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Introduction

Fix p ∈ [1, ∞] and n ∈ N. The present paper is devoted to the study of geometric parameters of the origin symmetric convex bodies B n p = x ∈ R n : x p ≤ 1 , which are the closed unit balls of the normed spaces n p = (R n , • p ), where for p ∈ [1, ∞),

x p = |x 1 | p + . . . + |x n | p 1/p
and x ∞ = max i=1,...,n |x i |, when x = (x 1 , . . . , x n ) ∈ R n . More specifically, we shall address the classical problem of identifying volume extremizing sections and projections of these bodies with respect to hyperplanes passing through the origin. This subject has attracted the interest of mathematicians for decades and a range of tools from probability and Fourier analysis have been employed in its study. We refer to the survey [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF] for a detailed account of classical results, recent advances and further references.

1.1. Sections. Fix p ∈ [1, ∞], n ∈ N and consider the following question for sections of B n p . Question 1. For which unit vectors a in R n is the volume of B n p ∩ a ⊥ maximal or minimal? This problem and its variations has been intensively studied for five decades, since Hadwiger and Hensley showed in [START_REF] Hadwiger | Gitterperiodische Punktmengen und Isoperimetrie[END_REF][START_REF] Hensley | Slicing the cube in R n and probability (bounds for the measure of a central cube slice in R n by probability methods)[END_REF] that sections of the cube B n ∞ with coordinate hyperplanes e ⊥ i have minimal volume. The reverse question of identifying the volume maximizing sections of the cube was answered in Ball's monumental work [START_REF] Ball | Cube slicing in R n[END_REF], who proved that

vol B n ∞ ∩ a ⊥ ≤ vol B n ∞ ∩ e 1 +e 2 √ 2 ⊥ . (1) 
For p < ∞, the study of Question 1 was initiated by Meyer and Pajor. In [START_REF] Meyer | Sections of the unit ball of L n p[END_REF], they extended the result of Hadwiger and Hensley by proving that sections of B n p with coordinate hyperplanes e ⊥ i have minimal volume for any p ≥ 2 and maximal volume when p ∈ [START_REF] Ball | Cube slicing in R n[END_REF][START_REF] Ball | Mahler's conjecture and wavelets[END_REF]. In the reverse direction, they showed that when p = 1, the section of the cross-polytope B n 1 with the hyperplane orthogonal to e 1 +•••+en √ n has minimal volume, a result which was later extended to all values of p ∈ [START_REF] Ball | Cube slicing in R n[END_REF][START_REF] Ball | Mahler's conjecture and wavelets[END_REF] by Koldobsky [START_REF] Koldobsky | An application of the Fourier transform to sections of star bodies[END_REF] (see also [START_REF] Eskenazis | Gaussian mixtures: entropy and geometric inequalities[END_REF] for a different probabilistic proof).

This material is based upon work supported by the NSF grant DMS-1929284 while A. E. was in residence at ICERM for the Harmonic Analysis and Convexity program. P.N.'s research was supported by the National Science Centre, Poland, grant 2018/31/D/ST1/0135. T.T.'s research was supported by the NSF grant DMS-1955175. In view of the aforementioned results, the only missing case in the study of Question 1 is the identification of volume maximizing sections of B n p when p ∈ (2, ∞), a problem that has explicitly appeared in the literature multiple times [START_REF] Koldobsky | Sections of star bodies and the Fourier transform[END_REF][START_REF] Barthe | Hyperplane projections of the unit ball of l n p[END_REF][START_REF] Oleszkiewicz | On p-pseudostable random variables, Rosenthal spaces and l n p ball slicing[END_REF][START_REF] Koldobsky | Extremal sections of complex lp-balls[END_REF][START_REF] Koldobsky | Fourier analysis in convex geometry[END_REF][START_REF] Ma | Estimates for the extremal sections of n p -balls[END_REF][START_REF] Eskenazis | On extremal sections of subspaces of Lp[END_REF][START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF]. In [START_REF] Oleszkiewicz | On p-pseudostable random variables, Rosenthal spaces and l n p ball slicing[END_REF], Oleszkiewicz made a crucial remark, showing that for p ∈ [START_REF] Ball | Mahler's conjecture and wavelets[END_REF][START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF] and n large enough the section of B n p with the hyperplane e 1 +•••+en √ n ⊥ has in fact larger volume than the section with e 1 +e 2 √ 2

⊥ and thus one cannot expect a Ball-type extremal for all p > 2. In the same work, he speculated that Ball-type hyperplanes may maximize the volume of sections for sufficiently large values of p. The first theorem of this work provides a positive answer to Oleszkiewicz's question.

Theorem 1. There exists 26 < p 0 < 10 15 such that for every n ∈ N, p ≥ p 0 and every unit vector a in R n , we have

vol B n p ∩ a ⊥ ≤ vol B n p ∩ e 1 +e 2 √ 2 ⊥ . (2) 
This is the first available result on maximal sections of B n p for p ∈ (2, ∞) and any dimension n ≥ 3. A general conjecture for all choices of p and n, predicting that the extremals undergo a phase transition, was proposed in [30] and [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF]Conjecture 2]. Theorem 1 partially confirms it.

1.2. Projections. Fix q ∈ [1, ∞], n ∈ N and consider the dual question for projections of B n q .

Question 2. For which unit vectors a in R n is the volume of Proj a ⊥ B n q maximal or minimal?

The current status of Question 2 is basically identical to that of Question 1. When q = ∞, Cauchy's projection formula shows that for every unit vector a, we have

vol Proj a ⊥ B n ∞ = a 1 vol B n-1 ∞ , (3) 
which proves that the volume is minimized for a = e i and maximized for a

= e 1 +•••+en √ n .
In the case of the cross-polytope B n 1 , similar reasoning based on Cauchy's formula (see [START_REF] Ball | Mahler's conjecture and wavelets[END_REF]) shows that

vol Proj a ⊥ B n 1 = 2 n-1 (n -1)! E n j=1 a j ε j , (4) 
where ε 1 , ε 2 , . . . is a sequence of independent symmetric ±1 random variables. Therefore, Jensen's inequality shows that vol Proj a ⊥ B n 1 is maximal when a = e i . In view of (4), identifying the volume minimizing projections of B n 1 amounts to finding the sharp constant in the classical L 1 -L 2 Khinchin inequality [START_REF] Khintchine | Über dyadische Brüche[END_REF] which was famously discovered by Szarek. In geometric terms, the important result of [START_REF] Stanisław | On the best constants in the Khinchin inequality[END_REF] asserts that vol(Proj a ⊥ B n 1 ) is minimized for a = e 1 +e 2 √ 2 . The study of Question 2 for 1 < q < ∞ was initiated by Barthe and Naor in [START_REF] Barthe | Hyperplane projections of the unit ball of l n p[END_REF]. In analogy to [START_REF] Meyer | Sections of the unit ball of L n p[END_REF], they showed that projections of B n q onto coordinate hyperplanes e ⊥ i have minimal volume for q ≥ 2 and maximal volume for q ∈ [START_REF] Ball | Cube slicing in R n[END_REF][START_REF] Ball | Mahler's conjecture and wavelets[END_REF]. Moreover, in the spirit of [START_REF] Meyer | Sections of the unit ball of L n p[END_REF][START_REF] Koldobsky | An application of the Fourier transform to sections of star bodies[END_REF], they proved that when q ≥ 2, the projections of B n q onto the hyperplane orthogonal to have maximal volume (see also [START_REF] Koldobsky | Projections of convex bodies and the Fourier transform[END_REF] for a different proof using the Fourier transform).

The volume minimizing hyperplane projections of B n q remain unknown for q ∈ (1, 2). In analogy with Oleszkiewicz's observation [START_REF] Oleszkiewicz | On p-pseudostable random variables, Rosenthal spaces and l n p ball slicing[END_REF] mentioned earlier, Barthe and Naor noticed that for q ∈ 4 3 , 2 , the projection of B n q onto the hyperplane ⊥ and thus one cannot expect a Szarek-type extremal for all q ∈ [1, 2).

Our second theorem is the dual to Theorem 1 and addresses Question 2 for q near 1.

