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Introduction

Consider the Euclidean space R 2n , with coordinates (x 1 , y 1 , . . . , x n , y n ), equipped with the standard symplectic form ω 0 = n j=1 dx j ∧ dy j . The seminal symplectic non-squeezing theorem by Gromov [START_REF] Gromov | Pseudo holomorphic curves in symplectic manifolds[END_REF] says that if R 1 > R 2 then there is no symplectic embedding of the open ball B 2n (R 1 ) of radius R 1 in (R 2n , ω 0 ) into the open cylinder B 2 (R 2 ) × R 2n-2 . At first sight it might seem that no similar result can hold in contact topology. Indeed, consider the Euclidean space R 2n+1 , with coordinates (x 1 , y 1 , . . . , x n , y n , θ), endowed with the standard contact structure ξ 0 = ker dθ + n j=1 xj dyj -yj dxj 2

; then contact transformations of the form (x 1 , y 1 , . . . , x n , y n , θ) → (cx 1 , cy 1 , . . . , cx n , cy n , c 2 θ) for c ∈ R >0 small enough map any given domain into an arbitrarily small one. However, in 2006 Eliashberg, Kim and Polterovich [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] discovered a contact non-squeezing phenomenon in R 2n × S1 . Let V 1 and V 2 be two open domains in R 2n × S 1 , ξ 0 = ker(dθ + n j=1 xj dyj -yj dxj 2

) . A contact squeezing of V 1 into V 2 is a compactly supported contact isotopy {φ t } from the closure of V 1 into R 2n × S 1 such that φ 0 is the inclusion and φ 1 maps the closure of V 1 into V 2 . If the closure of V 1 is compact, the existence of a contact squeezing of V 1 into V 2 is equivalent to the existence of a compactly supported contactomorphism of (R 2n × S 1 , ξ 0 ), contact isotopic to the identity, mapping the closure of V 1 into V 2 . As in [START_REF] Fraser | Contact non-squeezing at large scale in R 2n × S 1[END_REF], we call coarse contact squeezing of V 1 into V 2 a compactly supported contactomorphism of (R 2n × S 1 , ξ 0 ), not necessarily contact isotopic to the identity 1 , mapping the closure of V 1 into V 2 . For a domain U of R 2n we denote by U the domain U × S 1 of R 2n × S 1 . As noticed in [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF], for any R 1 and R 2 there exists a contact embedding of B 2n (R 1 ) into B 2n (R 2 ). Indeed, it is enough to consider the restriction to B 2n (R 1 ) of the contact transformation

(1) Φ m : R 2n × S 1 → R 2n × S 1 , Φ m (z, θ) = e 2πimθ z 1 + mπ|z| 2 , θ
for m ∈ Z >0 big enough, where we denote z j = x j + iy j , z = (z 1 , . . . , z n ), and |z| 2 = n j=1 |z j | 2 . On the other hand, the non-squeezing theorem discovered by Eliashberg, Kim and Polterovich [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] states that if πR 2 2 ≤ K ≤ πR 2 1 for some K ∈ Z then there is no coarse contact squeezing (hence no contact squeezing) of B 2n (R 1 ) into B 2n (R 2 ). In contrast, the same authors also proved that if πR 2 1 < 1 and n > 1 then there is a contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) for any R 2 (while it is pointed out in [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] that in dimension 3 the contact shape invariant [START_REF] Eliashberg | New invariants of open symplectic and contact manifolds[END_REF] obstructs coarse contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) for any R 2 ≤ R 1 ).

Contact squeezing for πR 2 2 ≤ πR 2 1 < 1 (in dimension higher than 3) is a manifestation of flexibility, and is proved in [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] by a geometric construction that uses a positive contractible loop of contactomorphisms of the standard contact sphere (S 2n-1 , ξ 0 ). On the other hand, (coarse) non-squeezing for πR 2 2 ≤ K ≤ πR 2 1 is a rigidity phenomenon, which is proved in [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] with holomorphic curves techniques coming from SFT, and reproved (in its non-coarse version) by the second author [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] with generating functions. The case 1 < πR 2 2 ≤ πR 2 1 with no integers between πR 2 2 and πR 2 1 was left open in [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] and [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF], and settled by Chiu [START_REF] Chiu | Non-squeezing property of contact balls[END_REF] (in the non-coarse version) and the first author [START_REF] Fraser | Contact non-squeezing at large scale in R 2n × S 1[END_REF] (in the apriori stronger coarse version) using respectively microlocal sheaves and SFT. In the present paper we recover (the non-coarse version of) this result by a proof that uses generating functions, in the continuation of [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF]. More precisely we prove the following theorem.

Theorem 1.1 (Contact non-squeezing at large scale). For any R 1 and R 2 with 1 ≤ πR 2 2 ≤ πR 2 1 there is no contact squeezing of B 2n (R 1 ) into B 2n (R 2 ).

A different approach to prove Theorem 1.1 with generating functions has been outlined by the first author in [START_REF] Fraser | Contact non-squeezing via generating functions: A low-tech proof in the language of persistence modules[END_REF], and is developed in a work in preparation with Traynor [FT].

