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We prove that every bounded function f : {-1, 1} n → [-1, 1] of degree at most d can be learned with L 2 -accuracy ε and confidence 1-δ from log

where C > 1 is a universal finite constant.

Introduction

Every function f : {-1, 1} n → R admits a unique Fourier-Walsh expansion of the form

∀ x ∈ {-1, 1} n , f (x) = S⊆{1,...,n} f (S)w S (x), (1) 
where w S (x) = i∈S x i and the Fourier coefficients f (S) are given by

∀ S ⊆ {1, . . . , n}, f (S) = 1 2 n y∈{-1,1} n f (y)w S (y). (2) 
We say that f has degree at most d ∈ {1, . . . , n} if f (S) = 0 for every subset S with |S| > d.

1.1. Learning functions on the hypercube. Let C be a class of functions f : {-1, 1} n → R on the n-dimensional discrete hypercube. The problem of learning the class C can be described as follows: given a source of examples (x, f (x)), where x ∈ {-1, 1} n , for an unknown function f ∈ C, compute a hypothesis function h : {-1, 1} n → R which is a good approximation of f up to a given error in some prescribed metric. In this paper we will be interested in the random query model with L 2 -error, in which we are given N independent examples (x, f (x)), each chosen uniformly at random from the discrete hypercube {-1, 1} n , and we want to efficiently construct a (random) function h : {-1, 1} n → R such that h-f 2 L 2 < ε with probability at least 1-δ, where ε, δ ∈ (0, 1) are given accuracy and confidence parameters. The goal is to construct a randomized algorithm which produces the hypothesis function h from a minimal number N of examples.

The above very general problem has been studied for decades in computational learning theory and many results are known 1 , primarily for various classes C of structured Boolean functions f : {-1, 1} n → {-1, 1}. Already since the late 1980s, researchers used the Fourier-Walsh expansion (1) to design such learning algorithms (see the survey [START_REF] Mansour | Learning Boolean Functions via the Fourier Transform[END_REF]). Perhaps the most classical of these is the Low-Degree Algorithm of Linial, Mansour and Nisan [START_REF] Linial | Constant depth circuits, Fourier transform, and learnability[END_REF] who showed that for the class C d b of all bounded functions f : {-1, 1} n → [-1, 1] of degree at most d there exists an algorithm which produces an ε-approximation of f with probability at least 1δ using N = 2n d ε log( 2n d δ ) samples. In this generality, the O ε,δ,d (n d log n) estimate of [START_REF] Linial | Constant depth circuits, Fourier transform, and learnability[END_REF] was the state of the art until the recent work [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF] of Iyer, Rao, Reis, Rothvoss and Yehudayoff who employed analytic techniques to derive new bounds on the 1 -size of the Fourier spectrum of bounded functions (see also Section 3) and used these estimates to show that

N = O ε,δ,d (n d-1 log n) ex- amples suffice to learn C d b .
The goal of the present paper is to further improve this result and show that in fact N = O ε,δ,d (log n) samples suffice for this purpose.

Theorem 1. Fix ε, δ ∈ (0, 1), n ∈ N, d ∈ {1, . . .

, n} and a bounded function

f : {-1, 1} n → [-1, 1] of degree at most d. If N ∈ N satisfies N ≥ min        exp(Cd 3/2 log d) ε d+1 , 4dn d ε        log n δ , ( 3 
)
where C ∈ (0, ∞) is a large numerical constant, then N uniformly random independent queries of pairs (x, f (x)), where x ∈ {-1, 1} n , suffice for the construction of a random function h : {-1, 1} n → R satisfying the condition hf 2 L 2 < ε with probability at least 1δ. The proof of Theorem 1 relies on some important approximation theoretic estimates going back to the 1930s which we shall now describe (see also [START_REF] Defant | The Bohnenblust-Hille cycle of ideas from a modern point of view[END_REF]). To the best of our knowledge, these tools had not yet been exploited in the computational learning theory literature.

