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Abstract

The ability of regional climate models (RCMs) to accurately simulate the current

climate is increasingly important for impact assessments over Southeast Asia

(SEA), identified as one of the world's most vulnerable regions to climate

change. In this study, we evaluate the performance of a set of regional high-

resolution simulations from the Coordinated Regional Climate Downscaling

Experiment-SEA (CORDEX-SEA) in simulating rainfall over the region. Simula-

tions of the 1982–2005 seasonal mean climatology of daily precipitation and pre-

cipitation distribution over land are compared to observations from different

sources (i.e., in situ-based and satellite-based). We also evaluate to what extent

the precipitation distribution in RCMs is closer to observations than their

associated forcing global climate models (GCMs). Observational estimates of

precipitation over SEA have large uncertainties, making the model evaluations

complicated. Despite these difficulties, our results highlight that RCMs can

reproduce some complexities in the spatial distribution of seasonal rainfall but

generally have a larger wet bias than GCMs. This is particularly true for the

extremes in which RCMs show a large overestimation of rainfall intensity. There

are some precipitation quantiles and grid points in which RCMs show limited

reductions in biases compared to observations, but there is no consistency across

all simulations and RCMs are generally further away from observations than

their forcing GCMs. We find that greater intensity in RCMs over CORDEX-SEA

compared to their associated forcing GCMs is firstly associated with the

increased supply of moisture from both local and large-scale sources. Second, a

widespread increase in convective precipitation is found across the region in

RCMs. Our findings suggest that a model's ability to simulate precipitation over

the region relies more on the RCM setup itself (e.g., parameterization scheme),

rather than its forcing GCM. This should be considered when assessing the reli-

ability of RCM precipitation simulations for future projections.
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1 | INTRODUCTION

As evidence of climate change and its impacts continue
to emerge, Southeast Asia (SEA) has been found to be
one of the world's most vulnerable regions to climate
change because of its long coastlines, heavy reliance on
agriculture, and high dependence on natural resources
and forestry (Weiss, 2009). The effects of climate change
have potentially been exacerbated recently, leading to
massive flooding, landslides and drought in many parts
of the region (Hijioka et al., 2014; Chen et al., 2020; Tan-
gang et al., 2020). Therefore, SEA, like other developing
regions, needs to access robust information on the
impacts of past and future climate change.

Most of SEA is located within the tropical climatic
zone and its regional climate is strongly influenced by
the Asian–Australian monsoon systems (Waliser and
Gautier, 1993; Chang et al., 2005; Robertson et al., 2011).
In addition to seasonal contrasts, the spatial distribution
of precipitation is also heterogeneous due to complexities
in its geographic distribution (e.g., 39% of the land is
mountainous and there are many islands of varying size,
Figure S1). Maximum precipitation in Indochina occurs
during the boreal summer due to the monsoon from the
Indian Ocean (Waliser and Gautier, 1993; Robertson
et al., 2011) while many islands over the Maritime Conti-
nent receive large amounts of rainfall from the South
China Sea during boreal winter (Waliser and Gautier, 1993;
Chang et al., 2005). These complexities make it a challenge
to simulate the seasonality and distribution of precipitation
over the region.

Climate models are essential tools for providing infor-
mation on the evolution of past climate, its variability
and interaction with various components of the Earth
system. Both global climate model (GCM) and regional
climate model (RCM) have advantages and disadvantages
which have been detailed in many previous research
studies (Denis et al., 2002; Diaconescu and Laprise, 2013;
Prein et al., 2016; Prein et al., 2019). GCMs have a com-
prehensive representation of the different Earth system
components and are therefore generally used to explore
climate interactions and underpin climate change projec-
tions through initiatives like the Coupled Model
Intercomparison Project (CMIP; IPCC, 2013). However,
they typically have a horizontal resolution of between
100 and 300 km, which limits their ability to account for
important small-scale processes and the complex land

surface heterogeneity of various regions, leading to large
uncertainty in their simulations. These coarser GCMs
can be replaced by the high-resolution RCMs (around
tens of kilometres in the context of this study) over a
defined region through one-way nesting approach
(e.g., dynamical downscaling) by atmospheric variables
and sea surface temperature obtained from GCMs.
Numerous efforts and computational resources have been
committed to developing RCMs, which produce simula-
tions that try to better resolve the representation of com-
plex surface characteristics (e.g., topography and land–
sea contrast) (Torma et al., 2015) and small-scale atmo-
spheric processes that are important drivers of regional
climates (Giorgi and Bates, 1989; Di Luca et al., 2012).

Recently, the World Climate Research Programme's
Coordinated Regional Climate Downscaling Experiment
(CORDEX) initiative delivered downscaled simulations
for various GCMs from CMIP Phase 5 (CMIP5; Meehl
et al., 2000) to higher resolution regional models (Giorgi
et al., 2008) for 14 regions worldwide. The decision on
which GCMs to downscale can be subjective and depends
on a particular region. Different horizontal grid spacings
(i.e., 50, 44, 25 or 12 km) in RCMs have been also applied
over different regions of the world with expected
improvement compared to GCMs. This framework pro-
vides consistent high-resolution climate information for
regional impact assessment. The evaluation of CORDEX
RCMs and GCMs in simulating precipitation and the
comparison of their respective performance have been
performed in numerous studies for different parts of the
world (e.g., Europe [Prein et al., 2016; Boé et al., 2020;
Demory et al., 2020]; South America [Nikulin et al., 2012;
Solman and Bl�azquez, 2019]; Australia [Di Virgilio
et al., 2020]; East Asia [Lee et al., 2017; Park et al., 2019]).
The main assumption investigated here and in most of
the studies cited above is that RCMs should better simu-
late precipitation given their ability to capture processes
at smaller scales than GCMs. These studies have been
somewhat contradictory, sometimes showing improve-
ments and sometimes not compared to their large-scale
driving models (Diaconescu and Laprise, 2013; Giorgi
and Gutowski, 2015). Though largely discussed, the
extent to which high-resolution regional simulations out-
perform global simulations is still under debate and
strongly depends on the scale, the variable under consid-
eration, the region, and the metrics used. For example,
CORDEX simulations over Europe (EURO-CORDEX)
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and the Mediterranean (MED-CORDEX) show an
improvement in the representation of mean climate com-
pared to their driving GCMs over the complex topogra-
phy Alpine region (Torma et al., 2015; Giorgi and
Gutowski, 2016). However, CORDEX-Africa exhibited
significant biases for individual models over sub-regions,
notably over arid and semiarid regions (Nikulin
et al., 2012). Another assumption is that any biases in
RCMs are likely to be related to RCM configuration setup
themselves when evaluating against the reanalysis-driven
simulations (Kotlarski et al., 2014) and/or they have
inherited the systematic biases from their driving GCMs
(Diaconescu and Laprise, 2013; Lee et al., 2017).