Theorem 2. There exists q 0 ∈ 1 + 10 -12 , 4 3 such that for every n ∈ N, q ∈ [1, q 0 ] and every unit vector a in R n , we have

vol Proj a ⊥ B n q ≥ vol Proj e 1 +e 2 √ 2 ⊥ B n q .
(5)

1.3. Methods. The delicacy of, say, Theorem 1 lies in the need to find a universal p 0 , independent of the unit vector a and the dimension n ∈ N, such that for every p ≥ p 0 ,

vol B n p ∩ a ⊥ ≤ vol B n p ∩ e 1 +e 2 √ 2 ⊥ . (6) 
On the other hand, finding such a p 0 (a) for a fixed unit vector a in R n is an immediate consequence of the continuity of the section function p → vol(B n p ∩ a ⊥ ), as the equality cases in Ball's inequality (1) are known to be only the vectors of the form ±e i ±e j √ 2 , where i = j. Let a = (a 1 , . . . , a n ) be a unit vector and without loss of generality assume that its coordinates are positive and ordered, i.e. a 1 ≥ a 2 ≥ . . . ≥ a n ≥ 0. Choosing p 0 uniformly for [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] to hold requires radically different arguments in the following ranges for a. ≥ δ 0 for some δ 0 > 0.

The key ingredient in this range is the dimension-free stability of Ball's inequality (1) with respect to the unit vector a which has been established in recent works [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF][START_REF] Melbourne | Quantitative form of Ball's cube slicing in R n and equality cases in the min-entropy power inequality[END_REF] (see also Theorem 7 below for a statement with explicit constants). These works imply that, under the assumption of Case 1, there is a positive deficit in Ball's inequality. Building on the simple-minded argument based on continuity described above, one needs to reason that all functions of the form p → vol(B n p ∩ a ⊥ ) are equi-continuous at p = ∞ with a dimension-independent modulus. This strategy is implemented in Lemma 11 and relies on a combination of Busemann's theorem [START_REF] Busemann | A theorem on convex bodies of the Brunn-Minkowski type[END_REF] with a probabilistic formula expressing the volume of sections of B n p as a negative moment of a sum of independent rotationally invariant random vectors in R 3 , following [START_REF] Kalton | Intersection bodies and Lp-spaces[END_REF][START_REF] König | Volumes of low-dimensional slabs and sections in the cube[END_REF][START_REF] Chasapis | From Ball's cube slicing inequality to Khinchin-type inequalities for negative moments[END_REF].

Case 2. The vector a is near the extremizer

e 1 +e 2 √ 2 , say a -e 1 +e 2 √ 2 < δ 0 .
This range is evidently the more subtle one, as soft continuity-based arguments are deemed to fail near the equality case. In order to amend this, we introduce a novel inductive strategy. As our starting point, we express again the section function vol(B n p ∩ a ⊥ ) as a negative moment of an independent sum. After a suitable application of Jensen's inequality, we use the inductive hypothesis according to which the desired inequality holds in dimension n-2 and this reduces the problem to an explicit two-dimensional estimate. Quite stunningly, the resulting estimate does not hold when the unit vector a is far from the extremizer e 1 +e 2 √ 2 and thus our inductive argument cannot circumvent the stability results which were crucially used in Case 1. Nevertheless, a delicate analysis allows us to deduce the technical estimate under the assumptions of Case 2 for δ 0 small enough as a function of p and p sufficiently large, thus proving Theorem 1.

The proof of Ball's inequality (1) and its stability from [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] crucially use the Fourier transform representation for the volume of sections and properties of a certain special function. However, even in Ball's original proof [START_REF] Ball | Cube slicing in R n[END_REF], the Fourier transform method is unable to analyze the case that the largest component a 1 of a is greater than 1 √ 2 , which is instead handled by an elegant geometric argument. Unfortunately, a similar geometric argument applied to B n p for p < ∞ does not yield the optimal bound (6) for a 1 slightly larger than 1 √ 2 , which creates the need for a different method. Surprisingly, our inductive approach outlined above does not use the Fourier transform directly, even though it uses Ball's inequality [START_REF] Ball | Cube slicing in R n[END_REF] and its stability as a black box. In a way, this method complements the Fourier analytic approach with a probabilistic component which permits an analysis near the extremizer.

The proof of Theorem 2 relies on a very similar strategy apart from purely technical differences. In this case, the probabilistic representation for the volume of projections is due to [START_REF] Barthe | Hyperplane projections of the unit ball of l n p[END_REF] and the stability of Szarek's inequality was obtained in [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF].

Preliminaries

In this section we present some probabilistic representations for the volume of sections and projections of B n p (see also [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF] and the references therein) along with some crucial technical estimates which will be used in the proofs of Theorems 1 and 2.

2.1. Probabilistic representation of the volume of sections. In [START_REF] Kalton | Intersection bodies and Lp-spaces[END_REF], Kalton and Koldobsky discovered an elegant probabilistic representation of the volume of sections of a convex set K in R n in terms of negative moments of a random vector X uniformly distributed on K. In the case of K = B n p , this representation takes the following explicit form (see [START_REF] Chasapis | From Ball's cube slicing inequality to Khinchin-type inequalities for negative moments[END_REF] or [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF]Lemma 42]). Lemma 3. Fix p ∈ [1, ∞), n ∈ N and let Y 1 , Y 2 , . . . be i.i.d. random variables with density e -β p p |x| p , where β p = 2Γ 1 + 1 p . Then, for every unit vector a in R n we have

vol(B n p ∩ a ⊥ ) vol(B n-1 p ) = lim s↓-1 1 + s 2 E n j=1 a j Y j s . (7) 
When p = ∞, the same identity holds with Y 1 , Y 2 , . . . being i.i.d. uniform on [-1, 1].

Using the representation [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF], we derive the following crucial formula for our analysis. 

Proposition 4. Fix p ∈ [1, ∞) and n ∈ N. Let R 1 ,
vol(B n p ∩ a ⊥ ) vol(B n-1 p ) = Γ 1 + 1 p E n j=1 a j R j ξ j -1 , (8) 
where | • | denotes the Euclidean norm on the right-hand side. When p = ∞, the same identity holds with deterministic coefficients

R 1 = • • • = R n = 1.
Proof. We shall assume that p < ∞ and the endpoint case follows (see also [START_REF] König | Volumes of low-dimensional slabs and sections in the cube[END_REF]). Let Y have density e -β p p |x| p , R have density α -1 p x p e -x p 1 x>0 and U be uniform on [-1, 1], independent of R. Then Y has the same distribution as β -1 p RU . More generally, if V is a unimodal random variable with density g which is even and nonincreasing on (0, +∞), then V has the same distribution as RU , where R has density -2rg (r) on (0, ∞). Indeed, for t > 0 we have

P {RU > t} = P U > t R = ∞ 0 P U > t r (-2rg (r))dr = - ∞ t 1 - t r rg (r)dr = - ∞ t (r -t) g (r)dr = ∞ t g(r)dr = P {V > t} .
Therefore, (7) can be rewritten as

vol(B n p ∩ a ⊥ ) vol(B n-1 p ) = lim s↓-1 (1 + s) 2β s p E n j=1 a j R j U j s . (9) 
By a result of König and Kwapień [22, Proposition 4], for every x 1 , . . . , x n ∈ R and s > -1,

E n j=1 x j ξ j s = (1 + s)E n j=1 x j U j s . (10) 
Substituting [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF] in ( 9) conditionally on R j and substituting the value of β p proves (8).

Probabilistic representation of the volume of projections.

The analogue of Proposition 4 for projections, expressing the normalized volume of projections of B n q as an L 1 -moment of a sum of independent random variables has been established in [START_REF] Barthe | Hyperplane projections of the unit ball of l n p[END_REF]Proposition 2].

Proposition 5 (Barthe-Naor, [START_REF] Barthe | Hyperplane projections of the unit ball of l n p[END_REF]). Fix q ∈ (1, ∞) and n ∈ N. Let X 1 , X 2 , . . . be i.i.d. random variables with density γ -1 q |x| 2-q q-1 e -|x| q q-1 , where γ q = 2(q -1)Γ 1 + 1 q . Then, for every unit vector a in R n we have vol(Proj

a ⊥ B n q ) vol(B n-1 q ) = Γ 1 q E n j=1 a j X j . (11) 
When q = 1, the identity reduces to the consequence (4) of the Cauchy projection formula.

Stability estimates.

As explained in the introduction, a crucial step in the proofs of Theorems 1 and 2 is a reduction to sections and projections with respect to hyperplanes near the extremizer e 1 +e 2 √ 2

⊥ . This will be a consequence of two recent works [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF][START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] establishing the stability of the inequalities of Szarek [START_REF] Stanisław | On the best constants in the Khinchin inequality[END_REF] and Ball [START_REF] Ball | Cube slicing in R n[END_REF] with respect to the unit normal vector a.