1.2. The Fourier growth of Walsh polynomials in 2d d+1

. Estimates for the growth of coefficients of polynomials as a function of their degree and their maximum on compact sets go back to the early days of approximation theory (see [START_REF] Borwein | Polynomials and polynomial inequalities[END_REF]). A seminal result of this nature is Littlewood's celebrated 4 3 -inequality [START_REF] Littlewood | On bounded bilinear forms in an infinite number of variables[END_REF] for bilinear forms which was later generalized by Bohnenblust and Hille [START_REF] Bohnenblust | On the absolute convergence of Dirichlet series[END_REF] for multilinear forms on the torus T n or the unit square [-1, 1] n . By means of polarization, one can use this multilinear estimate to derive an inequality for polynomials which reads as follows 2 . For every K ∈ {R, C} and d ∈ N, there exists

B K d ∈ (0, ∞) such that for every n ∈ N and every coefficients c α ∈ K, where α ∈ (N ∪ {0}) n with |α| ≤ d, we have         |α|≤d |c α | 2d d+1         d+1 2d ≤ B K d max |α|≤d c α x α : x ∈ K n with x n ∞ (K) ≤ 1 . (4) 
Moreover, 2d d+1 is the smallest exponent for which the optimal constant in (4) is independent of the number of variables n of the polynomial. The exact asymptotics of the constants B R d and B C d remain unknown, however it is known that there is a significant gap between B R d and [START_REF] Defant | The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive[END_REF][START_REF] Bayart | The Bohr radius of the n-dimensional polydisk is equivalent to (log n)/n[END_REF][START_REF] Defant | The Bohnenblust-Hille cycle of ideas from a modern point of view[END_REF][START_REF] Campos | On the real polynomial Bohnenblust-Hille inequality[END_REF][START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF] for these and other important advances of the last decade). Restricting inequality (4) to real multilinear polynomials, convexity shows that the maximum on the right-hand side is attained at a point x ∈ {-1, 1} n , which, in view of (1), makes (4) an estimate for the Fourier-Walsh growth of functions on the discrete hypercube. We shall denote by B {±1} d the corresponding optimal constant (first explicitly investigated by Blei in [3, p. 175]), that is, the least constant such that for every n ∈ N and every function

B C d , namely that lim sup d→∞ (B R d ) 1/d = 1 + √ 2 whereas B C d ≤ C √ d ln d for a finite constant C > 1 (see
f : {-1, 1} n → R of degree at most d,         S⊆{1,...,n} | f (S)| 2d d+1         d+1 2d ≤ B {±1} d f L ∞ . ( 5 
)
The best known quantitative result in this setting is due to Defant, Mastyło and Pérez [START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF] who showed that B 

: {-1, 1} n → [-1, 1] of degree at most d. If N ∈ N satisfies N ≥ e 8 d 2 ε d+1 (B {±1} d ) 2d log n δ , ( 6 
) 2 For α = (α 1 , . . . , α n ) ∈ (N ∪ {0}) n , we use the standard notations |α| = α 1 + • • • + α n and x α = x α 1 1 • • • x α n n .
then given N uniformly random independent queries of pairs (x, f (x)), where

x ∈ {-1, 1} n , one can construct a random function h : {-1, 1} n → R satisfying h -f 2 L 2 < ε with probability at least 1 -δ.
In Section 2 we will prove Theorem 2 and use it to derive Theorem 1. In Section 3 we will present some additional remarks on Boolean analysis and learning, in particular showing that the dependence on n in Theorem 1 is optimal for δ 1 n . Moreover, we shall improve the recent bounds of [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF] on the 1 -Fourier growth of bounded functions of low degree.
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Proofs

Proof of Theorem 2. Fix a parameter b ∈ (0, ∞) and denote by

N b def =          2 b 2 log        2 δ d k=0 n k                 . ( 7 
)
Let X 1 , . . . , X N b be independent random vectors, each uniformly distributed on {-1, 1} n . For a subset S ⊆ {1, . . . , n} with |S| ≤ d consider the empirical Walsh coefficient of f , given by

