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We study the asymptotic behavior of the quadratic Riemann sums Sn,σ(h) = 1≤k≤ ≤n 1 (k ) σ h k , 0 < σ ≤ 1, and composed quadratic Riemann sums (h varies with n), when n → ∞. We consider the class of parametrized functions

a ≥ 1 depending on n. The corresponding sums are related to mean-square values of zetaapproximating sums. In the case a ∼ n β , β > 0 small, we identify the limit and provide a sharp control of the error term. We also study the influence of the closeness of a and b in the error term of Sn,σ h(a, .) -Sn,σ h(b, .) , a and b being large with n.

The above weightings being regular, the normalized quadratic Riemann sums S n,σ (f ) converge to 1 0 f σ (t)dt with f σ (x) = f (x)/x σ , if the Riemann sums R fσ ( ) do; and a speed of convergence can be exhibited.

We point here that there are examples of 1-periodic continuous functions f , non-trivial even such that R f ( ) = 0, for any positive .

Introduction-Results.

Recall that the Riemann sum of order of a function f defined at rational points of [0, 1] is defined by

(1.1) R f ( ) = 1 1≤k≤ f k , ≥ 1. 
These sums converge to 1 0 f (t)dt if for instance f has bounded derivative. The quadratic Riemann sums are defined as follows (1.2) S n,σ (f ) =

1≤k≤ ≤n 1 (k ) σ f k , n ≥ 1, 0 ≤ σ < 1. Further (1.3) S n,σ (f ) = 1≤k≤ ≤n 1 2σ f σ k = 1≤ ≤n 1-2σ R fσ ( ), so that (1.4) S n,σ (f ) 
1≤ ≤n

1-2σ = 1 1≤ ≤n 1-2σ 1≤ ≤n 1-2σ R fσ ( ), n ≥ 1.
For instance (1.5) where λ denotes the Liouville function, and µ denotes the Möbius function. See [START_REF] Bateman | Some special trigonometric series related to the distribution of primes numbers[END_REF]. By the remark made just after (1.2), the functions f i (x).x σ , i = 1, 2 are examples for which S n,σ (f i ) = 0, i = 1, 2, for any positive n.

f 1 (x) = λ(n)n -1 cos 2πnx, f 2 (x) = µ(n)n -1 cos 2πnx,
The theory of Riemann sums englobes the study of more general (Wintner's equidistant) Riemann sums

R f ( , x) = 1 1≤k≤ f k + x , = 1, 2, . . . (1.6)
See [START_REF] Weber | Dynamical Systems and Processes[END_REF], Chap. XI which is devoted to Riemann sums and their link to Number Theory, convergence properties of (Wintner's equidistant) Riemann sums and related conjectures. We quote in particular Wintner's result in [10, § 12], showing that a continuous 1-periodic function is analytic if and only if there exists q, 0 < q < 1, such that

R f ( ) = 1 0 f (t)dt + O(q ). (1.7)
We estimate the asymptotic order of quadratic Riemann sums S n,σ (h) and of composed quadratic Riemann sums attached to the class of a-parametrized functions h = h(a, .) defined by h(a, x) = sin a log x log x , 0 < x < 1 h(a, 0) = 0, h(a, 1) = a.

Let also h σ (a, x) = sin a log x x σ log x . Here the parameter a ≥ 1 may vary with n. We in particular consider, in view of applications to mean-square values of Dirichlet polynomials, the class of composed quadratic Riemann sums

S n,σ h(n β , .) = 1≤k≤ ≤n 1 (k ) σ sin n β log k log k where 0 < β < 1.
We prove the following results.