Following an idea introduced in [START_REF] Chiu | Non-squeezing property of contact balls[END_REF], and exploited also in [START_REF] Fraser | Contact non-squeezing at large scale in R 2n × S 1[END_REF] in the context of holomorphic curves, our proof of Theorem 1.1 uses an equivariant homology with respect to a certain action of a cyclic group Z k . Specifically, we develop a Z k -equivariant version of the generating function homology for domains of (R 2n × S 1 , ξ 0 ) that is defined in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] (while the approach in [START_REF] Fraser | Contact non-squeezing via generating functions: A low-tech proof in the language of persistence modules[END_REF] and [FT] uses the homology groups of [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] without introducing any cyclic action). In order to explain this we first recall the idea of the proof in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] of non-squeezing for integers.

The homology groups defined in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] are a generalization to domains of (R 2n × S 1 , ξ 0 ) of the symplectic homology groups for domains of (R 2n , ω 0 ) defined by Traynor [START_REF] Traynor | Symplectic homology via generating functions[END_REF]. For any compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ) and a ≤ b in R ∪ {±∞} not belonging to the action spectrum of ϕ, Traynor defined G (U) of a domain U of (R 2n , ω 0 ) by a limit process over compactly supported Hamiltonian symplectomorphisms supported in U. Symplectic invariance of these groups, i.e. the fact that G (U) for every compactly supported Hamiltonian symplectomorphism ψ of (R 2n , ω 0 ), follows from invariance by conjugation of the groups associated to Hamiltonian symplectomorphisms, which in turn follows from the fact that the critical points of any generating function of a Hamiltonian symplectomorphism ϕ are in 1-1 correspondence with the fixed points of ϕ, with critical values given by the symplectic action of the corresponding fixed points, and the fact that the action spectrum of a Hamiltonian symplectomorphism is invariant by conjugation. Similarly, in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] the second author defined the homology G (a,b] * (φ) of a compactly supported contactomorphism φ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity and, by a limit process, the homology G (R 2n × S 1 , ξ 0 ) are invariant by conjugation if and only if they have integral action. More precisely, recall that a translated point of a contactomorphism φ of (R 2n × S 1 , ξ 0 ) with respect to the standard contact form α 0 = dθ + n j=1 xj dyj -yj dxj 2 is a point p of R 2n × S 1 such that p and φ(p) are in the same Reeb orbit and g(p) = 0, where g is the conformal factor of φ, i.e. the function defined by the relation φ * α 0 = e g α 0 . If φ is compactly supported and contact isotopic to the identity then it can be uniquely lifted to a compactly supported contactomorphism Φ of (R 2n+1 , ξ 0 ) that is equivariant by the translation by 1 in the θ-direction. The length of the Reeb chord from Φ(P ) to P for any lift P of p to R 2n+1 is then called the (contact) action of the translated point p of φ. If K is an integer then there is a 1-1 correspondence between the translated points of action K of φ and the translated points of action K of any conjugation ψφψ -1 . As shown in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF], this fact implies that if a and b are integers (or a, b ∈ {±∞}) then G (φ) for every compactly supported contactomorphism ψ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity, and so the groups G (U) ⊗ H * (S 1 ). The fact that there is no contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) if πR 2 2 ≤ K ≤ πR 2 1 for some integer K then follows from the calculation of the homology groups of balls in (R 2n , ω 0 ) done by Traynor [START_REF] Traynor | Symplectic homology via generating functions[END_REF]. For a ball B 2n (R) and a ∈ R, Traynor proved that, with coefficients in Z 2 and any integer l > 0,

G (a,∞] 2nl B 2n (R) = Z 2 if (l -1)πR 2 ≤ a < lπR 2 0 otherwise,
and moreover that for

R 2 < R 1 with (l -1)πR 2 2 ≤ a < lπR 2 2 and (l -1)πR 2 1 ≤ a < lπR 2 1 the homomorphism G (a,∞] 2nl B 2n (R 1 ) → G (a,∞] 2nl B 2n (R 2 ) induced by the inclusion of B 2n (R 2 ) into B 2n (R 1 ) is an isomorphism. a 0 πR 2 2πR 2 3πR 2 4πR 2 5πR 2 l = 1 l = 2 l = 3 l = 4 Z 2 Z 2 Z 2 Z 2 Figure 1. The homology groups G (a,∞] 2nl (B 2n (R)) for a > 0 (Z 2 -coefficients).
As shown in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF], these results imply (the non-coarse version of) the non-squeezing theorem of [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF]. Indeed, let πR 2 2 ≤ K ≤ πR 2 1 for some integer K and suppose by contradiction that there is a contact squeezing of B 2n (R 1 ) into B 2n (R 2 ). This then induces a contact squeezing of a neighborhood of B 2n (R 1 ) into B 2n (R 2 ), so without loss of generality we may assume K < πR 2 1 . By the contact isotopy extension theorem there is a compactly supported contactomorphism ψ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity such that ψ

