (f x ∼i ) -Q i (f x ∼i ) E µ i [f x ∼i ] • E µ i [f x ∼i ] E µ [f ] dµ ∼i (x ∼i ) = i∈I Q i (f ) + E µ [f ] i∈I Φ M i (f ) -Q i (f ) E µ [f ] . ( 108 
)
This completes the proof of the theorem.

Remark 19. While Theorem 18 is stated in a general form which contains the disintegrating additive errors {Q i } i∈I , in its main application (Theorem 3) which refines the result of [START_REF] Polyanskiy | Improved log-Sobolev inequalities, hypercontractivity and uncertainty principle on the hypercube[END_REF], these are assumed to be vanishing. We chose to include the deficits in the general formulation above as such terms often appear in modified logarithmic Sobolev-type inequalities, especially in discrete settings (see, for instance, [START_REF] Sergey | On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures[END_REF][START_REF] Wu | A new modified logarithmic Sobolev inequality for Poisson point processes and several applications[END_REF][START_REF] Sergey | Modified logarithmic Sobolev inequalities in discrete settings[END_REF][START_REF] Johnson | A discrete log-Sobolev inequality under a Bakry-Émery type condition[END_REF]).

Proof of Theorem 3. The conclusion (25) directly follows from Theorem 18 with Q i (f ) = 0 and 

M i (f ) = E π n [E i (f 1/p , f 1-1/p )]

Preliminaries

In this section we will introduce the necessary prerequisites from stochastic calculus on manifolds required to prove Theorem 4. We will be following the standard notation of [START_REF] Hsu | Stochastic analysis on manifolds[END_REF][START_REF] Petersen | Riemannian geometry[END_REF]. 8.1. The frame bundle. Let (M, g) be a complete n-dimensional Riemannian manifold. The orthonormal frame bundle O(M) of M is the set of all pairs of the form (x, u), where x ∈ M and u : R n → T x M is a Euclidean isometry. We shall denote by π : O(M) → M the natural projection given by π(x, u) = x. Any scalar-valued function f : M → R admits a natural lift f :

O(M) → R given by ∀ (x, u) ∈ O(M), f(x, u) = f (x). (109) 
Abusing notation, we shall often identify the pair (x, u) ∈ O(M) with the isomorphism u. The frame bundle O(M) is equipped with Bochner's horizontal Laplacian

∆ O(M) def = n i=1 H 2 i , ( 110 
)
and can be verified (see [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Proposition 3.1.2]) that the lift f of any function f :

M → R satisfies ∀ u ∈ O(M), ∆ O(M) f(u) = ∆f (πu), ( 111 
)
where ∆ is the Laplace-Beltrami operator of (M, g).

A curve {u t } t∈ [0,[START_REF] Aras | A family of Bayesian Cramér-Rao bounds, and consequences for log-concave priors[END_REF] in O(M) is called horizontal if for every a ∈ R n , the vector field {u t a} t∈[0,1] is parallel along the curve {πu t } t∈[0,1] in M. A tangent vector X ∈ T u O(M) is called horizontal if it is the tangent vector of a horizontal curve passing from u. For any vector X ∈ T πu M there exists a unique horizontal vector X ∈ T u O(M) such that π * X = X; we say that X is the horizontal lift of X at u. Let {e 1 , . . . , e n } be the standard basis of R n . The i-th fundamental horizontal vector field H i evaluated at a point u ∈ O(M) is the horizontal lift of the vector ue i ∈ T πu M. Thus, for any i ∈ {1, . . . , n}, the lift f of a function f :

M → R satisfies ∀ u ∈ O(M), H i f(u) = ∇ ue i f (πu). (112) 
A vector field on O(M) is called horizontal if it lies in the span of {H 1 , . . . , H n }. We denote by •, • hor the natural inner product on the space of horizontal vector fields on O(M) given by

n i=1 Z i H i , n i=1 W i H i hor = n i=1 Z i W i . (113)
Moreover, we shall denote by ∇ hor f = (H 1 f, . . . H n f) ∈ R n the horizontal gradient of a given function f : O(M) → R. In this terminology, the horizontal Laplacian takes the form ∆ O(M) f = i H 2 i f. We record for future reference the following very useful expression for the action of the commutator of ∆ O(M) with H i on lifted functions. Lemma 21. If f : (M, g) → R is a smooth function, then for any i ∈ {1, . . . , n}, its lift f satisfies

∀ u ∈ O(M), ∆ O(M) H i f(u) -H i ∆ O(M) f(u) = Ric(∇f , ue i )(πu), ( 114 
)
where Ric(•, •) is the Ricci tensor on M.

Proof. We shall follow the notation of [ 

H k H i f = H i H k f. (115) 
Therefore, we have

H 2 k H i f = H k H i H k f = [H k , H i ]H k f + H i H 2 k f. (116) Substituting the expression of [38, Lemma 5.5.1] for [H k , H i ], we get [H k , H i ]H k f = - a,b Ω ab ki V ab H k f = - a,b Ω ab ki [V ab , H k ]f, (117) 
where in the last identity we used that V ab f = 0. Again, by [38, Lemma 5.5.1], if we denote by A k ab the number 1 2 for (a, b) = (k, ) and -1 2 for (a, b) = ( , k), and zero otherwise, we obtain

- a,b Ω ab ki [V ab , H k ]f = - a,b, Ω ab ki A k ab H f = 1 2 Ω k ki -Ω k ki H f = Ω k ki H f, (118) 
where the antisymmetry of Ω on the top indices follows from its definition in [38, p. 153] as it is an o(d)-valued tensor. Combining (116), (117), (118) and summing over k, we deduce that

∆ O(M) H i f(u) -H i ∆ O(M) f(u) = k, Ω k ki H f(u) = k, Ω k ki ∇ ue f (πu). (119) 
Now, observe that by the definition of Ω in terms of the Riemann tensor R of M in [38, p. 149],

Ω k ki = g R(ue k , ue i )ue k , ue (120) 
and the conclusion follows from the definition of Ricci curvature.

8.2.

Brownian motion on manifolds. Let W t = (W 1 t , . . . , W n t ) be a standard Brownian motion on R n and (M, g) be a complete n-dimensional Riemannian manifold. We consider the following stochastic differential equation on the frame bundle O(M),

dΦ t = n i=1 H i (Φ t ) • dW i t , ( 121 
)
where the shorthand notation • refers to the Stratonovitch integral. In Itô terms, the above SDE asserts that for every smooth g : O(M) → R, we have

dg(Φ t ) = n i=1 H i g(Φ t ) dW i t + 1 2 ∆ O(M) g(Φ t ) dt. ( 122 
)
For any initial condition Φ 0 = u ∈ O(M), this equation has a strong solution which does not blow up in finite time if the Ricci curvature of M is bounded from below by any constant κ ∈ R (see [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Theorem 4.2.4] and [START_REF] Th | Potential theory and diffusion on Riemannian manifolds[END_REF] for a sufficient and almost necessary condition for stochastic completeness). We denote by B t = πΦ t , where t ≥ 0, the Brownian motion on M whose starting point is x = πu ∈ M. Applying (122), we deduce that for any smooth function f : M → R, the Brownian motion

{B t } t≥0 satisfies the SDE df (B t ) = n i=1 Φ i t f (B t ) dW i t + 1 2 ∆f (B t ) dt. ( 123 
)
8.3. The Föllmer process and Lehec's formula. In this section we introduce an analogue of the classical Föllmer process [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF][START_REF] Föllmer | Time reversal on Wiener space[END_REF][START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] on Riemannian manifolds (see also [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Section 5.4]).