Theorem 1.1. Let 1/2 < σ < 1. There exists n σ depending on σ only, such that for all a ≥ 1 and all n ≥ n σ ,

2(1 -σ)S n,σ (h(a, .)) n 2(1-σ) -Arctan a 1 -σ ≤ 4(2a + σ) c σ n 2(1-σ)/3 + ζ(2σ -1) n 2(1-σ) Arctan a 1 -σ .
where

c σ = ζ(1 + σ) log 2 + 2 1+σ σ e .
In particular if a = n β and β < 2(1 -σ)/3, then

2(1 -σ)S n,σ (h(n β , .)) n 2(1-σ) = Arctan n β 1 -σ + o(n β-2(1-σ)/3 ), n → ∞.
We apply Theorem 1.1 to estimate the asymptotic behavior of mean-square values of long Dirichlet polynomials observed on subsequence intervals of type [n β , n β + 1], 0 < β < 1. We obtain the exact asymptotic order of magnitude for β lying in a smaller range of values than in Theorem 1.1.

Theorem 1.2. Let σ > 1 2 and 0 < β < 2(1 -σ)/9. Then, (1.8 
)

n β +1 n β n k=1 1 k σ+it 2 dt ∼ 2(1 -σ)n 2(1-σ-β) 1 + o(1) , n → ∞.
Remark 1.3. We don't know corresponding results when β is away from the bound's conditions, neither whether the speed of convergence can be improved.

Remark 1.4. For the case a fixed, e.g. g = h(1, .), we have

1 n 2(1-σ) 1 0 n k=1 1 k σ+it 2 dt = 1 1 -σ arctan 1 1 -σ + O σ 1 n 2(1-σ)/3 ,
as n tends to infinity.

As a Corollary we get

Corollary 1.5. Let σ > 1 2 and 0 < β < 2(1 -σ)/9.
(1.9)

n β +1 n β n k=1 1 k σ+it 2 dt = (1 + o(1)) n β +1 n β n 1-σ-it 1 -σ -it 2 dt, n → ∞.
By the classical (old) approximation formula due to Hardy and Littlewood [START_REF] Hardy | The approximate functional equations for ζ(s) and ζ 2 (s)[END_REF], see also well-known refinement in [START_REF] Hardy | The approximate functional equation in the theory of the zeta-function, with applications to the divisor problems of Dirichlet and Piltz[END_REF] and [6, p. 77, p. 79], we have uniformly for σ ≥ 1/2, 0 < |t| ≤ πn

(1.10) ζ(σ + it) = k≤n 1 k σ+it - n 1-σ-it 1 -σ -it + O σ 0 (x -σ ). Thus for t ∈ [n β , n β + 1], ζ(σ + it) - k≤n 1 k σ+it + n 1-σ-it 1 -σ -it = O(n -σ ).
So that,

n β +1 n β |ζ(σ + it)| 2 dt 1/2 - n β +1 n β n k=1 1 k σ+it - n 1-σ-it 1 -σ -it 2 dt 1/2 = O(n -σ ). Also n β +1 n β n k=1 1 k σ+it - n 1-σ-it 1 -σ -it 2 dt = n β +1 n β n k=1 1 k σ+it 2 dt + n β +1 n β n 1-σ-it 1 -σ -it 2 dt -2 I (1.11) where (1.12) I = n β +1 n β n k=1 1 k σ+it n 1-σ-it 1 -σ -it dt,
and

(1.13) (I) = n 1-σ n k=1 1 k σ n β +1 1-σ n β 1-σ cos((1 -σ)θ log kn) + θ sin((1 -σ)θ log kn) 1 + θ 2 dθ.
We just showed that the two first integrals are asymptotically equivalent. The integral {I} is obviously at most of same order.

Question 1.6. Is {I} of a smaller order?

As

n β +1 n β |ζ(σ + it)| 2 dt 1/2 + O(n -σ ) ≥ n β +1 n β n k=1 1 k σ+it 2 dt 1/2 - n β +1 n β n 1-σ-it 1 -σ -it 2 dt 1/2
, any progress on that question should be of many interest. This suggests trying to improve the previous results.

Finally, in the result below we clarify the way the error term of S n,σ h(a, .) -S n,σ h(b, .) depends on |a -b|, a and b being large with n.

