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SIMPLE CUSPIDAL REPRESENTATIONS OF SYMPLECTIC GROUPS:

LANGLANDS PARAMETER

CORINNE BLONDEL, GUY HENNIART, AND SHAUN STEVENS

Abstract. Let F be a non-archimedean local field of odd residual characteristic. We com-
pute the Jordan set of a simple cuspidal representation of a symplectic group over F , using
explicit computations of generators of the Hecke algebras of covers reflecting the parabolic
induction under study. When F is a p-adic field we obtain the Langlands parameter of the
representation.
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Introduction

Let F be a non-archimedean local field of residual characteristic p, and let G be the group
Spp2N,F q. The local Langlands conjecture for G attaches to a cuspidal representation1 π

of G a parameter of a Galois nature, or equivalently an irreducible representation Π of
GLp2N`1, F q. When F has characteristic zero, the conjecture was established by Arthur [2],
and Mœglin [20] has shown that Π can be determined via the reducibility points of certain
parabolically induced representations involving π.

Date: November 1, 2023.
1In this paper representations are smooth representations on complex vector spaces and by “cuspidal

representation” we mean “irreducible cuspidal representation.”
1
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The method presented here to achieve this assumes that p is odd, and uses types and covers
à la Bushnell–Kutzko [10] to obtain the reducibility points. It was tested with success on
SLp2, F q as early as 2009, in a joint project of the three authors initiated in January 2009
in Vienna. The initial goal was a full description of the L-packets of Spp4, F q containing
cuspidal representations by means of types and covers. In those years, say 2009 to 2011, we
did quite a lot of computations and completed a nice table presenting all cuspidal represen-
tations of Spp4, F q, as classified in [6], with the size of their packet and their neighbours in it.
Some computations were done, but the expected tediousness of the others made us choose
a more conceptual way that we eventually wrote down in [5]. We will explain this more
precisely in a moment, let us just say that nonetheless, we accepted the idea that sometimes
tedious computations can be useful to produce exact results, and we decided that the case
of simple cuspidals of symplectic groups alone deserved such a treatment, along with the
necessary work. This is the object of the present paper.

So let π be a cuspidal representation of our symplectic group G. We need first to recall the
main result in [5]. The Jordan set Jordpπq of π is the (finite) set of pairs pσ, sq made of
a self-contragredient cuspidal representation σ of a group GLpk, F q for some k, and a real
number s ě 1, such that, viewing GLpk, F q ˆ G as a maximal Levi subgroup of a suitable
symplectic group H , the normalised parabolically induced representation of σ| det |s b π to
H is reducible. When F has characteristic zero, Mœglin has shown that the Jordan set of
π determines the Langlands parameter of π.

Theoretically Jordpπq can be computed using types and covers, thanks to the results of
Bushnell and Kutzko that transform parabolic induction in the groups into induction of
modules over Hecke algebras, from the Hecke algebra of a type for the inertial class of
σ| det |s b π to the Hecke algebra of a cover of this type in H [10]. First of all one can
associate to the representation π a finite family Fπ of self-dual simple characters and show
that if pσ, sq belongs to Jordpπq, then σ contains a simple character in the endoclass of the
square of an element of Fπ. Then, having thus restricted the quest, we study the cover of a
type for the inertial class of σ| det |s bπ for such a σ: the Hecke algebra of this cover has two
generators which satisfy a quadratic relation computable in a finite Hecke algebra deduced
from the situation. Here results of Lusztig in finite reductive groups come into play, and
eventually lead to a full description, not of Jordpπq itself, but of the inertial Jordan set of π,
which is the multiset IJordpπq “ tprσs, sq | pσ, sq P Jordpπqu (where rσs designates the inertial
class of σ). Indeed, the knowledge of the finite reductive groups built from the underlying
stratum of the cover, of the level zero part of the cuspidal type and of Lusztig’s results (see
[18]), produces with a reasonable amount of computations (in particular of some characters
with trivial square coming from the compact subgroups involved in the construction) the
quadratic relations satisfied by the generators, and eventually the inertial Jordan set.

This is to be compared with the method presented here, that leads to the exact Jordan set
if we are willing to pay the price of possibly very long computations, on a case-by-case basis.
This explains quite plainly why we changed path towards [5]. Yet obtaining exact results
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is definitely a respectable goal, more easily attainable whenever we deal with intertwining
operators in one-dimensional spaces, i.e. when H1 “ J1 (in the standard notation of simple
characters etc.), which occurs for simple cuspidals. Actually the computation below equally
applies whenever we deal with a stratum for which the extension field F rβs{F is totally
ramified of maximal degree 2N , and it should apply for other classical groups as well: it has
been used successfully in unitary groups in [7].

There are alternatives to the computations that follow, some are described in [5]. Indeed,
once we know the inertial Jordan set of π in loc.cit., we may sometimes fully determine some
parts of the Jordan set itself by working on the Galois side, see [5, §7] and section 5 below.
The computations presented here may nonetheless be necessary in severe cases where the
ambiguity cannot be solved.

In the first section we present the method used to find the exact elements of the Jordan
set. It is essentially an elaboration on the fundamental commutative diagram of [10] – the
heart of the theory of covers – in the case of a maximal Levi subgroup in a classical group.
This diagram translates parabolic induction from P to G into induction of Hecke algebra
modules, relying on a uniquely defined homomorphism of algebras tP . Roughly speaking,
when inducing from a maximal parabolic in a classical group, this morphism tP sends a
generator of the Hecke algebra on the fixed Levi component M of P to the product of two
generators, say T0 and T1, of the Hecke algebra over G. This equality amounts to normalising
the corresponding intertwining operators consistently. This normalisation, in turn, allows
for pinpointing the self-dual representation with “highest reducibility value” in the inertial
class of the inducing representation (Theorem 1.10).

In the second section we recall the definition of simple cuspidal representations in a sym-
plectic group and we fix the notation for the particular simple cuspidal π of Spp2N,F q the
Jordan set of which we want to compute. In particular we describe the underlying simple
character ψβ. We know from [5] (among other sources!) that this Jordan set is

Jordpπq “ tpǫ1, 1q, pσ, 1qu

where ǫ1 is a character of Fˆ with trivial square and σ is a cuspidal representation of
GLp2N,F q attached to the simple character ψ2β . (Proposition 2.2).

In the third section we compute the character ǫ1 and in the fourth the simple cuspidal
representation σ, using Theorem 1.10 and precise computations of the coefficients of the
quadratic relations satisfied by the generators of the Hecke algebra of the cover. At the
end of section 4 we explain how the case of a general simple cuspidal of Spp2N,F q is easily
deduced from the particular case that we have studied and we state the general result
(Theorem 4.16).

In the final section we go from Jordan set to Langlands parameter when F has characteristic
zero, or whenever the known results on the local Langlands correspondence for Spp2N,F q
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allow for such a move. We also discuss how our present result for simple cuspidal represen-
tations of Spp2N,F q can also be obtained on the basis of the inertial Jordan set produced
in [5] together with a result of Lapid giving the ε-factor at 1

2
, whereas there are cuspidal

representations for which this additional information is not sufficient.

Acknowledgements. The authors take the opportunity to signal the work [22] of Gor-
dan Savin, that determined the Jordan set of generic level zero cuspidal representations of
classical groups, a reference which inadvertently was absent from our paper [5].
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in December 2022. This gathering gave them the necessary impulse to finish writing this
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The third author was supported by EPSRC grants EP/H00534X/1 and EP/V061739/1.

1. Framework and method

1.1. Covers and parabolic induction. We go back to the founding paper by Colin Bush-
nell and Philip Kutzko [10]. (We use a mild variant of [10] as explained in [3], since we
normalize parabolic induction and we use right-modules over the Hecke algebras, defined
without contragredients.)

We fix F a non-archimedean local field of odd residual characteristic p, we fix G the group
of F -points of a reductive algebraic group defined over F and write RpGq for the category
of smooth complex representations of G. From now on all representations will be implicitly
smooth and complex.

We fix M a Levi subgroup of G, P a parabolic subgroup of G with Levi factor M , U the
unipotent radical of P , and U´ the unipotent radical of the parabolic subgroup P´ opposed
to P with respect toM . We fix a cuspidal inertial class sM “ rM,σsM inM , which is the set
of all twists σχ of the irreducible cuspidal representation σ ofM by an unramified character
χ of M , and denote by sG “ rM,σsG the corresponding inertial class in G, containing all
pairs G-conjugate to some pM,σχq. We consider the functor IndG

P of normalized parabolic
induction from the Bernstein block RsM pMq in RpMq to the Bernstein block RsGpGq in
RpGq.

Assume that we have a type pJM , λMq for RsM pMq: so JM is a compact open subgroup of
M , λM is an irreducible representation of JM , hence finite-dimensional, acting on a space
VλM

, and all representations in RsM pMq are generated by their JM -isotypic component of
type λM . Then by [10, Theorem 4.3], forming the Hecke algebra

HpM,λMq “ tf :M Ñ EndpVλM
q | f compactly supported and

@g P M, @j, k P JM , fpjgkq “ λMpjqfpgqλMpkqu,
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we have an equivalence of categories

RsM pMq
EλMÝÑ Mod-HpM,λMq, EλM

pωq “ HomJM pλM , ωq,

where the structure of right-HpM,λMq-module on HomJM pλM , ωq is given by

(1.1) φ ¨ fpwq “

ż

M

ωpg´1qφpfpgqwqdg pf P HpM,λMq, φ P HomJM pλM , ωq, w P VλM
q.

We further assume that we have a G-cover pJG, λGq of pJM , λMq: a similar pair in G with
an Iwahori factorization JG “ pJG XU´qpJG XMqpJG XUq, with λG trivial on JG XU´ and
JG XU , with JG XM “ JM and pλGq|JM “ λM , and with a strong additional condition that
provides an explicit injective homomorphism of algebras

tP : HpM,λMq ÝÑ HpG, λGq

see [10, Definition 8.1]. Then [10] culminates with the assertion that pJG, λGq is a type
for RsGpGq [10, Theorem 8.3] and with the following commutative diagram that transforms
parabolic induction from RsM pMq to RsGpGq into module induction over Hecke algebras [10,
Corollary 8.4]:

(1.2)
RsGpGq

EλGÝÑ Mod-HpG, λGq
IndG

P Ò Ò ptP q˚

RsM pMq
EλMÝÑ Mod-HpM,λMq

where, given a right HpM,λMq-module Y , the HpG, λGq-module ptP q˚pY q is the module
HomHpM,λM qpHpG, λGq, Y q.

1.2. The equivalence of categories for cuspidal blocks. We focus on the functor EλM
.

By definition, irreducible objects in RsM pMq form a single orbit under the group XpMq of
unramified characters of M , acting through pωχqpgq “ χpgqωpgq (χ P XpMq, ω P sM ,
g P M). The underlying space EλM

pωχq “ HomJM pλM , ωχq is the same as EλM
pωq because

ω and ωχ coincide on JM , but those two spaces differ as modules over HpM,λMq. The
group XpMq also acts on HpM,λMq by pχfqpgq “ χpgqfpgq, the action of f P HpM,λMq on
EλM

pωq is the action of χf on EλM
pωχq.

When M is a maximal Levi subgroup of a classical group G and p is odd, cuspidal repre-
sentations of M are known to satisfy the following conditions, slightly stronger than [10,
(5.5)]:

Hypotheses 1.3. The type pJM , λMq satisfies the following.