We then present a result of Lehec [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF] who used this process to give a stochastic proof of the dimensional logarithmic Sobolev inequality for manifolds with Ricci curvature bounded below (see [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF][START_REF] Bakry | The Li-Yau inequality and applications under a curvaturedimension condition[END_REF] for more general statements proven via semigroup arguments).

Let W t = (W 1 t , . . . , W n t ) be a standard Brownian motion on R n and (M, g) be a complete ndimensional Riemannian manifold whose Ricci curvature is bounded from below. We shall denote by dx the volume measure on M and by {P t } t≥0 the heat semigroup on M. Recall that for a smooth function h : M → R, the action of the heat flow {P t } t≥0 on g is characterized by the ordinary differential equation

∀ t > 0, x ∈ M, P t h t (x) = 1 2 ∆P t h(x) ( 124 
)
with initial condition P 0 h = h on M. We recall that the heat semigroup and the Laplacian commute: ∆P t h = P t ∆h, and we write P t ∇ 2 f (x) for the 2-tensor on T x M identified with the symmetric matrix (P t ∇ 2 f (Φ 0 e i , Φ 0 e j )(x)) n i,j=1 . Note that P t and ∇ 2 do not commute (cf. Theorem 24). For a positive function f : M → R + and T > 0, we consider the following system of stochastic differential equations with respect to

(Ψ t , X t ) ∈ O(M) × M        dΨ t = n i=1 H i (Ψ t ) • dW i t + Ψ -1 t ∇ log P T -t f (X t ) dt X t = πΨ t , ( 125 
)
where the notation • again refers to the Stratonovitch integral. It is known (see [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]Theorem 7]) that if f is a smooth-enough positive function, then for any initial condition Ψ 0 = u ∈ O(M), the system (125) has a strong solution on [0, T ]. In [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]Theorem 7], Lehec proved the manifold version of an important representation formula for relative entropy in terms of the Föllmer process X t , first proven in their earlier work [START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF].

Theorem 22 (Lehec). Let (M, g) be a complete n-dimensional Riemannian manifold whose Ricci curvature is bounded from below and fix a smooth enough positive density function f : M → R + and T > 0. If {X t } t∈[0,T ] is a solution of (125) with initial condition Ψ 0 = u and πu = x, then the relative entropy of the measure µ with density

dµ dP T δ x = f is H(µ P T δ x ) = 1 2 E T 0 ∇ log P T -t f (X t ) 2 dt . ( 126 
)
where

|v| def = g x (v, v) for x ∈ M and v ∈ T x M.
It is worth pointing out that, in view of the decay and regularity of the heat kernel on space forms (see, e.g., [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF]Chapter 6] and [START_REF] Henry | An upper bound to the spectrum of ∆ on a manifold of negative curvature[END_REF][START_REF] Debiard | Théorèmes de comparaison en géométrie riemannienne[END_REF][START_REF] Grigor | The heat kernel on hyperbolic space[END_REF]), it suffices to assume that the functions for which we wish to prove the logarithmic Sobolev inequalities of Theorem 4 are Lipschitz and bounded away from 0. Therefore, the regularity conditions required for the function f in Lehec's theorem will always be tacitly assumed to hold.

We record for future reference the following computations (see also [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Equations (5.5.2) -(5.5.4)]) on the SDE satisfied by partial derivatives of the logarithm of the heat kernel. 

∀ x ∈ M, F t (x) = log P T -t f (x) ( 127 
)
and by F t the lift of F t onto O(M). If {X t } t∈[0,T ] is a solution of (125) and {W t } t≥0 is a standard Brownian motion on R n , then for every i ∈ {1, . . . , n} we have

dH i F t (Ψ t ) = ∇ hor H i F t (Ψ t ), dW t + 1 2 Ric ∇F t , Ψ t e i (X t ) dt. ( 128 
)
Proof. Using Itô's formula and (125), we get (omitting the dependence on Ψ t on the right-hand side of (129))

dH i F t (Ψ t ) = ∇ hor H i F t , dW t + H i F t t + 1 2 ∆ O(M) H i F t + ∇ hor H i F t , ∇ hor F t dt. ( 129 
)
Observe that the function F t satisfies the equation

F t t = - 1 2 ∆ O(M) F t - 1 2 ∇ hor F t 2 , ( 130 
)
which, after applying H i on both sides, gives

H i F t t = H i F t t = - 1 2 H i ∆ O(M) F t - 1 2 H i ∇ hor F t 2 . ( 131 
)
Moreover, we have

H i ∇ hor F t 2 = H i ∇ hor F t , ∇ hor F t = 2 H i ∇ hor F t , ∇ hor F t = 2 ∇ hor H i F t , ∇ hor F t , ( 132 
)
where in the last identity we use that [H i , H k ]h = 0 for any lifted function h on O(M) [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Lemma 5.5.1]. Substituting ( 131) and ( 132) in (129), we finally obtain

dH i F t (Ψ t ) = ∇ hor H i F t (Ψ t ), dW t + 1 2 [∆ O(M) , H i ]F t (Ψ t ) dt (133) 
and the desired identity follows immediately from Lemma 21.

8.4.

The heat flow on space forms. The classical Bochner formula (see, e.g., [START_REF] Wang | Identifying constant curvature manifolds, Einstein manifolds, and Ricci parallel manifolds[END_REF]) implies that if (M, g) is a Riemannian manifold with constant Ricci curvature Ric = κ ∈ R, then

∀ t ≥ 0, ∇P t f = e -κt/2 P t ∇f (134) 
for every smooth function f : M → R. In [START_REF] Wang | Identifying constant curvature manifolds, Einstein manifolds, and Ricci parallel manifolds[END_REF], Wang investigated commutation relations of this form for second order derivatives instead of the gradient ∇. We shall use the following result.

Theorem 24 (Wang). A Riemannian manifold (M, g) of dimension n has constant sectional curvature κ ∈ R if and only if the Hessian tensor of every smooth function f :

M → R satisfies ∀ r ≥ 0, ∇ 2 P r f = e -nκr P t ∇ 2 f + 1 -e -nκr n P r ∆f • g. (135) 

Intrinsic dimensional logarithmic Sobolev inequality in space forms

Having explained the necessary background we can now present Theorem 4. We first recall that when dµ dP T δ x = f , we have

H(µ P T δ x ) = P T (f log f )(x) -P T f (x) log P T f (x).
Theorem 25. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional curvature κ ∈ R \ {0} with the associated heat semigroup {P t } t≥0 . Fix T > 0, x ∈ M, a smooth positive function f : M → R with M f dP T δ x = 1, and let µ be the probability measure with

dµ dP T δ x = f .