Theorem 1.7. Let 1/2 ≤ σ < 1. There exists n σ depending on σ only, such that for all a, b ≥ 1, and all n ≥ n σ , letting h(a, b, x) = h(a, x) -h(b, x),

2(1 -σ)S n,σ (h(a, b, .)) n 2(1-σ) -Arctan a 1 -σ -Arctan b 1 -σ ≤ C σ |a -b|(a ∨ b) n 2(1-σ)/3 + ζ(2σ -1) n 2(1-σ) Arctan a 1 -σ -Arctan b 1 -σ ,
where

C σ = c σ + ζ(1 + σ) 1 + σ . Further for all n ≥ n σ , b a n k=1 1 k σ+it 2 dt = -(b -a) ζ(2σ) + O(n 1-2σ ) + n 2(1-σ) 1 -σ Arctan a 1 -σ -Arctan b 1 -σ + H, (1.14) with |H| ≤ C σ |a -b|(a ∨ b) (1 -σ)n (1-σ)/3 + ζ(2σ -1) 1 -σ Arctan a 1 -σ -Arctan b 1 -σ . (1.15) Remark 1.8.
A study of the corresponding quadratic Farey sums is made in [START_REF] Weber | On Farey Sequence and Quadratic Farey sums[END_REF] where unconditional results for Farey sums are also proved. Farey sums much differ from Riemann sums: let indeed M (x) = λ≤x µ(λ), µ(n) being the Möbius function. As is well-known M (n) is the Farey sum κ λ ∈Fn cos 2π( κ λ ), F n being the Farey series of order n. By a result of Littlewood [START_REF] Titchmarsh | The theory of the Riemann-Zeta function, Second Edition[END_REF], the Riemann Hypothesis is equivalent to the assertion M (x) = O ε (x 1 2 +ε ). The simplest example of a smooth periodic function f (x) = cos 2πx shows that the problem of estimating this sum is out of reach, which is in contrast with Wintner's result (1.7).

The paper is organized as follows. In the next section we collect auxiliary results. We give the proofs of our results concerning quadratic Riemann sums in Sections 3, 4 and 5.

Preparation.

Proposition 2.1. Assume that R fσ ( ) converges to a finite limit

I(f σ ), as → ∞. Then (i) lim n→∞ S n,σ (f ) 1≤ ≤n 1-2σ = I(f σ ).
(ii) For any n ≥ 2 and any D ≥ 2,

S n,σ (f ) 1≤ ≤n 1-2σ -I(f σ ) ≤ 2D n 2(1-σ) sup ≤D |R fσ ( ) -I(f σ )| + sup >D |R fσ ( ) -I(f σ )|. By (1.4), S n,σ (f ) 1≤ ≤n 1-2σ = 1≤ ≤n v n, R fσ ( ), (2.1) 
where

v n, = 1-2σ 1≤ ≤n 1-2σ if 1 ≤ ≤ n, 0 otherwise. (2.2)
This reduces the problem to a matrix summation question. In the next lemma, we add to Toeplitz's convergence criterion a rate of convergence adapted to our study. Lemma 2.2. Let {ϑ n, , n ≥ 1, 1 ≤ ≤ n} be a triangular array of complex numbers verifying the following regularity conditions

(i) lim n→∞ ϑ n, = 0, for each , (ii) sup n≥1 1≤ ≤n |ϑ n, | = M < ∞. (2.3)
Then for any n ≥ 1, 1 ≤ D ≤ n and any column vector

t x = {x , 1 ≤ ≤ n}, letting T n = n =1 ϑ n, x , we have T n ≤ sup ≤D |x | ≤D |ϑ n, | + M sup D< ≤n |x |. (2.4)
In particular, if x = {x , ≥ 1} is sequence of reals such as lim →∞ x = 0, then lim n→∞ T n = 0.

Proof. Immediate since

T n ≤ ≤D |ϑ n, ||x | + sup D< ≤n |x | D< ≤n |ϑ n, | ≤ sup ≤D |x | ≤D |ϑ n, | + sup D< ≤n |x | M.
If lim →∞ x = 0, given any positive real ε and fixing D = D(ε) sufficiently large so that sup >D |x | ≤ ε, we have for any n ≥ 1,

T n ≤ sup ≥1 |x | ≤D(ε) |ϑ n, | + ε M.
Whence lim sup n→∞ T n ≤ εM , by (2.3)-(i). As ε can be arbitrary small, this achieves the proof.

