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LEARNING LOW-DEGREE FUNCTIONS FROM
A LOGARITHMIC NUMBER OF RANDOM QUERIES

ALEXANDROS ESKENAZIS AND PAATA IVANISVILI

Abstract. We prove that every bounded function f : {−1,1}n → [−1,1] of degree at most d can

be learned with L2-accuracy ε and confidence 1−δ from log(nδ )ε−d−1Cd
3/2
√

logd random queries,
where C > 1 is a universal finite constant.
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1. Introduction

Every function f : {−1,1}n→R admits a unique Fourier–Walsh expansion of the form

∀ x ∈ {−1,1}n, f (x) =
∑

S⊆{1,...,n}
f̂ (S)wS(x), (1)

where wS(x) =
∏
i∈S xi and the Fourier coefficients f̂ (S) are given by

∀ S ⊆ {1, . . . ,n}, f̂ (S) =
1
2n

∑
y∈{−1,1}n

f (y)wS(y). (2)

We say that f has degree at most d ∈ {1, . . . ,n} if f̂ (S) = 0 for every subset S with |S | > d.

1.1. Learning functions on the hypercube. Let C be a class of functions f : {−1,1}n → R on
the n-dimensional discrete hypercube. The problem of learning the class C can be described as
follows: given a source of examples (x,f (x)), where x ∈ {−1,1}n, for an unknown function f ∈ C,
compute a hypothesis function h : {−1,1}n→R which is a good approximation of f up to a given
error in some prescribed metric. In this paper we will be interested in the random query model
with L2-error, in which we are given N independent examples (x,f (x)), each chosen uniformly
at random from the discrete hypercube {−1,1}n, and we want to efficiently construct a (ran-
dom) function h : {−1,1}n→R such that ‖h−f ‖2L2

< ε with probability at least 1−δ, where ε,δ ∈
(0,1) are given accuracy and confidence parameters. The goal is to construct a randomized
algorithm which produces the hypothesis function h from a minimal number N of examples.

The above very general problem has been studied for decades in computational learning
theory and many results are known1, primarily for various classes C of structured Boolean
functions f : {−1,1}n → {−1,1}. Already since the late 1980s, researchers used the Fourier–
Walsh expansion (1) to design such learning algorithms (see the survey [14]). Perhaps the most
classical of these is the Low-Degree Algorithm of Linial, Mansour and Nisan [12] who showed
that for the class Cdb of all bounded functions f : {−1,1}n→ [−1,1] of degree at most d there ex-
ists an algorithm which produces an ε-approximation of f with probability at least 1−δ using
N = 2nd

ε log(2nd
δ ) samples. In this generality, the Oε,δ,d(nd logn) estimate of [12] was the state of

the art until the recent work [11] of Iyer, Rao, Reis, Rothvoss and Yehudayoff who employed
analytic techniques to derive new bounds on the `1-size of the Fourier spectrum of bounded

A. E. was supported by a Junior Research Fellowship from Trinity College, Cambridge. P. I. was partially sup-
ported by the NSF grants DMS-2152346 and CAREER-DMS-2152401.

1We will by no means attempt to survey this (vast) field, so we refer the interested reader to the relevant chapters
of O’Donnell’s book [15] and the references therein.
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functions (see also Section 3) and used these estimates to show that N = Oε,δ,d(nd−1 logn) ex-
amples suffice to learn Cdb . The goal of the present paper is to further improve this result and
show that in fact N =Oε,δ,d(logn) samples suffice for this purpose.

Theorem 1. Fix ε,δ ∈ (0,1), n ∈N, d ∈ {1, . . . ,n} and a bounded function f : {−1,1}n → [−1,1] of
degree at most d. If N ∈N satisfies

N ≥min

exp(Cd3/2
√

logd)

εd+1
,
4dnd

ε

 log
(n
δ

)
, (3)

where C ∈ (0,∞) is a large numerical constant, then N uniformly random independent queries of
pairs (x,f (x)), where x ∈ {−1,1}n, suffice for the construction of a random function h : {−1,1}n→ R

satisfying the condition ‖h− f ‖2L2
< ε with probability at least 1− δ.