B 2n (R 1 ) ⊂ B 2n (R 2 ). Take R 3 large enough, so that ψ B 2n (R 3 ) = B 2n (R 3 ). We then have a commutative diagram G (K,∞] * B 2n (R 3 ) G (K,∞] * B 2n (R 1 ) G (K,∞] * B 2n (R 3 ) G (K,∞] * B 2n (R 2 ) G (K,∞] * ψ( B 2n (R 1 )) ∼ = ∼ =
where the horizontal arrows are the homomorphisms induced by the inclusions. But this gives a contradiction, because for * = 2n the horizontal arrow on the top is an isomorphism from Z 2 to

Z 2 , while G (K,∞] * B 2n (R 2 ) = 0.
In order to prove Theorem 1.1 we develop a Z k -equivariant version of the generating function homology of domains of (R 2n , ω 0 ) and (R 2n × S 1 , ξ 0 ). Given a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ), we consider the function

F k : R 2nk × R N k → R
obtained by applying a composition formula due to Allais [All20] (Proposition 3.1) to a generating function quadratic at infinity F : R 2n × R N → R of ϕ. As we will see, the function F k is invariant by the action of Z k that cyclically permutes the coordinates, and its critical points are in 1-1 correspondence with the k-periodic points of ϕ, i.e. the fixed points of ϕ k , with critical values given by the symplectic action. Moreover, under this 1-1 correspondence the Z k -action on the set of critical points of F k corresponds to the Z k -action on the set of k-periodic points of ϕ generated by the map that sends a k-periodic point p to the k-periodic point ϕ(p).

• • • • • • • p = ϕ 7 (p) ϕ ϕ ϕ ϕ ϕ ϕ ϕ p = ϕ 7 (p) ϕ 1 (p) ϕ 2 (p) ϕ 3 (p) ϕ 4 (p) ϕ 5 (p) ϕ 6 (p) Figure 2.
If p is a 7-periodic point of ϕ then all ϕ j (p), j = 1, . . . , 6, are 7-periodic points of ϕ. The group Z 7 acts on the set {ϕ j (p) | j = 0, . . . , 6}.

For a ≤ b in R ∪ {±∞} not belonging to the action spectrum of ϕ k we then define the equivariant homology G (a,b] Z k , * (ϕ) to be the relative Z k -equivariant homology (with Z k -coefficients) of the sublevel sets of F k at a and b. Invariance by conjugation of these groups is shown using the fact that the action spectrum of ϕ k is invariant by conjugation. By a limit process we then define symplectic invariant equivariant homology groups G (a,b] Z k , * (U) for domains of (R 2n , ω 0 ). In the contact case the relevant geometric objects to consider in order to develop a Z k -equivariant homology theory are not the translated points of the k-th iteration of contactomorphisms, on which there is no natural Z k -action, but what we call the translated k-chains. A translated k-chain of a contactomorphism φ of (R 2n+1 , ξ 0 ) is a k-tuple of points (p 1 , . . . , p k ) such that

g(p 1 ) + • • • + g(p k ) = 0 ,
where g denotes the conformal factor of φ, and, for some t ∈ R, p j+1 = ϕ α0 t • φ (p j ) for all j, with the convention p k+1 = p 1 , where {ϕ α0 t } denotes the Reeb flow. The quantity tk is called the (contact) action of the translated chain (p 1 , . . . , p k ). In particular, a translated 1-chain is a translated point, and its action coincides with the action as a translated point. We say that a k-tuple (p 1 , . . . , p k ) of points of R 2n × S 1 is a translated k-chain of action tk of a compactly supported contactomorphism φ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity if there is a ktuple of points of R 2n+1 projecting to (p 1 , . . . , p k ) that is a translated k-chain with action tk of the lift of φ to (R 2n+1 , ξ 0 ). Note that if ϕ is the lift to (R 2n+1 , ξ 0 ) or (R 2n × S 1 , ξ 0 ) of a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ), i.e. ϕ(x, y, θ) = ϕ(x, y), θ -S(x, y)

where S : R 2n → R is the compactly supported function that satisfies ϕ * λ 0 -λ 0 = dS with respect to the Liouville form λ 0 = n j=1 xj dyj -yj dxj 2

, then (x 1 , y 1 , θ 1 ), . . . , (x k , y k , θ k ) is a translated kchain of ϕ if and only if (x 1 , y 1 ), . . . , (x k , y k ) are fixed points of ϕ k and θ j+1 -θ j = t -S(x j , y j ) for all j. The action k j=1 S(x j , y j ) of the fixed points (x 1 , y 1 ), . . . , (x k , y k ) of ϕ k coincides then with the action of the translated k-chain (x 1 , y 1 , θ 1 ), . . . , (x k , y k , θ k ) of ϕ.

• p 1 φ ϕ α0 t • p 2 φ ϕ α0 t • p 3 φ ϕ α0 t t Figure 3. If the triple (p 1 , p 2 , p 3
) is a translated 3-chain of φ then (p 2 , p 3 , p 1 ) and (p 3 , p 1 , p 2 ) are translated 3-chains of φ. The group Z 3 acts on the set { (p 1 , p 2 , p 3 ) , (p 2 , p 3 , p 1 ) , (p 3 , p 1 , p 2 ) }.