(i) The intertwining of λM is contained in a compact mod center subgroup ĴM of M ,

containing JM as its unique maximal compact subgroup.

(ii) λM extends to ĴM and for any such extension pλM the representation c-IndM

ĴM
pλM is

irreducible and cuspidal.

(iii) There exists an element ΠJM of M such that ĴM “ ΠZ

JM
JM and ΠZ

JM
X JM “ t1u.
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From now on we assume that Hypotheses 1.3 hold. Then the Hecke algebra HpM,λMq is
commutative [10, Proposition 5.6], its irreducible modules are one-dimensional, they iden-
tify with characters. More precisely HpM,λMq is supported on ΠZ

JM
JM and isomorphic

to CrΨ,Ψ´1s where Ψ has support ΠJMJM “ JMΠJM . This element Ψ is unique up to a
non-zero scalar and characterized by the intertwining operator ΨpΠJM q P EndpVλM

q. Fur-

thermore, if we pick an extension pλM of λM as in (ii), then the restriction of pλM to a compact
subset of ΠZ

JM
JM clearly belongs to HpM,λMq, in other words ΨpΠJM q is a scalar multiple

of pλMpΠJM q. We would rather think about this the other way around: the Hecke algebra
HpM,λMq does not depend on a particular choice of extension of λM , so we fix a normal-
ization of its generator Ψ in an independent way, i.e. we consider the non-zero intertwining
operator ΨpΠJM q chosen once and for all; in turn the extensions of λM can be thought of
relatively to ΨpΠJM q. We introduce the following notation:

Definition 1.4. We fix a normalization of Ψ through the choice of an intertwining operator

ΨpΠJM q. Let ω “ c-IndM

ĴM
pλM be an irreducible cuspidal representation of M belonging to

sM , where pλM is an extension of λM . We let ζpωq be the scalar such that

pλMpΠJM q “ ζpωq ΨpΠJM q.

We observe more closely the bottom line of diagram (1.2). The functor EλM
attaches to

each cuspidal representation ω in sM , a character qω of HpM,λMq that represents the action
of the algebra on EλM

pωq. This character is uniquely determined by its value on Ψ that we
compute using formula (1.1), with φ P HomJM pλM , ωq, v P VλM

:

φ ¨ Ψpvq “

ż

JM

ωpΠ´1
JM

qωpg´1qφpλMpgqΨpΠJMqvqdg “ volpJMq ωpΠ´1
JM

qφpΨpΠJM qvq

Since we have ω “ c-IndM

ĴM
pλM , the action of ωpΠ´1

JM
q stabilizes the image of φ and acts on

it as pλMpΠ´1
JM

q, so that φ actually belongs to HomĴM
ppλM , ωq. We get, after fixing the Haar

measure on M giving JM volume 1:

φ ¨ Ψpvq “ ωpΠ´1
JM

qφpζpωq´1pλMpΠJM qvq “ ζpωq´1φpvq.

Proposition 1.5. Let ω be an irreducible cuspidal representation of M belonging to sM and

write ω “ c-IndM

ĴM
pλM for some extension pλM of λM , characterized by

pλMpΠJM q “ ζpωq ΨpΠJM q.

The action of HpM,λMq on EλM
pωq is given by the character2 qω defined by

qωpΨq “ ζpωq´1.

2This notation is convenient in our context but should not be confused with the usual notation for the
contragredient representation. We will not use the latter.
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Twisting ω “ c-IndM

ĴM
pλM by χ P XpMq amounts to twisting pλM by χ|ĴM

, hence we have

ζpωχq “ χpΠJM q ζpωq and:

(1.6) ~pωχqpΨq “ χpΠJM q´1 qωpΨq.

1.3. The normalization of Ψ. From now on, we restrict to the case studied in [19], when
G is a classical group and M is a maximal Levi subgroup of G. The Levi subgroup M

identifies with a direct product M “ GLpk, F q ˆ M0 where M0 is a classical group of the
same sort as G. Unramified characters of M have the form

pg,m0q ÝÑ | det g|s with s P C, g P GLpk, F q, m0 P M0.

The representation σ of M decomposes as σ “ τ b π where τ is a cuspidal representation
of GLpk, F q and π a cuspidal representation of M0; the irreducible objects of sM are the
τ | det |s b π with s P C. The type in M for sM has the form pJM “ J ˆ J0, λM “ λ b λ0q
where pJ0, λ0q is a type constructed by the third author for π and pJ, λq is a Bushnell–Kutzko
type for τ . In particular, we have π “ c-IndM0

J0
λ0, and Hypotheses 1.3 hold for pJ, λq: there

are a compact mod center subgroup pJ of GLpk, F q and an extension pλ of λ to pJ such that

τ “ c-Ind
GLpk,F q
pJ

pλ, and there is an element ̟E such that pJ “ ̟Z

E ˆ J with ̟Z

E X J “ t1u

(see [9, §6]: the construction of pJ, λq involves a finite extension E of F inside MkpF q such
that the intertwining of λ is EˆJ ; we choose a uniformizing element ̟E of E and remark
that the ramification index of E is uniquely attached to π). Then Hypotheses 1.3 hold for

pJM , λMq with pJM “ pJ ˆ J0, with pλM “ pλ b λ0 and with ΠJM “ p̟E, 1q. We let pJG, λGq
be the G-cover of pJM , λMq built in [19].

We have |NGpMq{M | “ 2 and we further assume (see also [10, §11]) that the elements
of NGpMq normalize sM , which means that for some s P C, the representation τ | det |s is
self-dual (that is, equivalent to its contragredient in the symplectic and orthogonal cases,
or equivalent to the contragredient of the conjugate representation in the unitary case).
Theorem 1.2 in [19] essentially gives the following.

Proposition 1.7. (i) There are two elements s0 and s1 of NGpMqzM , belonging to

open compact subgroups of G, that normalize pJM , λMq and satisfy s0s1 “ ΠJM .

(ii) The Hecke algebra HpG, λGq is a two-dimensional module over HpM,λMq generated,
as an algebra, by elements T0 and T1 of respective supports JGs0JG and JGs1JG.

(iii) The generators T0 and T1 can be normalized to satisfy quadratic relations of the

following shape:

pTi ` 1qpTi ´ qriq “ 0, i “ 0, 1, with r0, r1 ě 0.

Indeed T0 and T1 are defined up to non-zero scalar by their support, normalizing them
means normalizing their values at s0 and s1 respectively, that are intertwining operators in
the space of λM . This in turn provides a normalization for Ψ: we impose

(1.8) T0T1 “ tP pΨq.
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We make a quick comment here: the generators come from the 2-dimensional Hecke alge-
bras of two finite reductive groups, hence the quadratic relations, that depend on the level
zero part of the cover pJG, λGq. They can be obtained through computations à la Lusztig

in those finite groups, as in [5, §5], and computation of a twisting character [5, 3.12 Theorem].

Proposition 1.7 implies that HpG, λGq has four characters, counted with multiplicity: the
value of a character at Ti is ´1 or qri , i “ 0, 1. Hence the characters of HpM,λMq that
induce reducibly to HpG, λGq are exactly the restrictions through tP of those four characters,
their values at Ψ belong to

(1.9) t1,´qr0,´qr1, qr0`r1u.

Now we recall what we know about reducibility on the group side. The inertial class sM
contains exactly two self-dual representations, say τa bπ and τb bπ. For each of those there
is a unique non negative real number sa or sb such that, for s P R:

IndG
P τa| det |s b π reduces ðñ s “ ˘sa

and the same for τb, sb. So the four irreducible representations in sM (counted with multi-
plicities) that do NOT induce irreducibly are

tτa| det |´sa b π, τa| det |sa b π, τb| det |´sb b π, τb| det |sb b πu.

By Proposition 1.5 they correspond to the following characters of HpM,λMq, given by their
value at Ψ:

| det̟E|sa τa b πpΨq, | det̟E|´sa τa b πpΨq, | det̟E|sb τb b πpΨq, | det̟E|´sb τb b πpΨq.

This set of four values is identical to (1.9), we deduce that one of τa, τb, say τa, satisfies

| det̟E|sa τa b πpΨq “ 1 and | det̟E|´2sa “ qr0`r1

and the other one satisfies

| det̟E|sb τb b πpΨq “ ´qinfpr0,r1q and | det̟E|´2sb “ q|r0´r1|.

We find the corresponding self-dual representations of GLpk, F q with Proposition 1.5:

τa “ c-Ind
GLpk,F q
pJ

pλa with pλap̟Eq b IVλ0
“ | det̟E|sa ΨpΠJM q,

τb “ c-Ind
GLpk,F q
pJ

pλb with pλbp̟Eq b IVλ0
“ ´q´ infpr0,r1q| det̟E|sb ΨpΠJM q.

We write for convenience ” for “equal up to a positive scalar”. The last touch is done by
coming back to T0, T1, since Ψ has been normalized by (1.8), which is equivalent, up to a
positive scalar that we don’t need, to T0ps0qT1ps1q ” ΨpΠJM q [3]. We get finally:
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Theorem 1.10. We fix a cuspidal representation of the classical group M0 and a self-dual

cuspidal inertial class sk in GLpk, F q, hence a cuspidal inertial class in the Levi subgroup

M “ GLpk, F q ˆ M0 of the classical group G. We fix as above a type pJM , λMq for this

inertial class and a cover pJG, λGq. We normalize the two generators T0 and T1 of the Hecke

algebra HpG, λGq as in Proposition 1.7, namely so that they satisfy quadratic relations

pTi ` 1qpTi ´ qriq “ 0, i “ 0, 1, with r0, r1 ě 0.

The self-dual cuspidal representation in sk with the highest reducibility value is the self-dual

cuspidal representation c-Ind
GLpk,F q
pJ

pλa characterized by

pλap̟Eq ” T0ps0qT1ps1q.

The other self-dual cuspidal representation in sk is c-Ind
GLpk,F q
pJ

pλb with pλbp̟Eq ” ´T0ps0qT1ps1q.

What we mean by “highest reducibility value” is: the representation having reducibility at
sa, since sa ě sb, with equality if and only if one of r0, r1 is 0. We recall that our goal is
to determine, for a given cuspidal π of M0, the finite set of pairs pτ, sq with τ a cuspidal
representation of some GLpk, F q and s P R, s ě 1, such that the normalized induced
representation of τ | det |s b π reduces. We explained in [5] how to construct this set, except
possibly for an ambiguity between τa and τb, in our notations above, that in some cases we
couldn’t solve. Theorem 1.10 gives a way to solve the ambiguity. If one of r0, r1 is 0 we have
no ambiguity to solve: indeed sa “ sb so either pτa bπ, saq and pτb bπ, sbq both belong to the
set or neither of them does. Otherwise sa ą sb and we produce the unique representation
with reducibility at sa.

Corollary 1.11. Theorem 1.10 holds if T0 and T1 are only normalized in such a way that

they satisfy quadratic relations T 2
i “ biTi ` ci with bi ě 0 and ci ą 0, for i “ 0, 1.

Indeed such normalizations differ from the previous one by positive constants, that will not
change the result, except when a coefficient bi is 0, in which case both self-dual representa-
tions in the inertial class have highest reducibility value.

In the next sections, we give examples in which the computation is made easier by the fact
that the intertwining operators are scalars.

