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Introduction

Let ε 1 , ε 2 , . . . be independent identically distributed (i.i.d.) Rademacher random variables, that is, symmetric random signs satisfying P (ε j = ±1) = 1 2 . Motivated by his study of bilinear forms on infinitely many variables, Littlewood conjectured in [START_REF] Littlewood | On bounded bilinear forms in an infinte number of variables[END_REF] (see also [START_REF] Hall | On a conjecture of Littlewood[END_REF]) the following inequality: for every n ≥ 1 and every unit vector a in R n , we have [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF] E

n j=1 a j ε j ≥ E ε 1 + ε 2 √ 2 = 1 √ 2 ,
which is clearly best possible. Not until 46 years after it had been posed, was this proved by Szarek in [START_REF] Law | On the best constant in the Khintchine inequality[END_REF]. His result was later generalised in a stunning way to the setting of vector-valued coefficients a j in arbitrary normed space by Lata la and Oleszkiewicz in [START_REF] La | On the best constant in the Khinchin-Kahane inequality[END_REF] (see also [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF]Section 4.2] for a modern presentation of their proof using discrete Fourier analysis). Szarek's original proof was based mainly on an intricate inductive scheme (see also [START_REF] Law | A simple and elementary proof of the Kchintchine inequality with the best constant[END_REF]). Note that (1) holds trivially if a ∞ = max j |a j | ≥ 1 √ 2 , for if, say we have |a 1 | ≥ 1 √ 2 , then thanks to independence and convexity,

E n j=1 a j ε j ≥ E a 1 ε 1 + E n j=2 a j ε j = E|a 1 ε 1 | = |a 1 | ≥ 1 √ 2 .
Haagerup in his pioneering work [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF] on Khinchin inequalities offered a very different approach to the nontrivial regime a ∞ ≤ 1 √ 2 , using classical Fourier-analytic integral representations along with tricky estimates for a special function.

Taking that route, the point of this paper is to illustrate the robustness of Haagerup's method and extend (1) to i.i.d. sequences of random variables whose distribution is close to the Rademacher one in the W 2 -Wasserstein distance. Using the same framework, we also treat Ball's cube slicing inequality from [START_REF] Ball | Cube slicing in R n[END_REF] which asserts that the maximal-volume hyperplane section of the cube [-1, 1] n in R n is attained at (1, 1, 0, . . . , 0) ⊥ . This can be equivalently stated in probabilistic terms as an inequality akin to [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF] as follows (see, e.g. equation [START_REF] Ball | Cube slicing in R n[END_REF] in [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF]). Let ξ 1 , ξ 2 , . . . be i.i.d. random vectors uniform on the unit Euclidean sphere in R 3 . For every n ≥ 1 and every unit vector a in R n , we have

(2) E   n j=1 a j ξ j -1   ≤ E ξ 1 + ξ 2 √ 2 -1 = √ 2,
where here and throughout | • | denotes the standard Euclidean norm. Szarek's inequality [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF], Balls inequality (2), as well as these extensions fall under the umbrella of so-called Khinchin-type inequalities. The archetype was Khinchin's result asserting that all L p norms of Rademacher sums a j ε j are comparable to its L 2 -norm, established in his work [START_REF] Khintchine | Über dyadische Brüche[END_REF] on the law of the iterated logarithm (and perhaps discovered independently by Littlewood in [START_REF] Littlewood | On bounded bilinear forms in an infinte number of variables[END_REF]). Due to the intricacies of the methods involved, sharp Khinchin inequalities are known only for a handful of distributions, most notably random signs ( [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF][START_REF] Nayar | Khinchine type inequalities with optimal constants via ultra log-concavity[END_REF]), but also uniforms ( [START_REF] Baernstein | Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions[END_REF][START_REF] Chasapis | Sharp bounds on p-norms for sums of independent uniform random variables[END_REF][START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF][START_REF] Chasapis | Haagerup's phase transition at polydisc slicing[END_REF][START_REF] König | On the best constants in the Khintchine inequality for Steinhaus variables[END_REF][START_REF] König | Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors[END_REF][START_REF] La | A note on sums of independent uniformly distributed random variables[END_REF]), type L ( [START_REF] Havrilla | Khinchin-type inequalities via Hadamard's factorisation[END_REF][START_REF] Charles | An extension of Khintchine's inequality[END_REF]), Gaussian mixtures ( [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF][START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]), marginals of p -balls ( [START_REF] Barthe | Hyperplane projections of the unit ball of n p[END_REF][START_REF] Eskenazis | Sharp comparison of moments and the logconcave moment problem[END_REF]), or distributions with good spectral properties ( [START_REF] Stanis Law Kwapień | Comparison of moments of sums of independent random variables and differential inequalities[END_REF][START_REF] Oleszkiewicz | Comparison of moments via Poincaré-type inequality[END_REF]). The present work makes a first step towards more general distributions satisfying only a closeness-type assumption instead of imposing structural properties. Viewing sharp Khinchin-type inequalities as maximization problems for functionals on the sphere, our results assert, perhaps surprisingly, the fact that such inequalities are stable with respect to perturbations of the law of the underlying random vectors. These distributional stability results are novel in the context of optimal probabilistic inequalities.

Main results

For p > 0 and a random vector X in R d , we denote its L p -norm with respect to the standard Euclidean norm | • | on R d by X p = (E|X| p ) 1/p , whereas for a (deterministic) vector a in R n , a ∞ = max j≤n |a j | is its ∞ -norm. We say that the random vector X in R d is symmetric if -X has the same distribution as X. We also recall that the vector X is called rotationally invariant if for every orthogonal map U on R d , U X has the same distribution as X. Equivalently, X has the same distribution as |X|ξ, where ξ is uniformly distributed on the unit sphere S d-1 in R d and independent of |X|. Recall that the W 2 -Wasserstein distance W 2 (X, Y ) between (the distributions of) two random vectors X and Y in R d is defined as inf (X ,Y ) X -Y 2 , where the infimum is taken over all couplings of X and Y , that is, all random vectors (X , Y ) in R 2d such that X has the same distribution as X and Y has the same distribution as Y .

Our first result is an extension of Szarek's inequality (1) which reads as follows.

Theorem 1. There is a positive universal constant δ 0 such that if we let X 1 , X 2 , . . . be i.i.d. symmetric random variables satisfying

(3) |X 1 | -1 2 ≤ δ 0 ,
then for every n ≥ 3 and unit vectors a in R n with a ∞ ≤ 1 √ 2 , we have

(4) E n j=1 a j X j ≥ E X 1 + X 2 √ 2 .
Moreover, we can take δ 0 = 10 -4 .

Note that left hand side of ( 3) is nothing but the W 2 -Wasserstein distance between the distribution of X 1 and the Rademacher distribution since |x ± 1| ≥ |x| -1 for x ∈ R and thus the optimal coupling of the two distributions is X 1 , sign(X 1 ) .