Define the 2-tensor C(t) = e nκt

nκ A + tB for t ∈ R, where A, B are 2-tensors given by

         A = -e -nκT P T ∇ 2 f (x) -1 n P T ∆f (x) • g B = (n-1)κ 2 - ∆P T f (x) n • g, ( 136 
)
and let

E µ ∇ log f ⊗2 def = E ∇ hor log f(Ψ T ) ⊗2
. Then, we have the local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≤ 1 2 T 0 tr e C(t)-C(T ) g + E µ ∇ log f ⊗2 T t e 2C(s)-2C(T ) ds -1 E µ ∇ log f ⊗2 e C(t)-C(T ) dt, ( 137 
)
and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≥ 1 2 T 0 tr e C(t)-C(0) g -∇ log P T f (x) ⊗2 t 0 e 2C(s)-C(0) ds -1 ∇ log P T f (x) ⊗2 e C(t)-C(0) dt. ( 138 
)
The proof of Theorem 25 (see also the stronger Theorem 30) is modeled after the stochastic proof by Eldan, Lehec, and Shenfeld [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF] of the intrinsic dimensional logarithmic Sobolev inequality in flat space [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF] (and a weaker reverse inequality [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]Theorem 3]). A basic ingredient of this approach is deriving a stochastic differential equation for the tensor whose trace is the term

∇ log P T -t f (X t )
2 in (126). This is the content of the next lemma for which we establish the following notation. Let {B t } t≥0 be a Brownian motion on M with B 0 = x. As before, we denote by F t the function log P T -t f and by F t its horizontal lift on O(M). Moreover, we shall denote by G t the function exp F t = P T -t f and by G t = exp F t its lift. Consider the random matrices Q(t), P(t) ∈ M n (R) (the space of n × n square matrices over R) given by

Q ij (t) def = H i H j F t (Ψ t ) = H j H i F t (Ψ t ) = Q ji (t), P (t) def 
= Q(t) 2 . ( 139 
)
We can now derive the aforementioned stochastic differential equation.

Lemma 26. Let (M, g) be a Riemannian manifold. In the terminology above, for every i, j ∈ {1, . . . , n}, there exists a martingale {M ij (t)} t∈[0,T ] such that for t ∈ [0, T ], we have

H i F t (Ψ t ) • H j F t (Ψ t ) = M ij (t) + 1 2 t 0 Ric ∇F s (X s ), H i F s (Ψ s ) • Ψ s e j + H j F s (Ψ s ) • Ψ s e i ds + t 0 P ij (s) ds.
Proof. Observe that by the chain rule, we have (omitting the dependence on Ψ t on the righthand side below)

Q ij (t) = H i H j F t = H i H j log G t = H i H j G t G t -H i F t • H j F t (140)
and by the definition and symmetry of the matrix Q(t),

P ij (t) = n k=1 Q ik (t)Q kj (t) = n k=1 H k H i F t • H k H j F t = ∇ hor H i F t , ∇ hor H j F t . ( 141 
)
Combining Itô's product rule with Lemma 23, we get that for i, j ∈ {1, . . . , n},

d H i F t (Ψ t )•H j F t (Ψ t ) = H i F t (Ψ t ) dH j F t (Ψ t ) + H j F t (Ψ t ) dH i F t (Ψ t ) + dH j F t (Ψ t ) • dH i F t (Ψ t ) = 1 2 Ric ∇F t , H i F t • Ψ t e j + H j F t • Ψ t e i + ∇ hor H i F t , ∇ hor H j F t dt + H i F t ∇ hor H j F t + H j F t ∇ hor H i F t , dW t , (142) 
where in the right-hand side we again omitted the dependence on Ψ t and X t . Denoting the term in the last line by dM ij (t), it is clear that {M ij (t)} t∈[0,T ] is a martingale and (142) becomes

H i F t (Ψ t ) • H j F t (Ψ t ) = M ij (t) + 1 2 t 0 Ric ∇F s (X s ), H i F s (Ψ s ) • Ψ s e j + H j F s (Ψ s ) • Ψ s e i ds + t 0 P ij (s) ds,
where we also used (141). This is the desired identity.

The stochastic differential equation of Lemma 26 will allow us to derive a differential equation for

∀ t ∈ (0, T ), v ij (t) def = E H i F t (Ψ t ) • H j F t (Ψ t ) , i, j ∈ {1, . . . , n}; (143) 
note that with this notation, (126) reads H(µ P T δ x ) = 1 2 T 0 tr v(t) dt. We will then turn the differential equation into a differential inequality from which Theorem 30 and Theorem 25 shall follow. To derive the differential equation for v(t) we start by defining

m(t) def = E[-Q(t)] and n(t) def = E[P(t)]. (144) 
Assuming that the underlying manifold M is Einstein and taking expectations, we deduce the following differential equation for v(t).

Lemma 27. Let (M, g) be an Einstein manifold with constant Ricci curvature Ric = ρ for some ρ ∈ R.

For every i, j ∈ {1, . . . , n} and t ∈ (0, T ), we have

dv ij (t) dt = n ij (t) + ρv ij (t). ( 145 
)
Proof. Since M has constant Ricci curvature ρ, we have

Ric ∇F s (X s ), H i F s (Ψ s ) • Ψ s e j = ρH i F s (Ψ s ) • g(∇F s (X s ), Ψ s e j ) = ρH i F s (Ψ s ) • H j F s (Ψ s ). ( 146 
)
Plugging this in the rightmost term of Lemma 26, we get that

H i F t (Ψ t ) • H j F t (Ψ t ) = M ij (t) + ρ t 0 H i F s (Ψ s ) • H j F s (Ψ s ) ds + t 0 P ij (s) ds. (147) 
The result follows after taking expectation (since EM ij (t) = M ij (0) = 0) and differentiating.

In order to turn (145) into a differential inequality we will use Jensen's inequality n(t) m(t) 2 where we used P = Q 2 . To use the latter inequality we need to better understand the term m(t). On manifolds of constant curvature, m(t) takes the following simple form.