2. Simple cuspidals

2.1. Definitions and notation. We start with the necessary notation to describe simple
cuspidal representations of symplectic groups, defined by Gross and Reeder [15, §9.2].

We let F be a non-archimedean local field of odd residual characteristic p, with ring of
integers oF , maximal ideal pF , residual field kF of cardinality qF “ q. We write x ÞÑ x

for the natural quotient map oF Ñ kF , and valpxq for the valuation of an element x in F ,
normalized so that val has image Z. We fix an additive character ψ : F Ñ C

ˆ with conductor
pF . We also fix for convenience a uniformizing element ̟F of F . We let G̃ “ GLp2N,F q,
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with centre Z̃ » Fˆ, and G “ Spp2N,F q, the subgroup of G̃ preserving the alternating form
h2N on F 2N given by:

h2N p

¨
˚̋

x1

.

.
xN

xN`1

.

.
x2N

˛
‹‚,

¨
˚̋

y1
.
.

yN
yN`1

.

.
y2N

˛
‹‚q “ x1y2N ` ¨ ¨ ¨ ` xNyN`1 ´ xN`1yN ´ ¨ ¨ ¨ ´ x2Ny1.

The matrix of the form h2N written in N ˆ N blocks is
`

0 JN
´JN 0

˘
where JN is the N -by-N

matrix with 1’s on the antidiagonal and 0’s elsewhere. The adjoint of a 2N by 2N matrix

written in N ˆ N blocks as p A B
C D q is

´
DT ´BT

´CT AT

¯
where A ÞÑ AT is the transposition with

respect to the antidiagonal.

The standard Iwahori subgroup Ĩ2N of G̃ is the fixator of the strict lattice chain Σ2N in F 2N

consisting of the columns of the order A2N “

¨
˝

oF oF ... oF oF
pF oF oF ... oF
...
...

...
...

...
pF ... pF oF oF
pF pF ... pF oF

˛
‚and their ̟Z

F -multiples.

The Jacobson radical of A2N is P2N “

¨
˝

pF oF ... oF oF
pF pF oF ... oF
...
...

...
...

...
pF ... pF pF oF
pF pF ... pF pF

˛
‚with P2

2N “

¨
˚̋

pF pF oF ... oF
pF pF pF oF ...

...
...

...
...

...
pF ... pF pF pF
p2F pF ... pF pF

˛
‹‚,

giving rise to subgroups Ĩ2Np1q “ 1 ` P2N and Ĩ2N p2q “ 1 ` P2
2N of Ĩ2N .

The successive maps I2N ` pxi,jq ÞÑ pxi,jq and pxi,jq ÞÑ px1,2, x2,3, ¨ ¨ ¨ , x2N´1,2N , ̟
´1
F x2N,1q

induce isomorphisms

Ĩ2N p1q{Ĩ2Np2q
»

ÝÑ P2N{P2
2N

»
ÝÑ k2NF .

Taking now the intersections with G we get the standard Iwahori subgroup I2N of G, with
two subgroups I2N p1q and I2Np2q, and an isomorphism:

I2N p1q{I2Np2q
»

ÝÑ kN`1
F

pxi,jq ÞÝÑ px1,2, ¨ ¨ ¨ , xN´1,N , xN,N`1, ̟
´1
F x2N,1q.

The center of G is Z » t˘1u. The affine generic characters of [15, §9.2] are those characters
of ZI2N p1q whose restrictions to I2N p1q have the form

pxi,jq ÞÝÑ ψ pα1x1,2 ` ¨ ¨ ¨ ` αN´1xN´1,N ` αNxN,N`1 ` α2Nx2N,1q

with valpαiq “ 0 for i “ 1, ¨ ¨ ¨ , N, and valpα2N q “ ´1. They compactly induce irreducibly
to cuspidal representations of G called simple cuspidal representations of G.
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2.2. Description in terms of strata. The chain Σ2N , of period 2N , can be scaled and
translated into a unique lattice sequence Λ2N in F 2N of period 4N and duality invariant
d “ 1, the usual convention in [26]. That is, for k P Z, the dual lattice

Λ2Npkq7 “ tX P F 2N | hpX,Λ2Npkqq Ď pF u

is equal to Λ2Np1 ´ kq. Note that Λ2Np0q “ Λ2Np1q “

¨
˚̋

oF
.
.
oF
pF
.
.
pF

˛
‹‚ (N entries oF , N entries pF ).

According to [11, §2], the natural filtration of A2N “ A0pΛ2Nq given for integers r by

ArpΛ2Nq “ tφ P EndpF 2Nq | @k P Z φpΛ2Npkqq Ď Λ2Npk ` rqu

satisfies ArpΛ2Nq “ Ar r
2

spΣ2N q and valΛ2N
“ 2 valΣ2N

, so that actually Ĩ2Np1q “ 1 `

A1pΛ2Nq “ 1 ` A2pΛ2Nq and Ĩ2Np2q “ 1 ` A3pΛ2Nq.

We leave aside the classification of affine generic characters and work directly with one whose
restriction to I2N p1q has the form

x ÞÝÑ ψβpxq “ ψ ˝ trpβpx´ 1qq

for an element β in LiepSpp2N,F q such that valΛ2N
pβq “ ´2 and β2N “ p´1qN̟´1

F . In
particular E “ F rβs is a totally ramified extension of F of maximal degree 2N . Actually we

fix β in A´2pΛ2Nq as follows: β “

¨
˚̊
˚̊
˚̊
˚̋

0 0 ... ... ... 0 ̟´1

F

´1 0 0 ... ... ... 0

0
...

...
...

...
...
... ´1 0

...
...

... 0 1 0
...

...
...

...
...

...
0 0 ... ... 0 1 0

˛
‹‹‹‹‹‹‹‚
(with N entries ´1 and N ´ 1

entries 1). The adjoint of β is ´β and for x “ pxi,jq we have

trpβpx´ 1qq “ ´x1,2 ´ ¨ ¨ ¨ ´ xN´1,N ´ xN,N`1 ` xN`1,N`2 ` ¨ ¨ ¨ ` x2N´1,2N ` ̟´1
F x2N,1.

Viewing ψ ˝ trpβpx ´ 1qq as a character of I2N p1q{I2Np2q we can equate x1,2 to ´x2N´1,2N

and so on, getting

(2.1) ψ ˝ trpβpx´ 1qq “ ψp´2x1,2 ´ ¨ ¨ ¨ ´ 2xN´1,N ´ xN,N`1 ` ̟´1
F x2N,1q.

We note that the lattice chain underlying Λ2N is the set of βiΛ2Npkq for i P Z and any fixed
k, and that the oE-order A0pΛ2N q X E is just the maximal oE-order oE.

Thus pΛ2N , 2, 0, βq is a simple and maximal stratum in LiepSpp2N,F qq, to which we apply
the machinery in [26]. Actually β is minimal over F and we have by [25, §3.1]

J1pβ,Λ2Nq “ H1pβ,Λ2Nq “ I2N p1q, Jpβ,Λ2Nq “ ZJ1pβ,Λ2Nq “ ZI2N p1q.
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Then ψβ is the unique simple character in Cpβ,Λ2Nq. The underlying stratum pΛ2N , 2, 0, βq
is simple and maximal (attached to the totally ramified field extension of maximal degree),
so we obtain the following from [5, 3.6, 4.4 Theorem].

Proposition 2.2. For any character χ of the center Z » t˘1u of G, we consider the

beta-extension κ “ χ b ψβ of ψβ, a representation of ZI2N p1q, and the simple cuspidal

representation π “ c-IndG
ZI2N p1q χb ψβ of G.

The Jordan set of π is Jordpπq “ tpǫ1, 1q, pσ, 1qu where ǫ1 is a character of Fˆ with trivial

square and σ is a cuspidal representation of GLp2N,F q attached to the simple character ψ2β.

We will discuss in the last section (see Theorem 5.1) the Langlands parameter of π.

In the next section we compute the character ǫ1, viewed as a character of Fˆ “ GLp1, F q.
In section 4 we compute the cuspidal representation σ of GLp2N,F q. Both computations
rely on Theorem 1.10. There is a slight difference between them: in section 3 we use first
[5, 4.4 Theorem] to determine the restriction of ǫ1 to oˆ

F , based on a twisting character (3.3)
computed in 3.1, then we proceed to the computation of the coefficients b0 and b1 using this
restriction; in section 4 we proceed directly to the computation of b0 and b1 keeping the
restriction to oˆ

F of the central character of σ as a parameter, the value of which then results
from the computation. Both ways are possible, we chose to use both.

3. The quadratic or trivial character

3.1. The inertial Jordan set relative to the trivial endoclass. The four quadratic or
trivial characters of Fˆ “ GLp1, F q are self-dual cuspidal representations attached to the
null stratum pppkF qkPZ, 1, 1, 0q, the trivial character of H1pppkF q, 0q “ 1 ` pF and a self-dual
beta-extension of this character to JpppkF q, 0q “ oˆ

F , which is a quadratic or trivial character τ
of oˆ

F . In [5, §3.6] we built a cover pJP , λP q in Spp2N`2, F q of the type poˆ
F ˆZI2N p1q, τbκq

in the Levi subgroup GLp1, F q ˆ Spp2N,F q. We recall some features of this cover.

In the notation of [5, §3] we have V “ F 2N as described above, X “ F 2N`2 with elements
written in coordinates px0, x1, ¨ ¨ ¨ , x2N , x2N`1q

t and alternating form h2pN`1q, and with W “
F the subspace given by the first coordinate x0 and W

˚ given by the last coordinate x2N`1.
On the space W ‘W ˚ we take the unique lattice sequence Λ2 built on p oF

oF q, p oF
pF q and their

scalar multiples, that has period 4N and duality invariant 1, and on X “ pW ‘ W ˚q K V

we take the direct sum Λ “ Λ2 ‘ Λ2N . The stratum underlying the cover is pΛ, 2, 0, 0 ‘ βq
(meaning: 0 in LiepSLp2, F q and β in LiepSppV q).

We form two lattice sequences M0 and M1 in X as follows. The first one M0 (resp. the
second one M1) is the direct sum of the unique lattice sequence m0 (resp. m1) built on p oF

oF q
(resp. p oF

pF q) and its scalar multiples, that has period 4N and duality invariant 1, and Λ2N .

For the record, we first describe the relevant finite groups in our situation. For i “ 0, 1, the
finite group P pΛoEq{P 1pΛoEq, isomorphic to oˆ

F ˆt˘1u, is a Levi factor of P pΛoEq{P 1pMi,oEq,
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which is a parabolic subgroup of Gi “ P pMi,oEq{P 1pMi,oEq » Spp2, kF q ˆ t˘1u. Hence the
two-dimensional Hecke algebras that arise here are just algebras on SLp2, kF q. We recall that,
for a character σ of kF

ˆ with trivial square, viewed as a character of the Levi subgroup kF
ˆ

of SLp2, kF q, the Hecke algebra H pSLp2, kF q, σq has a generator T satisfying the following
quadratic relation:

(3.1)
pT ´ 1qpT ` 1q “ 0 if σ ‰ 1,

pT ´ qqpT ` 1q “ 0 if σ “ 1.

Now we apply [5, 4.4 Theorem]. We are actually dealing with that part of the inertial
Jordan set of π relative to the trivial endoclass. The theorem says that it is the δ-twist of
the inertial Jordan set of the trivial representation of the trivial group, for a well-identified
character δ of kF

ˆ which we will address shortly.