The proof of Theorem 1 relies on some important approximation theoretic estimates going
back to the 1930s which we shall now describe (see also [9]). To the best of our knowledge,
these tools had not yet been exploited in the computational learning theory literature.

1.2. The Fourier growth of Walsh polynomials in ` 2d
d+1

. Estimates for the growth of coeffi-
cients of polynomials as a function of their degree and their maximum on compact sets go
back to the early days of approximation theory (see [5]). A seminal result of this nature is
Littlewood’s celebrated 4

3 -inequality [13] for bilinear forms which was later generalized by
Bohnenblust and Hille [4] for multilinear forms on the torus Tn or the unit square [−1,1]n. By
means of polarization, one can use this multilinear estimate to derive an inequality for poly-
nomials which reads as follows2. For every K ∈ {R,C} and d ∈N, there exists BKd ∈ (0,∞) such
that for every n ∈N and every coefficients cα ∈K, where α ∈ (N∪ {0})n with |α| ≤ d, we have∑

|α|≤d
|cα |

2d
d+1


d+1
2d

≤ BKd max
{ ∣∣∣∣∣ ∑
|α|≤d

cαx
α
∣∣∣∣∣ : x ∈Kn with ‖x‖`n∞(K) ≤ 1

}
. (4)

Moreover, 2d
d+1 is the smallest exponent for which the optimal constant in (4) is independent

of the number of variables n of the polynomial. The exact asymptotics of the constants BRd and
BCd remain unknown, however it is known that there is a significant gap between BRd and BCd ,

namely that limsupd→∞(BRd )1/d = 1 +
√

2 whereas BCd ≤ C
√
d lnd for a finite constant C > 1 (see

[7, 1, 9, 6, 8] for these and other important advances of the last decade). Restricting inequality
(4) to real multilinear polynomials, convexity shows that the maximum on the right-hand side
is attained at a point x ∈ {−1,1}n, which, in view of (1), makes (4) an estimate for the Fourier–
Walsh growth of functions on the discrete hypercube. We shall denote by B{±1}

d the corre-
sponding optimal constant (first explicitly investigated by Blei in [3, p. 175]), that is, the least
constant such that for every n ∈N and every function f : {−1,1}n→R of degree at most d, ∑

S⊆{1,...,n}
|f̂ (S)|

2d
d+1


d+1
2d

≤ B{±1}
d ‖f ‖L∞ . (5)

The best known quantitative result in this setting is due to Defant, Mastyło and Pérez [8] who
showed that B{±1}

d ≤ exp(κ
√
d logd) for a universal constant κ ∈ (0,∞). The main contribution

of this work is the following theorem relating the growth of the constant B{±1}
d and learning.

Theorem 2. Fix ε,δ ∈ (0,1), n ∈N, d ∈ {1, . . . ,n} and a bounded function f : {−1,1}n → [−1,1] of
degree at most d. If N ∈N satisfies

N ≥ e
8d2

εd+1
(B{±1}
d )2d log

(n
δ

)
, (6)

2For α = (α1, . . . ,αn) ∈ (N∪ {0})n, we use the standard notations |α| = α1 + · · ·+αn and xα = xα1
1 · · ·x

αn
n .
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then given N uniformly random independent queries of pairs (x,f (x)), where x ∈ {−1,1}n, one can
construct a random function h : {−1,1}n→R satisfying ‖h− f ‖2L2

< ε with probability at least 1− δ.

In Section 2 we will prove Theorem 2 and use it to derive Theorem 1. In Section 3 we will
present some additional remarks on Boolean analysis and learning, in particular showing that
the dependence on n in Theorem 1 is optimal for δ � 1

n . Moreover, we shall improve the recent
bounds of [11] on the `1-Fourier growth of bounded functions of low degree.