Given a compactly supported contactomorphism φ of (R 2n ×S 1 , ξ 0 ) contact isotopic to the identity with generating function quadratic at infinity F : R 2n+1 × R N → R, in Section 5 we define a function P

F : R (2n+2)k × R N k → R that is invariant by the action of Z k that cyclically permutes the coordinates, and whose critical points are in 1-1 correspondence with the translated k-chains of φ, with critical values given by the contact action, in such a way that under this 1-1 correspondence the Z k -action on the set of critical points of P Invariance by conjugation of these groups is now proved using the fact that translated k-chains of contact action in kZ are invariant by conjugation. By a limit process we then define contact invariant equivariant homology groups G (a,b] Z k , * (V) for domains of (R 2n × S 1 , ξ 0 ). In Section 7 we prove that G

(a,b] Z k , * ( U) ∼ = G (a,b] Z k , * (U) ⊗ H * (S 1
) for any domain U of (R 2n , ω 0 ). Theorem 1.1 then follows from the calculation of the symplectic equivariant homology of balls in (R 2n , ω 0 ). We prove in Section 8 that if k is prime and 0 < l < k then for any a > 0 we have

G (a,∞] Z k ,2nl B 2n (R) = Z k if a < lπR 2 0 otherwise,
and moreover that for a < lπR

2 2 ≤ lπR 2 1 the homomorphism G (a,∞] Z k ,2nl B 2n (R 1 ) → G (a,∞] Z k ,2nl B 2n (R 2 ) induced by the inclusion of B 2n (R 2 ) into B 2n (R 1 ) is an isomorphism.
These results allow us to obtain a proof of Theorem 1.1. Indeed, suppose by contradiction that for R 1 , R 2 with 1 ≤ πR 2 2 ≤ πR 2 1 there is a contact squeezing of B 2n (R 1 ) into B 2n (R 2 ). This then induces a contact squeezing of a neighborhood of B 2n (R 1 ) into B 2n (R 2 ), so without loss of generality we may assume 1 < πR 2 2 < πR 2 1 . By the contact isotopy extension theorem there is a compactly supported contactomorphism ψ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity such that ψ B 2n (R 1 ) ⊂ B 2n (R 2 ). Take R 3 big enough, so that ψ B 2n (R 3 ) = B 2n (R 3 ). Take k prime and l < k so that πR 2 2 ≤ k l < πR 2 1 , and consider the commutative diagram

G (k,∞] Z k , * B 2n (R 3 ) G (k,∞] Z k , * B 2n (R 1 ) G (k,∞] Z k , * B 2n (R 3 ) G (k,∞] Z k , * B 2n (R 2 ) G (k,∞] Z k , * ψ( B 2n (R 1 )) ∼ = ∼ =
where the horizontal arrows are the homomorphisms induced by the inclusions. This gives a contradiction, because for * = 2nl the horizontal arrow on the top is an isomorphism from Z k to Z5,2nl (B 2n (R)) for l < 5 and a > 0 (Z 5 -coefficients).

Z k , while G (k,∞] Z k , * B 2n (R 2 ) = 0. a 0 πR 2 2πR 2 3πR 2 4πR 2 5πR 2 l = 1 l = 2 l = 3 l = 4 Z 5 Z 5 Z 5 Z 5
Note that this argument applies only when 1 < πR 2 1 due to the condition l < k in the stated results on equivariant homology of balls. As we will see in Section 8, these results are obtained by considering a certain sequence of Hamiltonian functions supported in B 2n (R) (the Hamiltonian function of a rotation composed with suitable cut-off functions, as in [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF]), and using the fact that the Z k -action on the spaces of k-periodic points of the time-1 maps of these Hamiltonian functions corresponding to the critical values lπR 2 is free for l < k (while it is not free for l = k).

Remark 1.2 (Squeezing requires room). In [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] and [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] it is also proved that if

πR 2 2 ≤ k m + 1 ≤ πR 2 1 < πR 2 3 < k m
for k, m ∈ Z then there is no contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) inside B 2n (R 3 ), i.e. no contact isotopy {φ t } of the closure of B 2n (R 1 ) into R 2n ×S 1 such that φ 0 is the inclusion, φ 1 maps the closure of B 2n (R 1 ) into B 2n (R 2 ) and the image of the closure of B 2n (R 1 ) by φ t is contained in B 2n (R 3 ) for all t (equivalently, no contactomorphism ψ of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity that is supported in B 2n (R 3 ) and maps the closure of B 2n (R 1 ) into B 2n (R 2 )). As noticed in [START_REF] Fraser | Contact non-squeezing at large scale in R 2n × S 1[END_REF], Theorem 1.1 implies that for any R 1 , R 2 and R 3 with

1 m + 1 ≤ πR 2 2 ≤ πR 2 1 < 1 m = πR 2 3
there is no contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) inside B 2n (R 3 ). Indeed, the contact transformation Φ m defined by (1) maps R 2n × S 1 into B 2n (R m ) with πR 2 m = 1 m , and B 2n (R) with πR 2 = 1 into B 2n (R m+1 ) with πR 2 m+1 = 1 m+1 . After conjugating with Φ m , a contact squeezing of

B 2n (R 1 ) into B 2n (R 2 ) inside B 2n (R 3 ) would induce a contact squeezing of B 2n (R 1 ) into B 2n (R 2 ) for R 1 and R 2 with 1 ≤ πR 2 1 ≤ πR 2 2
, which is impossible by Theorem 1.1. This result can also be deduced directly from our calculations (see Remark 8.4).