For the case of projections, we will use the following robust Szarek inequality proven in [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF].

Theorem 6 (De-Diakonikolas-Servedio, [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF]). There exists κ 1 > 0 such that for every n ∈ N and every unit vector

a in R n with a 1 ≥ • • • ≥ a n ≥ 0, we have E n j=1 a j ε j ≥ 1 √ 2 + κ 1 a - e 1 + e 2 √ 2 . ( 12 
)
We can take κ 1 = 8 • 10 -5 in this inequality.

For the case of sections, we will use the following robust Ball inequality of [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]. We express it in the equivalent negative moment formulation which follows from Proposition 4.

Theorem 7 (Chasapis-Nayar-Tkocz, [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]). There exists κ ∞ > 0 such that for every n ∈ N and every unit vector

a in R n with a 1 ≥ • • • ≥ a n ≥ 0, we have E n j=1 a j ξ j -1 ≤ √ 2 -κ ∞ a - e 1 + e 2 √ 2 . ( 13 
)
We can take κ ∞ = 6 • 10 -5 in this inequality.

Unfortunately, a direct implementation of the arguments of [START_REF] De | A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry[END_REF][START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] does not yield explicit values for the constants κ 1 and κ ∞ which are needed for our estimation of p 0 and q 0 in Theorems 1 and 2. In Section 5, we shall present a new short proof of Theorem 6 which is in the spirit of [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] and gives the numerical constant κ 1 = 8 • 10 -5 . Moreover, we will explain how to quantify an existential argument used in [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] in order to prove Theorem 7 with κ ∞ = 6 • 10 -5 .

A technical lemma.

In this section we present the following key lemma, which is crucial for the induction argument sketched in Section 1.3 to work.

Lemma 8. Let c ≥ 1 and p > 4 √ 2c. If 0 < a 2 ≤ a 1 satisfy (a 1 , a 2 ) p ≤ 2 1 p -1 2 and |a i -1 √ 2 | ≤ c p for i = 1, 2, then we have |a 1 -a 2 | ≤ 3.65 c p -2 1 -a 2 1 -a 2 2 . (14) 
To prove it, we need an elementary inequality between p-means with a deficit.

Lemma 9. Let σ > 0, r ≥ max{σ, 2} and b 1 , b 2 ∈ (0, 1] with 1 -σ r ≤ b 2 b 1 ≤ 1. Then, we have b r 1 + b r 2 2 1 r ≥ b 1 + b 2 2 + (r -1) 1 -e -σ 2 4σ |b 1 -b 2 | 2 . ( 15 
) Proof. Denote c r def = (r -1) 1-e -σ 2 4σ . Dividing both sides by b 1 , introducing δ def = 1 -b 2 b 1
, raising the inequality to the power r and using that b 1 ≤ 1, we see that (15) follows from

1 + (1 -δ) r 2 ≥ 1 - δ 2 + c r δ 2 r , δ ∈ 0, σ r .
We have equality for δ = 0 and thus it is enough to show that on [0, σ r ] the derivatives compare,

- r 2 (1 -δ) r-1 ≥ r 1 - δ 2 + c r δ 2 r-1 - 1 2 + 2c r δ .
Multiplying both sides by 2 r and rearranging gives an equivalent form

1 -4c r δ ≥ 1 -δ 1 -δ 2 + c r δ 2 r-1 , since 1 -δ 2 + c r δ 2 > 0 on 0, σ r .
To prove the last inequality, observe that

1 -δ 1 -δ 2 + c r δ 2 r-1 ≤ 1 -δ 1 -δ 2 r-1 ≤ 1 - δ 2 r-1
.

It is enough to check the inequality 1 -δ 2 r-1 ≤ 1 -4c r δ only for δ ∈ {0, σ r }, since the left-hand side is convex in δ. For δ = σ r we have (1 -σ 2r ) r-1 ≤ e -σ 2 • r-1
r , so we would like to prove that

e -σ 2 • r-1 r ≤ 1 - r -1 r (1 -e -σ 2 ). Since u = r-1 r ∈ [0, 1] we want to verify e -σ 2 u ≤ 1 -u(1 -e -σ 2
), which follows by observing that the left-hand side is a convex function of u and we have equality for u ∈ {0, 1}.

Proof of Lemma 8. Since p > √ 2c, we have

a 2 a 1 ≥ 1 √ 2 -c p 1 √ 2 + c p = 1 - √ 2c p 1 + √ 2c p ≥ 1 - √ 2c p 2 ≥ 1 -2 √ 2 c p , so a 2 2 a 2 1 ≥ 1 -4 √ 2 c p = 1 -2 √ 2c p/2 . We can apply Lemma 9 with r = p 2 , b i = a 2 i and σ = 2 √ 2c to get 1 2 ≥ a p 1 + a p 2 2 2 p ≥ a 2 1 + a 2 2 2 + p 2 -1 1 -e - √ 2c 8 √ 2c |a 2 1 -a 2 2 | 2 ,
where the leftmost inequality is equivalent to (a 1 , a 2 ) p ≤ 2

1 p -1 2
. By the assumptions, we also have

a 1 + a 2 ≥ √ 2 -2c p ≥ √ 2 -1 2 √
2 and e -c √ 2 < e - √ 2 . Therefore, rearranging gives

1 -a 2 1 -a 2 2 ≥ c 0 c (p -2)|a 1 -a 2 | 2 , c 0 = √ 2 -1 2 √ 2 2 8 √ 2 (1 -e - √ 2
).

Thus, we conclude that

|a 1 -a 2 | ≤ √ c c 0 (p -2) 1 -a 2 1 -a 2 2 , 1 √ c 0 < 3.65,
which completes the proof.

Sections

3.1. Ancillary results. We begin with a simple L 2 -bound quantifying that the distribution of the random magnitudes R j from ( 8) is close to the point mass at 1 as p gets large. Explicit computations using the density show that for every s > -p -1, the s-th moment of R 1 is

ER s 1 = Γ 1 + s+1 p Γ 1 + 1 p . ( 16 
)
Lemma 10. For p > 5, we have

E|R 1 -1| 2 ≤ 2 Γ(1 + 1/p) p -2 . ( 17 
)
Proof. By ( 16), we can write

E|R 1 -1| 2 = ER 2 1 -2ER 1 + 1 = Γ(1 + 3/p) -2Γ(1 + 2/p) + Γ(1 + 1/p) Γ(1 + 1/p) . The function h(x) def = Γ(1 + 3x) -2Γ(1 + 2x) + Γ(1 + x)
satisfies h(0) = h (0) = 0, so for every 0 < x < 1 5 , by Taylor's expansion with Lagrange's remainder, there exists 0 < θ < x such that

h(x) = 1 2 x 2 h (θ) = 1 2 x 2 (9Γ (1 + 3θ) -8Γ (1 + 2θ) + Γ (1 + θ)). (18) 
On the interval (1, 8 5 ), Γ is decreasing, so Γ (1 + 3θ) < Γ (1 + 2θ). Since additionally Γ (s) < 2 for s ∈ (1, 8 5 ), equation [START_REF] Koldobsky | Projections of convex bodies and the Fourier transform[END_REF] gives h(x) ≤ 2x 2 . This applied to x = 1 p leads to [START_REF] Koldobsky | Fourier analysis in convex geometry[END_REF].

To deal with hyperplanes far from the extremizer, we will crucially rely on the equi-continuity of the section functions at p = ∞. For p ∈ [1, ∞] we introduce the normalized section function,

A n,p (a) def = vol(B n p ∩ a ⊥ ) vol(B n-1 p ) , ( 19 
)
where a is a unit vector in R n . Additionally, observe that

A n,∞ (a) = vol(B n ∞ ∩ a ⊥ ) vol(B n-1 ∞ ) = vol Q n ∩ a ⊥ ,
where

Q n = [-1 2 , 1 2 ] n is the unit-volume cube in R n . Recall that from Proposition 4, A n,p (a) = Γ 1 + 1 p E n j=1 a j R j ξ j -1
.