Acknowledgements. We are very grateful to Assaf Naor for constructive feedback and to Lau-
ritz Streck for useful discussions which led to Proposition 4.

2. Proofs

Proof of Theorem 2. Fix a parameter b ∈ (0,∞) and denote by

Nb
def=

 2
b2 log

2
δ

d∑
k=0

(
n
k

)
 . (7)

Let X1, . . . ,XNb be independent random vectors, each uniformly distributed on {−1,1}n. For a
subset S ⊆ {1, . . . ,n} with |S | ≤ d consider the empirical Walsh coefficient of f , given by

αS =
1
Nb

Nb∑
j=1

f (Xj )wS(Xj ). (8)

As αS is a sum of bounded i.i.d. random variables and E[αS ] = f̂ (S), the Chernoff bound gives

∀ S ⊆ {1, . . . ,n}, P

{
|αS − f̂ (S)| > b

}
≤ 2exp(−Nbb2/2). (9)

Therefore, using the union bound and taking into account that f has degree at most d, we get

P

{
|αS − f̂ (S)| ≤ b, for every S ⊆ {1, . . . ,n} with |S | ≤ d

}
︸                                                               ︷︷                                                               ︸

Gb

≥ 1−2
d∑
k=0

(
n
k

)
exp(−Nbb2/2)

(7)
≥ 1−δ. (10)

Fix an additional parameter a ∈ (b,∞) and consider the random collection of sets given by

Sa
def=

{
S ⊆ {1, . . . ,n} : |αS | ≥ a

}
. (11)

Observe that if the event Gb of equation (10) holds, then

∀ S < Sa, |f̂ (S)| ≤ |αS − f̂ (S)|+ |αS | < a+ b (12)

and
∀ S ∈ Sa, |f̂ (S)| ≥ |αS | − |αS − f̂ (S)| ≥ a− b. (13)

Finally, consider the random function ha,b : {−1,1}n→R given by

∀ x ∈ {−1,1}n, ha,b(x) def=
∑
S∈Sa

αSwS(x). (14)

Combining (13) with inequality (5), we deduce that

|Sa|
(13)
≤ (a− b)−

2d
d+1

∑
S∈Sa

|f̂ (S)|
2d
d+1 ≤ (a− b)−

2d
d+1

∑
S⊆{1,...,n}

|f̂ (S)|
2d
d+1

(5)
≤ (a− b)−

2d
d+1 (B{±1}

d )
2d
d+1 . (15)

Therefore, on the event Gb we have

‖ha,b − f ‖2L2
=

∑
S⊆{1,...,n}

∣∣∣ĥa,b(S)− f̂ (S)
∣∣∣2 =

∑
S∈Sa

|αS − f̂ (S)|2 +
∑
S<Sa

|f̂ (S)|2

(12)
< |Sa|b2 + (a+ b)

2
d+1

∑
S<Sa

|f̂ (S)|
2d
d+1

(5)∧(15)
≤ (B{±1}

d )
2d
d+1

(
(a− b)−

2d
d+1 b2 + (a+ b)

2
d+1

)
.

(16)
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Choosing a = b(1 +
√
d + 1), we deduce that

‖hb(1+
√
d+1),b − f ‖

2
L2
< (B{±1}

d )
2d
d+1 b

2
d+1 ((d + 1)−

d
d+1 + (2 +

√
d + 1)

2
d+1 ). (17)

Next, we need the technical inequality

(d + 1)−
d
d+1 + (2 +

√
d + 1)

2
d+1 ≤ (e4(d + 1))

1
d+1 for all d ≥ 1. (18)

Rearranging the terms, it suffices to show that (2 +
√
d + 1)

2
d+1 ≤ (d + 1)