α S = 1 N b N b j=1 f (X j )w S (X j ). ( 8 
)
As α S is a sum of bounded i.i.d. random variables and E[α S ] = f (S), the Chernoff bound gives

∀ S ⊆ {1, . . . , n}, P |α S -f (S)| > b ≤ 2 exp(-N b b 2 /2). (9) 
Therefore, using the union bound and taking into account that f has degree at most d, we get

P |α S -f (S)| ≤ b, for every S ⊆ {1, . . . , n} with |S| ≤ d G b ≥ 1-2 d k=0 n k exp(-N b b 2 /2) (7) 
≥ 1-δ. [START_REF] Eskenazis | Polynomial inequalities on the Hamming cube[END_REF] Fix an additional parameter a ∈ (b, ∞) and consider the random collection of sets given by

S a def = S ⊆ {1, . . . , n} : |α S | ≥ a . ( 11 
)
Observe that if the event G b of equation ( 10) holds, then

∀ S S a , | f (S)| ≤ |α S -f (S)| + |α S | < a + b (12) and ∀ S ∈ S a , | f (S)| ≥ |α S | -|α S -f (S)| ≥ a -b. (13) Finally, consider the random function h a,b : {-1, 1} n → R given by ∀ x ∈ {-1, 1} n , h a,b (x) def = S∈S a α S w S (x). (14) 
Combining [START_REF] Littlewood | On bounded bilinear forms in an infinite number of variables[END_REF] with inequality (5), we deduce that

|S a | (13) ≤ (a -b) -2d d+1 S∈S a | f (S)| 2d d+1 ≤ (a -b) -2d d+1 S⊆{1,...,n} | f (S)| 2d d+1 (5) ≤ (a -b) -2d d+1 (B {±1} d ) 2d d+1 . ( 15 
)
Therefore, on the event G b we have

h a,b -f 2 L 2 = S⊆{1,...,n} ĥa,b (S) -f (S) 2 = S∈S a |α S -f (S)| 2 + S S a | f (S)| 2 (12) < |S a |b 2 + (a + b) 2 d+1 S S a | f (S)| 2d d+1
(5)∧( 15)

≤ (B {±1} d ) 2d d+1 (a -b) -2d d+1 b 2 + (a + b) 2 d+1 . ( 16 
) Choosing a = b(1 + √ d + 1), we deduce that h b(1+ √ d+1),b -f 2 L 2 < (B {±1} d ) 2d d+1 b 2 d+1 ((d + 1) -d d+1 + (2 + √ d + 1) 2 d+1 ). (17) 
Next, we need the technical inequality

(d + 1) -d d+1 + (2 + √ d + 1) 2 d+1
≤ (e 4 (d + 1))

1 d+1 for all d ≥ 1.

(18)

Rearranging the terms, it suffices to show that (2 +

√ d + 1) 2 d+1 ≤ (d + 1) 1 d+1 e 4 d+1 -1 d+1 , which is equivalent to 2 √ d+1 + 1 2 d+1 ≤ e 4 d+1 -1 d+1 . We have 2 √ d + 1 + 1 2 d+1 ≤ √ 2 + 1 2 d+1 ( * ) ≤ 1 + 3 d + 1 ≤ e 4 d+1 - 1 d + 1 , ( 19 
)
where inequality ( * ) holds because the left hand side is convex in the variable λ def = 2 d+1 whereas the right hand side is linear and since ( * ) holds at the endpoints λ = 0, 1.