Lemma 11. Let p > 5. For every unit vector a in R n , we have

A n,p (a) -A n,∞ (a) ≤ 5 p . ( 20 
)
Proof. First recall that for an arbitrary nonzero vector x in R n ,

N(x) def = |x| vol(Q n ∩ x ⊥ ) = E n j=1 x j ξ j -1 -1
is a norm by Busemann's theorem [START_REF] Busemann | A theorem on convex bodies of the Brunn-Minkowski type[END_REF]. In particular, using

1 ≤ vol(Q n ∩ x ⊥ ) ≤ √ 2, we get N(y) -1 -N(x) -1 = |N(x) -N(y)| N(x)N(y) ≤ N(x -y) N(x)N(y) = |x -y| |x||y| vol(Q n ∩ x ⊥ )vol(Q n ∩ y ⊥ ) vol(Q n ∩ (x -y) ⊥ ) ≤ 2 |x -y| |x||y| ,
where x, y ∈ R n \ {0}. Evoking (8), we can write

A n,p (a) Γ(1 + 1/p) = E R E ξ n j=1 a j R j ξ j -1 = E R N(aR) -1 ,
where we use the ad hoc notation aR for the vector (a 1 R 1 , . . . , a n R n ) in R n . From the previous bound on 1/N, we thus obtain

A n,p (a) Γ(1 + 1/p) -A n,∞ (a) = EN(aR) -1 -N(a) -1 ≤ 2E |a -aR| |a| • |aR| = 2E |a -aR| |aR| .
By the Cauchy-Schwarz inequality,

E |a -aR| |aR| ≤ E|a -aR| 2 E|aR| -2 = E n j=1 a 2 j (R j -1) 2 E n j=1 a 2 j R 2 j -1
.

The first factor in the right-hand side is equal to R 1 -1 2 . By the convexity of the function

s → 1 s , E n j=1 a 2 j R 2 j -1 ≤ n j=1 a 2 j ER -2 j (16) = Γ 1 -1 p Γ 1 + 1 p .
Combining all the above, yields

A n,p (a) -Γ(1 + 1/p)A n,∞ (a) ≤ 2 R 1 -1 2 Γ(1 -1/p)Γ(1 + 1/p).
Using Lemma 10, the right-hand side gets upper-bounded by

2 2 Γ(1 + 1/p) p -2 Γ(1 -1/p)Γ(1 + 1/p) < 2 2Γ(1/2) p = 2 √ 2 4 √ π p using p > 2. Consequently, A n,p (a) -A n,∞ (a) ≤ 2 √ 2 4 √ π p + 1 -Γ(1 + 1/p) A n,∞ (a) ≤ 2 √ 2 4 √ π p + √ 2γ p < 5 p , because 1 -Γ(1 + x) < -Γ (1)x 
= γx for 0 < x < 1, by concavity. Here, γ = 0.577.. is the Euler-Mascheroni constant.

3.2. Proof of Theorem 1. Following notation [START_REF] Koldobsky | Extremal sections of complex lp-balls[END_REF], our goal is to prove that for every p ≥ p 0 and every unit vector a in R n , we have

A n,p (a) ≤ A n,p e 1 + e 2 √ 2 , (21) 
where the right-hand side is explicitly given by

A n,p e 1 + e 2 √ 2 = Γ 1 + 1 p E R 1 ξ 1 + R 2 ξ 2 √ 2 -1 = A 2,p e 1 + e 2 √ 2 = 1 ( 1 √ 2 , 1 √ 2 ) p = 2 1 2 -1 p .
Our proof will proceed by induction on n. It is directly checked that the theorem holds when n = 2, as A 2,p (a) = a -1 p for every unit vector a in R 2 . We therefore assume that n ≥ 3 and a 1 ≥ • • • ≥ a n > 0. Our analysis will differ depending on the distance of a to the extremizer. Let

δ(a) def = a - e 1 + e 1 √ 2 2 = 2 - √ 2(a 1 + a 2 ). (22) 
3.2.1. The vector a is far from the extremizer. Suppose that δ(a) ≥ c p for some universal constant c > 0 to be chosen soon. Then, by the equi-continuity proven in Lemma 11 and the stability of Ball's inequality from Theorem 7, we obtain

A n,p (a) ≤ 5 p + A n,∞ (a) ≤ 5 p + √ 2 -κ ∞ δ(a) ≤ √ 2 - κ ∞ c -5 p . For c ≥ √ 2 log 2 + 5 κ ∞ = √ 2 log 2 + 5 6 10 5 = 0.996.. • 10 5 , we have √ 2 - κ ∞ c -5 p ≤ √ 2 1 - log 2 p ≤ √ 2e -log 2 p = 2 1 2 -1 p ,
which finishes the proof in this case (without using the inductive hypothesis) for c = 10 5 .

3.2.2.

The vector a is close to the extremizer. Now, suppose that δ(a) < c p , where c = 10 5 . This in particular implies that (as we already assume that a 2 ≤ a 1 ),

1 √ 2 - c p ≤ a 2 ≤ a 1 ≤ 1 √ 2 + c p .
We shall consider p > Lc + 2 for a large constant L ≥ 100, which we will adjust as we move along. Observe that our goal ( 21) is equivalent to the inequality

E n j=1 a j R j ξ j -1 ≤ C p (23) 
with

C p = E R 1 ξ 1 + R 2 ξ 2 √ 2 -1 = 2 1 2 -1 p Γ(1 + 1/p) . ( 24 
)
We record for future estimates that when p > Lc + 2, we have

1.41 < C p < 1.42, (25) 
since

2 10 -6 > 2 1/p Γ(1 + 1/p) > Γ(1 + 10 -6 ). Consider the random vectors X = a 1 R 1 ξ 1 + a 2 R 2 ξ 2 and Y = j>2 a j R j ξ j in R 3 .
Since X and Y are independent and rotationally invariant, the representation

E n j=1 a j R j ξ j -1 = E min |X| -1 , |Y | -1
holds (see, e.g., [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]Lemma 6.6]). By the inductive hypothesis,

E|Y | -1 = 1 1 -a 2 1 -a 2 2 E j>2 a j R j ξ j 1 -a 2 1 -a 2 2 -1 ≤ C p 1 -a 2 1 -a 2 2 ,
and hence (by the concavity of the function t → min{|X| -1 , t}), we get

E n j=1 a j R j ξ j -1 = E min |X| -1 , |Y | -1 ≤ E min |X| -1 , α -1 , (26) 
where we set

α def = 1 C p 1 -a 2 1 -a 2 2 . (27) 
Observe that

E min |X| -1 , α -1 = E|X| -1 -E |X| -1 -α -1 + ( 28 
) and

E|X| -1 = 1 a 2 1 + a 2 2 E a 1 R 1 ξ 1 + a 2 R 2 ξ 2 a 2 1 + a 2 2 -1 (8) 
= 1

a 2 1 + a 2 2 1 (a 1 ,a 2 ) √ a 2 1 +a 2 2 p Γ(1 + 1/p) = 1 (a 1 , a 2 ) p Γ(1 + 1/p) . ( 29 
)
In view of the inductive step [START_REF] Nayar | Extremal sections and projections of certain convex bodies: a survey[END_REF] and the identities ( 24), ( 28), [START_REF] Stanisław | On the best constants in the Khinchin inequality[END_REF], the desired inequality ( 23) is a consequence of the following proposition.

Proposition 12. Under the assumptions and notation above, for p ≥ 10 15 we have

E |X| -1 -α -1 + ≥ C p 2 1 p -1 2 (a 1 , a 2 ) p -1 . (30) 
Proof. If the right-hand side is nonpositive, we are done. Otherwise,

(a 1 , a 2 ) p < 2 1 p -1 2 . Since a i -1 √ 2 < c p , Lemma 8 gives |a 1 -a 2 | ≤ 3.65 c p -2 1 -a 2 1 -a 2 2 (27) = 3.65 c p -2 C p α (25) ≤ 5.25α √ L . (31) 
To simplify, note that (a 1 , a 2 ) p ≥ 2 1/p-1/2 (a 1 , a 2 ) 2 , so

2 1 p -1 2 (a 1 , a 2 ) p -1 ≤ 1 (a 1 , a 2 ) 2 -1 = 1 -(a 2 1 + a 2 2 ) a 2 1 + a 2 2 (1 + a 2 1 + a 2 2 ) < C 2 p α 2 1.95 ,
where we used that 

a 2 1 + a 2 2 ≥ 2a 2 2 ≥ 2 1 √ 2 - c p 2 > 1 - 2 √ 2c p > 1 - 2 √ 2 L > 0.97 ( 
E |X| -1 -α -1 + ≥ 3 2 α 2 . ( 33 
)
Consider the event