Lemma 28. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional curvature κ ∈ R. For every i, j ∈ {1, . . . , n} and t ∈ (0, T ), we have

m ij (t) = v ij (t) -e -nκ(T -t) P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x) - 1 -e -nκ(T -t) n P T ∆f (x) • δ ij . ( 148 
)
Proof. Taking expectations in (140), we obtain

m ij (t) = E[-Q ij (t)] (140) = v ij (t) -E H i H j G t (Ψ t ) G t (Ψ t ) . ( 149 
)
It follows from ( 125) and (121) that Ψ t has law f (B T ) with respect to Φ t for every t ∈ [0, T ] (see also the proof of [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]Theorem 7] for an argument based on Girsanov's theorem). Therefore, by the tower property of conditional expectation, we have

E H i H j G t (Ψ t ) G t (Ψ t ) = E H i H j G t (Φ t ) G t (Φ t ) f (B T ) = E H i H j G t (Φ t ) G t (Φ t ) E f (B T ) {Φ r } r≤t = E H i H j G t (Φ t ) G t (Φ t ) P T -t f (B t ) = E H i H j G t (Φ t ) . ( 150 
)
Recall that for any function h : M → R with horizontal lift h, we have 

∀ u ∈ O(M), H i H j h(u) = ∇ 2 h(ue i , ue j )(πu), (151) see 
H i H j G t (Φ t ) (151) = ∇ 2 P T -t f (Φ t e i , Φ t e j )(B t ) (135) = e -nκ(T -t) P T -t ∇ 2 f (Φ t e i , Φ t e j )(B t ) + 1 -e -nκ(T -t) n P T -t ∆f (B t ) • g(Φ t e i , Φ t e j ) = e -nκ(T -t) P T -t ∇ 2 f (Φ t e i , Φ t e j )(B t ) + 1 -e -nκ(T -t) n P T -t ∆f (B t ) • δ ij , (152) 
where in the last equality we used that {Φ t e 1 , . . . , Φ t e n } is an orthonormal basis of T B t M. Taking expectations on both sides, we get

E H i H j G t (Φ t ) = e -nκ(T -t) E P T -t ∇ 2 f (Φ t e i , Φ t e j )(B t ) + 1 -e -nκ(T -t) n E P T -t ∆f (B t ) • δ ij . ( 153 
)
By the definition [65, Equation (1.

2)] of the action of {P s } s≥0 on tensors, we have

E P T -t ∇ 2 f (Φ t e i , Φ t e j )(B t ) = E ∇ 2 f (Φ T e i , Φ T e j )(B T ) = P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x),
where the last identity follows from the definition of stochastic parallel transport given by [START_REF] Hsu | Stochastic analysis on manifolds[END_REF]Section 2.3]). Similarly, we have

{Φ s • Φ -1 0 } s≥0 (see
E P T -t ∆f (B t ) = E ∆f (B T ) = P T ∆f (x) (154) 
and combining everything we deduce that

E H i H j G t (Φ t ) = e -nκ(T -t) P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x) + 1 -e -nκ(T -t) n P T ∆f (x) • δ ij . (155) 
Plugging ( 155) and ( 150) in (149) completes the proof.

We are now ready to derive the differential inequality for v(t). For simplicity, we shall denote by c T def = P T ∆f (x) and by J T the symmetric matrix with

(J T ) ij def = P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x) - 1 n P T ∆f (x) • δ ij , (156) 
which satisfies trJ T = 0. Combining all of the above, we get the following matrix inequality:

Proposition 29. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional curvature κ ∈ R. For every t ∈ (0, T ), we have

dv(t) dt v(t) 2 -e -nκ(T -t) J T + c T n • Id n v(t) -v(t) e -nκ(T -t) J T + c T n • Id n + e -nκ(T -t) J T + c T n • Id n 2 + (n -1)κv(t), (157) 
so in particular,

dv(t) dt v(t) 2 + (n-1)κ 2 -c T n • Id n -e -nκ(T -t) J T v(t) + v(t) (n-1)κ 2 -c T n • Id n -e -nκ(T -t) J T , ( 158 
)
where is the inequalities in the positive semidefinite ordering.

Proof. Combining the matrix Jensen inequality

n(t) = E Q(t) 2 E -Q(t) 2 = m(t) 2 (159) 
with (145), (148) and expanding, we get (157)

dv(t) dt v(t) 2 -e -nκ(T -t) J T + c T n • Id n v(t) -v(t) e -nκ(T -t) J T + c T n • Id n + e -nκ(T -t) J T + c T n • Id n 2 + (n -1)κv(t). (160) 
The inequality (158) follows since the squared matrix is positive semidefinite.

Proposition 29 allows us to deduce the following local intrinsic dimensional logarithmic Sobolev inequalities which are, however, non-explicit.

Theorem 30. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional curvature κ ∈ R. Fix T > 0, x ∈ M, a smooth positive function f : M → R with M f dP T δ x = 1, and let µ be the probability measure with dµ dP T δ x = f . Suppose there is a family of matrices U (t) ∈ M n (R) for t ∈ [0, T ] which solves the equation

dU (t) dt = U (t) 2 -e -nκ(T -t) J T + c T n • Id n U (t) -U (t) e -nκ(T -t) J T + c T n • Id n + e -nκ(T -t) J T + c T n • Id n 2 + (n -1)κU (t), (161) 
with either initial condition U (0) := v(0) or U (T ) := v(T ). Then, we have the local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≤ 1 2 T 0 tr U (t) dt, U (T ) = E ∇ hor log f (Ψ T ) ⊗2 . ( 162 
)
and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≥ 1 2 T 0 tr U (t) dt, U (0) = ∇ hor log P T f (x) ⊗2 . ( 163 
)
Proof. Lehec's formula (126) implies

H(µ P T δ x ) (126) = 1 2 E T 0 ∇F t (X t ) 2 dt = 1 2 n i=1 T 0 E H i F t (Ψ t ) 2 dt = 1 2 T 0 tr v(t) dt. ( 164 
)
For the reverse local intrinsic dimensional logarithmic Sobolev inequality, we note that U (0) = v(0) so the result follows by (157) and standard comparison principles for matrix Ricatti equations, see [START_REF] Jones | Comparison theorems for matrix Riccati equations[END_REF]. For the local intrinsic dimensional logarithmic Sobolev inequality, we have U (T ) = v(T ) and the conclusion follows by reversing time.

Theorem 30 provides sharp results which are, however, not explicit since the solutions of (161) are complicated. They are expressed in terms of special functions, except in the flat space case where they simplify considerably-see Section 9.1. To avoid the complication of Theorem 30 we will use (158), rather than the stronger inequality (157), which will lead to explicit bounds, namely Theorem 25. To this end, we shall need the following technical lemma on matrix Bernoulli differential inequalities. 