Our second main result provides an analogous extension for Ball's inequality (2).

Theorem 2. Let X 1 , X 2 , . . . be i.i.d. symmetric random vectors in R 3 . Suppose their common characteristic function φ(t) = Ee i t,X 1 satisfies

(5) |φ(t)| ≤ C 0 |t| , t ∈ R 3 \ {0}, for some constant C 0 > 0. Assume that (6) W 2 (X 1 , ξ) ≤ 10 -38 C -9 1 min (E|X 1 | 3 ) -6 , 1 ,
where C 1 = max{C 0 , 1} and ξ is a random vector uniform on the unit Euclidean sphere S 2 in R 3 . Then for every n ≥ 3 and unit vectors a in R n with a ∞ ≤ 1 √ 2 , we have

(7) E n j=1 a j X j -1 ≤ E X 1 + X 2 √ 2 -1
.

Plainly, if we know that X 1 and ξ are sufficently close in W 3 , then the parameter 6) is redundant. In contrast to Theorem 1, here the closeness assumption ( 6) is put in terms of two parameters of the distribution: its third moment and the polynomial decay of its characteristic function. It is not clear whether this is essential. At the technical level of our proofs, the third moment is needed to carry out a certain Gaussian approximation, whilst the decay assumption has to do with an a priori lack of integrability in the Fourier-analytic representation of the L -1 norm (as opposed to the L 1 -norm handled in Theorem 1). On the other hand, neither of these is very restrictive. In particular, if X 1 has a density f on R 3 vanishing at ∞ whose gradient is integrable, then

E|X 1 | 3 in (
|t||φ(t)| ≤ 3 j=1 |t j φ(t)| = 3 j=1 R 3 t j e i t,x f (x)dx = 3 j=1 R 3 ie i t,x ∂ j f (x)dx ≤ √ 3 R 3 |∇f (x)|dx, so (5) holds with C 0 = √ 3 R 3 |∇f |.
Another natural sufficient condition is the rotational invariance of X 1 : if, say, X 1 has the same distribution as Rξ, for a nonnegative random variable R and an independent of it random vector ξ uniform on the unit sphere S 2 , then Archimedes' Hat-Box theorem implies that t, Rξ , conditioned on the value of R, is uniform on [-R|t|, R|t|] and thus

|φ(t)| = |E R E ξ e i t,Rξ | = E R sin(R|t|) R|t| ≤ ER -1 |t| = E|X 1 | -1 |t| .
Moreover, in this case W 2 (X 1 , ξ) = R -1 2 (since for every unit vectors θ, θ in R d and R ≥ 0, we have |Rθ -θ | ≥ |R -1|, as is easily seen by squaring). Probabilistically, this is an important special case as it yields results for symmetric unimodal distributions on R. Indeed, if X is of the form Rξ as above, for q > -1, we have the identity

(8) E n j=1 a j X j q = E n j=1 a j R j ξ j q = (1 + q)E n j=1 a j R j U j q ,
where the R j are i.i.d. copies of R and the U j are i.i.d. uniform random variables on [-1, 1], independent of the R j (see Proposition 4 in [START_REF] König | On the maximal measure of sections of the n-cube. Geometric analysis[END_REF]). The R j U j showing up in this formula can have any symmetric unimodal distribution, uniquely defined by the distribution of R j . Thus, if V 1 , V 2 , . . . be i.i.d. symmetric unimodal random variables, Theorem 2 then immediately yields a sharp upper bound on lim q↓-1 (1 + q)E n j=1 a j X j q for all unit vectors a with a ∞ ≤ 1 √ 2 (cf. [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF][START_REF] Chasapis | Sharp bounds on p-norms for sums of independent uniform random variables[END_REF][START_REF] Eskenazis | Sharp comparison of moments and the logconcave moment problem[END_REF][START_REF] La | A note on sums of independent uniformly distributed random variables[END_REF]). A result in the same vein as Theorem 2 is König and Koldobsky's extension [START_REF] König | On the maximal measure of sections of the n-cube. Geometric analysis[END_REF] of Ball's cube slicing inequality to product measures with densities satisfying certain regularity and moment assumptions. Their result also applies specifically to vectors of weights satisfying the small coefficient condition a ∞ ≤ 1 √ 2 . Approached differently, full extensions of (1) and (2) (i.e. without the small coefficient restriction on a) have been obtained in our recent work [START_REF] Eskenazis | Resilience of cube slicing in p[END_REF] for a very special family of distributions corresponding geometrically to extremal sections and projections of p -balls.

Proof of Theorem 1

Our approach builds on Haagerup's slick Fourier-analytic proof from [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF]. We let ( 9)

φ(t) = Ee itX 1 , t ∈ R,
be the characteristic function of X 1 . Using the elementary Fourier-integral representation

|x| = 1 π R (1 -cos(tx))t -2 dt, x ∈ R,
as well as the symmetry and independence of the X j , we have, [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF] (see also Lemma 1.2 in [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF]). If a is a unit vector in R n with nonzero components, using the AM-GM inequality, we obtain Haagerup's lower bound [START_REF] Eskenazis | Sharp comparison of moments and the logconcave moment problem[END_REF] E

E n j=1 a j X j = 1 π R 1 -Re Ee it a j X j t -2 dt = 1 π R   1 - n j=1 φ(a j t)   t -2 dt
n j=1 a j X j ≥ n j=1 a 2 j Ψ(a -2 j ), where (12) 
Ψ(s) = 1 π R 1 -φ t √ s s t -2 dt, s > 0.
(see Lemma 1.3 in [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF]). The crucial lemma reads as follows.

Lemma 3. Under the assumptions of Theorem 1, we have Ψ(s) ≥ Ψ(2) for every s ≥ 2.

If we take the lemma for granted, the proof of Theorem 1 is finished because the small coefficient assumption

a ∞ ≤ 1 √ 2 gives Ψ(a -2 j ) ≥ Ψ(2)
for each j, and as a result we get

E n j=1 a j X j ≥ Ψ(2) = 1 π R 1 -φ t √ 2 2 t -2 dt = E X 1 + X 2 √ 2 ,
where the last equality is justified by [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF].

It remains to prove Lemma 3. To this end, we recall that if the X j were Rademacher random variables, then the special function Ψ becomes

(13) Ψ 0 (s) = 1 π R 1 -cos t √ s s t -2 dt, s > 0.
Haagerup showed that for every s > 0,

Ψ 0 (s) = 2 √ πs Γ s+1 2 Γ s 2 = 2 π ∞ k=0 1 -1/(s + 2k + 1) 2 1/2 (14) 
and concluded by the product representation that Ψ 0 is strictly increasing. In particular, Lemma 3 holds in the Rademacher case due to monotonicity. The rest of the proof builds exactly on this observation: we show that the closeness of distributions guarantees that Ψ and Ψ 0 are close for, say s ≥ 3, and that their derivatives are close for 2 ≤ s ≤ 3.