Several evaluations of CORDEX simulations over
SEA (CORDEX-SEA) have been performed, focusing
on different aspects of precipitation over subregions
like Thailand (seasonal mean precipitation, Tangang
et al., 2019), Malaysia (extreme precipitation, Tangang
et al., 2017) or the whole region (seasonal mean precipita-
tion, Tangang et al., 2020). In general, RCMs show rea-
sonable agreement with observations but can have
systematic wet biases due to a particular regional model
(e.g., RegCM4). However, this type of model evaluation is
often done such that the entire distribution of precipita-
tion may not be evaluated. The improvement in an RCM
simulation might simply be measured in terms of the
degree to which one RCM simulation is closer to an
observational reference than its paired GCM simulation
from which boundary conditions were obtained. To date,
limited studies over SEA assess whether RCMs represent
an improvement over their driving GCMs in simulating
rainfall patterns, except the recent work of Tangang
et al. (2020) and Nguyen-Thi et al. (2021). Overall, Multi-
Model Ensemble (MME) means of CORDEX-SEA RCMs
displayed a better representation of climatological precip-
itation over areas of complex topography (Tangang
et al., 2020) but have a larger variability of rainfall com-
pared to GCMs MME means (Nguyen-Thi et al., 2021).
However, the above studies focus only on the mean pre-
cipitation, based on a multi-model mean approach, and
did not consider the performance of RCM–GCM pairs
individually. Therefore, it is crucial to see whether the
improvement of RCMs is observed in other aspects
(i.e., the whole precipitation distribution) and consis-
tently appears across all RCM–GCM combinations.

A challenge for evaluating the performance of a
climate model relates to observational uncertainties.
Indeed, many studies have highlighted large differences
between different products of observations at the global
(Donat et al., 2016; Herold et al., 2016, 2017; Alexander
et al., 2020; Bador et al., 2020a) and regional (e.g., Europe
[Kotlarski et al., 2014; Prein et al., 2016]; SEA [Nguyen
et al., 2020]) scales. At the global scale, observational

uncertainties can be as large as inter-model spread
(Herold et al., 2016) while at regional scales the ranking
of a particular model can be substantially changed by the
observational reference data employed particularly for
precipitation (Kotlarski et al., 2019). Focusing on the
Maritime Continent, Nguyen et al. (2020) found large
inconsistencies in extreme precipitation intensity and
inter-annual variability among various observational
products due to a poor station network. Therefore, uncer-
tainties related to the reference data should ideally
be taken into account when assessing climate model per-
formance in the present-day climate over SEA. Here
we consider these inter-product differences in our model
evaluation framework.

The objectives of this study are: (a) to evaluate an
ensemble of CORDEX-SEA simulations with an ensem-
ble of four observational datasets in order to assess the
sensitivity of model performance to the choice of observa-
tional reference; (b) to determine differences between
and identify the potential improvement of individual
RCMs compared to their forcing GCMs in simulating the
whole distribution of daily precipitation over both sum-
mer and winter seasons; (c) to further identify possible
mechanisms for any identified differences between RCMs
and GCMs.

The remainder of the paper is organized as follows.
Section 2 describes the observational datasets and simula-
tions used in this study along with the different metrics
for model evaluation. Section 3 then outlines model per-
formance, a comparison of the precipitation distributions
between RCMs and GCMs, and the possible mechanisms
behind identified differences, followed by a discussion
and the conclusions in Sections 4 and 5, respectively.

2 | DATA AND METHODS

2.1 | Global and regional climate
simulations

In this paper, we use the daily precipitation data from
11 CORDEX-SEA simulations running at 0.22� (about
25 km) horizontal grid spacing (Table 1). Following the
modelling framework of the CORDEX project (Giorgi
et al., 2008), simulations from three RCMs are driven by
boundary and initial conditions from the historical simu-
lation of eight CMIP5 models. Only one simulation is
available for each RCM–GCM combination. Further
information on different physical schemes used in each
RCM (i.e., convection parameterization, land surface and
planetary boundary layer schemes) can be found in
Table 1. To investigate the potential improvement of
CORDEX simulations compared to their forcing GCMs,
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we constrain our study to the subset of CMIP5 GCMs
used for the CORDEX simulations (Table 1). The results
of RCMs are evaluated to their driving GCMs. Note that
an unweighted MME mean was also included for both
RCM and GCM since it might reduce biases from individ-
ual model output and was widely used in previous studies
(Ngo-Duc et al., 2017; Tangang et al., 2020).

The multi-model framework used in the present study
presents two key features. First, for each of the three
RCMs, an ensemble of simulations forced by different
GCMs is available (two simulations for RCA4, six sim-
ulations for RegCM4-3, and three simulations for
REMO2015; Table 1). This allows us to investigate poten-
tial commonalities explained by each RCM setup and
potential differences due to the diversity in GCM bound-
ary conditions imposed as forcing. Second, some simula-
tions from different RCMs share similar GCM forcing
conditions (i.e., RCA4, REMO2015 and RegCM4-3 forced
by HadGEM2-ES, and RCA4 and RegCM4-3 forced by
CNRM-CM5; Table 1). Given similar boundary condi-
tions, differences across RCMs are likely related to their
differences in physics, and in particular, the convective
parameterization schemes, which have an important influ-
ence on precipitation. However, the drawback of our
modelling framework is that all RCM simulations lack
air–sea interactions and model nudging was not applied.
Therefore, we cannot investigate the influences of method-
ological choices like spectral nudging and missing ocean-
atmospheric coupling in RCMs, which might impact the
RCM output (Colin et al., 2010; Yang et al., 2012).

2.2 | Observational datasets and domain

To address observational uncertainties, we utilize four
gridded observational products of daily precipitation from
different sources (i.e., three in situ and one satellite-based
dataset). Three datasets of spatially interpolated in situ data
are considered,: the Asian Precipitation-Highly Resolved
Observational Data Integration Towards Evaluation of
Water Resources (APHRODITE version V1101; Yatagai
et al., 2012) a regional land-only product over Asia; two
global land-based datasets that are the Rainfall Estimates
on a Gridded Network (REGEN version Allstns V1 2019;
Contractor et al., 2020) dataset, and the Global Precipitation
Climatology Centre (GPCC version FDD_v2018; Schamm
et al., 2014) dataset. We also consider remote sensed esti-
mates of precipitation by using the Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS version 2.0;
Funk et al., 2015) dataset, a quasi-global rainfall dataset that
incorporates in situ climatology and satellite imagery.

These datasets have been selected because they have at
least 24 years of data (over the period 1982–2005) and

sufficient coverage over the Southeast Asian domain (90�–
145�E; 15�–25�N, Figure S1). We do not consider those sat-
ellite products that do not account for a correction to rain
gauges because these type of products are too inconsistent
in climatology and trends in daily precipitation maxima
over this region (Nguyen et al., 2020). Further information
on the observational datasets is listed in Table 2. Note that
we did not select the newest version of APHRODITE
(i.e., V1901) due to its shorter time period (1998–2005)
compared to its predecessor (i.e., V1101; 1951–2007) uti-
lized here. In addition, Nguyen et al. (2020) also noted the
limited difference between APHRODITE V1901 and
V1101 in the representation of extremes, which gives fur-
ther confidence in using the V1101 version here.