The Jordan set of the trivial representation of the trivial group has itself long been known:
it has one element, the pair pι, 1q. Indeed the unique self-dual character σ of GLp1, F q such

that the normalized induced representation Ind
SLp2,F q
B σ|.|s reduces for some s ě 1 (where B

is the standard Borel subgroup of upper triangular matrices) is the trivial character ι, and
then s “ 1 [12, Corollary 9.3.3].

The character δ is given by [5, 4.3 Proposition] and can be computed through [5, 4.2 Lemma]:
as a character of oˆ

F , its value at x P oˆ
F is the signature of the natural left action of x on

J1
M1

X HomF pV,W q{H1
M1

X HomF pV,W q. (With the convention of loc.cit. the space V 0 is
the trivial space, hence V _0 “ V .) Implicit here is the stratum pM1, 2, 0, 0 ‘ βq where ´2
is the valuation of 0 ‘ β relative to the sequence M1, equal to valΛ2N

pβq.

We must come back to the definitions. We recall that the jumps of a lattice sequence
Σ in a vector space S are those integers i such that Σpiq ‰ Σpi ` 1q. The set of jumps
of Σ is also the image of Szt0u by the valuation map attached to Σ, given for y P Szt0u
by valΣpyq “ maxtk P Z | y P Σpkqu.

Our stratum in X “ pW ‘ W ˚q K V is pM1, 2, 0, 0 ‘ βq so the easiest way is to follow
[25, §3.3]. We obtain the oF -orders HM1

and JM1
written in blocks in the decomposition

pW ‘ W ˚q K V :

(3.2) HM1
“

ˆ
Hp0,m1q a122 pM1q
a212 pM1q Hpβ,Λ2Nq

˙
, JM1

“

ˆ
Jp0,m1q a121 pM1q
a211 pM1q Jpβ,Λ2Nq

˙
.

We concentrate on the first line of the upper-right block that corresponds to HomF pV,W q.
To compare it between H and J we have to describe the lattices explicitly. We check that

m1ptq “

˜
p

r t`2N´1

4N
s

F

p
r t`6N´1

4N
s

F

¸
(period 4N , constant on the interval r´2N ` 1, 2Ns), the set of jumps

of m1 is 4NZ. For t P r´2N, 2N ´ 1s the lattices Λ2Nptq are the columns of the order A2N

from right to left, each repeated twice; the set of jumps of Λ2N is the set of odd integers.



14 CORINNE BLONDEL, GUY HENNIART, AND SHAUN STEVENS

The condition for some b P HomF pV,W q to belong to a121 pM1q or a122 pM1q is the following:

b P a121 pM1q ðñ @t odd, bΛ2N ptq Ď m1pt` 1q X W ðñ bΛ2N p´2N ` 1q Ď oF

b P a122 pM1q ðñ @t odd, bΛ2N ptq Ď m1pt` 2q X W ðñ

"
bΛ2N p´2N ` 1q Ď oF
bΛ2N p2N ´ 1q Ď pF

So the condition is: all entries of b in oF for a121 pM1q, the first entry in pF and the others in
oF for a122 pM1q. Using [5, 3.11 Lemma] we conclude that

(3.3)
δ is the quadratic character of oˆ

F , in other words:

IJordpπ, 1q “ prǫ1s, 1q where ǫ1 is a quadratic ramified character of Fˆ.

We remark that IJordpπ, 1q does not depend on the character χ of Z such that π “
c-IndG

ZI2N p1q χb ψβ .

3.2. The Jordan set relative to the trivial endoclass. We apply the results of the first
section toM “ GLp1, F q ˆSpp2N,F q and P the parabolic subgroup of G` “ Spp2N `2, F q
stabilizing the flag t0u Ă W Ă W ‘ V Ă X . Let ǫ be a quadratic ramified character of Fˆ.
We are studying normalized parabolic induction from M to Spp2N ` 2, F q, specifically we
are investigating the reducibility of the following representation:

Ipπ, ǫ, sq “ IndG`

P ǫ| |s b π ps P Cq.

We have a type poˆ
F ˆZINp1q, δb κq in M for ǫb π and a cover pJP , λP q of this type in G`.

We ease notation by calling the respective Hecke algebras of these types HM “ HpM, δbκq
and HG` “ HpG`, λP q.

We consider the generator Ψ of HM “ CrΨ,Ψ´1s supported on the oˆ
F ˆ ZINp1q-double

coset of ΠJM “

ˆ
̟F 0 0
0 I2N 0

0 0 ̟´1

F

˙
. The value of Ψ at ΠJM is a non-zero intertwining operator

of δ b κ; it is unique up to scalar, we take it as the identity on the space of κ and some
non-zero scalar on the space of δ.

We turn to HG` . The normalizer of M in G` is the union of two M-cosets, the trivial coset

and the coset of t0 “
´

0 0 1
0 I2N 0

´1 0 0

¯
and t1 “

ˆ
0 0 ´̟´1

F

0 I2N 0
̟F 0 0

˙
. We check that t0 belongs to

P pM0,oEq, that t1 belongs to P pM1,oEq and that t0t1 “ ΠJM . The algebra HG` has two
generators T0 and T1 of respective supports JP t0JP and JP t1JP , images of the corresponding
generators of the two Hecke algebras in SLp2, kF q described in §3.1. In view of (3.1) and [5,
3.14 Proposition], the only possibility for a reducibility at some s with real part 1 (a fact
in our case, once chosen a self-dual base point) is that both generators satisfy the quadratic
relation pT ´ qqpT ` 1q “ 0, which defines them uniquely. Hence T0pt0q and T1pt1q are
uniquely determined by the quadratic relations pT0 ´ qqpT0 `1q “ 0 and pT1 ´ qqpT1 `1q “ 0.
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By Theorem 1.10 and Corollary 1.11, the quadratic character ǫ1 in the Jordan set of π is
characterised by:

(3.4) ǫ1p̟F q ” T0pt0qT1pt1q

where ” means “equal up to positive constant”.

3.3. Computation of the argument of T0pt0qT1pt1q. We proceed to determine the ar-
guments of T0pt0q and T1pt1q providing quadratic relations with positive coefficients. We
work this out following [3, §1.d], that applies mutatis mutandis provided t0 and t1 behave
well with respect to the Iwahori decomposition of JP , which we check first.

We write P “ MU for the parabolic subgroup defined in the previous subsection, with U

the unipotent radical of P , and we write P´ “ MU´ for the opposite parabolic with respect
to M . We write JΛ for JpΛ, 0 ‘ βq and so on. From [5, §3.6] we have

JP “ pH1
Λ X U´qpoˆ

F ˆ ZIN p1qqpJ1
Λ X Uq

3.3.1. Some lattice computations. As in (3.2), following [25, §3.3], for the stratum pΛ, 2, 0, 0‘
βq, we write in blocks in the decomposition pW ‘ W ˚q K V :

(3.5)

HΛ “

ˆ
Hp0,Λ2q a122 pΛq
a212 pΛq Hpβ,Λ2Nq

˙
, JΛ “

ˆ
Jp0,Λ2q a121 pΛq
a211 pΛq Jpβ,Λ2Nq

˙
,

t0 “

ˆ
r 0 1

´1 0 s 0
0 I2N

˙
, t1 “

˜”
0 ´̟´1

F

̟F 0

ı
0

0 I2N

¸
.

We write further a12i pΛq “

ˆ
R1piq
R2piq

˙
where R1piq, R2piq are lattices of row vectors in F 2N and

similarly a21i pΛq “ pC1piq C2piqq with lattices of column vectors. Recalling that J1pβ,Λ2Nq “
H1pβ,Λ2Nq “ I2Np1q and that H1p0,Λ2q “ J1p0,Λ2q “ I1, we get:

JP X U “

¨
˝
1 R1p1q oF
0 I2N C2p1q
0 0 1

˛
‚, JP X U´ “

¨
˝

1 0 0
C1p2q I2N 0
pF R2p2q 1

˛
‚

t0pJP X U´qt´1
0 “

¨
˝
1 R2p2q pF
0 I2N C1p2q
0 0 1

˛
‚, t0pJP X Uqt´1

0 “

¨
˝

1 0 0
C2p1q I2N 0
oF R1p1q 1

˛
‚

t1pJP X U´qt´1
1 “

¨
˝
1 ̟´1

F R2p2q p´1
F

0 I2N ̟´1
F C1p2q

0 0 1

˛
‚, t1pJP X Uqt´1

1 “

¨
˝

1 0 0
̟FC

2p1q I2N 0
p2F ̟FR

1p1q 1

˛
‚

We have to describe the lattices explicitly. We have seen before that for t P r´2N, 2N ´ 1s
the lattices Λ2Nptq are the columns of the order A2N from right to left, each repeated twice;
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the set of jumps of Λ2N is the set of odd integers. Now Λ2 has period 4N , has a constant
value equal to p oF

pF q on the interval r´N ` 1, Ns, and the set of jumps of Λ2 is N ` 2NZ.

Elements B “

ˆ
B1

B2

˙
of a12i pΛq, i “ 1, 2, must satisfy BΛ2Nptq Ă Λ2pt ` iq for all t, i.e.

i “ 1 BΛ2Np´Nq Ă p oF
pF q and BΛ2NpNq Ă p pF

pF q ;

i “ 2 BΛ2Np´N ´ 1q Ă p oF
pF q and BΛ2N pN ´ 1q Ă p pF

pF q .

The first remark concerns parity. Since the jumps of Λ2N occur at odd integers, we have
Λ2N pNq “ Λ2NpN ´ 1q if and only if N is odd. Hence if N is odd we have a121 pΛq “ a122 pΛq.

We look at the rows of B focusing on R1p1q and R2p2q which appear in JP above:

B1 P R1p1q ðñ B1Λ2Np´Nq Ă oF and B1Λ2N pNq Ă pF

B2 P R2p2q ðñ B2Λ2Np´N ´ 1q Ă pF (and B2Λ2N pN ´ 1q Ă pF q.

In particular ̟FR
1p1q Ă R2p2q Ă R1p1q Ă ̟´1

F R2p2q,

and by duality ̟FC
2p1q Ă C1p2q Ă C2p1q Ă ̟´1

F C1p2q.

Finally:

(3.6)
t0pJP X U´qt´1

0 Ă JP X U Ă t1pJP X U´qt´1
1 ,

t1pJP X Uqt´1
1 Ă JP X U´ Ă t0pJP X Uqt´1

0 .

From these inclusions, we draw that t1 satisfies exactly the conditions in [3, (1.3)], whereas
for t0 we will only need to exchange the roles of U and U´. With this the computation
in [3, §1.d] applies: we get the coefficients of the quadratic relations T 2 “ b0T ` c0I and
T 2 “ b1T ` c1I, satisfied respectively by T0 and T1, from [3, (1.4)]. In particular loc.cit.

provides immediately:

Lemma 3.7. The coefficients c0 and c1 are positive if and only if T0pt0qT0pt´1
0 q and T1pt1qT1pt

´1
1 q

are positive, or equivalently δp´1qT0pt0q2 and δp´1qT1pt1q
2 are positive.

For the coefficients b0 and b1 the computation based on [3, (1.4)] is more involved.

3.3.2. Computation of the coefficient b1. We must compute

b1 “
ÿ

jPpJP XUqzΓ

T1pjq where Γ “ t1pJP X U´qt´1
1 X JP t1JP .