Crucially, not only do we know that Ψ 0 is strictly monotone, but also we can get a good bound on its derivative near the endpoint s = 2, which we record now for future use.

Lemma 4. We have

(15) inf 2≤s≤3 Ψ 0 (s) ≥ ζ(3) -1 8 √ 2 = 0.01785...
Proof. Differentiating Haagerup's product expression ( 14) term-by-term yields

Ψ 0 (s) = d ds 2 π ∞ k=0 1 -(s + 2k + 1) -2 1/2 = Ψ 0 (s) ∞ k=0 1 -(s + 2k + 1) -2 -1 (s + 2k + 1) -3 ≥ Ψ 0 (2) ∞ k=0 (2k + 4) -3 = 1 √ 2 ζ(3) -1 8 .
The rest of this section is devoted to the proof of Lemma 3. We break it into several parts.

3.1.

A uniform bound on the characteristic function.

Lemma 5. Let X be a symmetric random variable satisfying (3). Then its characteristic function φ(t) = Ee itX satisfies,

(16) |φ(t) -cos t| ≤ δ 0 (δ 0 + 2) 2 t 2 , t ∈ R.
Proof. By symmetry, the triangle inequality and the bound | sin u| ≤ |u|, we get

|φ(t) -cos t| = |E [cos(t|X|) -cos t]| = 2 E sin t |X| -1 2 sin t |X| + 1 2 ≤ t 2 2 E |X| -1 • |X| + 1 ≤ t 2 2 |X| -1 2 |X| + 1 2 ,
using the Cauchy-Schwarz inequality in the last estimate. Moreover,

|X| + 1 2 ≤ |X| -1 2 + 2.
Plugging in the assumption |X| -1 2 ≤ δ 0 completes the proof.

3.2.

Uniform bounds on the special function and its derivative.

Lemma 6. Assuming (3) and the symmetry of X 1 , the functions Ψ and Ψ 0 defined in (12) and (13) respectively satisfy

(17) |Ψ(s) -Ψ 0 (s)| ≤ 2 π 2δ 0 (δ 0 + 2), s ≥ 1.
Proof. Fix T > 0. Breaking the integral defining Ψ into

T 0 + ∞ T and using that |a-b| ≤ 1 for a, b ∈ [0, 1], we obtain |Ψ(s) -Ψ 0 (s)| = 2 π ∞ 0 φ t √ s s -cos t √ s s t -2 dt ≤ 2 π T 0 φ t √ s s -cos t √ s s t -2 dt + 2 π ∞ T t -2 dt
We also have

|a| s -|b| s ≤ s|a -b| for a, b ∈ [-1, 1], s ≥ 1, thus Lemma 5 yields |Ψ(s) -Ψ 0 (s)| ≤ 2 π T 0 s δ 0 (δ 0 + 2) 2 t √ s 2 t -2 dt + 2 πT = 2 π T δ 0 (δ 0 + 2) 2 + 1 T .
Optimizing over the parameter T gives the desired bound.

Lemma 7. For s ≥ 2 and 0 < u, v < 1, we have

|u s log u -v s log v| ≤ |u -v|.
Proof. Let f (x) = x s log x. It suffices to prove that on (0, 1) we have |f (x)| ≤ 1, which is equivalent to |αt log t + t| ≤ 1 with t = x s-1 ∈ (0, 1) and α = s s-1 ∈ [1, 2]. To prove this observe that for t ∈ (0, 1) we have αt log t + t ≤ t ≤ 1 and

αt log t + t ≥ αt log t ≥ - α e ≥ - 2 e > -1.
Lemma 8. Assuming (3) and the symmetry of X 1 , the functions Ψ and Ψ 0 defined in [START_REF] Eskenazis | Resilience of cube slicing in p[END_REF] and ( 13) satisfy

(18) |Ψ (s) -Ψ 0 (s)| ≤ 0.62 δ 0 (δ 0 + 2), s ≥ 2.
Proof. Changing the variables and differentiating gives

Ψ (s) = d ds 2 π √ s ∞ 0 1 -|φ(t)| s t -2 dt = - 1 2s Ψ(s) - 2 π √ s ∞ 0 |φ(t)| s log |φ(t)|t -2 dt.
Thus,

|Ψ (s) -Ψ 0 (s)| ≤ 1 2s |Ψ(s) -Ψ 0 (s)| + 2 π √ s ∞ 0 |φ(t)| s log |φ(t)| -| cos(t)| s log | cos(t)| t -2 dt.
To estimate the integral, we proceed along the same lines as in the proof of Lemma 6. We fix T > 0, write

∞ 0 = T 0 + ∞
T and for the second integral use |u s log u| = 1 s |u s log(u s )| ≤ 1 es , 0 < u < 1, to get a bound on it by 2 esT , whilst for the first integral, using first Lemma 7 and then Lemma 5, we obtain

T 0 |φ(t)| s log |φ(t)| -| cos(t)| s log | cos(t)| t -2 dt ≤ T 0 |φ(t) -cos(t)|t -2 dt ≤ δ 0 (δ 0 + 2) 2 T,
Altogether, with the aid of Lemma 6,

|Ψ (s) -Ψ 0 (s)| ≤ 1 2s 2 π 2δ 0 (δ 0 + 2) + 2 π √ s δ 0 (δ 0 + 2) 2 T + 2 esT .
Minimising the second term over T > 0 leads to the bound by

1 πs 2δ 0 (δ 0 + 2) + 4 πs δ 0 (δ 0 + 2) e = δ 0 (δ 0 + 2) πs √ 2 + 4 √ e .
For s ≥ 2, we have 

Ψ(s) ≥ Ψ 0 (s) -η. Since Ψ 0 is increasing, Ψ 0 (s) ≥ Ψ 0 (3) = Ψ 0 (3) -Ψ 0 (2) + Ψ 0 (2) and Ψ 0 (2) ≥ Ψ(2) -η, again using Lemma 6. Therefore, Ψ(s) ≥ Ψ(2) + Ψ 0 (3) -Ψ 0 (2) -2η .
It is now clear that as long as δ 0 is sufficiently small, namely 2η ≤ Ψ 0 (3) -Ψ 0 (2), we get Ψ(s) ≥ Ψ(2), as desired. It can be checked that Ψ 0 (3)

-Ψ 0 (2) = 4 π √ 3 -1 √ 2 = 0.027.
. and a choice of δ 0 ≤ 10 -4 suffices for the estimate Ψ(s) ≥ Ψ(2) to hold for s ≥ 3. Now we assume that 2 < s < 3. We have

Ψ(s) = Ψ(2) + (s -2)Ψ (θ)
for some 2 < θ < s. Using Lemmas 8 and 4, we get

Ψ (θ) ≥ Ψ 0 (θ) -0.62 δ 0 (δ 0 + 2) ≥ 0.017 -0.62 δ 0 (δ 0 + 2)
which is positive for all δ 0 ≤ 3.7 • 10 -4 . Thus, Ψ(s) ≥ Ψ(2) holds in both cases.