E def = R 1 ≤ 1, |R 1 -R 2 | < α, |a 1 ξ 1 + a 2 ξ 2 | < 1 4 α .
On E, we have

|X| = |a 1 R 1 ξ 1 + a 2 R 2 ξ 2 | ≤ |a 1 R 1 ξ 1 + a 2 R 1 ξ 2 | + |a 2 R 2 ξ 2 -a 2 R 1 ξ 2 | = R 1 |a 1 ξ 1 + a 2 ξ 2 | + a 2 |R 2 -R 1 | < 1 4 α + 1 √ 2 α < 24 25 α, so E |X| -1 -α -1 + ≥ 1 24α P (E) = 1 24α P R 1 ≤ 1, |R 1 -R 2 | < α P |a 1 ξ 1 + a 2 ξ 2 | < 1 4 α . ( 34 
)
For the second probability in (34), observe that the random variable |a 1 ξ 1 + a 2 ξ 2 | 2 has the same distribution as a 2 1 + a 2 2 + 2a 1 a 2 U , with U being uniform on [-1, 1]. Therefore,

P |a 1 ξ 1 + a 2 ξ 2 | < 1 4 α = P U < α 2 /16 -a 2 1 -a 2 2 2a 1 a 2 .
Note that the condition

-1 < α 2 /16 -a 2 1 -a 2 2 2a 1 a 2 < 1 (35) is equivalent to |a 1 -a 2 | < α 4 < |a 1 + a 2 |.
The left inequality holds thanks to (31), provided that L > (5.25 • 4) 2 = 441, whereas the right inequality holds since

a 1 + a 2 ≥ 2a 2 > √ 2 -2c p > √ 2 -2 L > 1.2 which is greater than α 4 since α ≤ 1 C p 1 -2a 2 2 (25) < 1 1.41 1 -2 1 √ 2 - c p 2 < 1 1.41 2 √ 2 c p < 1.2 √ L . (36) 
As (35) holds, we have

P |a 1 ξ 1 + a 2 ξ 2 | < 1 4 α = 1 2 α 2 /16 -a 2 1 -a 2 2 2a 1 a 2 + 1 = α 2 /16 -(a 1 -a 2 ) 2 4a 1 a 2 .
Using (31) and the estimate 4a 1 a 2 ≤ 2(a 2 1 + a 2 2 ) < 2, we get

P |a 1 ξ 1 + a 2 ξ 2 | < 1 4 α > 1 -441/L 32 α 2 . ( 37 
)
For the other probability in (34), it is convenient to place a uniform function of constant mass under the density of R 1 , which is doable due to the following technical lemma.

Lemma 13. Fix p ∈ (1, ∞) and let g p : R + → R + be the density of R 1 . Then, we have

∀ x > 0, g p (x) ≥ p 4 1 [1-1 2p ,1] (x). (38) 
Proof. Recall from Proposition 4 that g p (x) = pΓ(1 + 1/p) -1 x p e -x p for x > 0. Since g p is log-concave, it suffices to check the inequality at the endpoints x = 1 -1 2p and x = 1. For the first endpoint, we have

g p 1 -1 2p = p Γ(1 + 1/p) 1 -1 2p p e -(1-1 2p ) p > p 2 e -e -1/2 > p 4 , using that (1 -1 2p ) p < e -1/2 and (1 -1 2p ) p > 1 2
. Moreover, for the second endpoint,

g p (1) = p eΓ(1 + 1/p) > p 4 .
Finishing the proof of Proposition 12. We estimate the first probability in (34) using Lemma 13,

P R 1 ≤ 1, |R 1 -R 2 | < α ≥ {x≤1, |x-y|<α} p 4 2 1 [1-1 2p ,1] (x)1 [1-1 2p ,1] (y) dx dy = 1 64 , if α > 1 2p p 2 α 16 1 p -α , if α ≤ 1 2p , (39) 
where the equality is an elementary computation. In the case α ≤ 1 2p , we further have 1 p -α ≥ 1 2p , so the probability is further bounded from below by pα 32 , which we will use.

• If α > 1 2p
, inequalities (34), ( 37) and (39) yield the lower bound

E(|X| -1 -α -1 ) + ≥ 1 24α • 1 64 • 1 -441/L 32 α 2 = 1 -441/L 2 14 • 3 • 1 α α 2 (36) > 1 -441/L 2 14 • 3 • 1.2 √ L α 2 .
To get the desired bound (33) by 3 2 α 2 , it suffices to take L = 7.9

• 10 9 . • If α ≤ 1 2p
, inequalities (34), ( 37) and (39) yield the lower bound

E(|X| -1 -α -1 ) + ≥ 1 24α • pα 32 • 1 -441/L 32 α 2 = p(1 -441/L) 2 13 • 3 α 2 > (L -441)c 2 13 • 3 α 2 .
This is at least 3 2 α 2 for the chosen L, which completes the proof of (33) for p ≥ p 0 , where p 0 = Lc + 2 < 8 • 10 9 • 10 5 < 10 15 .

Projections

The proof here parallels the one from Section 3. For the readers' convenience, we include all the details (which are in fact easier in several places). 4.1. Ancillary results. We start by quantifying how close the distribution of the X j from [START_REF] Hadwiger | Gitterperiodische Punktmengen und Isoperimetrie[END_REF] is to that of a Rademacher variable (in the Wasserstein-2 distance). Explicit computations using the density show that for every s > -1 q-1 , the s-th moment of

|X 1 | is E|X 1 | s = Γ 1 + (s-1)(q-1) q Γ 1 q . ( 40 
)
Lemma 14. For 1 < q < 2, we have

E|X 1 -sgn(X 1 )| 2 ≤ 9 1 - 1 q 2 . ( 41 
) Proof. Observe that E|X 1 -sgn(X 1 )| 2 = EX 2 1 -2E|X 1 | + 1 (40) = Γ(2 -1/q) -2 + Γ(1/q) Γ(1/q) .
Since Γ is decreasing on (0, 1), Γ(1/q) ≥ Γ(1) = 1. Using Taylor's expansion with Lagrange's remainder, for every 0 < x < 1 there exists 0 < θ < x such that

h(x) def = Γ(1 -x) + Γ(1 + x) -2 = 1 2 x 2 Γ (1 -θ) + Γ (1 + θ) .
Thus for 0 < x < 1/2, we have

h(x) ≤ 1 2 x 2 Γ L∞( 1 2 ,1) + Γ L∞(1, 3 2 ) = 1 2 x 2 Γ (1/2) + Γ (1) < 9x 2 since Γ decreases on ( 1 2 , 3 
2 ). Applying this to x = 1 -1 q , we indeed obtain

E|X 1 -sgn(X 1 )| 2 ≤ h 1 - 1 q ≤ 9 1 - 1 q 2 .
From this estimate, we can easily deduce the equi-continuity of the normalized projection functions, which we state directly in probabilistic terms in view of Proposition 5.

Lemma 15. Let 1 < q < 2, X 1 , X 2 , . . . be i.i.d. random variables from (11) and ε 1 , ε 2 , . . . be i.i.d. Rademacher random variables. For every unit vector a in R n , we have

E n j=1 a j X j -E n j=1 a j ε j ≤ 3 1 - 1 q . ( 42 
)
Proof. Since ε j has the same distribution as sgn(X j ), we have

E n j=1 a j X j -E n j=1 a j ε j = E n j=1 a j X j -E n j=1 a j sgn(X j ) ≤ E n j=1 a j X j -sgn(X j ) ≤ E n j=1 a j X j -sgn(X j ) 2 = E|X 1 -sgn(X 1 )| 2
and Lemma 14 finishes the proof.

4.2.

Proof of Theorem 2. By virtue of ( 11), our goal is to show that for every 1 < q < q 0 and every unit vector a in R n , we have

E n j=1 a j X j ≥ E X 1 + X 2 √ 2 def = c q . ( 43 
)
For posterity, we note that thanks to [START_REF] Hadwiger | Gitterperiodische Punktmengen und Isoperimetrie[END_REF], for every vector a in R 2 ,

E|a 1 X 1 + a 2 X 2 | = |a| vol(Proj a ⊥ B 2 q ) 2Γ(1/q) = |a| Γ(1/q) sup x∈∂B 2 q x, 1 |a| (-a 2 , a 1 ) = a q q-1 Γ(1/q) . ( 44 
)
In particular, we have

c q = E X 1 + X 2 √ 2 = 2 1 2 -1 q Γ(1/q) . ( 45 
)
In view of the above explicit expression, inequality (43) clearly holds for n = 2. We therefore assume that n ≥ 3, a 1 ≥ • • • ≥ a n > 0 and proceed by induction on n. Recall the definition of the deficit parameter used earlier,

δ(a) = a - e 1 + e 2 √ 2 2 = 2 - √ 2(a 1 + a 2 ).