Proof of Proposition 2.1. The triangular array (2.2) obviously verifies the conditions (2.3) with M = 1. Assume that the limit I σ (f ) = lim →∞ R fσ ( ) exists. We write with (2.1),

(2.5) S n,σ (f ) 1≤ ≤n 1-2σ = 1≤ ≤n v n, R fσ ( ) = I σ (f ) + 1≤ ≤n v n, R fσ ( ) -I σ (f ) . Lemma 2.2 applied with ϑ n, = v n, , x = R fσ ( ) -I(f σ ), ≥ 1 imply that S n,σ (f ) 1≤ ≤n 1-2σ = I(f σ ) + o(1), n → ∞. (2.6)
Further by (2.4) we have the effective bound: for any n ≥ 2 and D ≥ 2,

S n,σ (f ) 1≤ ≤n 1-2σ -I(f σ ) ≤ sup ≤D |R fσ ( ) -I(f σ )| 2D n 2(1-σ) + sup >D |R fσ ( ) -I(f σ )|. (2.7)
We have used the inequality,

(2.8) ≤D 1-2σ 1≤ ≤n 1-2σ ≤ 2D n 2(1-σ) ,
valid for N ≥ 2, D ≥ 2. This achieves the proof.

In the next Proposition we provide with (2.10) an 1 -type control of the error term

Θ n,σ (f ) = S n,σ (f ) - 1 0 f σ (t)dt 1≤ ≤n 1-2σ . Proposition 2.3. Let fσ = f σ - 1 0 f σ (t)dt.
Let (n) be positive reals such that the series n≥1 1/ (n) converges, and let ρ(d) = n≥d 1/ (n). Assume that (2.9)

d≥1 d 1-2σ ρ(d) |R fσ (d)| < ∞. Then (2.10) n≥1 |Θ n,σ (f )| (n) < ∞. Proof. By linearity, R fσ ( ) = R fσ ( ) - 1 0 f σ (t)dt, next by (1.4), S n,σ (f ) = 1≤ ≤n 1-2σ R fσ ( ) - 1 0 f σ (t)dt + 1 0 f σ (t)dt = 1 0 f σ (t)dt 1≤ ≤n 1-2σ + 1≤ ≤n 1-2σ R fσ ( ). Thus n≥1 |Θ n,σ (f )| (n) = n≥1 1≤d≤n d 1-2σ R fσ (d) (n) ≤ n≥1 1 (n) 1≤d≤n d 1-2σ |R fσ (d)| ≤ d≥1 d 1-2σ |R fσ (d)| n≥d 1 (n) ≤ d≥1 d 1-2σ ρ(d) |R fσ (d)| < ∞,
by assumption.

For the proof of Theorem 1.1, we need the technical lemma.

Lemma 2.4. Let 1/2 ≤ σ < 1. We have for a ≥ 1, ≥ 2, 1<k≤ k k-1 h σ (a, k ) -h σ (a, t) dt ≤ 2 1+σ (2a + σ) c σ 1-σ
, where

c σ = ζ(1 + σ) log 2 + 2 1+σ σ e .
Proof. The need of having explicit constants (depending on σ and a) requires to display calculations. We note that

(2.11) h σ (a, x) = 1 x 1+σ (log x)
a cos(a log x) -sin(a log x) log x -σ sin(a log x) .