Proof of Theorem 2

The approach is the same as for Theorem 1, however certain technical details are substantially more involved. We begin with a Fourier-analytic representation for negative moments due to Gorin and Favorov [START_REF] Evgeni | Generalizations of the Khinchin inequality[END_REF].

Lemma 9 (Lemma 3 in [START_REF] Evgeni | Generalizations of the Khinchin inequality[END_REF]). For a random vector X in R d and -d < q < 0, we have

(19) E|X| q = β q,d R d Ee i t,X • |t| -q-d dt,
where β q,d = 2 q π -d/2 Γ((d+q)/2) Γ(-q/2) , provided that the integral on the right hand side exists.

Specialised to d = 3, q = -1 (β -1,3 = 1 2π 2 ) and X = n j=1 a j X j with X 1 , . . . , X n independent random vectors, we obtain [START_REF] König | On the maximal perimeter of sections of the cube[END_REF] E

n j=1 a j X j -1 = 1 2π 2 R 3   n j=1 Ee i t,a j X j   |t| -2 dt.
Note that thanks to the decay assumption (5), the integral on the right hand side converges as long as n ≥ 2 (assuming the a j are nonzero). As in Ball's proof from [START_REF] Ball | Cube slicing in R n[END_REF], Hölder's inequality yields

(21) E n j=1 a j X j -1 ≤ n j=1 Φ a -2 j a 2 j , where (22) 
Φ(s) = 1 2π 2 R 3 φ s -1/2 t s |t| -2 dt, s > 1 with (23) φ(t) = Ee i t,X 1 , t ∈ R 3 ,
denoting the characteristic function of X 1 . Exactly as in the proof of Theorem 1, the following pivotal lemma allows us to finish the proof.

Lemma 10. Under the assumptions of Theorem 2, we have Φ(s) ≤ Φ(2) for every s ≥ 2.

If the X j are uniform on the unit sphere S 2 in R 3 , we have φ(t) = sin |t| |t| (because t, X 1 is uniform on [-|t|, |t|]), in which case the special function Φ defined in [START_REF] Khintchine | Über dyadische Brüche[END_REF] becomes

(24) Φ 0 (s) = 2 π ∞ 0 sin(s -1/2 t) s -1/2 t s dt, s > 1
(after integrating in polar coordinates). Ball's celebrated integral inequality states that Φ 0 (s) ≤ Φ 0 (2), for all s ≥ 2 (see Lemma 3 in [START_REF] Ball | Cube slicing in R n[END_REF], as well as [START_REF] Melbourne | Transport-majorization to analytic and geometric inequalities[END_REF][START_REF] Fedor | Haagerup, and distribution functions[END_REF] for different proofs).

Our proof of Lemma 10 relies on this, additional bounds on the derivative Φ 0 (s) near s = 2, as well as, crucially, bounds quantifying how close Φ is to Φ 0 . In the following subsections we gather such results and then conclude with the proof of Lemma 10.

4.1.

A uniform bound on the characteristic function. Throughout these sections ξ always denotes a random vector uniform on the unit sphere S 2 in R 3 .

Lemma 11. Let X be a symmetric random vector in R 3 with δ = W 2 (X, ξ). Then, its characteristic function φ(t) = Ee i t,X satisfies

(25) φ(t) - sin |t| |t| ≤ δ(δ + 2) 2 |t| 2 , t ∈ R 3 .
Proof. Let ξ be uniform on S 2 such that for the joint distribution of (X, ξ), we have X -ξ 2 = W 2 (X, ξ) = δ. By symmetry, the bound | sin u| ≤ |u| and the Cauchy-Schwarz inequality (used twice), we get

φ(t) - sin |t| |t| = |E [cos t, X -cos t, ξ ]| = 2 E sin 1 2 t, X -ξ sin 1 2 t, X + ξ ≤ |t| 2 2 E X -ξ • X + ξ ≤ |t| 2 2 X -ξ 2 X + ξ 2 .
To conclude we use the triangle inequality

X + ξ 2 ≤ X -ξ 2 + 2 ξ 2 = X -ξ 2 + 2.
4.2. Bounds on the special function. We begin with a bound on the difference Φ(s)-Φ 0 (s) obtained from the uniform bound on the characteristic functions (Lemma 11 above).

In contrast to Lemma 6, the bound is not uniform in s. For s not too large (the bulk), we incur the factor s 3/4 . To fight it off for large values of s, we shall employ a Gaussian approximation. For that part to work, it is crucial that Φ 0 (2

) -Φ 0 (∞) = √ 2 -6 π > 0.
4.2.1. The bulk.

Lemma 12. Let X be a symmetric random vector in R 3 with δ = W 2 (X, ξ) and characteristic function φ satisfying (5) for some C 0 > 0. Let Φ and Φ 0 be defined through [START_REF] Khintchine | Über dyadische Brüche[END_REF] and (24) respectively. For every s ≥ 2, we have

(26) |Φ(s) -Φ 0 (s)| ≤ 2 11/4 3π s 3/4 δ(δ + 2) 1/4 C 2 0 + 1 3/4 .
Proof. Given the definitions, we have

Φ(s) -Φ 0 (s) = √ s 2π 2 R 3 |φ(t)| s - sin |t| |t| s |t| -2 dt.
We fix T > 0 and split the integration into two regions. By virtue of the decay assumption [START_REF] Chasapis | Sharp bounds on p-norms for sums of independent uniform random variables[END_REF], this is at most

|t|≥T C 2 0 + 1 |t| 4 dt = 4π C 2 0 + 1 T
Adding up these two bounds and optimising over T yields

R 3 |φ(t)| s - sin |t| |t| s |t| -2 dt ≤ 2 15/4 π 3 s 1/4 δ(δ + 2) 1/4 C 2 0 + 1 3/4 .
Plugging this back gives the assertion.

The Gaussian approximation.

We now present a bound on Φ(s) which does not grow as s → ∞ that will allow us to prove Lemma 10 for s sufficiently large.

Lemma 13. Let X be a symmetric random vector in R 3 with δ = W 2 (X, ξ) and characteristic function φ satisfying (5) for some C 0 > 0. Let Φ be defined through [START_REF] Khintchine | Über dyadische Brüche[END_REF].