1
d+1

(
e

4
d+1 − 1

d+1

)
, which is

equivalent to
(

2√
d+1

+ 1
) 2
d+1 ≤ e

4
d+1 − 1

d+1 . We have(
2

√
d + 1

+ 1
) 2
d+1

≤
(√

2 + 1
) 2
d+1

(∗)
≤ 1 +

3
d + 1

≤ e
4
d+1 − 1

d + 1
, (19)

where inequality (∗) holds because the left hand side is convex in the variable λ def= 2
d+1 whereas

the right hand side is linear and since (∗) holds at the endpoints λ = 0,1.
Combining (17) and (18) we see that ‖hb(1+

√
d+1),b−f ‖

2
L2
< ε holds for b2 ≤ e−5d−1εd+1(B{±1}

d )−2d .
Plugging this choice of b in (7) shows that given N random queries, where

N =

e
6d(B{±1}

d )2d

εd+1
log

2
δ

d∑
k=0

(
n
k

)
 , (20)

the random function hb(1+
√
d+1),b satisfies ‖hb(1+

√
d+1),b − f ‖

2
L2
< ε with probability at least 1− δ

and the conclusion of the theorem follows from elementary estimates, such as

d∑
k=0

(
n
k

)
≤

d∑
k=0

nk

k!
=

d∑
k=0

dk

k!

(n
d

)k
≤

(en
d

)d
. �

Theorem 1 is a straightforward consequence of Theorem 2.

Proof of Theorem 1. Theorem 2 combined with the bound B
{±1}
d ≤ exp(κ

√
d logd) of [8] imply

the conclusion of Theorem 1 for ε ≥ exp(C
√
d logd)
n , where C ∈ (0,∞) is a large universal constant.

The case ε <
exp(C

√
d logd)
n follows from the Low-Degree Algorithm of [12]. �

3. Concluding remarks

We conclude with a few additional remarks on the spectrum of bounded functions defined
on the hypercube and corresponding learning algorithms. For a function f : {−1,1}n → R, its
Rademacher projection on level ` ∈ {1, . . . ,n} is defined as

∀ x ∈ {−1,1}n, Rad`f (x) =
∑

S⊆{1,...,n}
|S |=`

f̂ (S)wS(x). (21)

1. The first main theorem of [11] asserts that if f : {−1,1}n→R is a function of degree d, then

∀ ` ∈ {1, . . . ,d},
∥∥∥Rad`f

∥∥∥
L∞
≤


|T (`)
d (0)|
`! · ‖f ‖L∞ , if (d − `) is even

|T (`)
d−1(0)|
`! · ‖f ‖L∞ , if (d − `) is odd

, (22)

where Td(t) is the d-th Chebyshev polynomial of the first kind, that is, the unique real poly-
nomial of degree d such that cos(dθ) = Td(cosθ) for every θ ∈ R. Moreover, Iyer, Rao, Reis,
Rothvoss and Yehudayoff observed in [11, Proposition 2] that this estimate is asymptotically
sharp. We present a simple proof of their inequality (22) (see also [10] for related arguments).
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Proof of (22). For any f : {−1,1}n→R consider its harmonic extension on [−1,1]n,

∀ (x1, . . . ,xn) ∈ [−1,1]n, f̃ (x1, . . . ,xn) =
∑

S⊆{1,...,n}
f̂ (S)

∏
j∈S

xj . (23)

By convexity ‖f̃ ‖L∞([−1,1]n) = ‖f ‖L∞({−1,1}n). In particular, the restriction of f̃ on the ray t(x1, . . . ,xn),
t ∈ [−1,1], i.e.

∀ t ∈R, hx(t)
def=

∑
S⊆{1,...,n}

f̂ (S)wS(x)t|S | (24)

satisfies maxt∈[−1,1] |hx(t)| ≤ ‖f ‖L∞ for all (x1, . . . ,xn) ∈ {−1,1}n. Therefore, since deghx ≤ d, a
classical inequality of Markov (see e.g. [5, p. 248]) gives

∣∣∣Rad`f (x)
∣∣∣ =
|h(`)
x (0)|
`!