Thus |h σ (a, x)| ≤ 2a+σ x 1+σ | log x| , for any x ∈]0, 1]. Let and k be two arbitrary integers such that 1 ≤ k ≤ , and let t ∈] k-1 , k ]. We have

h σ (a, k ) -h σ (a, t) ≤ 1 |h σ (a, ξ)| ≤ 1 2a + σ ξ 1+σ | log ξ| , for some ξ ∈] k-1 , k [. Thus if k ≥ 2, (2.12) k k-1 h σ (a, k ) -h σ (a, t) dt ≤ 2a + σ 2 ( k ) 1+σ log k ≤ 2 1+σ (2a + σ) 1-σ 1 k 1+σ log k , since k -1 ≥ k/2. If k = 1, then 1 0 |h σ (a, t)|dt ≤ 1 0 1 t σ log 1 t dt ≤ 1 (1 -σ) 1-σ log , also 1 0 |h σ (a, 1 )|dt ≤ 1 σ log = 1 1-σ log .
So that the bound in (5.4) remains valid for k = 1 either. Therefore

k=1 k k-1 h σ (a, k ) -h σ (a, t) dt ≤ 2 1+σ (2a + σ) 1-σ k=1 1 k 1+σ log k . (2.13) Now, 1<k≤ /2 1 k 1+σ log k ≤ 1 log 2 1<k≤ /2 1 k 1+σ ≤ ζ(1 + σ) log 2 .
For the sum corresponding to /2 < k ≤ , we write as in the proof of lemma 7.2 in Titchmarsh [START_REF] Titchmarsh | The theory of the Riemann-Zeta function, Second Edition[END_REF], k = -r where 1 ≤ r < /2. Then log k = -log 1 -r ) > r . We get,

/2<k≤ 1 k 1+σ log k ≤ 2 1+σ 1≤r< /2 1 1+σ ( r ) = 2 1+σ σ 1≤r< /2 1 r ≤ 2 1+σ log σ .
As max ≥2 (log )/ σ = 1/σe, by combining

(2.14) 1<k≤ 1 k 1+σ log k ≤ ζ(1 + σ) log 2 + 2 1+σ σ e =: c σ .
Carrying back (2.14) in (2.13), we obtain (2.15)

1<k≤ k k-1 h σ (a, k ) -h σ (a, t) dt ≤ 2 1+σ (2a + σ) c σ 1-σ .
As a consequence we have

Lemma 2.5. Let 1/2 ≤ σ < 1. Then for a ≥ 1, ≥ 2, R hσ(a,.) ( ) -Arctan a 1 -σ ≤ 2 1+σ (2a + σ) c σ 1-σ .
Proof. As for arbitrary positive integers and k,

1 k σ = 1-σ k k-1 k -σ dt, (2.16) we have k=1 1 k σ h σ a, k = 1-σ k=1 k k-1 k -σ h σ a, k dt = 1-σ k=1 k k-1 k -σ h σ a, k - h σ (a, t) t σ dt + 1-σ 1 0 h σ (a, t) t σ dt = 1-σ k=1 k k-1 h σ a, k -h σ (a, t) dt + 1-σ 1 0 h σ (a, t)dt. (2.17) By Lemma 2.4, 1<k≤ k k-1 h σ (a, k ) -h σ (a, t) dt ≤ 2 1+σ (2a + σ) c σ 1-σ . Thus k=1 1 k σ h σ a, k -1-σ 1 0 h σ (a, t)dt ≤ 1-σ k=1 k k-1 h σ a, k -h σ (a, t) dt ≤ 1-σ k=1 k k-1 h σ a, k -h σ (a, t) dt ≤ 2 1+σ (2a + σ) c σ .
Dividing both sides by 1-σ , we get

R hσ(a,.) ( ) - 1 0 h σ (a, t)dt ≤ 2 1+σ (2a + σ) c σ 1-σ . Now as ([3, 863.4]) ∞ 0 sin t t e -xt dt = π 2 -Arctan x = Arctan 1 x x > 0, (2.18)
we get (here comes the restriction σ < 1), (2.19)

1 0 h σ (a, t)dt = 1 0 sin(a log t) t σ (log t) dt = ∞ 0 sin u u e -( 1-σ a )u du = Arctan a 1 -σ . Consequently, R hσ(a,.) ( ) -Arctan a 1 -σ ≤ 2 1+σ (2a + σ) c σ 1-σ . 3. Proof of Theorem 1.1.
If a ≥ 1 is fixed, it follows from Proposition 2.1 and Lemma 2.5 that, lim n→∞ S n,σ (h(a, .))