Assuming that δ ≤ min{ 1 √ 3 , (15C 0 ) -2 }, we have Φ(s) ≤ 6 π (1 -δ √ 3) 2 -θE|X| 3 -1/2 + 6 π exp -s θ 2 6 -26δ(δ + 2) + 2C 0 √ s + 2 √ s e -s , s ≥ 2, ( 27 
)
with arbitrary 0 < θ < (1-δ √ 3) 2 3E|X| 3 .
Proof. We split the integral defining Φ(s) = 1 2π 2 R 3 |φ(s -1/2 t)| s |t| -2 dt into several regions. Large t. Using the decay condition (5), we get

|t|≥eC 0 √ s φ s -1/2 t s |t| -2 dt ≤ |t|≥eC 0 √ s C s 0 |s -1/2 t| -s |t| -2 dt = 4πe √ s s -1 C 0 e -s .
Thus, for s ≥ 2,

1 2π 2 |t|≥eC 0 √ s φ s -1/2 t s |t| -2 dt ≤ 2e √ s π(s -1) C 0 e -s < 4C 0 √ s e -s , as 2e √ s π(s-1) < 4 √ s for s ≥ 2.
Moderate t. This case is vacuous unless C 0 > π/e. We use Lemma 11 to obtain

π √ s≤|t|≤eC 0 √ s φ s -1/2 t s |t| -2 dt ≤ π √ s≤|t|≤eC 0 √ s sin(s -1/2 |t|) s -1/2 |t| + δ(δ + 2) 2 s -1/2 |t| 2 s |t| -2 dt ≤ π √ s≤|t|≤eC 0 √ s 1 π + δ(δ + 2) 2 (eC 0 ) 2 s |t| -2 dt = 4π √ s 1 π + δ(δ + 2) 2 (eC 0 ) 2 s (eC 0 -π) + .
In this case, the condition δ < (15C 0 ) -2 suffices to guarantee that 1 π + δ(δ+2)

2

(eC 0 ) 2 < 1 e (also using, say δ + 2 < 3). Then we get

1 2π 2 π √ s≤|t|≤eC 0 √ s φ s -1/2 t s |t| -2 dt ≤ 2 π √ se -s (eC 0 -π) + < 2C 0 √ se -s .
Small t. For 0 < u < π, we have

(28) sin u u = ∞ k=1 1 - u 2 (kπ) 2 ≤ exp - ∞ k=1 u 2 (kπ) 2 = e -u 2 /6 .
Fix 0 < θ < π. Then, first using Lemma 11 and then [START_REF] Melbourne | Transport-majorization to analytic and geometric inequalities[END_REF], we obtain

θ √ s≤|t|≤π √ s φ s -1/2 t s |t| -2 dt ≤ θ √ s≤|t|≤π √ s sin(s -1/2 |t|) s -1/2 |t| + δ(δ + 2) 2 s -1/2 |t| 2 s |t| -2 dt ≤ θ √ s≤|t|≤π √ s e -|t| 2 /(6s) + δ(δ + 2) 2 π 2 s |t| -2 dt ≤ |t|≥θ √ s e -|t| 2 /6 1 + δ(δ + 2) 2 π 2 e π 2 /6 s |t| -2 dt.
Integrating using polar coordinates and invoking the standard tail bound ∞ u e -y 2 /2 dy ≤ π/2e -u 2 /2 , u > 0, the last integral gets upper bounded by

4π 3/2 3 2 e -θ 2 s/6 1 + δ(δ + 2) 2 π 2 e π 2 /6 s < 4π 3/2 3 2 e -θ 2 s/6 1 + 26δ(δ + 2) s ,
Summarising, we have shown that

1 2π 2 θ √ s≤|t|≤π √ s φ s -1/2 t s |t| -2 dt ≤ 6 π 1 + 26δ(δ + 2) s e -sθ 2 /6 ≤ 6 π exp -s θ 2 6 -26δ(δ + 2) .
Very small t. Taylor-expanding φ at 0 with the Lagrange remainder,

|t|≤θ √ s φ s -1/2 t s |t| -2 dt = |t|≤θ √ s 1 - 1 2 E X, s -1/2 t 2 + s -3/2 6 3 j,k,l=1 ∂ 3 φ ∂t j ∂t k ∂t l (θ)t j t k t l s dt,
for some point θ in the segment [0, s -1/2 t]. To bound the error term, we note that

∂ 3 φ ∂t j ∂t k ∂t l (θ) ≤ E|X j X k X l |, thus 3 j,k,l=1 ∂ 3 φ ∂t j ∂t k ∂t l (θ)t j t k t l ≤ E (|t 1 ||X 1 | + |t 2 ||X 2 | + |t 3 ||X 3 |) 3 ≤ |t| 3 E|X| 3 .
We also note that in the domain {|t| ≤ θ √ s}, the leading term 1 -

1 2 E X, s -1/2 t 2 is nonnegative, provided that 1 2 θ 2 E|X| 2 ≤ 1. Since X 2 ≤ δ + 1 under the assumption (6), it suffices that θ < √ 2 1+δ
. Assuming this, we thus get

|t|≤θ √ s φ s -1/2 t s |t| -2 dt ≤ |t|≤θ √ s 1 - 1 2 E X, s -1/2 t 2 + 1 6 |s -1/2 t| 3 E|X| 3 s |t| -2 dt.
Evoking [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF], let ξ be uniform on S 2 such that X -ξ 2 ≤ δ with respect to some coupling. Then, for a fixed vector v in R 3 , we obtain the bound

X, v 2 ≥ ξ, v 2 -X -ξ, v 2 = 1 √ 3 |v| -X -ξ, v 2 ≥ 1 √ 3 |v| -δ|v|. Thus, provided that δ < 1 √ 3 , this yields |t|≤θ √ s φ s -1/2 t s |t| -2 dt ≤ |t|≤θ √ s 1 - (1/ √ 3 -δ) 2 2s |t| 2 + θE|X| 3 6s |t| 2 s |t| -2 dt ≤ R 3 exp -α|t| 2 /2 |t| -2 dt = 2π √ 2π √ α ,
where we have set α = ( 1 √ 3 -δ) 2 -1 3 θE|X| 3 and assumed that α is positive in the last equality (guaranteed by choosing θ sufficiently small). Then we finally obtain

1 2π 2 |t|≤θ √ s φ s -1/2 t s |t| -2 dt ≤ 2 πα .
Putting these three bounds together gives the assertion. Note that we have imposed the conditions δ < 1 √ 3 and δ < (15C 0 ) -2 when C 0 > π e , as well as θ < π, θ <

√ 2 1+δ and θ < (1-δ √ 3) 2 3E|X| 3 . Since X 3 ≥ X 2 ≥ 1 -δ and δ < 1 √ 3 , we have (1-δ √ 3) 2 3E|X| 3 < (1-δ √ 3) 2 3(1-δ) 3 = 1 3(1-δ) 1-δ √ 3 1-δ 2 < 1 3- √ 3 < 0.79. Moreover, √ 2 1+δ > √ 2 1+1/ √ 3 > 0.89, so the condition θ < (1-δ √ 3) 2
3E|X| 3 implies the other two conditions on θ.