We have JP t1JP “ pJP XU´qpoˆ
F ˆZI2Np1qqt1pJP XU´q. The decomposition of an element

x of JP t1JP as a product

x “ u´
´

λ 0 0
0 g 0

0 0 λ´1

¯
t1v

´ with u´, v´ P JP X U´, λ P oˆ
F , g P ZI2Np1q,

is unique and gives
T1pxq “ δpλqpχb ψβqpgqT1pt1q.
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To compute b1 we must work out the matrix product to obtain, by identification, a charac-

terization of Γ as some set of matrices j “
´

1 B z
0 I2N C
0 0 1

¯
, with B P ̟´1

F R2p2q, C P ̟´1
F C1p2q

and z P p´1
F , and additional conditions, and compute λ and g as functions of B, C, z. We

want:
´

1 0 0
D1 I2N 0
Z1 H1 1

¯ ´
λ 0 0
0 g 0

0 0 λ´1

¯ ˆ
0 0 ´̟´1

F

0 I2N 0
̟F 0 0

˙ ´
1 0 0
D2 I2N 0
Z2 H2 1

¯
“

˜
´λ̟´1

F
Z2 ´λ̟´1

F
H2 ´λ̟´1

F

´λ̟´1

F
D1Z2`gD2 g´λ̟´1

F
D1H2 ´λ̟´1

F
D1

y Y ´λ̟´1

F
Z1

¸

“
´

1 B z
0 I2N C
0 0 1

¯
.

The obvious condition is that z must have valuation ´1, then we let λ “ ´z̟F . Next:

‚ Z1 “ Z2 “ z´1 P ̟Fo
ˆ
F ;

‚ H2 “ z´1B P R2p2q and D1 “ z´1C P C1p2q;
‚ g “ I2N ´ z´1CB.

We must check g. Conditions on B and C are ̟FCoF Ă Λ2NpN ` 2q and BΛ2Np´N ´ 1q Ă
oF , they are equivalent by duality. From the second condition, the entries in B are in oF
except the last k ones in p´1

F , for some k with 1 ď k ă N . We will show that ̟FCB belongs
to A0pΛ2Nq if and only if all the entries of B belong to oF – this will show that actually
̟FCB belongs to A1pΛ2Nq.

Recall that
´

1 B z
0 I2N C
0 0 1

¯
belongs to Spp2N`2, F q if and only if, writing x1 to x2N for the entries

of B, left to right, and c1 to c2N for the entries of C, top to bottom, we have ci “ x2N´i`1

for 1 ď i ď N and ci “ ´x2N´i`1 for N ` 1 ď i ď 2N , which we will write as C “ Bτ , and
BC “ 0. Assume that one of the last k entries of B, say x2N´j`1, has valuation ´1, then
the pj, 2N ´ jq entry of ̟FCB has valuation ´1, which proves our claim. In particular,
when g belongs to A0pΛ2Nq, it belongs to I2Np1q and pχb ψβqpgq “ ψ ˝ trp´βz´1CBq.

We leave aside for the moment the checking of the other coefficients and get on to computing
b1, with the following facts:

Γ “ t1pJP X U´qt´1
1 X JP t1JP “

"ˆ
1 B ̟´1

F
u

0 I2N C
0 0 1

˙
P Spp2N ` 2, F q | u P oˆ

F , B P o2NF

*
,

T1p
´

1 B z
0 I2N C
0 0 1

¯
q “ δp´uqψ ˝ trp´βu´1̟FCBqT1pt1q for

ˆ
1 B ̟´1

F
u

0 I2N C
0 0 1

˙
P Γ.

We continue with the explicit element β given in §2.2, so that

ψ ˝ trp´βu´1̟FCBq “ ψpu´1̟F p2c1x2 ` ¨ ¨ ¨ ` 2cN´1xN ` cNxN`1 ´ ̟´1
F c2Nx1qq

“ ψpu´1x21q.

We need b1 up to a positive constant, which we write as ”:

b1 ” T1pt1q
ÿ

uPkˆ
F

δp´uq
ÿ

xPkF

ψpu´1x2q ” T1pt1qδp´1qGpδ, ψq,
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where Gpδ, ψq is the Gauss sum
ř

uPkˆ
F
δpuqψpuq, known to be the product of q

1

2 and a square

root of p´1q
q´1

2 , namely

(3.8) ξpδ, ψq “
Gpδ, ψq

|Gpδ, ψq|
, ξpδ, ψq2 “ p´1q

q´1

2 .

Proposition 3.9. The normalization of T1 such that the coefficients b1 and c1 of the qua-

dratic relation that it satisfies are positive is given, up to a positive scalar, by

T1pt1q “ ξpδ, ψq.

Indeed, with this normalization the coefficient c1 is also positive, as stated in Lemma 3.7,
which stipulated that, up to a positive constant, T1pt1q was a square root of δp´1q. The
exact square root is specified by the Gauss sum Gpδ, ψq.

As for the last checks:

‚ ´λ̟´1
F D1Z2 ` gD2 “ 0 ðñ z´1C ` D2 ´ z´1CBD2 “ 0,

which holds since D2 “ ´Hτ
2 “ ´z´1Bτ “ ´z´1C and BC “ 0.

‚ We have Y “ H1g ` H2 “ H1 ´ z´1H1CB ` z´1B. Since Hτ
1 “ ´D1 “ ´z´1C “

´z´1Bτ we have H1 “ ´z´1B and Y “ 0 follows. Then y “ ´z´1 ` H1gD2 ` z´1

is 0 for the same reasons.

3.3.3. Computation of the coefficient b0. As announced it is done in the same way with the
roles of U and U´ being exchanged. We just write down the relevant facts.

b0 “
ÿ

jPpJP XU´qzΓ1

T1pjq where Γ1 “ t0pJP X Uqt´1
0 X JP t0JP

We have JP t0JP “ pJP X Uqpoˆ
F ˆ ZI2N p1qqt0pJP X Uq, and

Γ1 “
!´

1 0 0
D I2N 0
u H 1

¯
P Spp2N ` 2, F q | u P oˆ

F , H P poF , ¨ ¨ ¨ , oF , pF , ¨ ¨ ¨ , pF q “ pNF ˆ oNF

)
,

T1p
´

1 0 0
D I2N 0
u H 1

¯
q “ δp´uqψ ˝ trp´βu´1DHqT0pt0q for

´
1 0 0
D I2N 0
u H 1

¯
P Γ1.

Now D and H are related by D “ ´Hτ so that ψ ˝ trp´βu´1DHq “ ψp´u´1d2Nq, and

b0 ” T0pt0q
ÿ

uPkˆ
F

δp´uq
ÿ

xPkF

ψp´u´1x2q ” T0pt0qGpδ, ψq.

Proposition 3.10. The normalization of T0 such that the coefficients b0 and c0 of the

quadratic relation that it satisfies are positive is given, up to a positive scalar, by

T0pt0q “ δp´1qξpδ, ψq.
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3.4. Conclusion. Putting together (3.4) and the last two Propositions we obtain

(3.11) ǫ1p̟F q “ p´1q
q´1

2 ξpδ, ψq´2 “ 1.

In other terms, the Jordan set of π “ c-IndG
ZI2N p1q χ b ψβ relative to the trivial endoclass is

pǫ1, 1q where ǫ1 is the ramified quadratic character such that ǫ1p̟F q “ 1. In terms of β, from
§2.2 we replace ̟´1

F by p´1qNβ2N “ p´1qN`1NE{F pβq and get: ǫ1pp´1qN`1NE{F pβqq “ 1, or

ǫ1pNE{F pβqq “ p´1qpN`1q q´1

2 .

We remark that the result does not depend on χ, and conclude:

Proposition 3.12. The Jordan set of π “ c-IndG
ZI2N p1q χbψβ relative to the trivial endoclass

is pǫ1, 1q where

‚ ǫ1 is the ramified quadratic character that is trivial on the norms of F rβs if q´1

2
is

even or if N is odd;

‚ ǫ1 is the ramified quadratic character that is non-trivial on the norms of F rβs if N
is even and q´1

2
is odd.

4. The simple cuspidal of GLp2N,F q

We try and apply the same method to determine the simple cuspidal of GLp2N,F q that
gives a reducibility with real part 1. We know from [5] the simple character underlying
this representation: the square of the self-dual simple character extending ψβ. For the level
zero part, section 5 in [5] would give the result, but we don’t use it here. We compute the
generators of the Hecke algebra in order to describe completely the simple cuspidal.

4.1. The simple character and the cover. We start again with the symplectic space
pV, hq “ pF 2N , h2N q from section 2. We work in the symplectic space X “ V ‘ V ‘ V

equipped with the following symplectic form:

hp
´

a
b
c

¯
,
´

a1

b1

c1

¯
q “ hpa, c1q ` hpb, b1q ` hpc, a1q pa, b, c, a1, b1, c1 P V q.

We let W “
!´

a
0
0

¯
| a P V

)
and W ˚ “

!´
0
0
c

¯
| c P V

)
, and we make the identification

V “
!´

0
b
0

¯
| b P V

)
: this is the symplectic space on which our original group G “ Spp2N,F q

operates. For an endomorphism Z of V we denote by aZ the adjoint endomorphism, as
described in §2.1. For an endomorphism Z of X we denote by Z ÞÑ AZ the adjoint map
with respect to h. We have

A
´

g1
g2

g3

¯
“

ˆ
ag3

ag2
ag1

˙
; A

´
g1

g2
g3

¯
“

ˆ
ag1

ag2
ag3

˙
;

A
´

I X Z
I Y

I

¯
“

´
I aY aZ

I aX
I

¯
; A

´
I
X I
Z Y I

¯
“

´
I
aY I
aZ aX I

¯
.
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We let H “ SppXq » Spp6N,F q and we consider the embedding

GLpW q ˆ G ÝÑ H

px, gq ÞÝÑ m px, gq “

¨
˝
x

g
ax´1

˛
‚, x P GLpW q, g P G.

The image of m is a Levi subgroup M of H . We let P be the parabolic subgroup of H
stabilizing the flag t0u Ă W Ă W ‘ V Ă X and we write P “ MU , with U the unipotent
radical of P , and P´ “ MU´ for the opposite parabolic with respect to M .

Each subspace W , V , W ˚ of X bears a natural identification coordinate-wise with F 2N

through which we identify Λ2N to lattice sequences ΛW , ΛV , ΛW˚. Note that ΛW˚ is also
the dual lattice sequence to ΛW when identifying W ˚ to the dual of W through h, i.e.

ΛW˚ptq “ tz P W ˚ | @x P ΛW p1 ´ tq hpz, xq P pF u .

We recall our type in V :

pJV , λV q “ pJpβ,ΛV q, χb ψβq, with Jpβ,ΛV q “ ZI2Np1q,

and consider the following data in W :

‚ the simple and maximal stratum pΛW , 2, 0, 2βq,
‚ the associated compact open subgroups J̃1pβ,ΛW q and J̃pβ,ΛW q “ oˆ

F J̃
1pβ,ΛW q;

‚ the simple character ψ2β of J̃1pβ,ΛW q;
‚ a character δ of oˆ

F with trivial square;

‚ the self-dual type pJ̃W , λ̃W q “ pJ̃pβ,ΛW q, δ b ψ2βq in GLpW q.