2.3 | Precipitation indices and
evaluation metrics

In this research, the RCMs performance is evaluated
over the climatological period 1982–2005, as this is the
longest period common to all observational datasets and
simulations.

RCM simulations are evaluated based on two aspects
of precipitation: the mean state and daily precipitation
distribution. The performance of a simulation in rep-
roducing the observed climatology of seasonal daily mean
precipitation is evaluated using different statistics includ-
ing the spatial average (M), the root mean squared error
(RMSE), and the spatial correlation (R). While M and
RMSE measure the similarity between models and obser-
vations in terms of intensity, R provides information on
the spatial distribution. Simulated and observed seasonal
distributions of daily precipitation are compared by using
quantile–quantile (Q–Q) plots (Figure S2). This simple
metric offers insight into all quantiles of the distribution
by mapping each quantile in one distribution with each
quantile in another. To further measure how close or dis-
tant the simulated data is to the observed distribution, we
develop an area score metric (ASM), which measures the
area between the two lines (e.g., the red and black lines
respectively, Figure S2) using the trapezium rule. Finally,
we rank model performance based on RMSE and ASM to
evaluate models individually and compare simulations
across each other. The metrics mentioned above are also
applied to examine the differences between RCMs and
their forcing GCMs.

In order to measure the performance of each RCM
and compare RCMs to observations, all daily observed
and simulated precipitation fields are interpolated into a
common grid of 1� × 1� resolution using conservative
remapping. For the spatial average over land, we used
the common mask from REGEN_ALL.

NGUYEN ET AL. 5



To make a fair comparison between RCM and GCMs
simulation, all observations and RCM simulations are
interpolated into the coarsest forcing GCM grid
(i.e., NorESM1-M, �240 km) (Table 1). Note that for the
spatial average over the land, only grid points with a frac-
tion of land greater than 0.5 are interpolated. The mask
was extracted from the land–sea mask of NorESM1-M.

We further explore the differences between simulated
and observed precipitation by analysing the moisture
budget over the region of interest. Previous studies have
suggested that regional precipitation is approximately
balanced by local evaporation and remote moisture trans-
portation on a mean seasonal time scale (Brubaker
et al., 1993; Li et al., 2013; Demory et al., 2014; Vannière
et al., 2019; Goergen and Kollet, 2021). We therefore
express the moisture budget equation as:

P−E=
1
g
r:

Z ps

pt

q V
*
dp:

where P is mean precipitation, E is evaporation,
r:

R ps
pt
qV
!
dp is the vertically integrated moisture flux

transported into and out of the atmospheric single col-
umn; q is specific humidity and V

!
is horizontal wind.

Due to CORDEX-SEA data availability constraints, we
cannot calculate the vertically integrated moisture fluxes
over the region. Therefore, we make the assumption that
P − E-averaged over land should be equal to moisture
convergence over land according to Li et al. (2013),
Goergen and Kollet (2021).

3 | RESULTS

3.1 | Observed precipitation and its
associated uncertainties

We first characterize the spatial distribution of seasonal
mean observed daily precipitation and its associated

uncertainties (Figure 1) during the 1982–2005 period. We
consider four observational datasets (as mentioned in
Section 2.2) and compare these distributions across the dif-
ferent products We find clear seasonal and regional con-
trasts in the precipitation pattern over SEA with generally
high rainfall observed over Indochina during summer
(June–July–August–September; JJAS) and less precipita-
tion found in equatorial regions. On the contrary, Indo-
china receives less precipitation while the Maritime
Continent receives more precipitation during the boreal
winter (December–January–February; DJF). This “north-
to-south dry-to-wet” gradient is mainly due to the influ-
ence of the Asian–Australian monsoon (Chang
et al., 2005; Robertson et al., 2011; Juneng et al., 2016; Tan-
gang et al., 2020). The southwest monsoon from the
Indian Ocean is typically from late May to September and
particularly affects Thailand and Myanmar, resulting in
the rainy season there during JJAS. Meanwhile, the north-
east monsoon, typically from November to March brings
rainfall in the southern part of SEA in DJF and is associ-
ated with relatively dry and cool air and little precipitation
to the mainland (Kamworapan and Surussavadee, 2019).

Overall, the spatial contrasts and the seasonal shifts of
intense rainfall regions are quite similar among the four
datasets considered but substantial differences are found in
the intensity of climatological precipitation, notably during
DJF. APHRODITE has a drier climatology compared
with other products, whereas the other three datasets
(i.e., REGEN_ALL, GPCC_v2018 and CHIRPSv2) show
similar spatial pattern and intensity over the whole region.
The differences across the four observational products are
larger during summer compared to winter as shown by the
regional averages (from 5.25 to 7.14 mm�day−1 compared to
4.01 to 5.80 mm�day−1, respectively). Larger inter-product
differences are found over sub-regions, up to 4 mm�day−1
relative to the climatology of APHRODITE in the equatorial
regions during boreal winter (DJF).

Despite the broad similarity in the spatial distribution
of daily mean precipitation, large discrepancies are found

TABLE 2 List of observational datasets of daily precipitation used in this study

Product
short name Product version

Temporal
coverage

Original
resolution Type of data References

APHRODITE APHRODITE
V1101

1950–2005 0.5� × 0.5� In situ-based Yatagai
et al. (2012)

REGEN_ALL REGEN Allstns V1
2019

1981–2019 1� × 1� In situ-based Contractor
et al. (2020)

GPCC_v2018 GPCC FDD v2018 1982–2019 1� × 1� In situ-based Schamm
et al. (2014)

CHIRPSv2 CHIRPSv2 1981–2016 0.05� × 0.05� Satellite with correction to
rain gauge

Funk et al. (2015)

6 NGUYEN ET AL.



in the different quantiles of the daily precipitation distri-
bution. To illustrate this point, Q–Q plots (Figure S3) are
used and quantiles of daily regionally-averaged precipita-
tion distribution from various observational products are
compared to the corresponding quantiles of the multi-
product mean, highlighting the inter-product differences.
Generally, from a quantile of 3 mm (i.e., in the first half
of the distribution), APHRODITE consistently shows the
lowest estimates of precipitation whereas GPCC_v2018
presents the highest estimates among all considered
observational datasets. In addition, the quantiles of
CHIRPSv2 and REGEN_ALL are quite similar to each
other up to the value of the 50th percentile in both sea-
sons. Subsequently, the quantiles related to higher pre-
cipitation amounts from all datasets increasingly diverge
from each other, with maximum variance observed in the
highest quantiles (greater than the 99th percentile).