In [START_REF] Zhang | Capacities from the Chiu-Tamarkin complex[END_REF] the equivariant symplectic and contact homologies of domains of (R 2n , ω 0 ) and (R 2n × S 1 , ξ 0 ) defined in [START_REF] Chiu | Non-squeezing property of contact balls[END_REF] with the microlocal theory of sheaves are used to define sequences (c j ) j∈Z ≥1 of symplectic and contact capacities. Moreover, a construction of capacities for lens spaces, relevant also in the present context, is sketched in [START_REF] Fraser | Contact spectral invariants and persistence[END_REF]. The possibility of using the equivariant theory introduced in the present article to define sequences of capacities, generalizing the symplectic and contact capacities defined in [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF] and [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] respectively, as well as the properties and applications of such capacities, will be explored in forthcoming works.

The article is organized as follows. In Section 2 we give some preliminaries on generating functions, mostly following [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF][START_REF]A partial order on the group of contactomorphisms of R 2n+1 via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF]. In Section 3 we use a composition formula due to Allais [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF] to define Z k -invariant functions detecting k-periodic points of Hamiltonian symplectomorphisms of (R 2n , ω 0 ), and in Section 4 we use these functions to define the Z k -equivariant homology of domains of (R 2n , ω 0 ). In Section 5 we introduce a contact version of the composition formula of Section 3 to define Z k -invariant functions detecting translated k-chains of contactomorphisms of (R 2n × S 1 , ξ 0 ), and in Section 6 we use these functions to define the Z k -equivariant homology of domains of (R 2n × S 1 , ξ 0 ). In Section 7 we discuss the relation between the Z k -equivariant homology of a domain of (R 2n , ω 0 ) and the Z k -equivariant homology of its prequantization, and in Section 8 we calculate the Z k -equivariant homology of balls, concluding the proof of Theorem 1.1.
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Generating functions

A function F : E → R defined on the total space of a fibre bundle p : E → B is a generating function if the differential dF : E → T * E is transverse to the fibre conormal bundle

N * E = σ e ∈ T * E | σ e = 0 on ker dp(e) .
The space Σ F = dF -1 N * E ∩ im(dF ) of fibre critical points is then a submanifold of E, of dimension equal to the dimension of B. Consider the map i F : Σ F → T * B that associates to e ∈ Σ F the covector i F (e) ∈ T * p(e) B defined by i F (e)(X) = dF ( X)

for X ∈ T p(e) B, where X is any vector in T e E with p * ( X) = X. Equip T * B with its canonical symplectic structure ω can = dλ can ; then i F : Σ F → T * B is an exact Lagrangian immersion, with

(2)

i * F λ can = d( F | Σ F ) . If i F : Σ F → T * B
is an embedding we say that F is a generating function of the Lagrangian submanifold im(i F ) of (T * B, ω can ). The map i F then induces a bijection between the critical points of F and the intersections of im(i F ) with the zero section.

A generating function F : E → R is said to be quadratic at infinity if E = B × R N , the fibre bundle map p : B ×R N → B is the projection on the first factor, and there exists a non-degenerate quadratic form Q on E, i.e. a map Q : E → R whose restriction to the fibres of p is a non-degenerate quadratic form, such that dF -dQ C 0 is bounded. If B is compact then every Lagrangian submanifold of (T * B, ω can ) that is Hamiltonian isotopic to the zero section has a generating function quadratic at infinity [START_REF] Sikorav | Problemes d'intersections et de points fixes en géométrie hamiltonienne[END_REF], which is unique up to addition of a constant, fibre preserving diffeomorphism and stabilization, i.e. replacing F : [START_REF] Théret | A complete proof of Viterbo's uniqueness theorem on generating functions[END_REF]. The existence theorem is in fact a special case of the following result [START_REF] Sikorav | Problemes d'intersections et de points fixes en géométrie hamiltonienne[END_REF]: if L is a Lagrangian submanifold of (T * B, ω can ) that has a generating function quadratic at infinity F then for any Hamiltonian isotopy {ϕ t } t∈[0,1] of (T * B, ω can ) there is a 1-parameter family F t of generating functions quadratic at infinity for {ϕ t (L)} such that F 0 is a stabilization of F . In turn, this implies the following more general result [START_REF] Théret | A complete proof of Viterbo's uniqueness theorem on generating functions[END_REF].