4.3.

Bounds on the derivative of the special function.

Lemma 14. Let X be a symmetric random vector in R 3 with δ = W 2 (X, ξ) and characteristic function φ satisfying (5) for some C 0 > 0. Let Φ and Φ 0 be defined through [START_REF] Khintchine | Über dyadische Brüche[END_REF] and ( 24) respectively. For every s ≥ 2, we have

|Φ (s) -Φ 0 (s)| ≤ 2 7/4 3π δ(δ + 2) 1/4 C 2 0 + 1 3/4 s -1/4 + 1.04 δ(δ + 2) 1/7 C 3/2 0 + 1 6/7 s 1/2 .
Proof. First we take the derivative,

Φ (s) = d ds √ s 2π 2 R 3 |φ(t)| s dt = 1 2s Φ(s) + √ s 2π 2 R 3 |φ(t)| s log |φ(t)|dt.
For the resulting Φ -Φ 0 term, we use Lemma 12. To bound the difference of the integrals resulting from the second term, we fix T > 0 and split the integration into two regions. Small t. Using Lemmas 7 and 11, we obtain

|t|≤T |φ(t)| s log |φ(t)| - sin |t| |t| s log sin |t| |t| |t| -2 dt ≤ |t|≤T δ(δ + 2) 2 dt = 2π 3 δ(δ + 2)T 3 .
Large t. Note that for s ≥ 2, and 0 < u < 1 we have, 

|u s log u| = |2u s-1/2 u 1/2 log(u 1/2 )| ≤ 2 e u 3/
+ 1 t 3/2 dt = 16π e (C 3/2 0 + 1)T -1/2 .
Adding up these two bounds and optimising over T yields

R 3 |φ(t)| s log |φ(t)| - sin |t| |t| s log sin |t| |t| |t| -2 dt ≤ 7 • 2 19/7 π 3e 6/7 δ(δ + 2) 1/7 C 3/2 0 + 1 6/7 .
Going back to the difference of the derivatives, we arrive at the desired bound using 7 • 2 12/7 3e 6/7 π < 1.04.

4.4.

Bounds on Ball's special function. We will need two estimates on Φ 0 defined in [START_REF] La | On the best constant in the Khinchin-Kahane inequality[END_REF], that is

(29) Φ 0 (s) = 2 π ∞ 0 sin(s -1/2 t) s -1/2 t s dt = 2 √ s π ∞ 0 sin t t s dt, s > 1.
First, we have a bound on the derivative near s = 2.

Lemma 15. For 2 ≤ s ≤ 2.01, we have Φ 0 (s) ≤ -0.02.

Second, on the complementary range, Φ 0 (s) is separated from its supremal value Φ 0 (2).

Lemma 16. For s ≥ 2.01, we have

Φ 0 (s) ≤ Φ 0 (2) -2 • 10 -4 .
We begin with a numerical bound which will be used in the proofs of these assertions.

Lemma 17. We have

∞ 0 sin u u 2 log sin u u du ≤ -0.48.
Proof. Using (28), we get

π 0 sin u u 2 log sin u u du ≤ - 1 6 π 0 (sin u) 2 du = - π 12 .
Moreover,

∞ π sin u u 2 log sin u u du = ∞ k=1 (k+1)π kπ sin u u 2 log sin u u ≤ ∞ k=1 (k+1)π kπ sin u (k + 1)π 2 log 1 kπ = - 1 2π ∞ k=1 log(kπ) (k + 1) 2 .
Therefore our integral is bounded above by

- π 12 - 1 2π ∞ k=1 log(kπ) (k + 1) 2 = -0.4867.. < -0.48.
We let (30)

I(s) = ∞ 0 sin u u s du, s > 1.
Proof of Lemma 15. First we observe that

I (s) = ∞ 0 sin u u s log sin u u du.
Note that I is decreasing. We have,

Φ 0 (s) = 2 π I(s) 2 √ s + √ sI (s) ≤ 2 π I(2) 2 √ s + √ sI (s) = 1 2 √ s + 2 √ s π I (s), since I(2) = π 2 . Moreover, |I (s)| = ∞ 0 sin u u s log 2 sin u u du ≤ ∞ 0 sin u u 2 log 2 sin u u du ≤ sup t∈(0,1) ( √ t log 2 t) ∞ 0 sin u u 3/2 du = 16e -2 ∞ 0 sin u u 3/2 du ≤ 16e -2 1 + ∞ 1 1 u 3/2 du = 48e -2 .
With the aid of Lemma 17, we therefore have

I (s) ≤ I (2) + 48e -2 (s -2) < -0.48 + 48e -2 (s -2).
Thus, for 2 ≤ s ≤ 2.01, we have

Φ 0 (s) ≤ 1 2 √ s + 2 √ s π I (s) < 1 2 √ s + 2 √ s π -0.48 + 48e -2 (s -2) < 1 2 √ 2 + 2 √ 2 π (-0.48 + 48e -2 (s -2)) ≤ 1 2 √ 2 + 2 √ 2 π (-0.48 + 48e -2 0.01) < -0.02,
where in the first inequality we used that the term in parenthesis is negative.

For the proof of Lemma 16, we need several more estimates. First, we record a lower bound on the derivative of Φ 0 (s) for arbitrary s. 

(- √ t log t) ∞ 0 sin u u 3 2 du ≤ 2e -1 1 + ∞ 1 1 u 3 2 du = 6e -1 .
Second, we obtain a quantitative drop-off of the values of Φ 0 .

Lemma 19. Let a ∈ [1, π 3 ] and suppose that for some s 0 ≥ 2, we have Φ 0 (s 0 ) = To prove this, we build on the argument of Nazarov and Podkorytov from [START_REF] Fedor | Haagerup, and distribution functions[END_REF]. For a somewhat similar bound, we refer to Proposition 7 in König and Koldobsky's work [START_REF] König | On the maximal perimeter of sections of the cube[END_REF] on maximal-perimeter sections of the cube. For convenience and completeness, we include all arguments in detail. We consider functions [START_REF] Charles | An extension of Khintchine's inequality[END_REF] f a (x) = e -π 2 x 2 a , g(x) = sin πx πx , x > 0, and their distribution functions

(33) F a (y) = |{x > 0 : f a (x) > y}|, G(y) = |{x > 0 : g(x) > y}|, y > 0.
Lemma 20. For a ∈ [1, π 3 ] the function F a -G has precisely one sign change point y 0 and at this point changes sign from " -" to " + ".

Proof. Note that F a (y) = G(y) = 0 for y ≥ 1, so we only consider y ∈ (0, 1). We have

F a (y) = 2 πa ln( 1 y
). The function g(x) has zeros for x ∈ Z. For m ∈ N, let y m = max [m,m+1] g. We clearly have y m < 1 πm and y m > g(m

+ 1 2 ) = 1 π(m+ 1 2 ) . Thus y m ∈ ( 1 π(m+ 1 2 ) , 1
πm ), which shows that the sequence y m is decreasing. We have the following claims.