We form the type pJM “ J̃W ˆ JV , λM “ λ̃W b λV q in M .

We need a lattice sequence in X which, together with βX “ β ‘ β ‘ β, will form a skew-
simple stratum underlying an H-cover of pJM , λMq. The attached groups H1, J1 and J must
have Iwahori decomposition with respect to P “ MU . This will hold if the decomposition
X “ W ‘ V ‘ W ˚ is properly subordinate to the stratum [26, Corollaries 5.10, 5.11], i.e.

‚ the lattices in the sequence are direct sums of lattices in W,V,W ˚;
‚ from one lattice to the next, at most one of the three parts changes.

Using the definitions in [11, §2], we let

ΛX “ p3ΛW ´ 2q ‘ p3ΛV q ‘ p3ΛW˚ ` 2q

where p3ΛW ´ 2qptq “ 3ΛW pt ´ 2q “ ΛW pr pt´2q`2

3
sq, and so on. The period of ΛX is 12N .

The dual of ΛXptq is (with 1 ´ rx
3
s “ r1´x`4

3
s):

ΛW p1 ´ r pt`2q`2

3
sq ‘ ΛV p1 ´ r t`2

3
sq ‘ ΛW˚p1 ´ r pt´2q`2

3
sq

“ ΛW pr p1´t´2q`2

3
sq ‘ ΛV pr1´t`2

3
sq ‘ ΛW˚pr p1´t`2q`2

3
sq “ ΛXp1 ´ tq
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so ΛX has duality invariant 1. The jumps of the sequence in W , resp. V , resp. W ˚, occur
for t ” 5, resp. t ” 3, resp. t ” 1, mod 6. We have ΛXp2tq “ ΛXp2t ` 1q for any t P Z,
which implies A2t´1pΛXq “ A2tpΛXq for t ě 1.

We form in X the skew-simple stratum pΛX , 6, 0, βX “ β ‘ β ‘ βq. We check the condition
in [26, §6.2]: the decomposition X “ W ‘ V ‘ W ˚ is exactly subordinate to the stratum,
we have ΛXp1q “ ΛXp0q and ΛXp1q X W ˚ Ľ ΛXp2q X W ˚. We stick to the conventions
and notations of loc.cit. and let W “ W p´1q, W ˚ “ W p1q, with q1 “ 1 and q´1 “ ´1; our
parabolic subgroup P is the same as in loc.cit..

We use the cover of pJM , λMq constructed by the third author [26, §6.2, §7.2.2]. Since β is
minimal over F and A3pΛXq “ A4pΛXq, we have J1pΛX , βXq “ H1pΛX , βXq [25, §3.1]. The
skew-simple character ψβX

of J1
X “ H1

X “ H1pΛX , βXq restricts through m to the character

ψβX
˝ m “ ψ2β b ψβ of J̃1pβ,ΛW q ˆ J1pβ,Λ2Nq and is trivial on the intersections with U

and U´. We have

JX :“ JpΛX , βXq “ pH1
X X U´q mpJ̃pβ,ΛW q ˆ Jpβ,ΛV qq pH1

X X Uq.

We get an H-cover pJX , λXq of pJM , λMq by letting λX be trivial on U , U´ and putting
λX ˝ m “ λM .

4.2. The Hecke algebra. We turn to HX “ HpSppXq, λXq. The normalizer of M in H
is the union of two M-cosets, the trivial coset and the coset of the elements s1 and s̟1 from
[26, §6.2]:

s1 “ w0 “

¨
˝

0 0 I2N
0 I2N 0
I2N 0 0

˛
‚, s̟1 “ w1 “

¨
˝

0 0 β

0 I2N 0
´β´1 0 0

˛
‚,

where we use β´1 as a uniformizing element for E, in other words we let β´1 “ ̟E.

In [26, §7.2.2], the third author constructs self-dual lattice sequences M0 and M1, of period
2 over E, such that w0 belongs to P pM0,oEq and w1 belongs to P pM1,oEq. They are defined
by

M0p2k ` rq “

"
̟k

EΛXp0q if r “ 0,
̟k

EΛXp1q if r “ 1,
M1p2k ` rq “

"
̟k

EΛXp´2q if r “ 0,
̟k

EΛXp3q if r “ 1.

The algebra HX has two generators T0 and T1 of respective supports JXw0JX and JXw1JX .
Furthermore PEpΛXq{P 1

EpMiq is a maximal Levi subgroup of the finite reductive group
PEpMiq{P 1

EpMiq and there is a quadratic character ǫMi
of PEpΛXq{P 1

EpMiq, depending only
on Mi, M , U , such that Ti satisfies a quadratic relation computed in

HpP pMi,oEq{P 1pMi,oEq, ǫMi
pδ b χqq.

Actually we are in the situation of [5, §3.16]: the finite reductive groups obtained are
Op2, 1qpkF q and SLp2, kF q ˆ t˘1u. In the first one the quadratic relation is always T 2 “
pq ´ 1qT ` q, the quotient of the roots is ´q (i.e. r0 “ 1). In the second one, we get either
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the previous relation or T 2 “ 1, the quotient of the roots is ´q or ´1 (i.e. r1 “ 1 or 0).
Reducibility at ˘1 corresponds to both relations equal to T 2 “ pq ´ 1qT ` q. We will come
back to this later.

Now w0 and w1 normalize JX X M and exchange U and U´, and Lemma 7.11 in [26] gives

w0pJX X U´qw´1
0 Ď JX X U and w1pJX X Uqw´1

1 Ď JX X U´

hence for w0 :

(4.1)

JXwoJX “ pJ1
X X Uqw0JMpJ1

X X Uq,

JX X w0JXw
´1
0 “ pJX X U´qJMw0pJX X U´qw´1

0 ,

Ω0 :“ JX{JX X w0JXw
´1
0 » JX X U{w0pJX X U´qw´1

0 » J1
X X U{w0pH1

X X U´qw´1
0 ;

and for w1 :

(4.2)

JXw1JX “ pH1
X X U´qw1JMpH1

X X U´q,

JX X w1JXw
´1
1 “ w1pJX X Uqw´1

1 JMpJX X Uq,

Ω1 :“ JX{JX X w1JXw
´1
1 » JX X U´{w1pJX X Uqw´1

1 » H1
X X U´{w1pJ

1
X X Uqw´1

1 .

We already know the possible forms of the quadratic relations satisfied by the generators,
up to normalization. What we have to do is:

(i) when two forms are possible, determine which one is obtained in terms of χ and δ;
(ii) determine, up to a positive scalar, the normalization of the generators that gives a

quadratic relation with positive coefficients – in other words, choose the intertwining
operator Tipwiq up to a positive scalar.

Then Theorem 1.10 and the Corollary that follows will give us the result.

We proceed, following the framework in [3, §1.d]. The relations are T 2
i “ biTi ` ci1 where

the scalars bi and ci are given by the following formulae (simpler than in [3] since the space
of λX has dimension 1):

(4.3)

ci “ |Ωi| Tipwiq Tipw
´1
i q,

bi “
ÿ

xPΩi

Tipw
´1
i x´1wiq “

ÿ

xPYi

Tipxq,

where we let Y0 “ pH1
X X U´qzw´1

0 pJ1
X X Uqw0 and Y1 “ pJ1

X X Uqzw´1
1 pH1

X X U´qw1.

In the expression of bi, the support of the sum on Yi is the intersection of (a system of repre-
sentatives of) Yi with the support of Ti. From the uniqueness of the Iwahori decomposition,
the decomposition of some element as a product in UwiMU or U´wiMU´ is unique (same
reason: P XU´ “ t1u). Let x P Y0 X SuppT0 and write x “ uwod0pxqu1 with u, u1 P J1

X XU

and d0pxq P JM , and similarly for Y1 mutatis mutandis, consequently:

(4.4) bi “ Tipwiq
ÿ

x PYiXsupp Ti

λXpdipxqq.
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4.3. Relevant matrix decompositions. We have to solve equations such as

(4.5)

¨
˝
I

D I

Z H I

˛
‚“

¨
˝
I B1 E1

I F1

I

˛
‚

¨
˝

I

I

I

˛
‚

¨
˝
m

g
am´1

˛
‚

¨
˝
I B2 E2

I F2

I

˛
‚

and

(4.6)

¨
˝
I H Z

I D

I

˛
‚“

¨
˝
I

F1 I

E1 B1 I

˛
‚

¨
˝

β

I

´β´1

˛
‚

¨
˝
m

g
am´1

˛
‚

¨
˝
I

F2 I

E2 B2 I

˛
‚

in order to determine the intersections Yi X SuppTi, i “ 0, 1. By uniqueness of the Iwahori
decomposition, if the LHS belongs to the symplectic group, so do the elements in the RHS.
We want the LHS to belong to Yi and the elements in the RHS to belong to the relevant
subgroups in the decomposition of JXwiJX , in particular we need m P J̃W , g P JV .

(We remark that these equations are the ones considered by Shahidi in [24], for orthogonal
groups. They actually hold for GLpN 1q ˆ Spp2Nq as well as the solutions below. Shahidi
studies the relationship between m and g in (4.5), m is almost aZ´1 or Z and g is related
to the inverse of the “norm” of m, namely ´m´1 am.)

We recall that the adjoint of
´

I
D I
Z H I

¯
is

´
I

aH I
aZ aD I

¯
so for such a matrix, belonging to SppXq

amounts to H “ ´ aD and Z ` aZ ` aDD “ 0.

To facilitate further checks, we expand the product on the RHS of (4.5):
¨
˝
E1m T1mB2 ` B1g E1mE2 ` B1gF2 ` am´1

F1m F1mB2 ` g F1mE2 ` gF2

m mB2 mE2

˛
‚

We see that (4.5) has a solution if and only if Z is invertible, given by

(4.7)
m “ Z; B2 “ ´Z´1 aD; E2 “ Z´1; F1 “ DZ´1; E1 “ Z´1;

g “ I ´ pDZ´1qZp´Z´1 aDq “ I ` DZ´1 aD.

As in [24, Corollary 3.2] we have gD “ D`DZ´1 aDD “ D´DZ´1pZ` aZq “ ´DZ´1 aZ

so, when D is invertible:

(4.8) g “ ´DZ´1 aZD´1.

Similarly, the adjoint of
´

I H Z
I D

I

¯
is

´
I aD aZ

I aH
I

¯
so belonging to SppXq amounts to H “ ´ aD

and Z ` aZ ` aDD “ 0. The product on the RHS of (4.6) is :
¨
˝

β am´1E2 β am´1B2 β am´1

gF2 ` F1β
am´1E2 g ` F1β

am´1B2 F1β
am´1

´β´1m ` B1gF2 ` T1β
am´1E2 B1g ` E1β

am´1B2 E1β
am´1

˛
‚
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so the general solution for (4.6) is given, for an invertible Z, by

(4.9)
am´1 “ β´1Z; B2 “ ´Z´1 aD; E2 “ Z´1; F1 “ DZ´1; E1 “ Z´1;

g “ I ´ pDZ´1qZp´Z´1 aDq “ I ` DZ´1 aD.

Again gD “ D`DZ´1 aDD “ D`DZ´1p´Z´ a Zq “ ´DZ´1 a Z and, whenD is invertible:

(4.10) g “ ´DZ´1 aZD´1.