V ε ∈ M n (R), if a continuous function V : [ε, T ] → M n (R)
for which every V (t) is a positive semi-definite matrix satisfies the ordinary differential inequality

∀ t ∈ (ε, T ), dV (t) dt V (t) 2 + e γt A + B V (t) + V (t) e γt A + B ( 165 
)
with boundary condition V (ε) = V ε , then it also satisfies the matrix inequalities

∀ t ∈ [ε, T ], V (t) e C(t)-C(T ) Id n + V (T ) T t e 2C(s)-2C(T ) ds -1 V (T )e C(t)-C(T ) . ( 166 
)
and

∀ t ∈ [ε, T ], V (t) e C(t)-C(ε) Id n -V (ε) t ε e 2C(s)-2C(ε) ds -1 V (ε)e C(t)-C(ε) . ( 167 
)
Moreover, the right-hand side of (167) is positive definite for every t ∈ (ε, T ). As V ε is positive definite, the same holds for V (t) for t near ε so let t max ∈ [ε, T ] be the supremum over t ∈ [ε, T ] where V (t) is positive definite. For t ∈ (ε, t max ), multiplying (165) by V (t) -1 on both sides, we deduce that

dV (t) -1 dt -Id n -V (t) -1 C (t) -C (t)V (t) -1 , ( 169 
)
where

C (t) def = dC(t)
dt . Therefore, we have

d dt e C(t) V (t) -1 e C(t) (168) = e C(t) C (t)V (t) -1 + dV (t) -1 dt + V (t) -1 C (t) e C(t) (169) -e 2C(t) , ( 170 
)
where in the last inequality we used that C(t) is symmetric. Integrating from ε to t, we get

e C(t) V (t) -1 e C(t) -e C(ε) V (ε) -1 e C(ε) - t ε e 2C(s) ds (171) 
which can be rearranged to give, for every t ∈ [ε, t max ),

V (t) -1 e -C(t) e C(ε) V (ε) -1 e C(ε) - t ε e 2C(s) ds e -C(t) . ( 172 
)
Since the right-hand side of ( 172) is finite for every t ∈ [ε, T ], we can take the limit t ↑ t max to conclude that V (t max ) is positive definite, and hence t max = T . Since the function A → A -1 is operator decreasing on positive definite matrices, this proves (167) after some simple algebraic manipulations. Moreover, as a consequence of (172), the right-hand side of (167) is indeed positive definite. Similarly, integrating (170) from t to T and rearranging gives V (t) -1 e -C(t) e C(T ) V (T ) -1 e C(T ) +

T t e 2C(s) ds e -C(t) . (173)

However, since V (t) -1 is positive definite for every t ∈ [ε, T ] this is equivalent to

V (t) e C(t)-C(T ) Id n + V (T ) T t e 2C(s)-2C(T ) ds -1 V (T )e C(t)-C(T ) , (174) 
which concludes the proof of (166).

Proof of Theorem 25. Fix T > 0, ε > 0, and x ∈ M. Let f : M → R be a smooth positive function with M f dP T δ x = 1 and let µ be the probability measure on M with dµ dP T δ x = f . Without loss of generality, we can perturb f and assume that

v ε def = E ∇ hor log P T -ε f(Ψ ε ) ⊗2 (175)
is a positive definite matrix. Following the terminology above, Lehec's formula (126) implies

H(µ P T δ x ) (126) = 1 2 E T 0 ∇F t (X t ) 2 dt = 1 2 n i=1 T 0 E H i F t (Ψ t ) 2 dt = 1 2 T 0 tr v(t) dt. ( 176 
)
Since v(ε) = v ε is a positive definite matrix, Proposition 29 and Lemma 31 give

∀ t ∈ [ε, T ], v(t) e C(t)-C(T ) Id n + v T T t e 2C(s)-2C(T ) ds -1 v T e C(t)-C(T ) (177) 
where C(t) = e γt γ A + tB, for the matrices 29) and [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]. In contrast to the proof of Theorem 25, which uses the weaker inequality (158), here we will use the stronger inequality (157) which in flat space has an explicit clear solution.

           A = -e -nκT J T B = (n-1)κ 2 -c T n • Id n . γ = nκ
Theorem 32. Fix T > 0 and x ∈ R n . Let f : R n → R be a smooth positive function with R n f dP T δ x = 1 and let µ be the probability measure on R n with dµ dP T δ x = f . Then, we have the local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≤ T 2 ∆P T f (x) + 1 2 P T f (x) log det Id n -T P T (f ∇ 2 log f (x)) P T f (x) , ( 179 
)
and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(µ P T δ x ) ≥ T 2 ∆P T f (x) - 1 2 P T f (x) log det Id n + T ∇ 2 log P T f (x) . ( 180 
)
Proof. The inequality (179) follows by setting dµ dλ n def = f P T δ x P T f (x) in [START_REF] Bakry | Optimal heat kernel bounds under logarithmic Sobolev inequalities[END_REF]. To prove (180), we may assume without loss of generality assume that -∇ 2 log P T f (x) is invertible. Set U (0) def = v(0) = (∇ log P T f (x)) ⊗2 and use the normalization assumption R n f dP T δ x = P T f (x) = 1 to conclude that

U (0) -∇ 2 P T f (x) = (∇ log P T f (x)) ⊗2 - ∇ 2 P T f (x) P T f (x) = -∇ 2 log P T f (x) (181) 
is invertible. In flat space, using κ = 0 and

J T + c T n • Id n = P T ∇ 2 f (x), equation (161) becomes dU (t) dt = U (t) 2 -P T ∇ 2 f (x)U (t) -U (t)P T ∇ 2 f (x) + (P T ∇ 2 f (x)) 2 . ( 182 
)
The solution of (182) can be verified to be

∀ t ∈ (0, T ), U (t) = [U (0) -P T ∇ 2 f (x)] -1 -t -1 + P T ∇ 2 f (x), (183) 
where we used Hamilton's matrix inequality [START_REF] Fleming | An integral formula for total gradient variation[END_REF] (see also Theorem 33 below) to justify the invertibility of [U (0) -P T ∇ 2 f (x)] -1t. Applying (163) of Theorem 30 yields

H(µ P T δ x ) ≥ - 1 2 T 0 tr (∇ 2 log P T f (x)) -1 + t -1 dt + T 2 P T ∆f (x), (184) 
where again we used normalization assumption P T f (x) = 1. To rewrite the right-hand side of (184) let {λ i } n i=1 stand for the eigenvalues of ∇ 2 log P T f (x) so

T 0 tr (∇ 2 log P T f (x)) -1 + t -1 dt = n i=1 T 0 (λ -1 i + t) -1 dt = n i=1 log       λ -1 i + T λ -1 i       = log det Id n + T ∇ 2 log P T f (x) . ( 185 
)
It follows that (184) reads

H(µ P T δ x ) ≥ T 2 ∆P T f (x) - 1 2 log det Id n + T ∇ 2 log P T f (x) , (186) 
so using again P T f (x) = 1, (186) is equivalent to

H(µ P T δ x ) ≥ T 2 ∆P T f (x) - 1 2 P T f (x) log det Id n + T ∇ 2 log P T f (x)
Semigroup vs. stochastic interpolation. The idea of writing the relative entropy as an integral of a gradient term goes back to the beginning of the Bakry-Émery theory of functional inequalities (see [START_REF] Bakry | Diffusions hypercontractives[END_REF][START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF] or [9, Section 5.5]). Such gradient terms often satisfy differential inequalities à la Proposition 29 which allow for the use of comparison principles in the spirit of Lemma 31.