This inter-comparison of seasonal climatologies in daily
precipitation is in line with the previous regional studies on
mean (Juneng et al., 2016; Tangang et al., 2020) or extreme
precipitation (Nguyen et al., 2020), highlighting the substan-
tial uncertainties among different observations over the
region.

3.2 | Model performance

We then compare seasonal means of daily precipitation
in the RCM simulations (over the 1982–2005 period) with

the different observational reference products used in this
study. We focus primarily on the differences in the spatial
distribution of daily precipitation between RCM simula-
tions and APHRODITE (Figures 2 and 3). Indeed, despite
the large observational uncertainties over the regions men-
tioned in Section 3.1, the maps of differences between
RCM simulations and the different observational products
show a similar pattern (Figure S4). Therefore, we take the
map of the differences between the ensemble mean of
RCMs (ENS-RCM, Figures 2a and 3a) and all 11 simula-
tions (Figures 2b–l and 3b–l) relative to APHRODITE to
illustrate the following common observed features. We first
discuss the key features of summer season (JJAS; Figure 2).
Models reveal good qualitative correspondence with the
gross regional distribution. The spatial correlations between
the simulated and observed patterns are around 0.5 for
most models (8 out of 12). Second, most models generally
show a wetter bias in terms of regional-average but exhibit
an inhomogeneous spatial distribution with mixing of dry
and wet biases. Interestingly, the spread of the climate
model ensemble (i.e., summer biases relative to APHRO-
DITE ranging from 0.53 to 5.68 mm�day−1, Figure 2) is
greater than the spread of reference datasets (ranging from
5.25 to 7.14 mm�day−1, Figure 1a–d).

The corresponding results for boreal winter (Figure 3)
reveal some interesting features. First, all models can
reproduce the summer to winter shift in precipitation
from Indochina to the Maritime Continent. This shift
reflects the ‘north-to-south dry-to-wet’ gradient which is

FIGURE 1 Seasonal mean (the boreal summer—JJAS and winter—DJF; row) of daily observed precipitation (mm�day−1) from four

considered observational products: APHRODITE, REGEN_ALL, GPCC_v2018 and CHIRPSv2 (column) during the climatological period of

1982–2005. ALL datasets are considered at a grid of 1� × 1� degree of resolution
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discernible in observed precipitation (Section 3.1). Third,
better spatial correlation between simulations and obser-
vations are found during winter, highlighting the depen-
dence of model performance on season. In addition, the
wetter biases are domain-wide, and they have smaller
magnitude than in summer. Finally, it is interesting that
the less prominent inter-model differences are found in
the spatial distribution of winter daily precipitation inten-
sity compared with that in summer. In particular, all
models show consistently smaller biases over Indochina
and larger biases over Maritime Continent.

Taking into account different reference products, there
are some interesting features that emerge (Figure S4). Biases
in simulations relative to REGEN_ALL, GPCC_v2018 and
CHIRPSv2 are quite similar but show some differences to
those biases relative to APHRODITE. For instance, the
RegCM4-3_CSIRO-MK-3-6-0 combination is quite close to
REGEN_ALL, GPCC_v2018 and CHIRPSv2 (biases of
−0.14, −0.12 andc−0.27 mm�day−1, respectively) but farther
from APHRODITE (bias of 1.60 mm�day−1, Figure 2i) dur-
ing the boreal summer, highlighting the difficulties in model
evaluation due to large observational uncertainties over

FIGURE 2 Differences (in mm�day−1) in seasonal mean of daily precipitation between all RCMs simulations and APHRODITE. All

simulations are interpolated onto a 1� × 1� degree grid. Inserted numbers indicate: The difference in regional mean (M), the root mean

square error (RMSE) and the spatial correlation of climatological seasonal mean of daily precipitation in RCMs with APHRODITE (R)
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SEA. This agrees with previous studies showing how dis-
crepancies among observations make model evaluation diffi-
cult at the global scale (Bador et al., 2020b).

Despite large observational uncertainties, some robust
conclusions still emerge from the analysis. First, most
simulations (notably simulations from RegCM4-3) pro-
duced consistently wet biases, no matter the choice of
observational product. There are some exceptions with
some simulations from RCA4 and REMO2015 exhibiting
different signs of biases, depending on the choice of refer-
ence. Second, models are able to simulate the complexi-
ties in spatial distribution of precipitation over the region
in both seasons (spatial correlations around 0.5). Third,

the multi-model means show a consistently better perfor-
mance (lower RMSE, higher spatial correlation with
observations) than each individual RCM's simulation.

To gain an overview of the performance of each
model, we ranked 11 simulations and multi-model mean
(RCM-ENS) against the four observational products dur-
ing different seasons using RMSE (with 1 being the best
performing and 12 the worst-performing RCM–GCM
combinations; Figure 4). RMSE is calculated for the cli-
matology of seasonal mean precipitation (over the 1982–
2005 period) and allows further evaluation of model
agreement with observations by measuring the similarity
in terms of intensity of mean daily precipitation. First, we

FIGURE 3 Same as Figure 2 but for the boreal winter (DJF)
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note that simulations are similarly ranked (i.e., with few
exceptions) in both seasons when using different observa-
tional references, emphasizing their similarity in terms of
intensity and precipitation distribution. REGEN_ALL
and GPCC_v2018 shared the exact same ranking across
models as this could be expected from their common data
structure (building upon the same station network—see Roca
et al., 2019). Second, some models indicate a consistent per-
formance during both seasons, being always better (i.e., ENS-
RCM, RCA4_CNRM-CM5 and REMO2015_NorESM1-M)
or always worse (i.e., REMO2015_HadGEM2-ES and
RegCM4-3_EC-EARTH) than others.

3.3 | Comparison of daily precipitation
between RCMs and their forcing GCMs

A major objective of this study is to assess whether the
RCMs improve the representation of daily precipitation
over the region compared to their forcing GCMs. To that

end, we use Q–Q plots and compare ASM (Section 2.3)
for each RCM–GCM combination. Note that the qua-
ntiles of model ensembles are calculated by pooling the
values from all models.

We first consider the ranking of ASM applied to
daily regionally-averaged precipitation (Figure 5) and
find some discrepancies between RMSE ranking and
ASM ranking (Figure 5 vs. Figure 4). Unlike RMSE, the
ASM ranking is sensitive to the choice of reference prod-
uct used for model evaluation, notably for RCA4 and
REMO2015 simulations. For example, a difference in
the ranking of RCA4_CNRM-CM5 is found during both
seasons and is as large as five places depending on
the reference product. This demonstrates again how
large observational uncertainties can be when taking dif-
ferent precipitation percentiles into account (see also
Figure S3).