Combining ( 17) and ( 18) we see that

h b(1+ √ d+1),b -f 2 L 2 < ε holds for b 2 ≤ e -5 d -1 ε d+1 (B {±1} d ) -2d
. Plugging this choice of b in [START_REF] Defant | The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive[END_REF] shows that given N random queries, where

N =          e 6 d(B {±1} d ) 2d ε d+1 log        2 δ d k=0 n k                 , ( 20 
) the random function h b(1+ √ d+1),b satisfies h b(1+ √ d+1),b -f 2 L 2 <
ε with probability at least 1δ and the conclusion of the theorem follows from elementary estimates, such as

d k=0 n k ≤ d k=0 n k k! = d k=0 d k k! n d k ≤ en d d .
Theorem 1 is a straightforward consequence of Theorem 2. , where C ∈ (0, ∞) is a large universal constant.

Proof of

The case ε <

exp(C √ d log d) n
follows from the Low-Degree Algorithm of [START_REF] Linial | Constant depth circuits, Fourier transform, and learnability[END_REF].

Concluding remarks

We conclude with a few additional remarks on the spectrum of bounded functions defined on the hypercube and corresponding learning algorithms. For a function f : {-1, 1} n → R, its Rademacher projection on level ∈ {1, . . . , n} is defined as

∀ x ∈ {-1, 1} n , Rad f (x) = S⊆{1,...,n} |S|= f (S)w S (x). ( 21 
)
1. The first main theorem of [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF] asserts that if

f : {-1, 1} n → R is a function of degree d, then ∀ ∈ {1, . . . , d}, Rad f L ∞ ≤          |T ( ) d (0)| ! • f L ∞ , if (d -) is even |T ( ) d-1 (0)| ! • f L ∞ , if (d -) is odd , ( 22 
)
where T d (t) is the d-th Chebyshev polynomial of the first kind, that is, the unique real polynomial of degree d such that cos(dθ) = T d (cos θ) for every θ ∈ R. Moreover, Iyer, Rao, Reis, Rothvoss and Yehudayoff observed in [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF]Proposition 2] that this estimate is asymptotically sharp. We present a simple proof of their inequality (22) (see also [START_REF] Eskenazis | Polynomial inequalities on the Hamming cube[END_REF] for related arguments).

Proof of (22). For any

f : {-1, 1} n → R consider its harmonic extension on [-1, 1] n , ∀ (x 1 , . . . , x n ) ∈ [-1, 1] n , f (x 1 , . . . , x n ) = S⊆{1,...,n} f (S) j∈S x j . (23) By convexity f L ∞ ([-1,1] n ) = f L ∞ ({-1,1} n ) .
In particular, the restriction of f on the ray t(x 1 , . 

x (0)| ! ≤          |T ( ) d (0)| ! • f L ∞ , if (d -) is even |T ( ) d-1 (0)| ! • f L ∞ , if (d -) is odd (25)
and ( 22) follows by taking a maximum over all x ∈ {-1, 1} n .

In particular, as observed in [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF], inequality (22) implies that if f has degree at most d then

∀ ∈ {1, . . . , d}, Rad f L ∞ ≤ d ! • f L ∞ . ( 26 
)
2. The second main theorem of [START_REF] Iyer | Tight bounds on the Fourier growth of bounded functions on the hypercube[END_REF] asserts that if f : {-1, 1} n → [-1, 1] is a bounded function of degree at most d, then for every ∈ {1, . . . , d} we have

S⊆{1,...,n} | Rad f (S)| = S⊆{1,...,n} |S|= | f (S)| ≤ n -1 2 d e ( +1 2 ) . ( 27 
)
The Bohnenblust-Hille-type inequality of [START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF] implies the following improved bound. 

| f (S)| ≤ n -1 2 e κ √ log d ! ≤ n -1 2 d -c , ( 28 
)
for some universal constant c ∈ (0, 1).

Proof. Combining Hölder's inequality with the estimate of [START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF] and (26) we get

S⊆{1,...,n} |S|= | f (S)| ≤ n -1 2       S⊆{1,...,n} | Rad f (S)| 2 +1       +1 2 ≤ n -1 2 exp(κ log ) Rad f L ∞ (26) ≤ n -1 2 exp(κ log ) d ! . ( 29 
)
The last inequality of (28) follows from (22) and the elementary bound n ≤ ne .