B × R N → R by F ⊕ Q : B × R N × R N → R for a non-degenerate quadratic form Q on R N [Vit92,
Proposition 2.1. Let F be the space of generating functions quadratic at infinity over a compact manifold B, and Lag the space of Lagrangian submanifolds of (T * B, ω can ). Then the map π : F → Lag that sends a generating function to the generated Lagrangian submanifold is a Serre fibration up to equivalence: given a map f : ∆ n → Lag, where ∆ n denotes the standard n-simplex, having a lift F : ∆ n → F and a homotopy

f t : ∆ n → Lag, t ∈ [0, 1], of f 0 = f , there is a homotopy F t : ∆ n → F such that π • F t = f t for all t and F 0 is a stabilization of F .
On the other hand, one of the ingredients of the uniqueness theorem of [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF][START_REF] Théret | A complete proof of Viterbo's uniqueness theorem on generating functions[END_REF] is the first point of the following lemma. The second point is a 1-parameter version of the first point, which can be proved by the same argument (see also [START_REF] Granja | Givental's non-linear Maslov index on lens spaces[END_REF]Lemma 2.16], where the proof is given in the context of conical generating functions). The third point has been proved in [GKPS20, Proposition 2.19] in the context of conical generating functions, but for the convenience of the reader we present a proof here as well.

Lemma 2.2. Let B be a compact manifold. Then we have the following results:

(i) If F (s) , s ∈ [0, 1],
is a 1-parameter family of generating functions quadratic at infinity of the same Lagrangian submanifold of (T * B, ω can ) then there is a 1-parameter family Φ s of fibre preserving diffeomorphisms with Φ 0 = id and

F (s) • Φ s = F (0) for all s. (ii) Let {L t } t∈[0,1] be a Lagrangian isotopy in (T * B, ω can ). Suppose that F (s) t , s ∈ [0, 1]
, is a 2-parameter family of generating functions quadratic at infinity such that every F (s) t is a generating function of L t . Then there is a 2-parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id for all t and

F (s) t • Φ s,t = F (0) t for all s, t. (iii) If F (0) t and F
(1) t are 1-parameter families of generating functions quadratic at infinity for the same Lagrangian isotopy

{L t } t∈[0,1] in (T * B, ω can ) with F (0) 0 = F (1) 0
then there is a 2parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id and

F (1) t • Φ 1,t = F (0) t . Similarly for 2-parameter families F (0) u,t and F (1)
u,t of generating functions for the same 2-parameter family {L u,t } of Lagrangian submanifolds.

Proof of (iii). For every t, consider the path of Lagrangian submanifolds (which is actually a loop) obtained by going from L t to the identity along {L t } and then back to L t . This 1-parameter family γ of paths has a lift Γ to the space of generating functions F: for every t we consider the path in F that goes from

F (0) t to F (0) 0 and then from F (0) 0 = F (1) 0 to F (1)
t . By Proposition 2.1 the homotopy from the 1-parameter family of loops γ to the constant 1-parameter family of loops along {L t } (obtained by contracting for every t the loop based at L t to the constant one) can be lifted to a homotopy in F starting at Γ. The time-1 map of this homotopy gives a 2-parameter family of generating functions quadratic at infinity

F (s) t from F (0) t to F (1) t such that every F (s) t is a generating function of L t .
We then apply (ii) to obtain a 2-parameter family of fibre preserving diffeomorphisms Φ s,t with Φ 0,t = id and

F (s) t • Φ s,t = F (0) t , in particular F (1) t • Φ 1,t = F (0)
t . The 2-parameter case can be proved similarly.

Consider now the standard symplectic Euclidean space (R 2n , ω 0 = n j=1 dx j ∧ dy j ), and the product

R 2n × R 2n , -ω 0 ⊕ ω 0 . The map τ : R 2n × R 2n → T * R 2n , τ (x, y, X, Y ) = x + X 2 , y + Y 2 , Y -y, x -X
is a symplectomorphism, and sends the diagonal to the zero section. For a symplectomorphism ϕ of (R 2n , ω 0 ) we denote by Γ ϕ : R 2n → T * R 2n the composition of the graph gr(ϕ) :

R 2n → R 2n × R 2n , p → p, ϕ(p) with τ . Thus Γ ϕ (x, y) = x + ϕ x (x, y) 2 , y + ϕ y (x, y) 2 , ϕ y (x, y) -y , x -ϕ x (x, y) ,
where we denote ϕ(x, y) = ϕ x (x, y), ϕ y (x, y) .

Remark 2.3. If ϕ is exact with respect to the Liouville form λ 0 = n j=1 xj dyj -yj dxj 2

, with ϕ * λ 0λ 0 = dS for a function S : R 2n → R, then the Lagrangian embedding Γ ϕ : R 2n → T * R 2n is exact with respect to λ can , and we have

Γ * ϕ λ can = d S + x ϕ y -y ϕ x 2 .
We say that F is a generating function of a symplectomorphism ϕ of (R 2n , ω 0 ) if it is a generating function of the Lagrangian submanifold im(Γ ϕ ) of (T * R 2n , ω can ). Then i F : Σ F → T * R 2n gives a diffeomorphism between Σ F and im(Γ ϕ ), and the composition

(3) Φ F : R 2n im(Γ ϕ ) Σ F

Γϕ

of the inverse of this diffeomorphism with Γ ϕ is a diffeomorphism that induces a bijection between the fixed points of ϕ and the critical points of F . The next proposition follows directly from (2) and Remark 2.3.