The model simulation changes rank depending on
the metric considered. Notably, the distribution of mean
precipitation in RegCM4-3_GFDL-ESM2M is in the

FIGURE 4 Ranking of RCM simulations (Table 1) based on the root mean square error (RMSE) with 1 indicating the best model

performance and 12 indicating the worst model performance. The RMSE is estimated based on the difference between historical RCM

simulations and observations during the climatological period of 1982–2005
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middle of the model range (ranked 6 during summer
based on RMSE) but shows less skill when the full precipi-
tation distribution is considered (ranked 9 based on area
score). This lower performance for ASM is mainly due to
higher precipitation quantiles. This reveals the limitation
of RCM simulations to estimate extreme events and might
be attributed to the difference in frequency of rainfall
between RCMs and observations (see more in Section 4).
Interestingly, all RCA4 and REMO2015 simulations
generally indicate better performance than RegCM4-3,
no matter the choice of observational reference or
skill metrics. Almost all RegCM4-3 simulations except
RegCM4-3_CSIRO-MK-3-6-0 are consistently ‘worse’ com-
pared to other simulations. Rankings of models based on
ASM are generally similar when using APHRODITE,
REGEN_ALL and CHIRPSv2 as reference but exhibit sig-
nificant changes when using GPCC_v2018 as reference.
Therefore, we hereafter take only APHRODITE and
GPCC_v2018 to illustrate the substantial impact of obser-
vational uncertainty on model performance.

Simulated daily regionally-averaged precipitation
quantiles in both RCMs and GCMs over the terrestrial
RCM domain are plotted against the quantiles of APH-
RODITE and GPCC_V2018 over the climatological
period of 1982–2005 (Figures 6 and 7 for the boreal sum-
mer and winter, respectively). There is often a clear shift
to higher estimates of precipitation in RCMs compared to
their forcing GCMs. In most cases, the RCM simulations
(red) are above their forcing GCMs (blue), indicating
more intense precipitation in RCMs and generally a wet
bias as the red line usually sits above the observations.
Most GCM distributions also sit above the observations
indicating, often but not always, a wet bias. We note
though that some GCM simulations (e.g., EC-EARTH (j),
HadGEM2-ES (c, e, h) and MPI-ESM-LR or MR (d, l);
Figures 6 and 7) are similar to APHRODITE (i.e., they lie
on or near to the black 1:1 line). In addition, differences
between RCM and GCM distributions are usually ampli-
fied for the highest percentiles. These interesting features
are also observed when we pool the results from all

FIGURE 5 Ranking of RCM simulations (Table 1) based on the area score metric (ASM) which measure the proximity between the two

distributions: RCMs and observational precipitation distribution. Number 1 indicates the best model performance and Number 12 indicates

the worst model performance
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simulations and consider them as the model ensemble
mean (ENS-RCM, Figures 6a and 7a), or average each
quantile in the precipitation distribution across all simu-
lations to calculate the quantiles for the ensemble mean
(Figure S7).

The differences in ASM between an RCM and its forc-
ing GCM can be very sensitive to the choice of observa-
tional dataset. In particular, when taking APHRODITE
(or REGEN_ALL, CHIRPSv2; see Figures S5 and S6) as a

reference, RCM area scores are mostly larger (i.e., RCM
simulations are further away from observations) than
that of their forcing GCMs. However, the reversed rela-
tive relationships between RCMs and GCMs are observed
among 8 out of 11 pair simulations during both seasons
(including RCA4, REMO2015 and some RegCM4-3 simu-
lation, Figures 5 and 6) when taking GPCC_v2018 as a
reference. It is interesting that the position of ENS-RCM
and ENS-GCM lines are also changed with respect to

FIGURE 6 Quantile–quantile plots for daily regionally-averaged precipitation (in mm�day−1) during the climatological period of 1982–
2005 from different RCMs (red), their forcing GCMs (blue), and the GPCC_v2018 observational product (green) against APHRODITE (black)

for the boreal summer (JJAS). All simulations are on the coarsest forcing GCM grid (i.e., NorESM1-M, �240 km). Inserted numbers (within

black and green box) indicate values of the area score metric (ASM) which measure the proximity between the two distributions
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different observational products with ENS-RCM being
closer to GPCC_v2018 than ENS-GCM. This feature is
consistent with the findings from Tangang et al. (2020),
who indicated that the MME mean of RCMs show poten-
tial improvement compared to the MME mean of their
forcing GCMs. The sensitivity of ASM to various observa-
tional products is consistent with large discrepancies in
different precipitation percentiles among the various ref-
erences mentioned in Section 1, notably at the highest
percentiles.

Note that there are some parts of precipitation distri-
bution in some cases (e.g., RCA4 and REMO2015

simulations) for which the RCM shows improvement
compared to its driving GCM. To illustrate this point,
three precipitation intervals are considered, including:
0–50th percentile (before the dashed line), 50–99th per-
centile (between the dashed and dot-dashed line), and
greater than 99th percentile (after dot-dashed line)
(Figures 6a and 7). For the lowest two percentile ranges,
the RCA4 and REMO2015 simulations have very simi-
lar distributions to their forcing GCMs. Interestingly,
in this driest part of the distribution, RCMs are some-
times closer to the observed reference datasets than
the GCMs. This interesting feature can be observed

FIGURE 7 Same as Figure 6 but for the boreal winter (DJF)
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in most RCA4 and REMO2015 simulations during
both seasons, except REMO2015_MPI-ESM-LR. How-
ever, at the highest percentiles (greater than 99th per-
centile), the RCMs are very different from their
forcing GCMs and reference datasets, highlighting dif-
ficulties with these RCMs in estimating precipitation
extremes. Meanwhile, RegCM4 simulations stand out
as being much wetter and having distributions further
from observed distributions than their forcing GCMs
across all precipitation percentiles.

We further analyse how much improvement (or not)
RCMs bring to the representation of daily precipitation
distributions compared to their forcing GCMs by
analysing the spatial distribution of differences in ASM
using APHRODITE as a reference (Figures 8 and 9 for
summer and winter, respectively). During the boreal
summer, we find positive differences in ASM (blue col-
ours) over most regions across all GCM-driven RCM sim-
ulations (Figure 8). This indicates the RCMs are further
away from observed precipitation distributions than their

FIGURE 8 Differences in spatial distribution of area score metric (ASM) between RCMs and their forcing GCMs during the boreal

summer (JJAS). The ASM values measure the proximity between two distributions: The RCM or forcing GCM simulations and APHRODITE

precipitation distribution. All simulations are on the coarsest forcing GCM grid (i.e., NorESM1-M, �240 km)
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forcing GCMs, over most parts of the region. The pattern
during the boreal winter indicates fewer differences with
little or no differences between RCM and GCM skill in
estimating the whole distribution of precipitation over
Indochina in most paired simulations. However, there
are significant positive differences observed over many
islands of the Maritime Continent (Figure 9). We also
find some grid points associated with improvement in
simulating daily precipitation (brown colours) in both
seasons (Figures 8i and 9c). However, these areas are
usually smaller in size and magnitude than regions of
intensification. In addition, there is no agreement across
all simulations on these regions during both seasons. In

general, all combinations show consistently worse scores
for RCMs than GCMs. Interestingly, the maps of area
score differences are quite consistent with the differences
in daily mean precipitation in both seasons (spatial corre-
lations are greater than 0.5 in most cases for both seasons
as illustrated in Table 3). This implies that the mean
biases (as well as the ASM relative to different reference
datasets, see more in Figure S8) are worse in RCMs and
that the whole precipitation distribution in the RCMs
analysed is further away from observations.