Claim 1. The function F a -G is positive on (y 1 , 1).

Note that if g(x) > y 1 then x ∈ (0, 1). Moreover g(x) ≤ f (x) for x ∈ [0, 1], since

g(x) = sin πx πx = ∞ k=1 1 - x 2 k 2 ≤ ∞ k=1 e -x 2 k 2 = e -π 2 6 x 2 ≤ e -π 2 ax 2 = f a (x).
Thus, for y ∈ (y 1 , 1), we have G(y) = |{x ∈ (0, 1) : g(x) > y}| < |{x ∈ (0, 1) : f a (x) > y}| ≤ F a (y).

Claim 2. The function F a -G changes sign at least once in (0, 1).

Due to Claim 1 it is enough to show that F a -G is sometimes negative. We have

F a -G ≤ F 1 -G and ∞ 0 2y(F 1 (y) -G(y))dy = (f 2
1 -g 2 ) = 0, so F 1 -G can be negative. Claim 3. The function F a -G is increasing on (0, y 1 ).

Clearly F a > F 1 and thus the claim follows from the fact that F 1 -G is increasing on (0, y 1 ), which was proved in [START_REF] Fedor | Haagerup, and distribution functions[END_REF] (Chapter I, Step 5).

Proof of Lemma 19. The assumption Φ 0 (s 0 ) = 2 α is equivalent to

∞ 0 sin πx πx s 0 dx = ∞ 0 e -π 2 x 2 a s 0 dx.
After changing variables and using Lemma 20, we get from the Nazarov-Podkorytov lemma (Chapter I, Step 4 in [START_REF] Fedor | Haagerup, and distribution functions[END_REF]) that for s ≥ s 0

∞ 0 sin x x s dx ≤ ∞ 0 e -1 2π x 2 a s dx = π √ 2as .
Proof of Lemma 16. Take s 0 = 2.01 and a = 2Φ 0 (s 0 ) -2 in Lemma 19. Since Φ 0 (2) = √ 2, Ball's inequality gives that a ≥ 1. We need to check that a ≤ π 3 . From Lemma 

(s) -Φ 0 (s)| < s -1/4 δ 1/4 C 3/2 1 + 2.1 • s 1/2 δ 1/7 C 9/7 1 .
We also remark that

X 3 ≥ X 2 ≥ ξ 2 -X -ξ 2 = 1 -δ ≥ 1 -10 -38 .
We break the argument into several regimes for the parameter s. Large s. With hindsight, we set (36) s 0 = max 10 6 (E|X| 3 ) 2 , 2 log C 1

In particular, s 0 ≥ 10 5 . Using Lemma 13, that is

Φ(s) ≤ 6 π (1 -δ √ 3) 2 -θE|X| 3 -1/2 + 6 π exp -s θ 2 6 -26δ(δ + 2) + 2C 0 √ s + 2 √ s e -s = A 1 + A 2 + A 3 ,
we will show that Φ(s) ≤ Φ(2) for all s ≥ s 0 . We take θ = 1 100E|X| 3 which satisfies the conditions of the lemma and then, for the first term A 1 , we use

A 1 = 6 π (1 -δ √ 3) 2 -θE|X| 3 -1/2 ≤ 6 π 1 -0.01 -1/2 < √ 2 - 1 50 .
Thanks to [START_REF] Law | On the best constant in the Khintchine inequality[END_REF], we also have

√ 2 = Φ 0 (2) ≤ Φ(2) + 2 7/4 δ 1/4 C 3/2 1 = Φ(2) + A 4 ,
so it suffices to show that each of the second and third terms A 2 , A 3 as well as this additional error A 4 do not exceed 1 150 . Using δ < 10 -38 C -9 1 , we get

A 4 ≤ 2 7/4 • 10 -19/2 C -3/4 1 < 1 150 .
For the exponent in the second term A 2 , observe that

26δ(δ + 2) < 53δ < 53 • 10 -38 C -9 1 (E|X| 3 ) -6 ≤ 10 -36 (E|X| 3 ) -2 ,
and, consequently,

θ 2 6 -26δ(δ + 2) ≥ 1 6 • 10 4 (E|X| 3 ) 2 - 1 10 36 (E|X| 3 ) 2 ≥ 1 10 5 (E|X| 3 ) 2 .
Thus, using s ≥ s 0 ≥ 10 6 (E|X| 3 ) 2 , we get

A 2 ≤ 6 π exp - s 0 10 5 (E|X| 3 ) 2 ≤ 6 π exp{-10} < 1 150
.

Finally, for the third term, since s ≥ s 0 ≥ 10 5 ,

√ s + 2 √ s e -s ≤ ( √ s + 1)e -s ≤ e √ s-s ≤ 1 300 e -s/2 , therefore, since s ≥ s 0 ≥ 2 log C 1 , A 3 ≤ 2C 1 √ s + 2 √ s e -s ≤ C 1 150 e -s/2 ≤ 1 150 .
Moderate s. We now assume that 2.01 ≤ s ≤ s 0 . Using (34) twice and Lemma 16,

Φ(s) ≤ Φ 0 (s) + 2s 3/4 0 δ 1/4 C 3/2 1 ≤ Φ 0 (2) -2 • 10 -4 + 2s 3/4 0 δ 1/4 C 3/2 1 ≤ Φ(2) -2 • 10 -4 + 2 • 2 3/4 δ 1/4 C 3/2 1 + 2s 3/4 0 δ 1/4 C 3/2 1 ≤ Φ(2) -2 • 10 -4 + 3s 3/4 0 δ 1/4 C 3/2 1 .
Inserting the bound on δ, (log C 1 ) 3/4 < 3(2/e) 3/4 10 -19/2 < 10 -4 since u -1 log u ≤ e -1 for u > 1. In either case, we get the conclusion Φ(s) ≤ Φ(2). Small s. We finally assume that 2 ≤ s ≤ 2.01. To argue that Φ(s) ≤ Φ(2), we will show that Φ (s) < 0. By virtue of [START_REF] Law | A simple and elementary proof of the Kchintchine inequality with the best constant[END_REF] and Lemma 15, Φ (s) ≤ Φ 0 (s) + s -1/4 δ 1/4 C 3/2 1 + 2.1 • s 1/2 δ 1/7 C 9/7 1 < -0.02 + (δC 6 1 ) 1/4 + 3 δC 9 1 1/7 .

Since δC 6 1 ≤ δC 9 1 ≤ 10 -38 , this is clearly negative and the proof is complete.