For instance, Lehec in [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF] considered the scalar-valued function α : [0, T ] → R given by

∀ t ∈ [0, T ], α(t) = E |∇F t (X t )| 2 (187) 
and showed that

∀ t ∈ (0, T ), α (t) ≥ 1 n α(t) -c T 2 + (n -1)κα(t) ≥ α(t) n α(t) + n(n -1)κ -2c T . ( 188 
)
Applying a standard comparison principle to the latter inequality, he then derived a dimensional upper bound for the relative entropy, see [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]Equation (25)]. It is worth pointing out that (188) is also a consequence of (157) after taking traces and using the elementary inequality trC 2 ≥ (trC) 2 n which holds for all n × n positive semidefinite matrices C. A close inspection of the arguments of this section reveals that the logarithmic Sobolev inequality of Theorem 25 is a strengthening of Lehec's result for manifolds of constant sectional curvature.

By reasoning similar to (150), for every i ∈ {1, . . . , n}, we have

E (H i F t (Ψ t )) 2 = E (H i G t (Ψ t )) 2 G t (Ψ t ) 2 = E (H i G t (Φ t )) 2 (G t (Φ t )) 2 f (B T ) = E (H i G t (Φ t )) 2 G t (Φ t ) (189) 
and thus

∀ t ∈ (0, T ), α(t) = P t |∇P T -t f | 2 P T -t f (x). (190) 
This semigroup representation of α(t) was used by Bakry, Bolley and Gentil in [6, p. 405] to give an independent proof of inequality (188) for semigroups satisfying the curvature dimension condition CD(ρ, n), where ρ = (n-1)κ (observe that α(t) is denoted by Λ (t) in their paper).

Their main result [6, Theorem 2.2] improves upon [START_REF] Lehec | Borell's formula on a Riemannian manifold and applications[END_REF]Equation (25)] as they did not disregard the nonnegative constant in the second inequality of (188) and thus get to apply a tighter comparison principle. One could implement a similar strategy in the matricial setting treated here, by replacing the matrix inequality (158) with the stronger inequality (157) and solving the corresponding ordinary differential equation. However, solutions of this equation appear to be non-explicit, so we chose the comparatively simpler presentation of Theorem 25 for clarity of the exposition. If one were to implement this reasoning, it is clear from the proofs of this section that the resulting inequality would improve upon [6, Theorem 2.2].

Nonpositively curved space forms

The goal of this section is to prove Theorem 5 (section 10.1) and Theorem 6 (section 10.2). We conclude with section 10.3 which discusses some of the ideas behind our proofs. 10.1. Matrix inequalities. The main result of this section is the following Hamilton-type matrix inequality, namely, Theorem 5.

Theorem 33. Let (M, g) be an n-dimensional Riemannian manifold with constant nonpositive sectional curvature κ ≤ 0. Then, for every T ≥ 0, if, either κ = 0, or κ < 0 and

4 n 2 κ ∆P T f (x) P T f (x) = 1, then -∇ 2 log P T f (x) 1 T Id n ∀x ∈ M, (191) Further, if 4 n 2 κ ∆P T f (x) P T f (x) ) > 1, then -∇ 2 log P T f (x) nκ 2        4 n 2 κ ∆P T f (x) P T f (x) -1 cot         nκT 2 4 n 2 κ ∆P T f (x) P T f (x) -1         -1        Id n . ( 192 
)
Remark 34. To put Theorem 5 in a larger context, and also to shed light on the conditions regarding

4 n 2 κ ∆P T f (x) P T f (x)
, let us recall the improved Li-Yau inequality of Bakry, Bolley, and Gentil [6, Corollaries 2.3,2.4]: Let (M, g) be an n-dimensional Riemannian manifold with lower bound (n-1)κ on its Ricci curvature. Let {P t } t≥0 be the associated heat semigroup and let f : M → R be a positive function. Then, for every x ∈ M and every T ≥ 0,

4 n(n -1)κ ∆P T f (x) P T f (x) < 1 + 4π 2 (n -1) 2 κ 2 T 2 (193) 
and

-∆ log P T f (x) < (194)            n(n-1)κ 2 4 n(n-1)κ ∆P T f (x) P T f (x) -1 coth (n-1)κT 2 4 n(n-1)κ ∆P T f (x) P T f (x) -1 -1 if 4 n(n-1)κ ∆P T f (x) P T f (x) ≤ 1 n(n-1)κ 2 4 n(n-1)κ ∆P T f (x) P T f (x) -1 cot (n-1)κT 2 4 n(n-1)κ ∆P T f (x) P T f (x) -1 -1 if 1 ≤ 4 n(n-1)κ ∆P T f (x) P T f (x) < 1 + 4π 2 (n-1) 2 κ 2 T 2 . (195) Hence, in the regime 1 + 1 n-1 ≤ 4 n(n-1)κ ∆P T f (x) P T f (x) < 1 + 4π 2
(n-1) 2 κ 2 T 2 we are able to obtain in hyperbolic spaces a matrix version of the improved Li-Yau inequality.

Proof of Theorem 33. We start by showing that

m(t) def = E[-∇ 2 log P T -t f (X t )] (196) 
satisfies the following differential inequality.

Lemma 35. When κ ≤ 0, ∀ t ∈ [0, T ], dm(t) dt m(t) 2 + nκm(t) + κ∆P T f (x) • g. ( 197 
) Proof. Define u(t) def = e -nκ(T -t) J T + c T n • g (198) 
where (J T ) ij def = P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x) - 

v(t) 2 -u(t)v(t) -v(t)u(t) + u(t) 2 + (n -1)κv(t) -nκu(t) + κc T • g (201) = m(t) 2 + nκm(t) -κv(t) + κc T • g (202) m(t) 2 + nκm(t) + κc T • g (203) 
where the last inequality uses that κ ≤ 0 and that v(t) 0 (since it is a nonnegative sum of rank-one matrices).

The following technical lemma on matrix differential inequalities will allow us to further control the matrix m(t).

Lemma 36. Fix T > 0 and let W (t) be a family of matrices for t ∈ [0, T ] satisfying the differential inequality

∀ t ∈ [0, T ], dW (t) dt W (t) 2 + αW (t) + β • Id n (204) for some constant α, β ∈ R. Fix θ ∈ S n-1 and let φ(t) def = W (t)θ, θ for t ∈ [0, T ]. Then, fixing φ(0) = c we have ∀ t ∈ [0, T ], φ(t) ≥ ξ λ (t) - α 2 ( 205 
)
where

ξ λ (t) def =            √ λ tan( √ λt + c 1 ) if λ > 0 -1 t+c 2 if λ = 0 - √ -λ tanh( √ -λt + c 3 ) if λ < 0, (206) 
with