It is essential to explore whether the quality of RCM
simulations relates to the internal skill of the RCM itself
or the quality of its driving GCM. The relationship

FIGURE 9 Same as Figure 8 but for the boreal winter (DJF)
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between regionally-averaged RCM and GCM biases and
their nominal resolutions are further analysed in Fig-
ures 10 and 11. Most RCM–GCM combinations indicate
more intense estimates of regionally-averaged means of
precipitation in RCMs compared to their forcing GCMs
(points above the 1:1 line in Figure 10). We cannot find
a relationship between the regional averages of sea-
sonal RCM biases and GCM biases in both seasons,
which indicates that biases in the boundary conditions
extracted from the GCM do not seem to have a direct
impact on the driven RCM performance (Figure 10).
Similarly, there is no relationship between the RCM
biases and their forcing GCM's nominal resolution
(Figure 11; note that the nominal spatial resolutions in
GCMs are identified as a function of the total number
of grid points over land). This indicates that forcing an
RCM with a relatively high- or low-resolution grid
GCM has limited influence on its representation of pre-
cipitation, and indeed RegCM4-3 forced by MPI-ESM-
MR (the finest grid resolution in the ensemble) has
among the worst biases across the simulations in boreal
summer (Figure 11a).

3.4 | Exploring mechanisms behind the
biased simulation of precipitation in RCMs

Given the somewhat larger wet biases that we have
identified in RCM-simulated rainfall compared to the

forcing GCM, we want to go one step further by explor-
ing the mechanisms responsible for the origin of this
extra moisture in RCMs. Therefore, the direct compari-
son of precipitation (P), evaporation (E) and moisture
convergence (P − E) over land among and between
seven RCM–GCM pairs (Table 1) are conducted in this
section (Figure 12).

Figure 12 highlights the generally more intense
regionally-averaged daily mean precipitation over land
in most RCMs simulations compared to their forcing
GCMs (5 out of 7 during the boreal summer and
7 out of 7 during the winter). RegCM4-3 especially is
consistently wetter than other RCMs and their forcing
GCMs. Further analyses on moisture sources indi-
cate that both local and large-scale sources of pre-
cipitation contribute to these higher estimates of
precipitation in RCMs. Moisture convergence is most
likely the dominant contribution to these increases,
notably during JJAS and in the RegCM4-3 simula-
tions. During winter, contributions from the two
sources are quite similar to each other and highlight
the important role of local scale processes over tropi-
cal regions.

Orography triggers more precipitation in RCMs, and
it is balanced by an increase in moisture convergence as
mentioned in Tangang et al. (2020). This is confirmed by
the fact that most regions associated with increases in
precipitation (Figures 8 and 9) are on the windward side
of high topography (Figure S1b). Therefore, we test

TABLE 3 Spatial-averaged (M) and spatial correlation coefficient (R) of differences in the climatology of seasonal daily mean

precipitation and in the area score metric (ASM) between RCMs and their forcing GCMs

Model name
Forcing
GCM

Summer (JJAS) Winter (DJF)

Spatial-averaged
differences (M,
mm�day−1)

Spatial
correlation
coefficients (R)

Spatial-averaged
differences (M,
mm�day−1)

Spatial
correlation
coefficients (R)

RCA4_CNRM-CM5 CNRM-CM5 −0.1 0.5 −0.5 0.8

RAC4_HadGEM2-ES HadGEM2-ES −0.8 0.4 0.3 0.8

REMO2015_MPI-ESM-LR MPI-ESM-LR 1.6 0.6 1.4 0.9

REMO2015_HadGEM2-ES HadGEM2-ES 0.2 0.5 0.3 0.8

REMO2015_NorESM1-M NorESM1-M −0.5 0.7 0.2 0.8

RegCM4-3_CNMR-CM5 CNRM-CM5 7.2 0.5 4.7 0.7

RegCM4-3_HadGEM2-ES HadGEM2-ES 3.7 0.6 5 0.8

RegCM4-3_CSIRO-MK-
3-6-0

CSIRO-MK-
3-6-0

3.9 0.7 1.2 0.8

RegCM4-3_EC-EARTH EC-EARTH 0.5 0.6 5.3 0.9

RegCM4-3_GFDL-ESM2M GFDL-
ESM2M

8.5 0.6 1.9 0.9

RegCM4-3_MPI-ESM-MR MPI-ESM-MR 7.3 0.5 4.3 0.9
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another hypothesis potentially explaining why the mois-
ture convergence on land increases: that more moisture
is transported from ocean to land.

Due to limitations in data availability, we cannot cal-
culate vertically integrated moisture fluxes. Instead, we
calculate the mean of horizontal wind, moisture conver-
gence and specific humidity at 850 hPa for the four RCM–
GCM combinations for which data are available. We
acknowledge that due to the omission of vertical integra-
tion of the whole atmospheric level (Seager et al., 2010;
Seager and Henderson, 2013; Endo and Kitoh, 2014), pre-
cipitation and moisture convergence are not fully compa-
rable at this single level. However, strong temporal
correlations (r > .6, not shown) are found over some
regions like South Indochina and western Borneo between
differences in vertically integrated moisture fluxes (P − E)
and differences in convergence fields at 850 hPa. This indi-
cates that differences in moisture convergence at 850 hPa
can be used as a good indicator of moisture convergence
differences over these subregions. Our results show that

moisture comes from different sources, depending on sim-
ulations (Figure S9). For example, there is increased wind
and moisture convergence advected from ocean to land in
RCA4_HadGEM2-ES. In particular, increasing wind from
the South China Sea during boreal winter brings humid
conditions (increased specific humidity) to South Indo-
china. Meanwhile, due to changes in the mean distribu-
tion of moisture over the Indian Ocean, Borneo also
exhibits an increase in moisture convergence. This feature
can be observed over REMO2015_MPI-ESM-LR during
summer, where the intensification of wind from the
Indian Ocean brings numerous amounts of moisture into
South Indochina, resulting in stronger convergence and
more humid conditions over there. However, the mecha-
nism mentioned above is not clear across other simula-
tions and cases. This indicates the limitation in our
analysis and the question remains on where the additional
moisture comes from.