To proceed, we must describe the blocks in J1
X X U and other relevant subgroups. This is

done in [4, Proposition 1] (for a lattice chain, but the lattice sequence ΛX is obtained by
homothety-translation from the one in [4] and has same A1, H̃

1 and J̃1). Here we have t “ 3
and a specially simple situation since H1 “ H1pβ,Λ2Nq “ J1pβ,Λ2Nq “ A1pΛ2Nq :“ A1. So:

(4.11)

J̃1
X “ H̃1

X “ I`

¨
˝

A1 oE ` A1 ̟´1
E A1

A1 A1 oE ` A1

pE ` ̟EA1 A1 A1

˛
‚“ I`

¨
˝

A1 oF ` A1 A0

A1 A1 oF ` A1

pE ` ̟EA1 A1 A1

˛
‚.

4.4. Computation of T0. We are looking for solutions (4.7) of (4.5) such that

‚ x “
´

I
D I
Z H I

¯
is in w´1

0 pJ1
X XUqw0, i.e. Z P A0 and D P oF ` A1, modulo H1

X XU´;

‚ x belongs to JXw0JX , namely B1, B2 P oE ` A1, E1, E2 P A0, m P J̃W and g P JV .

The first condition for existence is Z P J̃W . Then other constraints are obviously satisfied
except the one for g. But since J̃W “ oˆ

F ` A1, the condition Z ` aZ ` aDD “ 0 implies
aDD P oˆ

F ` A1, which, added to D P oF ` A1, implies D P J̃W . Then g “ ´DZ´1 aZD´1

belongs to J̃W X SppV q “ JV .

We use (4.4) with notation in (4.5) and (4.7). The general term in the sum is

λXpd0pxqq “ pδ b ψ2βqpZq pχ b ψβqp´DZ´1 aZD´1q.

We write Z “ ap1 ` zq and D “ up1 ` dq with a, u P oˆ
F and z, d P A1 and get:

λXpd0pxqq “ δpaqψ2βp1 ` zq χp´1qψβpp1 ` dqp1 ` zq´1p1 ` azqp1 ` dq´1q “ δpaqχp´1q

since ψ ˝ trpβ azq “ ψ ˝ trp´βzq. Now the sum in (4.4) is on elements Z,D P J̃W with
Z ` aZ ` aDD “ 0, or equivalently on a, u P oˆ

F , d, z P A1, such that 2a ` apz ` azq `
u2 ` u2pd ` adq ` u2 add “ 0, in particular 2a ` u2 ” 0 mod pF . Moreover, for each a, u

satisfying this congruence, the number of pairs pd, zq satisfying the conditions is constant,
independent of a, u. So, working up to a positive constant, we get

b0 ” T0pw0q
ÿ

a,uPkF
ˆ

2a`u2“0

δpaqχp´1q ” T0pw0qχp´1q
ÿ

uPkF
ˆ

δp´u2{2q.
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Since δ is trivial on squares we have b0 ” T0pw0qχp´1qδp´2q. We know there is a normali-
sation of T0 such that b0 “ q ´ 1 and c0 “ q. Since c0 “ |Ω0| T0pw0q

2, this normalisation
satisfies

(4.12) T0pw0q ” χp´1qδp´2q.

4.5. Computation of T1. We look for solutions (4.9) with:

‚ x “
´

I H Z
I D

I

¯
is in w´1

1 pH1
X X U´qw1, that is Z P βpoF ` A1q and D P βA1, mod

J1
X X U ;

‚ x belongs to JXw1JX , that is B1, B2 P A1, E1, E2 P β´1poF ` A1q, m P J̃W and
g P JV .

The first condition is m “ ´β aZ´1 P J̃W , that is Z P βJ̃W . Then the other constraints are
obviously satisfied, except the one for g that we postpone. We recall that ̟E “ β´1.

The summation in (4.4) is over the pJ1
X X Uq-cosets of the intersection of w´1

1 pH1
X X U´qw1

with the support of T1. An element of w´1
1 pH1

X XU´qw1 can be written
´

I ´βR ´βUβ
I Sβ

I

¯
with

U P pE `̟EA1 and S P A1, that is
´

I H βz`t
I D

I

¯
with z P oE , t P A0, D P A0. The intersection

with JXw1JX corresponds to z P oˆ
E. We obtain a system of representatives of the quotient

Y1 as follows:¨
˝
I ´ aD ̟´1

E z ´ 1
2
aDD

I D

I

˛
‚, with z P kˆ

F and D in a system of representatives R that we

detail later. We get

m “ ar̟Ep̟´1
E z ´ 1

2
aDDqs´1 “ z´1 ap1 ´ 1

2
̟Ez

´1 aDDq´1 and

g “ 1 `Dp1 ´ 1
2
̟Ez

´1 aDDq´1z´1̟E
aD ” 1 `Dz´1̟E

aD modulo A3 (recall that ΛV has
period 2 over E).

A term in the sum (4.4) can be computed as follows:

λ̃W pz´1 ap1 ´
1

2
̟Ez

´1 aDDq´1q b λV p1 ` Dz´1̟E
aDq

“ δpz´1qψ2βp ap1 ´
1

2
̟Ez

´1 aDDq´1qψβp1 ` Dz´1̟E
aDq

“ δpzqψ2βp1 ´
1

2
̟Ez

´1 aDDqψβp1 ` Dz´1̟E
aDq

“ δpzqψ ˝ trp2βp´
1

2
̟Ez

´1 aDDqqψ ˝ trpβDz´1̟E
aDq

“ δpzqψ ˝ trpβz´1p´̟E
aDD ` D̟E

aDqq.
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Remember that we took β “ ̟´1
E so

b1 “ T1pw1q
ÿ

D PR, zPkˆ
F

δpzqψ ˝ trpz´1p´ aDD ` ̟´1
E D̟E

aDqq.

Now R is a system of representatives of A0{oE ` A1, whereas for D P oE the trace under ψ
is zero. We can use the bigger quotient A0{A1 that has dimension 2N (see §2.1) and use for
R the diagonal matrices D “ diagpd1, . . . , d2Nq with coefficients in oF (mod pF ). Then

aD “ diagpd2N , . . . , d1q,

̟´1
E D̟E “ diagpd2N , d1, . . . , d2N´1q,

trp aDDq “ 2pd1d2N ` ¨ ¨ ¨ ` dNdN`1q,

trp̟´1
E D̟E

aDq “ d22N ` d2N ` 2pd1d2N´1 ` ¨ ¨ ¨ ` dN´1dN`1q.

Working up to positive constant we get

b1 ” T1pw1q
ÿ

d1,¨¨¨ ,d2N P kF , zPkˆ
F

δpzqψpz´1pd22N ` d2N ` 2pd1d2N´1 ` ¨ ¨ ¨ ` dN´1dN`1q

´ 2pd1d2N ` ¨ ¨ ¨ ` dNdN`1qqq.

Fixing all variables except one, say dk with k ‰ N, 2N , we can factor out a sum
ř

dkPkF
ψpudkq,

equal to q if u P pF and to 0 if valpuq “ 0. So we are left with a sum with conditions
d2N “ d2N´1 “ ¨ ¨ ¨ “ dN`1 and dN “ dN´1 “ ¨ ¨ ¨ “ d1 and, always up to positive constant,
to:

b1 ” T1pw1q
ÿ

dN ,d2N P kF , zPkˆ
F

δpzqψpz´1pd22N ` d2N ´ 2dNd2Nq

” T1pw1q
ÿ

dN ,d2N P kF , zPkˆ
F

δpzqψpz´1pd2N ´ dNq2q

” T1pw1q
ÿ

d P kF , zPkˆ
F

δpzqψpz´1d2q.

If δ is trivial the sum over z for a fixed d is q ´ 1 if d “ 0 and ´1 if d ‰ 0, so b1 “ 0.
Therefore we have reducibility at 1 if and only if δ is quadratic. If so, for a fixed d, the sum
in z is zero if d “ 0, independent of d if d is non-zero. We obtain

b1 ” T1pw1q
ÿ

zPkˆ
F

δpzqψpzq ” T1pw1qξpδ, ψq.

where ξpδ, ψq is the normalised (modulus 1) Gauss sum defined in (3.8).

We know that, if δ is quadratic, there is a normalisation of T1 such that b1 “ q ´ 1 and
c1 “ q. Since c1 “ |Ω1| δp´1qT1pw1q

2 this normalisation satisfies

(4.13) T1pw1q ” ξpδ, ψq´1.
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4.6. The answer. We fix now δ as the (non-trivial) quadratic character of oˆ
F . The cuspidal

type pJ̃W , λ̃W q extends to the compact mod center subgroup EˆJ̃W by choosing a character
τ of Eˆ extending δ. This is equivalent to choosing the value of τ on a uniformizing element
of E. The induced representation of τ b ψ2β to GLpW q is then cuspidal irreducible.

There is exactly one of these representations, say σ “ c-Ind
GLp2N,F q

EˆJ̃W
τ b ψ2β, such that σ is

self-dual and IndG
P σ| det | b π is reducible. This representation is characterized by the value

of τ on a uniformizing element given by Theorem 1.10. Since we have

w0w1 “

¨
˝

´β´1 0 0
0 I2N 0
0 0 β

˛
‚

we must have, up to a positive constant:

τp´β´1q ” χp´1qδp´2qξpδ, ψq´1

But the representation must be self-dual and the inducing character also, hence

τpβ´1q ” χp´1qδp2qξpδ, ψq´1

Proposition 4.14. The Jordan set of π “ c-IndG
ZI2N p1q χ b ψβ relative to the endoclass of

the simple character ψ2β of Ĩ2Np1q is Jordpπ, ψ2βq “ tpσ, 1qu with

σ “ c-Ind
GLp2N,F q

EˆĨ2N p1q
τ b ψ2β

where τ|oˆ
E
is the quadratic character of oˆ

E and

τpβq “ χp´1qδp2qξpδ, ψq.

We notice that τp´β2q “ τp´1qξpδ, ψq2 “ 1 and that

τp´β2Nq “ δp´1qξpδ, ψq2N “ rp´1q
q´1

2 sN`1

is trivial if N is odd and equal to p´1q
q´1

2 if N is even.

4.7. Other simple cuspidals. So far we have computed the Jordan sets of the simple
cuspidal representations ofG “ Spp2N,F q whose restriction to I2N p1q is given by the element
β of §2.2. Note, however, that β depends on the choice of the uniformizer ̟F of F , which
we had fixed but is otherwise arbitrary. So varying ̟F , hence β, gives other simple cuspidal
representations of G, and our results apply equally to them.

However varying ̟F does not give all the simple cuspidal representations attached to the
more general affine generic characters of §2.1. Let us analyze the situation. We first note
that an arbitrary Iwahori subgroup I of G is conjugate in G to our fixed Iwahori subgroup
I2N , and that its subgroups Ip1q and Ip2q are sent onto I2Np1q and I2Np2q by a conjugation
sending I to I2N : indeed I “ Gx,0 is the parahoric subgroup attached to the barycenter x of
an alcove of the Bruhat–Tits building of G, Ip1q is the Moy–Prasad subgroup Gx,0` and Ip2q
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the Moy–Prasad subgroup Gx,p 1

2N
q`. So we don’t get more simple cuspidal representations

by choosing an Iwahori subgroup other than I2N , and we may restrict to the ones attached
to the affine generic characters of §2.1.