1≤ ≤n

1-2σ = Arctan a 1 -σ .
Now by (2.4), (2.5)

S n,σ (h(a, .))

1≤ ≤n

1-2σ = 1≤ ≤n v n, R hσ(a,.) ( ) = Arctan a 1 -σ + 1≤ ≤n v n, R hσ(a,.) ( ) -Arctan a 1 -σ .
Next by Lemma 2.5, for 1/2 ≤ σ < 1,

1≤ ≤n v n, R hσ(a,.) ( ) -Arctan a 1 -σ ≤ 2D n 2(1-σ) sup ≤D R hσ(a,.) ( ) -Arctan a 1 -σ + sup >D R hσ(a,.) ( ) -Arctan a 1 -σ ≤ 2 1+σ (2a + σ) c σ 2D n 2(1-σ) + 1 D 1-σ . Choosing 2D ∼ n 2/3 gives 1≤ ≤n v n, R ,σ h(a, .) -Arctan a 1 -σ ≤ 2 1+σ (2a + σ) c σ n 2(1-σ)/3 .

We get

S n,σ (h(a, .))

1≤ ≤n

1-2σ -Arctan a 1 -σ ≤ 2 1+σ (2a + σ) c σ n 2(1-σ)/3 . (3.1) But (3.2) 1≤ ≤n 1-2σ = n 2(1-σ) 2(1 -σ) + ζ(2σ -1) + O n 1-2σ , if 1 2 < σ < 1, recalling that ζ(s) = lim x→∞ n≤x 1 n s -x 1-s 1-s , 0 < s < 1. Thus 2(1 -σ)S n,σ (h(a, .)) n 2(1-σ) = 1≤ ≤n 1-2σ n 2(1-σ) /2(1 -σ) S n,σ (h(a, .)) 1≤ ≤n 1-2σ := 1 + C σ n 2(1-σ) S n,σ (h(a, .)) 1≤ ≤n 1-2σ , (3.3) 
where

C σ = 2(1 -σ)ζ(2σ -1) + O(n 1-2σ ). Note that |C σ | ≤ ζ(2σ -1) if n is large enough. As 2(1 -σ)S n,σ (h(a, .)) n 2(1-σ) -1 + C σ n 2(1-σ) Arctan a 1 -σ ≤ 1 + C σ n 2(1-σ) 2 1+σ (2a + σ) c σ n 2(1-σ)/3 ≤ 4(2a + σ) c σ n 2(1-σ)/3 , (3.4) 
for n ≥ n σ , say; it follows that

2(1 -σ)S n,σ (h(a, .)) n 2(1-σ) -Arctan a 1 -σ ≤ 4(2a + σ) c σ n 2(1-σ)/3 + ζ(2σ -1) n 2(1-σ) Arctan a 1 -σ . (3.5) In particular if a = n β and β < 2(1 -σ)/3, then 2(1 -σ)S n,σ (h(n β , .)) n 2(1-σ) = Arctan n β 1 -σ + o(n β-2(1-σ)/3 ), n → ∞.
4. Proofs of Theorem 1.2 and Corollary 1.5.