λ def = β - α 2 4 , ( 207 
)
and

c 1 def = arctan 1 √ λ c + α 2 , c 2 def = - 2 2c + α , c 3 def = arctanh - 1 √ -λ c + α 2 . ( 208 
) Proof. Since W (t) satisfies dW (t) dt W (t) 2 + αW (t) + β • Id n for all t ∈ [0, T ], we get that ∀ t ∈ [0, T ], dφ(t) dt = dW (t) dt θ, θ ≥ W (t) 2 θ, θ + α W (t)θ, θ + β|θ| 2 ≥ W (t)θ, θ 2 + α W (t)θ, θ + β|θ| 2 = φ(t) 2 + αφ(t) + β. ( 209 
)
Hence, φ satisfies the ordinary differential inequality

∀ t ∈ [0, T ], dφ(t) dt ≥ φ(t) 2 + αφ(t) + β. ( 210 
)
The solution of the ordinary differential equation

∀ t ∈ [0, T ], dσ (t) dt = σ (t) 2 + ασ (t) + β, σ (0) = c (211) is σ (t) = ξ λ (t) - α 2 where ξ λ (t) def =            √ λ tan( √ λt + c 1 ) if λ > 0 -1 t+c 2 if λ = 0 - √ -λ tanh( √ -λt + c 3 ) if λ < 0, (212) 
with

λ def = β - α 2 4 , (213) 
and

c 1 def = arctan 1 √ λ c + α 2 , c 2 def = - 2 2c + α , c 3 def = arctanh - 1 √ -λ c + α 2 . ( 214 
)
Applying standard comparison theorems [START_REF] Petrovitch | Sur une manière d'étendre le théorème de la moyenne aux équations différentielles du premier ordre[END_REF] we get that

∀ t ∈ [0, T ], φ(t) ≥ ξ λ (t) - α 2
We are now ready for the proof of Theorem 33. Recall that Lemma 36 showed that the matrix m(t) satisfies (204) with α = nκ and β = κ∆P T f (x). In the following we let φ(t) def = m(t)θ, θ for θ ∈ S n-1 . Let us distinguish between the flat and negatively curved cases.

When κ = 0 we need to show

φ(0) ≤ 1 T ( 215 
)
since we can choose θ to be any normalized eigenvector of -∇ 2 log P T f (x). If φ(0) ≤ 0 then (215) is trivial so we may assume from now on that φ(0) > 0. As κ = 0 we have α = β = 0 so λ = β -α 2 4 = 0. Hence, applying (205) we see that

∀ t ∈ [0, T ], φ(t) ≥ φ(0) 1 -φ(0)t . ( 216 
)
In particular, (216) implies that the denominator 1φ(0)t never vanishes since, otherwise, the right-hand side of (216) is +∞ (as φ(0) > 0) while the left-hand side is finite (as φ(t) < +∞).

The non-vanishing of 1φ(0)t, together with φ(0) > 0, implies that 0 < 1tφ(0) ⇐⇒ φ(0)

≤ 1 t . ( 217 
)
Taking t = T establishes (215). When κ < 0 we have α = κc T and β = nκ so λ = κ∆P T f (x) -n 2 κ 2 4 . If 4 n 2 k ∆P T f (x) = 1, so that λ = 0, then the argument proceeds as in the case κ = 0. When 4 n 2 k ∆P T f (x) < 1, so that λ > 0, applying (205) yields

∀ t ∈ [0, T ], φ(t) ≥ √ λ tan( √ λt + c) - nκ 2 (218) 
where

c def = arctan 1 √ λ φ(0) + nκ 2 . ( 219 
)
In particular, as φ(t) is finite, it follows that tan( √ λt + c) < +∞ for every t ∈ [0, T ]. At t = 0, c ∈ -π 2 , π 2 by (219) and the range of arctan. It follows that, for every t ∈ [0, T ],

π 2 > √ λt + c = √ λt + arctan 1 √ λ φ(0) + nκ 2 . ( 220 
)
Plugging in t = T into (220) and rearranging yields

φ(0) < √ λ tan π 2 - √ λT - nκ 2 = √ λ cot √ λT - nκ 2 . ( 221 
)
Letting θ to be any normalized eigenvector of -∇ 2 log P T f (x) and recalling the definition of λ yields (192) upon rearrangement.

Remark 37. We cannot address in Theorem 33 the regime 4 n 2 κ ∆P T f (x) P T f (x) < 1 since the tanh function, which will replace in the proof the tan function, is well-defined everywhere. It remains to be seen whether this is an artifact of the proof or an inherent obstacle.

Remark 38. The proof of Theorem 33 was obtained by using the inequality (205) subject to fixing the value of φ(0). Analogously, we can fix the value of φ(T ) and use (205) (by reversing the time) to get different matrix inequalities. Indeed, our proof of Theorem 40 below makes use of the freedom to choose the initial (terminal) condition.

Intrinsic dimensional local logarithmic Sobolev inequalities in hyperbolic spaces.

In this section we prove local intrinsic dimensional logarithmic Sobolev inequalities for the hyperbolic space, namely, Theorem 6. The inequalities provided by Theorem 40 below will be obtained as a consequence of the differential inequality of Lemma 35 together with the following simple observation: Lemma 39. Let f : M → R be such that M f dP T δ x = 1 and let µ be the probability measure with 

λ def = n 2 κ 2 4 4 n 2 κ ∆P T f (x) -1 , α i def =                arctan 1 √ λ σ i + nκ 2 if λ < 0, - 2 
2σ i +nκ if λ = 0, arctanh -1 √ -λ σ i + nκ 2 if λ > 0, ( 225 
)
we have the local intrinsic dimensional logarithmic Sobolev inequality P T (f log f )(x) -P T f (x) log P T f (x) ≤ -P T ∆f (x) 2 where (235)

-
ξ i,λ (t) def =            √ λ tan( √ λt + c i,1 ) if λ > 0 -1 t+c i,2 if λ = 0 - √ -λ tanh( √ -λt + c i,3 ) if λ < 0, (230) 
The proof now proceeds as in the proof of (227).

10.3. Discussion. We conclude this section by discussing the roles of matrix differential inequalities in our proofs.

Matrix differential inequalities. The master matrix differential inequality (157), which is at the core of all of our proofs, can be expressed either in terms of v(t), 

dv
The inequalities (236) and ( 237) are equivalent and contain the same information. In particular, in flat space forms, where κ = 0, both inequalities are of the form dW (t) dt W (t) 2 . In curved spaces, there are two different ways to proceed from (236) and ( 237):

(1) Omit the term u(t) 2 

Theorem 4 .

 4 Let (M, g) be an n-dimensional Riemannian manifold with constant sectional curvature κ ∈ R \ {0} with the associated heat semigroup {P t } t≥0 . Fix T > 0, x ∈ M, a smooth positive function f : M → R with M f dP T δ x = 1, and let µ be the probability measure with dµ dP T δ x = f . Define the 2-tensor C(t) = e nκt nκ A + tB for t ∈ R where A, B are the 2-tensors given by

Lemma 23 .

 23 Let (M, g) be a complete n-dimensional Riemannian manifold and fix a smooth enough positive density function f : M → R + and T > 0. Denote by F t : M → R the function given by

Lemma 31 .