≤


|T (`)
d (0)|
`! · ‖f ‖L∞ , if (d − `) is even

|T (`)
d−1(0)|
`! · ‖f ‖L∞ , if (d − `) is odd

(25)

and (22) follows by taking a maximum over all x ∈ {−1,1}n. �

In particular, as observed in [11], inequality (22) implies that if f has degree at most d then

∀ ` ∈ {1, . . . ,d},
∥∥∥Rad`f

∥∥∥
L∞
≤ d

`

`!
· ‖f ‖L∞ . (26)

2. The second main theorem of [11] asserts that if f : {−1,1}n→ [−1,1] is a bounded function
of degree at most d, then for every ` ∈ {1, . . . ,d} we have∑

S⊆{1,...,n}
| ̂Rad`f (S)| =

∑
S⊆{1,...,n}
|S |=`

|f̂ (S)| ≤ n
`−1

2 d`e(
`+1

2 ). (27)

The Bohnenblust–Hille-type inequality of [8] implies the following improved bound.

Corollary 3. Let n ∈N and d ∈ {1, . . . ,n}. Then, every bounded function f : {−1,1}n → [−1,1] of
degree at most d satisfies

∀ ` ∈ {1, . . . ,d},
∑

S⊆{1,...,n}
|S |=`

|f̂ (S)| ≤
(
n
`

) `−1
2`

eκ
√
` log` d

`

`!
≤ n

`−1
2 d``−c`, (28)

for some universal constant c ∈ (0,1).

Proof. Combining Hölder’s inequality with the estimate of [8] and (26) we get

∑
S⊆{1,...,n}
|S |=`

|f̂ (S)| ≤
(
n
`

) `−1
2`

 ∑
S⊆{1,...,n}

| ̂Rad`f (S)|
2`
`+1


`+1
2`

≤
(
n
`

) `−1
2`

exp(κ
√
` log`)

∥∥∥Rad`f
∥∥∥
L∞

(26)
≤

(
n
`

) `−1
2`

exp(κ
√
` log`)

d`

`!
.

(29)

The last inequality of (28) follows from (22) and the elementary bound
(n
`

)
≤

(
ne
`

)`
. �

We refer to the recent work [2] for a systematic study of inequalities relating the Fourier
growth with various well-studied properties of Boolean functions.

3. It is straightforward to observe (see also [15, Proposition 3.31]) that if f : {−1,1}n→ {−1,1}
is a Boolean function and h : {−1,1}n→R is an arbitrary function, then∥∥∥sign(h)− f

∥∥∥2
L2

= 4P{sign(h) , f } ≤ 4P{|h− f | ≥ 1} ≤ 4‖h− f ‖2L2
, (30)
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where we define sign(0) as ±1 arbitrarily. Therefore, applying Theorem 1 to a Boolean function,
the above algorithm produces a Boolean function h̃ = sign(h) which is a 4ε-approximation of f .

4. In Theorem 1 we showed that bounded functions f : {−1,1}n → [−1,1] of degree at most d
can be learned with accuracy at most ε and confidence at least 1 − δ from N = Oε,d

(
log(n/δ)

)
random queries. We will now show that this estimate is sharp for small enough values of δ.

Proposition 4. Suppose that bounded linear functions ` : {−1,1}n → [−1,1] can be learned with
accuracy at most 1

2 and confidence at least 1− 1
2n from N random queries. Then N > log2n.

Proof. By the assumption, for any input (X1, y1), . . . , (XN , yN ) ∈ {−1,1}n × [−1,1], there exists a
function h(X1,y1),...,(XN ,yN ) : {−1,1}n → R such that if X1, . . . ,XN are chosen independently and
uniformly from {−1,1}n and there exists a linear function ` : {−1,1}n → [−1,1] such that yj =
`(Xj ) for every j ∈ {1, . . . ,N }, then P(Ω`) > 1− 1

2n , where Ω` is the event

Ω`
def=

{
E

(
h(X1,`(X1)),...,(XN ,`(XN )) − `

)2
<

1
2

}
. (31)