Let B 1, b > a ≥ 1. We have (4.1) b a B k=1 1 k σ+it 2 dt = (b -a) B k=1 1 k 2σ + 2 1≤k< ≤B 1 (k ) σ sin b log k -sin a log k log k . As (4.2) 1≤k< ≤B 1 (k ) σ sin x log k log k = 1≤k≤ ≤B 1 (k ) σ sin x log k log k -x 1≤k≤B 1 k 2σ . we get b a B k=1 1 k σ+it 2 dt = -(b -a) B k=1 1 k 2σ +2 1≤k≤ ≤B 1 (k ) σ sin b log k -sin a log k log k = -(b -a) B k=1 1 k 2σ + 2 S B,σ (h(b, .)) -S B,σ (h(a, .)) . (4.3) Now by Theorem 1.1, S B,σ (h(b, .)) B 2(1-σ) = 1 2(1 -σ) Arctan b 1 -σ + b O σ 1 B 2(1-σ)/3 S B,σ (h(a, .)) B 2(1-σ) = 1 2(1 -σ) Arctan a 1 -σ + a O σ 1 B 2(1-σ)/3 . (4.4) So that, S B,σ (h(b, .)) -S B,σ (h(a, .)) = B 2(1-σ) 1 2(1 -σ) Arctan b 1 -σ -Arctan a 1 -σ + b O σ 1 B 2(1-σ)/3 . (4.5) Let B = n, b = n β + 1, a = n β . We first observe that (4.6) Arctan b 1 -σ -Arctan a 1 -σ ∼ 1 1 + a 2 /(1 -σ) 2 ∼ (1 -σ) 2 n 2β , b O σ 1 n 2(1-σ)/3 = O σ n β n 2(1-σ)/3 . (4.7) We assume 0 < β < 2(1 -σ)/9. It follows that 1 n 2β n β n 2(1-σ)/3 . (4.8) By (4.5), S n,σ (h(n β + 1, .)) -S n,σ (h(n β , .)) = n 2(1-σ) 1 2(1 -σ) Arctan n β + 1 1 -σ -Arctan n β 1 -σ + O σ n β n 2(1-σ)/3
, (4.9) so that S n,σ (h(n β + 1, .)) -S n,σ (h(n β , .))

∼ n 2(1-σ) 1 1 -σ (1 -σ) 2 n 2β + O σ n β n 2(1-σ)/3 ∼ n 2(1-σ) (1 -σ) n 2β 1 + o(1) . (4.10)
We obtain

n β +1 n β n k=1 1 k σ+it 2 dt = - n k=1 1 k 2σ + 2 S n,σ (h(n β + 1, .)) -S n,σ (h(n β , .)) ∼ - n k=1 1 k 2σ + 2n 2(1-σ) (1 -σ) n 2β 1 + o(1) ∼ 2(1 -σ)n 2(1-σ-β) 1 + o(1) . (4.11)
This proves Theorem 1.2.

We moreover have that

n β +1 n β n 1-σ-it 1 -σ -it 2 dt = n 2(1-σ) n β +1 n β dt (1 -σ) 2 + t 2 = n 2(1-σ) 1 -σ n β +1 n β dθ 1 + θ 2 = n 2(1-σ) 1 -σ Arctan n β + 1 1 -σ -Arctan n β 1 -σ . (4.12)
Combining (4.3), (4.5) with (4.12) we get if 0 < β < 2(1 -σ)/9, (4.13)

n β +1 n β n k=1 1 k σ+it 2 dt = (1 + o(1)) n β +1 n β n 1-σ-it 1 -σ -it 2 dt n → ∞.
This proves Corollary 1.5.

Proof of Theorem 1.7.

We need a version of Lemma 2.4 for the difference h σ (a, b, x) = h σ (a, x) -h σ (b, x).

Lemma 5.1. Let 1/2 ≤ σ < 1, We have for a, b ≥ 1, ≥ 2, 1<k≤ k k-1 h σ (a, b, k ) -h σ (a, b, t) dt ≤ C σ |a -b|(a ∨ b) 1-σ
.

where

C σ = c σ + ζ(1 + σ) 1 + σ . Proof. First h σ (a, b, x) = h σ (a, x) -h σ (b, x) = a cos(a log x) -b cos(b log x) x 1+σ log x - sin(a log x) -sin(b log x) x 1+σ (log x) 2 - σ sin(a log x) -sin(b log x) x 1+σ log x . (5.1) But a cos(a log x) -b cos(b log x) | log x| ≤ |a -b| + 2(a ∨ b)| sin( a-b 2 ) log x| | log x| ≤ |a -b| | log x| + (a ∨ b)|a -b||. (5.2) sin(a log x) -sin(b log x) log x ≤ 2 sin ( a-b 2 ) log x | log x| ≤ |a -b|. Thus (5.3) h σ (a, b, x) ≤ 2|a -b| x 1+σ | log x| + ((a ∨ b) + σ) |a -b| x 1+σ , for any x ∈]0, 1].
Let and k be two arbitrary integers such that 1 ≤ k ≤ , and let