Concluding remarks

Remark 1. Assumption (3) seems natural: plainly, there are distributions which are not close to the Rademacher one, for which the unit vector attaining inf E| a j X j | is different than a = ( 1 √ 2 , 1 √ 2 , 0, . . . , 0), for instance it is a = (1, 0, . . . , 0) for Gaussian mixtures (see [START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF][START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF]), or for the Rademacher distribution with a large atom at 0 (see Theorem 4 and Remark 14 in [START_REF] Havrilla | Sharp Khinchin-type inequalities for symmetric discrete uniform random variables[END_REF]).

Remark 2. Handling the complementary case a ∞ > 1 √ 2 which is not covered by Theorems 1 and 2 is a different story. The trivial convexity argument presented in the introduction works in fact only for the Rademacher case, as it requires

1 √ 2 E|X 1 | ≥ E X 1 +X 2 √ 2
, and only for the L 1 -norm (see Remark 21 in [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF]). To circumvent this, several different approaches have been used: Haagerup's ad hoc approximation (see §3 in [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF]), Nazarov and Podkorytov's induction with a strengthened hypothesis (see Ch. II, Step 5 in [START_REF] Fedor | Haagerup, and distribution functions[END_REF]) which has also been adapted to other distributions (see [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchintype inequalities for negative moments[END_REF][START_REF] Chasapis | Sharp bounds on p-norms for sums of independent uniform random variables[END_REF][START_REF] Chasapis | Haagerup's phase transition at polydisc slicing[END_REF]), and very recently a different inductive scheme near the extremiser (without a strengthening) needed in a geometric context (see [START_REF] Eskenazis | Resilience of cube slicing in p[END_REF]). None of these techniques appears amenable to the broad setting of general distributions that is treated in this paper. a j ε j ≤ δ 0 , by a simple application of the triangle inequality and • 1 ≤ • 2 . Thus, applying this (twice) and the bound (37) of De Diakonikolas and Servedio, we conclude that Theorem 1 also holds for unit vectors a with δ(a) ≥ (2δ 0 /κ) 2 . The same will apply to Theorem 2 with the aid of Theorem 1.2 from [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF], a strengthening of Ball's inequality (2) (see also [START_REF] Melbourne | Quantitative form of Ball's cube slicing in R n and equality cases in the min-entropy power inequality[END_REF]). See [START_REF] Eskenazis | Resilience of cube slicing in p[END_REF] for numerical values of the constants κ.

Remark 4. We have used the W 2 -distance in Theorems 1 and 2 for concreteness and convenience. Of course, for every p ≥ 1, if we use the W p -distance in (3) and assume that X 1 is in L p p-1 , then the proofs of Lemmas 5 and 11 go through with the Cauchy-Schwarz inequality replaced by Hölder's inequality and the rest of the proof remains unchanged. It might be of interest to examine weaker distances in such statements.

Lemma 18 .

 18 For s ≥ 2, we have Φ 0 (s) ≥enough to upper bound |I (s)|. Note that |I (s)| =

1 ≤ 3 • 10 - 19 / 2 C- 3 /4 1 s 3 / 4 0- 3 /4 1 ≤ 1 ,

 13101923134311 • min (E|X| 3 ) -3/2 , 1 If s 0 = 10 6 (E|X| 3 ) 2 , then using the (E|X| 3 ) -3/2 term in the minimum and C we get the above bounded by 3 • 10 -19/2+9/2 = 3 • 10 -5 . If s 0 = 2 log C 1 , then using the other term in the minimum, we get the bound by 3 • 2 3/4 10 -19/2 C -3/4 1

Remark 3 . 1 √ 2 , 1 √ 2 ,

 31212 De, Diakonikolas and Servedio obtained in[START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF] a stable version of Szarek's inequality[START_REF] Averkamp | Wavelet thresholding for non-necessarily Gaussian noise: Idealism[END_REF] with respect to the unit vector a, namely(37) E n j=1 a j ε j ≥ E ε 1 + ε 2 √ 2 + κ δ(a)for a universal positive constant κ, where the deficit is given by δ(a) = |a-( 0, . . . , 0)| 2 , assuming that a 1 ≥ a 2 ≥ • • • ≥ a n ≥ 0. Notethat in the setting of Theorem 1, we have E n j=1 a j X j -E n j=1

  Small t. Using Lemma 11 and ||a| s -|b| s | ≤ s|a -b| when |a|, |b| ≤ 1, we obtain

	|t|≤T	|φ(t)| s -	sin |t| |t|	s	|t| -2 dt ≤ s	δ(δ + 2) 2	|t|≤T	dt =	2π 3	sδ(δ + 2)T 3 .
						|t|≥T	|φ(t)| 2 +	sin |t| |t|

Large t. Since s ≥ 2, we have |t|≥T |φ(t)| ssin |t| |t| s |t| -2 dt ≤ 2 |t| -2 dt.

  2 .

	Thus,						
	|t|≥T	|φ(t)| s log |φ(t)| -	sin |t| |t|	s	log	sin |t| |t|	|t| -2 dt
	≤	2 e |t|≥T		|φ(t)| 3/2 +	sin |t| |t|	3/2	|t| -2 dt
	which, after applying the decay condition (5), gets upper bounded by
		8π	∞	C	3/2 0	
		e	T			

  Thus, Φ 0 (s 0 ) ≥ Φ 0 (2) -2(s 0 -2) = √ 2 -0.02. Therefore, a < 2 • ( √ 2 -0.02) -2 < 1.03 < π 3 , as needed. By Lemmas 19 and 15, we thus get that for s ≥ s 0 = 2.01, Proof of Lemma 10. Recall that we assume X is a symmetric random vector inR 3 with δ = W 2 (X, ξ) and characteristic function φ satisfying (5), that is |φ(t)| ≤ C 0 /|t|, for all t ∈ R 3 \ {0}. Let C 1 = max{C 0 , 1}. Our goal is to show that if (6) holds, that is δ ≤ 10 -38 C -91 min (E|X| 3 ) -6 , 1 , then Φ(s) ≤ Φ(2) for all s ≥ 2, where Φ is defined in[START_REF] Khintchine | Über dyadische Brüche[END_REF]. For the sake of clarity, we shall be fairly lavish with choosing constants. Since C 1 ≥ 1, the above assumes in particular that δ ≤ 10 -38 . With this in mind, we note the following consequences of Lemmas 12 and 14 respectively: for s ≥ 2,

	have that for s ∈ [2, 2.01], Φ 0 (s) ≥ -12 √ πe 2.01 > -2. Φ 0 (s) ≤ 2 [2,2.01] a = Φ 0 (s 0 ) ≤ Φ 0 (2) + sup Φ 0 • 0.01 ≤ Φ 0 (2) -0.02 • 0.01.
	4.5. (34)	|Φ(s) -Φ 0 (s)| ≤	2 11/4 3π	s 3/4 δ(δ + 2)	1/4 C 2 0 + 1	3/4 < 2s 3/4 δ 1/4 C	3/2 1
	and similarly					
	(35)	|Φ					
							18, we
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