4.2.1.

The vector a is far from the extremizer. Here we consider the case δ(a) ≥ c 1 -1 q for some constant c > 0 to be chosen soon. Using the equi-continuity from Lemma 15 and the robust version of Szarek's inequality from Theorem 6, we obtain

E n j=1 a j X j ≥ E n j=1 a j ε j -3 1 - 1 q ≥ 1 √ 2 + κ 1 δ(a) -3 1 - 1 q ≥ 1 √ 2 + (κ 1 c -3) 1 - 1 q .
Note that by convexity,

2 x < 1 + 2( √ 2 -1)x for 0 < x < 1 2 , which with x = 1 -1 q gives c q = 2 1 2 -1 q Γ(1/q) ≤ 2 1 2 -1 q = 1 √ 2 2 1-1 q < 1 √ 2 + (2 - √ 2) 1 - 1 q .
Therefore, if we consider

c ≥ 5 - √ 2 κ 1 = 5 - √ 2 8
• 10 5 , we get the desired bound (43) (nota bene, without the inductive argument).

4.2.2.

The vector a is close to the extremizer. It is left to consider the case when

δ(a) < c 1 - 1 q ,
where c = 5- √ 2 8

• 10 5 . In particular, we also have that

1 √ 2 -c 1 - 1 q ≤ a 2 ≤ a 1 ≤ 1 √ 2 + c 1 - 1 q . ( 46 
)
Letting p = q q-1 , we shall assume that p is large relative to c, say p > Lc + 2 for some large constant L ≥ 100 to be specified later. In particular, when

1 p = 1 -1 q < 10 -5 , 0.7 < c q < 0.71, (47) 
since 0.7 < 2 -1/2 Γ(1-10 -5 ) < 2 1/2-1/q Γ(1/q) < 2 -1/2+10 -5 < 0.71. To run an inductive argument in order to prove (43), we consider the random variables X = a 1 X 1 + a 2 X 2 and Y = j>2 a j X j . By the independence and symmetry of X and Y ,

E n j=1 a j X j = E|X + Y | = E max{|X|, |Y |}.
Using the inductive hypothesis,

E|Y | = 1 -a 2 1 -a 2 2 E j>2 a j X j 1 -a 2 1 -a 2 2 ≥ c q 1 -a 2 1 -a 2 2 ,
hence (by the convexity of the function t → max{|X|, t}), we get

E n j=1 a j X j = E max {|X|, |Y |} ≥ E max {|X|, α} , (48) 
where we set

α def = c q 1 -a 2 1 -a 2 2 . (49) 
Observe that E max {|X|, α} = E|X| + E(α -|X|) + (50) and, by (44),

E|X| = (a 1 , a 2 ) q q-1 Γ(1/q) (45) = c q 2 1 q -1 2 (a 1 , a 2 ) q q-1 . (51) 
In view of the inductive step (48) and the identities (50) and (51), the desired inequality (43) is a consequence of the following proposition.

Proposition 16. Under the assumptions and notation above, for 1 ≤ q ≤ 1 + 10 -12 we have

E α -|X| + ≥ c q 1 -2 1 q -1 2 (a 1 , a 2 ) q q-1 . (52) 
Proof. If the right-hand side is nonpositive, we are done. Otherwise,

(a 1 , a 2 ) q q-1 < 2 1 2 -1 q .
Letting p = q q-1 and recalling (46), we see that we can apply Lemma 8 to conclude that

|a 1 -a 2 | ≤ 3.65 c p -2 1 -a 2 1 -a 2 2 (49) = 3.65 c q c p -2 α (47) < 5.25α √ L . (53) 
To simplify the right-hand side of (52), we write

c q 1 -2 1 q -1 2 (a 1 , a 2 ) q q-1 ≤ c q 1 -(a 1 , a 2 ) 2 = c q 1 -(a 2 1 + a 2 2 ) 1 + a 2 1 + a 2 2 (49) = α 2 c q (1 + a 2 1 + a 2 2 ) (47) < α 2 0.7(1 + √ 0.97) < 3 4 α 2 ,
as we have a 2 1 + a 2 2 > 0.97, see (32). Therefore, it suffices to show that

E(α -|X|) + ≥ 3 4 α 2 . ( 54 
)
Using that each X j has the same distribution as ε j |X j |, for independent random signs ε j , we consider the event

E def = |X 1 | ≤ 1, |X 1 | -|X 2 | < α, |a 1 ε 1 + a 2 ε 2 | < 1 4 α ,
on which we have

|X| = a 1 ε 1 |X 1 | + a 2 ε 2 |X 2 | ≤ |X 1 ||a 1 ε 1 + a 2 ε 2 | + a 2 |X 2 | -|X 1 | < 1 4 α + 1 √ 2 α < 24 25 α
and thus we obtain the lower bound

E(α -|X|) + ≥ α 25 P (E) = α 25 P |X 1 | ≤ 1, |X 1 | -|X 2 | < α P |a 1 ε 1 + a 2 ε 2 | < 1 4 α . ( 55 
)
The second probability in ( 55) is clearly at least 1 2 provided that

|a 1 -a 2 | < α 4 .
This holds assuming L > (5.25•4) 2 = 441, by virtue of (53). For the first probability, analogously to Lemma 13, we will place a constant function under the density

f q of |X 1 |. Lemma 17. Fix q ∈ (1, 3 
2 ) and let f q : R + → R + be the density of |X 1 |. Then, we have

f q (x) ≥ 1 4(q -1) 1 [1-q-1 2 ,1] (x), x > 0. (56) 
Proof. Recall from Proposition 5,

f q (x) = 1 (q -1)Γ(1 + 1 q ) x 2-q q-1 e -x q q-1 , x > 0.
The proof is almost identical to that of Lemma 13. It suffices to check that the inequality holds for x = 1 -q-1 2 and x = 1. Since (1 -q-1 2 )

2-q q-1 > 1 -2-q q-1 q-1 2 = q 2 > 1 2 , for 1 < q < 3 2 , (1 -q-1
2 ) q q-1 < e -q 2 < e -1 2 and Γ(1 + 1 q ) < 1, we obtain

f q 1 - q -1 2 > 1 (q -1) 1 2 e -1 2 > 1 4(q -1)
.

Moreover,

f q (1) = 1 (q -1)Γ(1 + 1 q ) e -1 > 1 e(q -1) > 1 4(q -1)
.

Finishing the proof of Proposition 16. As earlier, Lemma 17 gives

P |X 1 | ≤ 1, |X 1 | -|X 2 | < α ≥ {x≤1, |x-y|<α} 1 4(q -1) 2 1 [1-q-1 2 ,1] (x)1 [1-q-1 2 ,1] (y) dx dy ≥ 1 64 , α > q-1 2 , α 32(q-1) , α ≤ q-1 2 , (57) 
where the last inequality follows from (39) with p replaced by 1 q-1 .

• If α > q-1
2 , inequalities (55) and ( 57) yield the lower bound

E α -|X| + ≥ α 25 • 1 64 • 1 2 = α 3200 . Since α (49) ≤ c q 1 -2a 2 2 (47) < 0.71 1 -2 1 √ 2 - c p 2 < 0.71 2 √ 2 c p < 1.2 √ L ,
we obtain the desired bound (54) provided that L ≥ 8 294 400.

• If α ≤ q-1 2 , inequalities (55) and ( 57) give

E α -|X| + ≥ α 25 • α 32(q -1) • 1 2 = α 2 1600(q -1)
.

As we assume 1 -1 q ≤ 1 cL+2 , this is at least the desired 3 4 α 2 by a large margin for L = 8 294 400. The proof is complete for every 1 ≤ q ≤ q 0 , where

q 0 = Lc + 2 Lc + 1 > 1 + 10 -12 .