Let λ be the affine generic character of I2N p1q with given parameters αi for i “ 1, . . . , N
(which are units in F ) and α2N (which has valuation ´1 in F ). Let λ1 be another affine
generic character, with parameters α1

i.

The same reasoning that shows that our representation π of §2.2 is irreducible (hence cus-
pidal) also shows that the intertwining of λ and λ1 is restricted to ZI2N , a group that
normalizes I2N p1q. So we need to examine when λ and λ1 are conjugate under I2N , a result
that was stated without proof in [21, p. 21]. We will moreover get that there are 4pqF ´ 1q
isomorphism classes of simple cuspidal representations of G (loc. cit.).

Of course I2N p1q acts trivially on λ and λ1, so it is enough to look at the conjugation action
of the diagonal elements d “ diagpd1, . . . , dN , 1{dN , . . . , 1{d1q in I2N . Such an element d acts
on λ by multiplying αi (for i “ 1, . . . , N ´ 1) by di{di`1, αN by pdNq2 and α2N by p1{d1q

2.
Thus conjugation by d preserves the classes of αN and α2N modulo squares in oˆ

F , and also
preserves pα1 ¨ ¨ ¨αN´1q2αNα2N (which matters only modulo 1 ` pF ). We easily deduce that
λ1 is the conjugate of λ by such a diagonal element d if and only if:

(i) α1
N is equal to αN modulo squares in oˆ

F .
(ii) α1

2N is equal to α2N modulo squares in oˆ
F .

(iii) pα1
1 ¨ ¨ ¨α1

N´1q2α1
Nα

1
2N is equal to pα1 ¨ ¨ ¨αN´1q2αNα2N modulo 1 ` pF .

(Note that given (iii), (i) is equivalent to (ii)).

The number of conjugacy classes of λ’s is 2pqF ´ 1q. Indeed let ǫ be a non-square in oˆ
F .

Conjugating as above we may assume that αi “ ´1 for i “ 1, . . . , N ´ 1, and that αN “ ´1
or ´ǫ, and then (iii) allows qF ´1 choices for α2N . Taking the central character into account
shows that indeed G has 4pqF ´ 1q simple cuspidal representations up to isomorphism.

Remark 4.15. Changing the additive character ψ into the character ψa sending x to ψpaxq
amounts to taking αi “ a for i “ 1, . . . , N and i “ 2N .

The results in sections 3 and 4 therefore apply directly to half of the simple cuspidal repre-
sentations of G.

To see that our results still apply to the other half, let us look at the conjugation action of
GSpp2N,F q on Spp2N,F q. More precisely take the diagonal elements dǫ in GSpp2N,F q of
the form diagpǫ, . . . , ǫ, 1, . . . , 1q where ǫ (a non-square in oˆ

F ) appears N times. Then conju-
gation by dǫ preserves I2N and I2Np1q, and transforms ψβ into the affine generic character
with αi “ ´2 for i “ 1, . . . , N ´ 1, αN “ ´ǫ and α2N “ 1

ǫ̟F
. Varying ̟F we see that we

get all missing cuspidals that way.

But the reducibility points are the same for our cuspidal representation π and its conju-
gate by dǫ: indeed on Spp2M ` 2N,F q we can consider the action of the similar matrix
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diagpǫ, . . . , ǫ, 1, . . . , 1q, but this time with N ` M occurrences of ǫ. Conjugating by that
matrix on the Levi subgroup GLpM,F q ˆ Spp2N,F q induces the previous conjugation on
Spp2N,F q, but the identity on GLpM,F q.

A consequence of the preceding analysis is the following result, which follows from Proposi-
tions 3.12 and 4.14 by conjugation inside GSpp2N,F q:

Theorem 4.16. Let π be a simple cuspidal representation of G, written as π “ c-IndG
ZI2N p1q χb

ψβ, where χ is a character of the center Z » t˘1u of G and β´1 is a uniformizer of a totally

ramified extension E of F of degree 2N normalizing I2N p1q.
The Jordan set of π is Jordpπq “ tpǫ1, 1q, pσ, 1qu where

‚ ǫ1 is the ramified quadratic character of Fˆ characterized by

ǫ1pNE{F pβqq “ p´1qpN`1q q´1

2 ;

‚ σ is the simple cuspidal representation of GLp2N,F q defined by

σ “ c-Ind
GLp2N,F q

EˆĨ2N p1q
τ b ψ2β

where τ|oˆ
E
is the quadratic character of oˆ

E and

τpβq “ χp´1qδp2qξpδ, ψq.

4.8. A remark on epsilon factors. For use in the next paragraph, let us remark about
the ε-factor at s “ 1{2 of ǫ1 and of σ in Theorem 4.16 above. Since ǫ1 is quadratic (equal to δ)
on restriction to oˆ

F , we have εpǫ1,
1
2
, ψq “ ξpδ, ψq. On the other hand the factor εpσ, 1

2
, ψq is

computed in [8, Lemma 2.2] and is equal to 1
τp2βq

(remarking that the trace of the matrix β is

0). But by Proposition 4.14 we have τp2βq “ χp´1qξpδ, ψq, so εpǫ1,
1
2
, ψqεpσ, 1

2
, ψq “ χp´1q.

5. Langlands parameters for simple cuspidals

5.1. The characteristic zero case. Let us now assume that F has characteristic 0. In
that case the local Langlands correspondence has been established by Arthur, and our results
about reducibility points allow us to give the parameter of a simple cuspidal representation
of G, thus completing, in the special case of simple cuspidal representations, the results of
[5].

Theorem 5.1. Let π be a simple cuspidal representation of Spp2N,F q as in Theorem 4.16.

Then the parameter of π is the direct sum of the quadratic character ω of WF corresponding

to ǫ1 and an irreducible orthogonal representation of dimension 2N , corresponding via the

local Langlands correspondence for GLp2N,F q to the cuspidal representation σ of Proposi-

tion 4.14.
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Remark 5.2. Once a local Langlands correspondence for G is established when F has char-
acteristic p, we get the result in that case too. There has been recent progress on establishing
this correspondence when F has characteristic p (see Ganapathy–Varma [14], Gan–Lomeĺı
[13], and current work of Aubert and Varma). Besides, for a generic cuspidal representation
π of G (in particular for a simple cuspidal one), Lomeĺı [17] has used converse theorems to
produce a parameter for π. At another occasion we shall show that the arguments of the
present section still apply to explicit the parameter, giving the exact same statement.

Remark 5.3. Conjugating π inside GSpp2N,F q by dǫ as in 4.7 gives a representation with
the same parameter.

5.2. An alternative proof: method. In fact, the analysis and results of [5], supple-
mented by an identity due to Lapid, are enough to get the previous theorem, without using
the computations of sections 3 and 4, as we show presently. That gives a consistency check
on those very computations, when F has characteristic 0.

Let π be our simple cuspidal representation as in §4.7. From [5] we know already that the
parameter ρ of π is the direct sum of a quadratic character ω of WF and an irreducible
orthogonal representation τ of dimension 2N , corresponding to a simple cuspidal represen-
tation σ of GLp2N,F q constructed from the stratum attached to 2β. In particular, τ has
Swan exponent 1, hence is not tame, and has trivial stabilizer under character twists. In
principle the results of [5] allow us to determine the restrictions of ω and τ to the inertia
group, so the only ambiguity left is small: we could twist ω and τ by unramified quadratic
characters (see [5], section 6, in particular 6.6 Proposition) and have an equally plausible
parameter after the results of [5].

To remove that ambiguity we note two things. The first is that, for an unramified character η
ofWF of order 2, τ and ητ have equal determinant, since dimpτq is even. So ω is determined
by ω “ detpτq “ detpητq: there is no ambiguity in ω. The second is that the ε-factor of τ
is sensitive to that character twist, because τ has Swan exponent 1 hence Artin exponent
2N`1: we have εpητ, 1

2
, ψq “ ´εpτ, 1

2
, ψq. But the main result of Lapid [16] gives us precisely

the necessary information. Indeed, the representation π is generic, so its Langlands–Shahidi
factors εpπ, s, ψq are defined. But the local Langlands correspondence for Spp2Nq preserves
the ε-factors, in the sense that εpπ, s, ψq “ εpω, s, ψqεpτ, s, ψq (for that preservation, see
Appendices A and B in [1]). Similarly by the local Langlands correspondence for GLp2N,F q,
we have εpτ, s, ψq “ εpσ, s, ψq. The result of Lapid says that εpπ, 1

2
, ψq is the value χp´1q

of the central character of π at ´1. Thus we deduce εpσ, 1
2
, ψqεpω, 1

2
, ψq “ χp´1q, which

resolves the ambiguity in ρ.

5.3. An alternative proof: results. Let us identify ω and the character corresponding to
it via class field theory, also written ω. Let us show that ω is the character ǫ1 of Theorem 4.16.
We first show that ω is ramified. Indeed τ has Artin exponent 2N ` 1 and the orthogonal
representation ρ has trivial determinant. Then ρ has even Artin exponent by an old result
of Serre [23], and that implies that ω has odd Artin exponent, hence is quadratic ramified.
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The cuspidal representation σ of GLp2N,F q has central character ω and is constructed from
the affine generic character ψ2β of the subgroup J1 “ IN p1q of GLp2N,F q. It is induced from
an extension θ of ψ2β to its normalizer J in GLp2N,F q, which is the group p2βqZFˆJ1, and
that extension is ω on Fˆ, so is determined by its value a on 2β, subject to a2N “ ωpp2βq2Nq.

However τ is self-dual, which imposes a condition on a. The contragredient of τ is induced
from the character θ´1 of J . Saying that τ is self-dual therefore means that θ´1 intertwines
with θ in G. But the restriction of θ´1 to INp1q is the affine generic character ψ´2β, so
it is sent to ψ2β by conjugation by the diagonal matrix diagp1,´1, 1,´1, . . . , 1,´1q, which
conjugates β to ´β. The condition on a is therefore that θp´2βq “ 1

θp2βq
, that is a2 “ ωp´1q.

Thus a fortiori ωpβ2Nq “ a2N “ ωp´1qN . But, as seen in §3.4, NE{F pβq “ ´β2N , so
ωpNE{F pβqq “ ωp´1qN´1. We happily find exactly the same recipe as in Proposition 3.12,
so that indeed ω “ ǫ1. It now also follows from §4.8 that σ is given by the recipe of
Theorem 4.16.

5.4. The case of non-simple cuspidals for Spp4, F q. Let us briefly comment on what
Lapid’s result brings to the analysis of the examples in [5, §6.9]. When N “ 1, it gives
supplementary information which determines the parameter of a cuspidal representation of
SLp2, F q (of course, that case can also be deduced from the local Langlands correspondence
for GLp2, F q).

Let us look at the more interesting case where N “ 2. We do not consider parameters
with an occurrence of St3: the corresponding packets contain non-cuspidal discrete series,
they have been determined explicitly by Suzuki and Xu [27], thus confirming guesses of the
second author decades ago (Lettre aux espéquatrophiles).

An ambiguous case in [5] was that of a parameter involving 3 quadratic characters and an
irreducible orthogonal representation ρ of dimension 2, induced from a quadratic ramified
extension. In that case the Artin exponent of ρ is odd, so choosing between ρ and the other
possibility ρ1 (the twist of ρ by the unramified order 2 character) is done using Lapid’s result.
However when the parameter contains two ambiguous components of dimension 2, adding
Lapid’s result does not resolve all ambiguities.
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