 31 Fix T > ε > 0, n ∈ N, γ ∈ R \ {0} and let A, B ∈ M n (R) be symmetric matrices with AB = BA. Consider C(t) def = e γtγ A + tB, where t ∈ R. For any positive definite matrix

Proof.

  Since A and B commute, we have d dt e C(t) = e γt A + B e C(t) = e C(t) e γt A + B . (168)

. 9 . 1 .

 91 above, we have thus established the validity of (177) for an arbitrary smooth positive density f and for any ε > 0. Since v T = E µ ∇ log f ⊗2 , the logarithmic Sobolev inequality of Theorem 25 follows by combining (176) and (177) with ε → 0 + . The reverse logarithmic Sobolev inequality follows by using (167) since v 0 = ∇ log P T f (x) ⊗2 Intrinsic dimensional local logarithmic Sobolev inequalities in flat spaces. Our next goal is to prove the intrinsic dimensional local logarithmic Sobolev inequalities in flat spaces, i.e., equations (

  dµ dP T δ x = f . Then, P T (f log f )(x) -P T f (x) log P T f (x) = H(µ|P T δ x ) = -P T ∆f (xnκ(T -t) J T + P T ∆f (x) n • g (224) with (J T ) ij def = P T ∇ 2 f (Φ 0 e i , Φ 0 e j )(x) -1 n P T ∆f (x) • δ ij . The proof is complete since tr[J T ] = 0.Theorem 40. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature κ < 0 with the associated heat semigroup {P t } t≥0 . Fix T > 0, x ∈ M, a smooth positive function f : M → R with M f dP T δ x = 1, and let µ be the probability measure with dµ dP T δ x = f . Then, with

  p 1 , . . . , p n ≥ 0 and let ρ be a (p 1 , . . . , p n )-homogeneous measure such that for any Borel measure µ on R n ,

  38, Section 5.5]. For i, k ∈ {1, . . . , n}, it follows from [38, Lemma 5.5.1] that the commutator [H i , H k ] is a vertical vector field and thus [H i , H k ]f = 0, i.e.

  , e.g.,[START_REF] Hsu | Stochastic analysis on manifolds[END_REF] Equation (2.2.3)]. Combining (151) with Theorem 24, we deduce that

  where {σ i } n i=1 are the eigenvalues of E µ [-∇ 2 log f ], and the reverse local intrinsic dimensional logarithmic Sobolev inequalityP T (f log f )(x) -P T f (x) log P T f (x) ≥ -P T ∆f (x) 2where {σ i } n i=1 are the eigenvalues of -∇ 2 log P T f (x). Proof. Given any basis {θ i } n i=1 of R n we have It follows from Lemma 35 and Lemma 36 that

		-	n 2 κT 2	+	1 2	              	n i=1 log n i=1 log α i cos(α i ) cos( √ λT +α i ) T +α i n i=1 log cosh(α i ) cosh( √ -λT +α i )	if λ > 0 if λ = 0 if λ < 0
								(227)
								n
	∀ t ∈ [0, T ],	tr[m(t)] =		φ i (t)	(228)
							i=1
	where φ i (t)						
	∀ t ∈ [0, T ],	tr[m(t)] ≥	      	n i=1	ξ i,λ (t)        -	n 2 κ 2	(229)
			n 2 κT 2	-	1 2	              	n i=1 log n i=1 log α i cos(α i ) cos( √ λT +α i ) T +α i n i=1 log cosh(α i ) cosh( √ -λT +α i )	if λ > 0 if λ = 0 if λ < 0
								(226)

def

= m(t)θ i , θ i for i = 1, . . . , n.

  Hence, taking {θ i } n i=1 to be the eigenvectors of m(0) = -∇ 2 log P T f (x), and integrating {ξ i,λ (t)}, yields (227).To prove (226) we define φi (t) := φ i (Tt) which satisfies

	with												
										λ	def = κ∆P T f (x) -	n 2 κ 2 4	,	(231)
	and													
	c i,1	def = arctan	1 √ λ	φ i (0) +	nκ 2	, c i,2	def = -	2 2φ i (0) + nκ	, c i,3	def = arctanh -	1 √ -λ	φ i (0) +	nκ 2	.
															(232)
	It follows from Lemma 39 that					
			P T (f log f )(x) -P T f (x) log P T f (x) ≥ -	P T ∆f (x) 2	-	n 2 κT 2	+	1 2	n i=1	T 0	ξ i,λ (t) dt.	(233)
									∀ t ∈ [0, T ],			φ(t) ≤ ξ i,λ (T -t) -	α 2	(234)
	where now											
	c i,1	def = arctan	1 √ λ	φ i (T ) +	nκ 2	, c i,2	def = -	2 2φ i (T ) + nκ	, c i,3	def = arctanh -	1 √ -λ	φ i (T ) +	nκ 2	.

  The point of omitting u 2 (t) is that equation (239) can be solved explicitly, in contrast to the equation resulting if we keep the u 2 (t) term.1 (2) Omit the term -κv(t) from (237), which can be done only in negatively curved space forms to get Again, the point of omitting -κv(t) is so that (241) can be solved explicitly. Note that in flat spaces, there is no loss in omitting -κv(t).Matrix vs. trace differential inequalities. The proofs of Theorem 40 and Theorem 25 proceed along similar but different lines. Both proofs start by establishing an inequality of the form The goal is to bound tr[W (t)] which can be achieve by two means. Letting {U (t)} be the solution to This is the method used to prove Theorem 25 and Theorem 32 (with different functionals F).

	from (236) to get
			v(t) U (t)	(238)
	where		
	dU (t) dt	= U (t) (239)
			m(t) U (t)	(240)
	where		
		dU (t) dt	= U (t) 2 + nκU (t) + κc T • g.	(241)
			dW (t) dt	F(W (t))	(242)
	for some quadratic functional F. dU (t) dt	= F(U (t))	(243)
	we could:		
	(1) Argue that W (t) U (t) and then take the trace on both sides to get
			tr[W (t)] ≥ tr[U (t)].	(244)

2 

u(t)U (t) -U (t)u(t) + (n -1)κU (t).

If we take the trace in (236) then the equation with the u(t)

term can be solved explicitly-see the end of section 9. However, if we do so we would get the ambient dimension n rather than the intrinsic dimension.

(2) When F has scalar (rather than matrix) coefficients, it holds that

with strict inequality unless θ is an eigenvector of W (t). We can then {θ i } to be any basis and let φ i,W (t) := W (t)θ i , θ i , φ i,U (t) := U (t)θ i , θ i so

which shows φ i,W (t) ≥ φ i,U (t). Hence, for any basis {θ i } we have

This is the method used to prove Theorem 40. While both methods lead to the inequality

the second method is weaker since the inequality

F(W (t)) unless θ i is an eigenvector of W (t). However, for the purpose of proving an inequality for the trace, there is no loss since the trace is invariant under rotations so for each t we can introduce a rotation R(t) which takes {θ i } to the eigenvectors of W (t) or U (t).
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