Proposition 2.4. If F : R 2n × R N → R is a generating function of a symplectomorphism ϕ of (R 2n , ω 0 ) and if ϕ is exact with ϕ * λ 0 -λ 0 = dS then d(F • Φ F ) = d S + x ϕ y -y ϕ x 2 .
If ϕ is a Hamiltonian symplectomorphism of (R 2n , ω 0 ) then the Lagrangian submanifold im(Γ ϕ ) of (T * R 2n , ω can ) is Hamiltonian isotopic to the zero section. If moreover ϕ is compactly supported then, by considering the 1-point compactification S 2n of R 2n , im(Γ ϕ ) can be seen as a Lagrangian submanifold of (T * S 2n , ω 0 ), Hamiltonian isotopic to the zero section. It thus has a generating function quadratic at infinity F : R 2n × R N → R, unique up to addition of a constant, fibre preserving diffeomorphism and stabilization.

We say that a generating function of a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ) is normalized if it is zero at the critical points corresponding to the point at infinity of S 2n . Its critical values are then equal to the symplectic action of the fixed points of ϕ. Recall that the symplectic action of a fixed point p of a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ) is defined by

A ϕ (p) = 1 0 λ(X t ) + H t ϕ t (p) dt ,
where {ϕ t } t∈[0,1] is any Hamiltonian isotopy with ϕ 1 = ϕ, X t is the vector field generating this isotopy, and H t is the associated compactly supported Hamiltonian function, with the sign convention ι Xt ω = dH t . If S : R 2n → R is the compactly supported function satisfying ϕ * λ 0 -λ 0 = dS then the symplectic action is given by A ϕ (p) = S(p), and coincides with the critical value of the critical point corresponding to p of any normalized generating function of ϕ, as stated in the next proposition.

Proposition 2.5. Let F : R 2n × R N → R be a normalized generating function of a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ), and let S : R 2n → R be the compactly supported function satisfying

ϕ * λ 0 -λ 0 = dS. Let Σ F → R 2n , (x, y, ζ) → (x, y)
be the inverse of the diffeomorphism (3). For every (x, y, ζ) ∈ Σ F we then have

F (x, y, ζ) = S(x, y) + xϕ y (x, y) -yϕ x (x, y) 2 . If moreover (x, y, ζ) is a critical point of F then F (x, y, ζ) = S(x, y) = A ϕ (x, y) .
Proof. Since S is compactly supported and F is normalized, the first statement follows from Proposition 2.4. For the second statement, observe that if (x, y, ζ) is a critical point of F then (x, y) is a fixed point of ϕ, and so

xϕ y (x, y) -yϕ x (x, y) 2 = 0 .
Let now J 1 B = T * B × R be the 1-jet bundle of B, endowed with its canonical contact structure ξ can = ker(dθ + λ can ), where θ denotes the coordinate in R. If F : E → R, defined on the total space of a fibre bundle p : E → B, is a generating function then the map

i F : Σ F → J 1 B , i F (e) = i F (e) , -F (e)
is a Legendrian immersion. If it is an embedding we say that F is a generating function of the Legendrian submanifold im( i F ) of (J 1 B, ξ can ). The map i F then induces a bijection between the critical points of F and the Reeb chords from im( i F ) to the zero section: a fibre critical point e of F is a critical point if and only if i F (e) = i F (e), -F (e) belongs to the same Reeb orbit as the point i F (e), 0 of the zero section; moreover, the length of the Reeb chord from i F (e), -F (e) to i F (e), 0 is equal to the critical value F (e).

If B is compact then every Legendrian submanifold of (J 1 B, ξ can ) that is contact isotopic to the zero section has a generating function quadratic at infinity [START_REF] Chaperon | On generating families[END_REF][START_REF] Chekanov | Critical points of quasi-functions and generating families of Legendrian manifolds[END_REF], unique up to fibre preserving diffeomorphism and stabilization [START_REF] Théret | Utilisation des fonctions génératrices en géométrie symplectique globale[END_REF]. Similarly to the symplectic case, the existence theorem is a special case of the following result [START_REF] Chaperon | On generating families[END_REF][START_REF] Chekanov | Critical points of quasi-functions and generating families of Legendrian manifolds[END_REF]: if L is a Legendrian submanifold of (J 1 B, ξ can ) that has a generating function quadratic at infinity F then for any contact isotopy {φ t } t∈[0,1] of (J 1 B, ξ can ) there is a 1-parameter family F t of generating functions quadratic at infinity for {φ t (L)} such that F 0 is a stabilization of F . Moreover, the analogue of Proposition 2.1 also holds, with a similar proof [START_REF] Théret | Utilisation des fonctions génératrices en géométrie symplectique globale[END_REF].

Proposition 2.6. Let Leg be the space of Legendrian submanifolds of the 1-jet bundle (J 1 B, ξ can ) of a compact manifold B. Then the map π : F → Leg that sends a generating function to the generated Legendrian submanifold is a Serre fibration up to equivalence: given a map f : ∆ n → Leg having a lift F : ∆ n → F and a homotopy

f t : ∆ n → Leg, t ∈ [0, 1], of f 0 = f , there is a homotopy F t : ∆ n → F such that π • F t = f t for all t and F 0 is a stabilization of F .
Similarly, the analogue of Lemma 2.2 still holds (point (i) is one of the ingredients of the uniqueness theorem of [START_REF] Théret | Utilisation des fonctions génératrices en géométrie symplectique globale[END_REF], point (ii) is a 1-parameter version of point (i), and point (iii) can be deduced from point (ii) and Proposition 2.6 by an argument as in the proof of Lemma 2.2(iii)).