The comparison between RCMs and their forcing
GCMs raises the question of the contribution of

FIGURE 10 Scatter plots showing the relationship between

the seasonal (JJAS and DJF) RCMs biases and their forcing GCMs

biases (relative to APHRODITE). The dash line indicates the 1:1

line. The regression coefficients (r) and the p value are based on the

F-test at a level of confidence of 5%

FIGURE 11 Scatter plots showing the relationship between

the seasonal RCMs biases relative to APHRODITE and their forcing

GCMs resolution. The solid line represents the regression line

between RCMs and GCMs biases. The regression coefficients (r) are

based on the F-test at a level of confidence of 5%
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convective processes in each to daily total precipitation.
Therefore, we further investigate whether precipitation dif-
ferences presented in Table 3 correspond to differences in
simulated convective and non-convective processes.
Figure 13 compares regional averages of convective and
stratiform precipitation simulated by the different RCMs
and their forcing GCMs. First, the GCMs demonstrate that
they typically simulate, and overestimate convective pre-
cipitation compared with MERRA2 (Figure S11). Convec-
tive precipitation also has largely contributed to the
regional water budget at all RCM and GCM simulations.
Second, we find a much greater increase in convective pre-
cipitation than non-convective term over land in RCMs,
notably in the RegCM4-3 simulations during the boreal
summer. Furthermore, the RegCM4-3 simulations stand-
out throughout our whole analyses as having much wetter
biases compared to their forcing GCMs, other RCMs and
observations (more easily seen by comparing different sim-
ulations sharing the same forcing GCMs; Figure S10). This

feature is related to the strong activation of convective
rainfall in the MIT-Emanuel convective scheme applied to
these simulations as mentioned in previous studies
(Juneng et al., 2016; Ngo-Duc et al., 2017; Tangang
et al., 2020) The MIT scheme not only produces excessive
rainfall (as it is difficult to slow down the convective pro-
cesses) but it also expands the regions where convective
processes occur (Davis et al., 2009). This also helps to
explain the widespread amplification of the proportion of
convective precipitation over land in RegCM4-3 (all
greater than 0.8), which is much higher than in RCA4 and
REMO2015 (Figures S12 and S13). It is acknowledged that
some of the differences in convective precipitation may be
related to the differences in resolution between RCMs and
GCMs (Kyselý et al., 2015) even if the convective compo-
nent is not resolved yet at the resolution of CORDEX-SEA
RCMs (i.e., 25 km) but at smaller sub-grid scales (horizon-
tal resolution less than 4 km; Weisman et al., 1997; Prein
et al., 2015; Li et al., 2018).

FIGURE 12 Seasonal (JJAS

and DJF) mean of daily regionally-

averaged evaporation (colour-filled)

and moisture convergence (colour

dashed) (land only; in mm/day)

simulated by seven available RCMs

simulations (Table 1) (red) and

their associated forcing GCMs

(blue) during the climatological

period of 1982–2005

18 NGUYEN ET AL.



4 | DISCUSSION

The outcome of any model evaluation study is likely
dependent on various factors including: the choice of ref-
erence dataset(s), the processes and metrics considered,
the spatial scale and the domain used. The first major aim
of this study is to evaluate the ability of RCMs to simulate
both the mean state and distribution of seasonal daily pre-
cipitation over SEA in an effort to understand biases in
individual models and the MME mean. In general, the
performance of individual models in simulating the daily
mean state of precipitation is quite similar (i.e., wetter
than observed, especially simulations from RegCM4-3),
regardless of the choice of observational reference product.
The RCM MME mean performs better than any individual
ensemble member, consistent with results from Tangang
et al. (2020). However, the MME mean performance is
likely a result of wet and dry biases from individual
models cancelling each other out. Interestingly, the ability
of a model to simulate the whole distribution of daily pre-
cipitation differs substantially among RCMs and is sensi-
tive to the choice of reference product. This is partly
explained by the large discrepancies in the precipitation

distribution among observations outlined in Section 3.1.
In addition, inconsistencies in the frequency of wet days
within and between RCMs and observations might some-
what play a role. Among observations, GPCC_v2018
always has the lowest total number of wet days among
observations (Figure S14). The RegCM4-3 simulations
produce precipitation too frequently while the probability
distribution of wet-day frequency among the REMO2015
simulations are quite consistent with observational datasets
(Figure S15).

The second aim of the research was to assess differ-
ences in each RCM–GCM pairing to capture the precipita-
tion distribution of regionally-averaged daily precipitation.
Somewhat surprisingly RCMs were generally “worse” at
simulating the distribution of daily precipitation over the
region than their forcing GCMs. The results, however,
were somewhat dependent on the observational reference
product used for evaluation. In particular, most RCMs
were closer to GPCC_v2018 (notably during the winter
period) compared to their forcing GCMs with respect to
the other products considered. GPCC_v2018 has been
shown to be wetter in general than other products espe-
cially in the upper tails of the distribution but the reason

FIGURE 13 Seasonal (JJAS

and DJF) mean of daily regional-

averaged convective (solid filled)

and non-convective (dashed)

precipitation (land only; in

mm�day−1) simulated by seven

available RCMs simulations

(Table 1) (purple) and their

associated forcing GCMs (green)

during the climatological period of

1982–2005
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behind this is still being investigated (Roca et al., 2019;
Alexander et al., 2020). While on the surface our results
seem somewhat at odds with those of Tangang et al. (2020),
it highlights those potential biases in individual model
simulations could be dampened or exacerbated depending
on the observational reference product used for underpin-
ning. Previous studies suggested interpolation to coarser
resolution might remove detailed features of RCMs
through smoothing the extreme values (Herold et al.,
2017), which might affect the scoring metric (ASM) used
to measure the proximity between two precipitation distri-
butions in this study. Therefore, we did an additional Q–Q
plot for comparison of RCMs, CHIRPSv2 and APHRO-
DITE at �25 km resolution which is close to both the orig-
inal resolution of observations and the RCMs resolution
(Figures S16 and S17). We find amplified differences
between RCMs and observational precipitation distribu-
tion even at this higher resolution, which suggests that the
coarser resolution of �240 km used for comparison is not
the main reason behind the RCM biases found in this
study. This is in line with Bador et al. (2020b) who indicate
that increasing spatial resolution alone is not sufficient to
obtain a systematic improvement in the simulation of pre-
cipitation extremes at the global scale.

Our results illustrate that the driving GCMs have
less influence on the RCM simulation biases than the
choice of RCMs. It is acknowledged that the subset of
GCMs that have been downscaled for CORDEX-SEA
were chosen for their ability to capture the observed
broad-scale characteristics of seasonal monsoonal circu-
lation and precipitation climatology, as is usually done
for CORDEX-RCM simulations (Siew et al., 2014;
McSweeney et al., 2015). However, most of them show
significant biases compared to observed climate pat-
terns. Therefore, another approach of process-based
evaluation is generally recommended to assess whether
the GCM simulations are capturing the processes (both
spatial patterns and magnitude) that drive both mean
and extreme precipitation in the region, to fully under-
stand the capability of the GCM. This would help to
identify whether there are any GCM–RCM pairings that
should not be used at all, in the case where the driving
GCMs do not capture the key processes well.