Stability estimates with explicit constants

The proofs of both Theorems 6 and 7 presented here follow the same strategy taken from [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF], which we shall now outline. For a unit vector a in R n , consider again the deficit

δ(a) = a - e 1 + e 1 √ 2 2 = 2 - √ 2(a 1 + a 2 ).
Let a be a unit vector and without loss of generality assume that a 1 ≥ • • • ≥ a n ≥ 0. The approach leading to the stability of the inequalities of Szarek and Ball differs depending on whether the vector a is close to or far from the extremizer e 1 +e 2 √ 2 , as measured by δ(a). Case 1. When a is close to e 1 +e 2 √ 2 , we quantitatively sharpen the inequalities of Szarek and Ball by reapplying them only to a portion of the vector a, thus exhibiting their self-improving feature. The probabilistic formulae are crucial for this part.

When a is far from the extremizer, three things can happen. Case 2. If the largest magnitude of the coordinates of a is below 1 √ 2 , the second largest magnitude has to drop well below 1 √ 2 on the account of δ(a) being large and the classical Fourier-analytic approach of Haagerup [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF] and Ball [START_REF] Ball | Cube slicing in R n[END_REF] allows to track the deficit. Case 3. If the largest magnitude is barely above 1 √ 2 , a Lipschitz property of the section and projection functions allows to reduce this case to the one from Case 2. Case 4. If the largest magnitude is bounded below away from 1 √ 2 , an easy convexity/projection argument gives a strict inequality with a margin. 5.1. Stability of Szarek's inequality. We first deal with the sharp Khinchin inequality of [START_REF] Stanisław | On the best constants in the Khinchin inequality[END_REF].

Case 1. We begin with the case that a is near the extremizer. Lemma 18. Let 0 < δ 0 < 2 3 and take

c 0 = 1 2 √ 2 ( 1 5 (4 -δ 0 ) - √ δ 0 ) > 0. For every unit vector a in R n with a 1 ≥ • • • ≥ a n ≥ 0 satisfying δ(a) ≤ δ 0 , we have E n j=1 a j ε j ≥ 1 √ 2 + c 0 δ(a). (58) 
Proof. We will assume without loss of generality that n ≥ 3 and a 2 1 + a 2 2 < 1 (the remaining cases can be obtained by taking a limit). Let

θ def = 1 √ 2 1 -a 2 1 -a 2 2 .
Arguing as in the induction of Section 4 and using Jensen's and Szarek's inequalities, we get

E n j=1 a j ε j = E max |a 1 ε 1 + a 2 ε 2 |, n j=3 a j ε j ≥ E max |a 1 ε 1 + a 2 ε 2 |, E n j=3 a j ε j ≥ E max |a 1 ε 1 + a 2 ε 2 |, θ = 1 2 max{a 1 + a 2 , θ} + 1 2 max{a 1 -a 2 , θ}.
Denoting by δ = δ(a), recall that δ = 2 -√ 2(a 1 + a 2 ), that is,

a 1 + a 2 = 2 -δ √ 2
We now claim that a 1 + a 2 ≥ θ. This inequality is equivalent to

2 -δ ≥ 1 -a 2 1 -a 2 2 . Since a 2 1 + a 2 2 ≥ 1 2 (a 1 + a 2 ) 2 = (2 -δ) 2 4 ,
it is enough to prove the inequality

2 -δ ≥ 1 - (2 -δ) 2 4 = δ - 1 4 δ 2 .
This is clearly true for δ ≤ 1, which holds due to our assumptions. We therefore want to show the inequality

1 2 (a 1 + a 2 ) + 1 2 max{a 1 -a 2 , θ} ≥ 1 √ 2 + c 0 √ δ.
Let us denote b 1 = a 1 + a 2 and b 2 = a 1 -a 2 . Then the desired inequality can be rewritten as

1 2 b 1 + 1 2 max b 2 , 1 √ 2 1 - b 2 1 + b 2 2 2 ≥ 1 √ 2 + c 0 √ δ. (59) • Assume that b 2 ≥ 1 √ 2 1 - b 2 1 +b 2 2 2 .
This assumption is equivalent with b 2 2 ≥ 2 5 -1 5 b 2 1 and our goal (59) is to prove that

1 2 (b 1 + b 2 ) ≥ 1 √ 2 + c 0 √ δ. Bounding b 2 2 from below by 2 5 -1 5 b 2 1 and recalling that b 1 = 2-δ √ 2 , it suffices to prove 2 -δ √ 2 + 2 5 - (2 -δ) 2 10 ≥ √ 2 + 2c 0 √ δ. This simplifies to 4 -δ 5 ≥ 2 √ 2c 0 + √ δ, which holds since the function η → 4-η 5 - √ η is decreasing on [0, δ 0 ]. • Assume that b 2 ≤ 1 √ 2 1 - b 2 1 +b 2 2 2 .
This assumption is equivalent with b 2 2 ≤ 2 5 -1 5 b 2 1 and our goal (59) is to prove that

1 2 b 1 + 1 2 √ 2 1 - b 2 1 + b 2 2 2 ≥ 1 √ 2 + c 0 √ δ.
Bounding b 2 2 from above by 2 5 -1 5 b 2 1 and recalling that b

1 = 2-δ √ 2 , it suffices to prove 2 -δ 2 √ 2 + 1 2 √ 2 4 5 δ - 1 5 δ 2 ≥ 1 √ 2 + c 0 √ δ.
This simplifies to

4 5 - 1 5 δ ≥ √ δ + 2 √ 2c 0 ,
which holds for the same reason as before.

Case 2. We assume that a is far from the extremizer and a 1 is at most 1 √ 2 . A key step in Haagerup's slick Fourier-analytic proof of Szarek's inequality from [START_REF] Haagerup | The best constants in the Khintchine inequality[END_REF] is the bound

E n j=1 a j ε j ≥ n j=1 a 2 j F (a -2 j ), (60) 
for every unit vector a in R n , where the function F : (0, ∞) → R is given by

F (s) = 2 √ πs • Γ s+1 2 Γ s , s > 0.
Haagerup showed that the function F (s) is increasing on (0, ∞), which will be crucial for us.

Lemma 19. Let 0 < δ 0 < 2. For every unit vector a in R n with a

1 ≥ • • • ≥ a n ≥ 0 satisfying δ(a) ≥ δ 0 and a 1 ≤ 1 √ 2 , we have E n j=1 a j ε j ≥ 1 √ 2 + c 1 δ(a), (61) 
with c 1 = 1 2 √ 2 F 8 (2-δ 0 ) 2 -F (2) .
Proof. We have

a 2 ≤ a 1 + a 2 2 = 2 -δ(a) 2 √ 2 ≤ 2 -δ 0 2 √ 2 ,
which shows that a -2 j ≥ l 0 , for all j ≥ 2, with l 0 = 8 (2-δ 0 ) 2 > 2. Employing (60) and using the monotonicity of F , we therefore have

E n j=1 a j ε j ≥ a 2 1 F (2) + j≥2 a 2 j F (l 0 ) = a 2 1 F (2) + (1 -a 2 1 )F (l 0 ) = F (l 0 ) + a 2 1 F (2) -F (l 0 ) ≥ F (l 0 ) + 1 2 F (2) -F (l 0 ) = 1 2 F (2) + F (l 0 ) = 1 √ 2 + 1 2 (F (l 0 ) -F (2)), since F (2) = 1 √ 2 .
The conclusion follows since δ(a) ≤ 2.

Case 3. We assume that a is far from the extremizer but a 1 is barely larger than 1 √ 2 .