Let Xj = (Xj(1), . . . ,Xj(n)) for j ∈ {1, . . . ,N } and consider the event

W =
{
Xj(1) = Xj(2), ∀ j ∈ {1, . . . ,N }

}
. (32)

By the independence of the samples, we have P(W) = 1
2N . Therefore, if N ≤ log2n and we

consider the linear functions ri : {−1,1}n→ {−1,1} given by ri(x) = xi , then

P(Ωr1 ∩Ωr2) > 1− 1
n
≥ 1− 1

2N
= 1−P(W), (33)

which implies that Ωr1 ∩Ωr2 ∩W , ∅. Choosing X1, . . . ,XN from this event and denoting by
h = h(X1,X1(1)),...,(XN ,XN (1)) = h(X1,X1(2)),...,(XN ,XN (2)), we deduce from the triangle inequality that

2 = E(r1 − r2)2 ≤ 2E(h− r1)2 + 2E(h− r2)2 (31)
< 2 (34)

which is clearly a contradiction. Therefore N > log2n. �

References

[1] F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equiva-
lent to

√
(logn)/n, Adv. Math., 264 (2014), pp. 726–746.

[2] J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. Servedio, and E. Viola, Fourier growth of structured F2-polynomials
and applications. To appear in RANDOM 2021. Preprint available at https://arxiv.org/abs/2107.10797,
2021.

[3] R. Blei, Analysis in integer and fractional dimensions, vol. 71 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, 2001.

[4] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2), 32 (1931),
pp. 600–622.

[5] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, vol. 161 of Graduate Texts in Mathematics,
Springer-Verlag, New York, 1995.

[6] J. R. Campos, P. Jiménez-Rodríguez, G. A. Muñoz Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda,
On the real polynomial Bohnenblust-Hille inequality, Linear Algebra Appl., 465 (2015), pp. 391–400.

[7] A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes, and K. Seip, The Bohnenblust-Hille inequality for homo-
geneous polynomials is hypercontractive, Ann. of Math. (2), 174 (2011), pp. 485–497.

[8] A. Defant, M. Mastyło, and A. Pérez, On the Fourier spectrum of functions on Boolean cubes, Math. Ann., 374
(2019), pp. 653–680.

[9] A. Defant and P. Sevilla-Peris, The Bohnenblust-Hille cycle of ideas from a modern point of view, Funct. Approx.
Comment. Math., 50 (2014), pp. 55–127.

[10] A. Eskenazis and P. Ivanisvili, Polynomial inequalities on the Hamming cube, Probab. Theory Related Fields,
178 (2020), pp. 235–287.

[11] S. Iyer, A. Rao, V. Reis, T. Rothvoss, and A. Yehudayoff, Tight bounds on the Fourier growth of bounded
functions on the hypercube. To appear in ECCC 2021. Preprint available at https://arxiv.org/abs/2107.
06309, 2021.

[12] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and learnability, J. Assoc.
Comput. Mach., 40 (1993), pp. 607–620.

6

https://arxiv.org/abs/2107.10797
https://arxiv.org/abs/2107.06309
https://arxiv.org/abs/2107.06309


[13] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math., os-1 (1930), pp. 164–
174.

[14] Y. Mansour, Learning Boolean Functions via the Fourier Transform, Springer US, Boston, MA, 1994, pp. 391–
424.

[15] R. O’Donnell, Analysis of Boolean functions, Cambridge University Press, New York, 2014.

(A. E.) Trinity College and Department of Pure Mathematics and Mathematical Statistics, University of

Cambridge, UK.

Email address: ae466@cam.ac.uk

(P. I.) Department of Mathematics, University of California, Irvine, Irvine, CA 92617, USA.

Email address: pivanisv@uci.edu

7


	1. Introduction
	1.1. Learning functions on the hypercube
	1.2. The Fourier growth of Walsh polynomials in 2dd+1
	Acknowledgements

	2. Proofs
	3. Concluding remarks
	References