We refer to the recent work [START_REF] Błasiok | Fourier growth of structured F 2 -polynomials and applications[END_REF] for a systematic study of inequalities relating the Fourier growth with various well-studied properties of Boolean functions.

3.

It is straightforward to observe (see also [START_REF] Donnell | Analysis of Boolean functions[END_REF]Proposition 3.31

]) that if f : {-1, 1} n → {-1, 1} is a Boolean function and h : {-1, 1} n → R is an arbitrary function, then sign(h) -f 2 L 2 = 4P{sign(h) f } ≤ 4P{|h -f | ≥ 1} ≤ 4 h -f 2 L 2 , ( 30 
)
where we define sign(0) as ±1 arbitrarily. Therefore, applying Theorem 1 to a Boolean function, the above algorithm produces a Boolean function h = sign(h) which is a 4ε-approximation of f .

4.

In Theorem 1 we showed that bounded functions f : {-1, 1} n → [-1, 1] of degree at most d can be learned with accuracy at most ε and confidence at least 1δ from N = O ε,d log(n/δ) random queries. We will now show that this estimate is sharp for small enough values of δ.

Proposition 4. Suppose that bounded linear functions : {-1, 1} n → [-1, 1] can be learned with accuracy at most 1 2 and confidence at least 1 -1 2n from N random queries. Then N > log 2 n. Proof. By the assumption, for any input (X 1 , y 1 ), . . . , (X N , y N ) ∈ {-1, 1} n × [-1, 1], there exists a function h (X 1 ,y 1 ),...,(X N ,y N ) : {-1, 1} n → R such that if X 1 , . . . , X N are chosen independently and uniformly from {-1, 1} n and there exists a linear function : {-1, 1} n → [-1, 1] such that y j = (X j ) for every j ∈ {1, . . . , N }, then P(Ω ) > 1 -1 2n , where Ω is the event

Ω def = E h (X 1 , (X 1 )),...,(X N , (X N )) - 2 < 1 2 . ( 31 
)
Let X j = (X j (1), . . . , X j (n)) for j ∈ {1, . . . , N } and consider the event W = X j (1) = X j (2), ∀ j ∈ {1, . . . , N } .

(32)

By the independence of the samples, we have P(W) = 1 2 N . Therefore, if N ≤ log 2 n and we consider the linear functions r i : {-1, 1} n → {-1, 1} given by r i (x) = x i , then

P(Ω r 1 ∩ Ω r 2 ) > 1 - 1 n ≥ 1 - 1 2 N = 1 -P(W), (33) 
which implies that Ω r 1 ∩ Ω r 2 ∩ W ∅. Choosing X 1 , . . . , X N from this event and denoting by h = h (X 1 ,X 1 (1)),...,(X N ,X N (1)) = h (X 1 ,X 1 (2)),...,(X N ,X N (2)) , we deduce from the triangle inequality that

2 = E(r 1 -r 2 ) 2 ≤ 2E(h -r 1 ) 2 + 2E(h -r 2 ) 2 (31) < 2 (34) 
which is clearly a contradiction. Therefore N > log 2 n.

≤Theorem 2 .

 2 exp(κ d log d) for a universal constant κ ∈ (0, ∞). The main contribution of this work is the following theorem relating the growth of the constant B {±1} d and learning. Fix ε, δ ∈ (0, 1), n ∈ N, d ∈ {1, . . . , n} and a bounded function f

Theorem 1 .

 1 Theorem 2 combined with the bound B {±1} d ≤ exp(κ d log d) of [8] imply the conclusion of Theorem 1 for ε ≥ exp(C √ d log d) n

Corollary 3 .

 3 Let n ∈ N and d ∈ {1, . . . , n}. Then, every bounded function f : {-1, 1} n → [-1, 1] of degree at most d satisfies ∀ ∈ {1, . . . , d}, S⊆{1,...,n} |S|=
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