Lemma 20. Let γ 0 ≤ 1-1 √ 2 and 2 √ γ 0 < δ 0 < 2. For every unit vector a in R n with coordinates

a 1 ≥ • • • ≥ a n ≥ 0 satisfying 1 √ 2 ≤ a 1 ≤ 1 √ 2 + γ 0 and δ(a) ≥ δ 0 , we have E n j=1 a j ε j ≥ 1 √ 2 + c 2 δ(a), (62) 
with

c 2 = 1 2 √ 2 F 8 (2 + 2 √ γ 0 -δ 0 ) 2 -F (2) δ 0 -2 √ γ 0 -2γ 0 + γ 2 0 . (63) 
Proof. Consider the unit vector

b def = 1 √ , a 2 1 + a 2 2 - 1 2 , a 3 , . . . , a n .
Then by the triangle inequality, we obtain the following Lipschitz property,

E n j=1 a j ε j ≥ E n j=1 b j ε j -E n j=1 (a j -b j )ε j ≥ E n j=1 b j ε j -E n j=1 (a j -b j )ε j 2 1/2 = n j=1 b j ε j -|a -b|. Note that b 1 ≥ b 2 and since b 2 ≥ a 2 , also b 2 ≥ b 3 ≥ • • • ≥ b n . Moreover, a 2 1 + a 2 2 - 1 2 -a 2 = a 2 1 -1 2 a 2 1 + a 2 2 -1 2 + a 2 ≤ a 2 1 - 1 2 ≤ √ 2γ 0 + γ 2 0 < 2γ 0 , (64) 
thus

|a -b| 2 = a 1 - 1 √ 2 2 + a 2 1 + a 2 2 - 1 2 -a 2 2 < γ 2 0 + 2γ 0 . Observe that, since a 1 ≥ 1 √ 2 , we have δ(b) = 2 - √ 2 1 √ 2 + a 2 1 + a 2 2 - 1 2 = δ(a) - √ 2 1 √ 2 + a 2 1 + a 2 2 - 1 2 -a 1 -a 2 ≥ δ 0 - √ 2 a 2 1 + a 2 2 - 1 2 -a 2 (64) > δ 0 -2 √ γ 0 .
Thus, applying Lemma 19 to the vector b and using the above estimates, we get

E n j=1 a j ε j ≥ 1 √ 2 + 1 2 √ 2 F 8 (2 + 2 √ γ 0 -δ 0 ) 2 -F (2) δ(b) -2γ 0 + γ 2 0 ≥ 1 √ 2 + 1 2 √ 2 F 8 (2 + 2 √ γ 0 -δ 0 ) 2 -F (2) δ 0 -2 √ γ 0 -2γ 0 + γ 2 0 . Finally, as a 1 ≥ 1 √ 2 , we have δ(a) = 2- √ 2(a 1 +a 2 ) ≤ 1- √ 2a 2 ≤
1 and the proof is complete.

Case 4. Finally, there is also a simple bound for the case that a 1 is much larger than 1 √ 2 .

Lemma 21. Let γ 0 > 0. For every unit vector a in R n with a 1 ≥ 1 √ 2 + γ 0 , we have This completes the proof of Theorem 6.

5.2.

Stability of Ball's inequality. We now turn to the study of Ball's inequality [START_REF] Ball | Cube slicing in R n[END_REF]. Throughout this section we denote by

Q n = [-1 2 , 1 2
] n the cube of unit volume.

Case 1. We begin with the case that a is near the extremizer.

Lemma 22. For every n ≥ 2 and every unit vector a in R n with a 1 ≥ • • • ≥ a n ≥ 0 satisfying δ(a) ≤ 1 4 , we have vol

Q n ∩ a ⊥ ≤ √ 2 -c 1 δ(a), (66) 
where c 1 = 0.12.

Proof. We can assume that n ≥ 3 and a 2 1 + a 2 2 < 1 (the missing cases follow by taking a limit). Leveraging a self-improving feature of Ball's inequality, the proof of [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]Lemma 6.7] 

yields vol Q n ∩ a ⊥ ≤ √ 2 max    1 -δ + δ(2 -δ) 5 -1 , (1 -δ) -2 1 -δ - δ(2 -δ) 2 √ 2    ,
where δ = δ(a). Denoting the maximum on the right-hand side by M (δ), we can take

c 1 = inf 0<δ<1/4 √ 2 1 -M (δ) √ δ .
Direct numerical calculations show that c 1 > 0.12.

Cases 2 and 3. We assume that a is far from the extremizer but a 1 is not much larger than 1 √ 2 . Lemma 23. For every n ≥ 2 and every unit vector a in R n with a 1 ≥ • • • ≥ a n ≥ 0 satisfying δ(a) ≥ 1 4 and a 1 ≤ 1 √ 2 + γ 0 , we have

vol Q n ∩ a ⊥ ≤ √ 2 -c 2 , ( 67 
)
where γ 0 = 3.2 • 10 -5 and c 2 = 0.0002.

Proof. Here the proof relies on Fourier-analytic arguments. For the special function

Ψ(s) = 2 π √ s ∞ 0 sin t t s dt,
Ball showed in [START_REF] Ball | Cube slicing in R n[END_REF] that Ψ(s) < Ψ(2) = √ 2, for every s > 2. We need a robust version of this estimate. Using the Nazarov-Podkorytov lemma [START_REF] Fedor | Ball, Haagerup, and distribution functions[END_REF], König and Koldobsky [START_REF] König | On the maximal perimeter of sections of the cube[END_REF] proved that

∀ s ≥ 9 4 , Ψ(s) ≤ Ψ(∞) = 6 π = √ 2 3 π 1/2 (68) 
(that is, θ 0 = 3 π 1/2 in the notation of [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]Lemma 6.8]). The argument now splits in two cases.

• Assume that a 1 ≤ 1 = 0.11.., with the aid of (68), the arguments from [START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF]Lemma 6.8] give the explicit estimate

vol Q n ∩ a ⊥ ≤ 3 π 1/4 √ 2 = √ 2 - √ 2(1 -(3/π) 1/4
).

Therefore, we can take any Case 4. Finally, there is also a simple bound for the case that a 1 is much larger than 1 √ 2 .

Lemma 24. For every n ≥ 2 and every unit vector a in R n satisfying a 1 ≥ 1 √ 2 + γ 0 , we have

vol Q n ∩ a ⊥ ≤ √ 2 - 2γ 0 1 + γ 0 √ 2 δ(a), (69) 
where γ 0 = 3.2 • 10 -5 .

Proof. By Ball's geometric projection argument (see [START_REF] Ball | Cube slicing in R n[END_REF][START_REF] Fedor | Ball, Haagerup, and distribution functions[END_REF]), we have vol(Q n ∩ a ⊥ ) ≤ 1 a 1 . Since a 1 ≥ 1 √ 2 + γ 0 and hence δ(a) < 1, we deduce that

vol(Q n ∩ a ⊥ ) ≤ 1 1 √ 2 + γ 0 = √ 2 - √ 2 1 - 1 1 + γ 0 √ 2 ≤ √ 2 - 2γ 0 1 + γ 0 √ 2 δ(a).
Constants. Combining Lemmas 22, 23 and 24, and using that always δ(a) < 2, we conclude that for all unit vectors a in R n , we have the inequality

vol Q n ∩ a ⊥ ≤ √ 2 -κ ∞ δ(a)
with

κ ∞ ≥ min c 1 , c 2 √ 2 , 2γ 0 1 + γ 0 √ 2 > 6 • 10 -5 .
This completes the proof of Theorem 7.

Case 1 . 2 √ 2 ,

 122 The vector a is far from the extremizer e 1 +e say a -e 1 +e 2 √ 2

1 ≥

 1 By Jensen's inequality and the fact that δ(a) ≤ 1, Combining Lemmas 18, 19, 20 and 21 with δ 0 = 0.66 (almost the maximal value allowed in Lemma 18) and γ 0 = 8 • 10 -5 , we conclude that for all unit vectors a in R n , min {c 0 , c 1 , c 2 , γ 0 } > min 1.7 • 10 -3 , 1.6 • 10 -2 , 5.1 • 10 -4 , 8 • 10 -5 = 8 • 10 -5 .

c 2 ≤ √ 2 ( 1 -• Assume that 1 √ 2 < a 1 ≤ 1 √ 2 +γ 0 , 1 -

 2112121 (3/π) 1/4 ) = 0.016... γ 0 . Using Busemann's theorem[START_REF] Busemann | A theorem on convex bodies of the Brunn-Minkowski type[END_REF], this case is reduced in[START_REF] Chasapis | Slicing p-balls reloaded: Stability, planar sections in 1[END_REF] Lemma 6.8] to the previous range, which yields the boundvol Q n ∩ a ⊥ (3/π) 1/4 + 2 γ 2 0 + 2γ 0 ,where c 1 is the constant from Lemma 22. With the choice of parameters γ 0 = 3.2 • 10 -5 and c 1 = 0.12, this estimate yields vol(Q n ∩ a ⊥ ) ≤ √ 2 -0.00021.. and thus completes the proof.

  R 2 , . . . be i.i.d. positive random variables with density α -1 p x p e -x p 1 x>0 , where α p = 1 p Γ 1 + 1 p and ξ 1 , ξ 2 , . . . be i.i.d. random vectors uniformly distributed on the unit sphere S 2 . Then, for every unit vector a in R n we have

Remark 25. We would like to stress that the arguments of this paper have not been optimized to give the best possible constants p 0 and q 0 in Theorems 1 and 2. We instead chose to be fairly generous in various parts of the proof for the sake of clarity of the exposition.
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