Our results also suggest that the MIT-Emanuel convec-
tive scheme is overly active in the RegCM4-3 simulations
(at least in the configuration used in these CORDEX-SEA
runs) compared to other schemes, resulting in increased
precipitation intensity over SEA. In this case ‘over-
activation’ refers to the fact that most of the total precipi-
tation amount in the RCM comes from convective
precipitation. This is mostly at odds with what we see in
reanalysis products (ERA-interim, ERA5 and MERRA2)
over the region (Figures S12j–l and S13j–l) although

percentages vary widely (e.g., the ratio of regionally-
averaged convective precipitation to total precipitation
ranges from 32.97% in MERRA2 to 73.22% in ERA5 during
summer; Figures S11 and S12j–l). In all cases the MIT-
Emanuel scheme produces a higher proportion of convec-
tive precipitation to total precipitation than all other RCM
simulations and reanalysis products considered. This is
inline with previous regional studies which mentioned the
‘overactivation’ of the MIT scheme (Juneng et al., 2016;
Ngo-Duc et al., 2017). However, the same studies
suggested that the MIT scheme performed better than
other considered convective schemes, which might some-
what differ from the conclusion we would draw from this
study. This can partly be explained by the differences in
the experiment setups (set of simulations, reference prod-
ucts and indices). First, the above-mentioned studies eval-
uate the ERA-interim driven simulations (known as
evaluation simulations, which differ from GCM-driven
simulations used in this study) against station-based prod-
ucts. This single-point based reference is known to be wet-
ter than grid-based products used in our study, which
represents the average precipitation over a particular
region. Second, most of their conclusions were also based
on frequency-related precipitation indices which differ
from the intensity-based and distribution-based metrics
used in this study.

Our study provides a simple framework to assess
the model performance and takes observational uncer-
tainties into account. Based on the outcome of the model
evaluation, it would be interesting to investigate how the
selection of particular model ensembles might affect pro-
jections under future condition scenarios. Furthermore,
our results help to understand the similarities and
differences between historical RCMs and their forcing
GCMs simulation in the representation of precipitation.
Assessing the differences between pairs of RCM and
GCM future simulations might be more complex due to
the dependency on other external forcings such as green-
house gases and aerosols. Indeed, it has been shown that
the absence of time-varying anthropogenic aerosols in
most EURO-CORDEX RCMs tends to lead to a smaller
future increase of precipitation over Europe (Boé
et al., 2020; Gutiérrez et al., 2020) and such differences in
modelling setup might potentially affect the projections
over SEA as well.

We have limited our study to SEA, a region which has
the advantage of having a large and diverse RCM ensem-
ble. However, this region also has large observational
uncertainties (Nguyen et al., 2020), due to a lack of quality
high-density station observations. These uncertainties lead
to difficulties in evaluating simulated precipitation and
therefore our method could benefit from being applied to
other Asian regions with higher quality station networks.
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5 | CONCLUSION

In this paper, we evaluate the representation of daily pre-
cipitation over the 1982–2005 period in high-resolution
CORDEX-SEA RCMs over SEA. We focus on two aspects
of precipitation: the seasonal mean state and daily precipi-
tation distribution. This study is also the first attempt to
assess (a) the performance of individual RCMs relative to
their forcing GCMs over SEA and (b) whether or not the
driving GCM biases have an influence on the driven RCM
biases. Due to the complexities in the spatial distribution of
regional climate and its topography, RCMs are usually
expected to better represent the daily precipitation distribu-
tion (i.e., closer to observed) compared to their forcing
GCMs as they are better at resolving sub-grid scales and
the processes important for precipitation formation. How-
ever, we find that this is often not the case for the
CORDEX-SEA simulations evaluated here, despite using
four different observational products from different sources
(i.e., in situ-based and satellite-based) in order to take the
large observational uncertainties in daily precipitation into
account. Exploring the physical mechanisms that might
play a role in the differences in precipitation between
RCMs and GCMs (e.g., contribution of local and large-scale
sources of precipitation, role of convective parameteriza-
tion) are able to understand inter-model differences better.

In general, the CORDEX-SEA RCM simulations show
some ability in reproducing the complexities in the spatial
distribution of precipitation over the region. However, per-
formance varies substantially across models and also
depends on seasons, and evaluation metrics. As noted, this
region has large observational uncertainties which leads to
difficulties in model evaluations given diverse evaluation
metrics and dependence on the choice of reference product.
However, despite this, we find that the CORDEX-SEA
RCMs generally show a consistently wet bias in seasonal
mean precipitation relative to observations, no matter the
choice of observational reference product. In addition, con-
sidering two skill metrics, some models always perform
‘better’ (i.e., RCA4_CNRM-CM5) or ‘worse’
(i.e., REMO2015_HadGEM2-ES and RegCM4-3_EC-
EARTH) than other simulations. This will be informative
for users in selecting the model that is fit for their purposes.

Because RCMs resolve smaller scales and potentially
better represent grid-scale physical processes, they are
expected to bring some potential improvements in precip-
itation simulation compared to their forcing GCMs over
the region. Surprisingly, we find that the relative perfor-
mance of RCMs compared to their GCM depends on the
choice of observations. In particular, with three observa-
tional products out of four, RCMs do not show reduction
in biases. On the whole, the RCMs have a rainfall distri-
bution that is further from observations than the

distribution from their driving GCMs. Hence, we cannot
find a systematic improvement in the representation of
simulated precipitation in RCMs, although there are
some parts of the precipitation distribution, seasons and
grid points for which RCMs are closer to observations
than GCMs. Setting aside observations, RCM simulations
are ‘wetter’ than their counterpart GCM over the region.
Further analyses highlight that this wetter state in RCMs
is essentially due to the individual RCM setups and not
caused by biases or resolution in their forcing GCMs.

This study finds that RCMs generally simulate more
intense precipitation over land than their forcing GCMs
due to increased local (i.e., evaporation) and large-scale
(i.e., moisture convergence) sources of moisture. The ques-
tion on where this moisture comes from in the RCMs
remains to be understood. We also argue that over the
region, convective precipitation is generally the largest con-
tributor to total precipitation and leads to the biggest differ-
ences in the simulations between the RCMs and GCMs.

Our modelling framework allows us to further inves-
tigate inter-model differences by comparing simulated
precipitation across RCM simulations forced by the same
driving GCM. Substantial differences in the different pre-
cipitation quantiles are found and in particular
RegCM4-3 systematically produces a wetter bias com-
pared to observations than any other RCM analysed here.
This is likely primarily due to the MIT-Emanuel convec-
tive scheme adopted in RegCM4, suggesting the impor-
tant role of parameterization schemes in the resultant
quality of RCM simulations. This exploration will be of
great interest to RCMs developers or to those involved in
using climate model projections to inform the decision
making and adaptation (e.g., policymakers). Our study
also highlights that great care should be given to the
characterization and understanding of the potential dis-
crepancies between RCMs and GCMs and that this could
have substantial implications for the interpretation of
future precipitation projections over SEA.
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