t ∈] k-1 , k ]. We have h σ (a, b, k ) -h σ (a, b, t) ≤ 1 |h σ (a, b, ξ)| ≤ 1 2|a -b| ξ 1+σ | log ξ| + ((a ∨ b) + σ) |a -b| ξ 1+σ , for some ξ ∈] k-1 , k [. Thus if k ≥ 2, k k-1 h σ (a, b, k ) -h σ (a, b, t) dt ≤ 1 2 2|a -b| ( k ) 1+σ log k + ((a ∨ b) + σ) |a -b| ( k ) 1+σ ≤ 2|a -b| 1-σ 1 k 1+σ log k + 1 1-σ ((a ∨ b) + σ) |a -b| k 1+σ = 1 1-σ k 1+σ 2|a -b| log k + ((a ∨ b) + σ) |a -b| , (5.4) since k -1 ≥ k/2. If k = 1, then 1 0 |h σ (a, x) -h σ (b, x)|dt ≤ 1 0 2 t σ log 1 t dt ≤ 2 (1 -σ) 1-σ log , also 1 0 |h σ (a, 1 ) -h σ (b, 1 )|dt ≤ 2 σ log = 2 
1-σ log . So that the bound in (5.4) remains valid for k = 1 either. Therefore

k=1 k k-1 h σ (a, b, k ) -h σ (a, b, t) dt ≤ 1 1-σ k=1 2|a -b| k 1+σ log k + 1 1-σ k=1 (a ∨ b) + σ |a -b| k 1+σ ≤ c σ |a -b| 1-σ + 1 1-σ k=1 (a ∨ b) + σ |a -b| k 1+σ , ≤ |a -b| 1-σ c σ + ζ(1 + σ) (a ∨ b) + σ ≤ C σ |a -b|(a ∨ b) 1-σ , (5.5) with C σ = c σ + ζ(1 + σ) 1 + σ ,
by using estimate (2.14) and since a ≥ 1. We deduce that

1<k≤ k k-1 h σ (a, b, k ) -h σ (a, b, t) dt ≤ C σ |a -b|(a ∨ b) 1-σ . Lemma 5.2. Let 1/2 ≤ σ < 1. We have for a ≥ 1, ≥ 2, R hσ(a,b,.) ( ) -Arctan a 1 -σ -Arctan b 1 -σ ≤ C σ |a -b|(a ∨ b) 1-σ .
Proof. It is identical to the one of Lemma 2.5. By using formula (2.16), we have 

1 h 1 -σ 1 0h 1 h 1 h. 1 0. 1 k 2 ≤

 11111112 σ a, b, k -h σ (a, b, t) dt + h σ (a, b, t) -h σ (b, t)dt. σ (a, b, k ) -h σ (a, b, t) dt ≤ C σ |a -b|(a ∨ b) σ a, b, k -h σ (a, b, t) dt ≤ σ a, b, k -h σ (a, b, t) dt ≤ C σ |a -b|(a ∨ b)Dividing both sides by 1-σ , we getR hσ(a,b,.) ( ) -h σ (a, b, t)dt ≤ C σ |a -b|(a ∨ b)We pass to the proof of Theorem 1.7. By (4.3) and linearity, 2σ + 2 S n,σ (h(a, b, .)). (5.9)We get by arguing as in the proof of Theorem 1.1, S n,σ (h(a, b, .))Next by proceeding as for showing (3.5), we get for all n large enough, n ≥ n σ say,2(1 -σ)S n,σ (h(a, b, .)) n 2(1-σ) -Arctan a 1 -σ -Arctan b 1 -σ ≤ C σ |a -b|(a ∨ b) n C σ |a -b|(a ∨ b) (1 -σ)n (1-σ)/3 + (b -a) ζ(2σ) + O(n 1-2σ ) σ |a -b|(a ∨ b) (1 -σ)n (1-σ)/3 + ζ(2σ -