Lemma 2.7. Let B be a compact manifold. Then we have the following results:

(i) If F (s) , s ∈ [0, 1],
is a 1-parameter family of generating functions quadratic at infinity of the same Legendrian submanifold of (J 1 B, ξ can ) then there is a 1-parameter family Φ s of fibre preserving diffeomorphisms with Φ 0 = id and

F (s) • Φ s = F (0) for all s. (ii) Let {L t } t∈[0,1] be a Legendrian isotopy in (J 1 B, ξ can ). Suppose that F (s) t , s ∈ [0, 1]
, is a 2-parameter family of generating functions quadratic at infinity such that every F (s) t is a generating function of L t . Then there is a 2-parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id for all t and

F (s) t • Φ s,t = F (0) t for all s, t. (iii) If F (0) t and F
(1) t are 1-parameter families of generating functions quadratic at infinity for the same Legendrian isotopy {L t } in (J 1 B, ξ can ) with

F (0) 0 = F (1) 0
then there is a 2parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id and F

(1) t

• Φ 1,t = F (0)
t . Similarly for 2-parameter families F Consider now the standard contact Euclidean space R 2n+1 , ξ 0 = ker(α 0 ) , with coordinates (x 1 , . . . , x n , y 1 , . . . , y n , θ) and contact form

α 0 = dθ + n j=1
x j dy j -y j dx j 2 , and the contact product

R 2n+1 × R 2n+1 × R , ker(π * 2 α 0 -e ρ π * 1 α 0 )
, where ρ denotes the coordinate in R, and π 1 and π 2 denote the projections on the first and second factors respectively. The map

τ : R 2n+1 × R 2n+1 × R -→ J 1 R 2n+1 defined by τ (x, y, θ, X, Y, Θ, ρ) = e ρ 2 x + X 2 , e ρ 2 y + Y 2 , θ , Y -e ρ 2 y , e ρ 2 x -X , e ρ -1 , Θ -θ + e ρ 2 (xY -yX)
2 is a contactomorphism, and sends the Legendrian diagonal

∆ = { (x, y, θ, x, y, θ, 0) } ⊂ R 2n+1 × R 2n+1 × R
to the zero section. This contactomorphism is moreover strict with respect to the contact forms that we are considering: the pullback by τ of the canonical contact form on

J 1 R 2n+1 is equal to the contact form π * 2 α 0 -e ρ π * 1 α 0 on R 2n+1 × R 2n+1 × R.
For a contactomorphism φ of (R 2n+1 , ξ 0 ) with φ * α 0 = e g α 0 we denote by Γ φ : R 2n+1 → J 1 R 2n+1 the composition of the Legendrian graph gr(φ) :

R 2n+1 → R 2n+1 × R 2n+1 × R , p → p, φ(p), g(p)
with τ . Thus

Γ φ (x, y, θ) = e 1 2 g(x,y,θ) x + φ x (x, y, θ) 2 , e 1 2 g(x,y,θ) y + φ y (x, y, θ) 2 , θ , φ y (x, y, θ) -e 1 2 g(x,y,θ) y , e 1 2 g(x,y,θ) x -φ x (x, y, θ) , e g(x,y,θ) -1 , φ θ (x, y, θ) -θ + e 1 2 g(x,y,θ) xφ y (x, y, θ) -yφ x (x, y, θ) 2 ,
where we denote φ(x, y, θ) = φ x (x, y, θ), φ y (x, y, θ), φ θ (x, y, θ) .

We say that F is a generating function of φ if it is a generating function of the Legendrian submanifold im(Γ φ ) of (J 1 R 2n+1 , ξ can ). Then i F : Σ F → J 1 R 2n+1 gives a diffeomorphism between Σ F and im(Γ φ ), and the composition

(4) Ψ F : R 2n+1 im(Γ φ ) Σ F Γ φ
of the inverse of this diffeomorphism with Γ φ is a diffeomorphism that induces a bijection between the translated points of φ and the critical points of F . Moreover, the critical value F Ψ F (p) of the critical point Ψ F (p) corresponding to a translated point p is equal to the contact action of p.

Remark 2.8. Let F : R 2n+1 × R N → R be a generating function of a contactomorphism φ of (R 2n+1 , ξ 0 ). For any t ∈ R the function

F t : R 2n+1 × R N → R , F t (x, y, θ, ζ) = F (x, y, θ, ζ) -t
is then a generating function of ϕ α0 t • φ, where {ϕ α0 t } denotes the Reeb flow.

If φ is a contactomorphism of (R 2n+1 , ξ 0 ) that is contact isotopic to the identity then the Legendrian submanifold im(Γ φ ) of (J 1 R 2n+1 , ξ can ) is contact isotopic to the zero section. If moreover φ is the lift to (R 2n+1 , ξ 0 ) of a compactly supported contactomorphism of (R 2n × S 1 , ξ 0 ) contact isotopic to the identity, then im(Γ φ ) can be seen as a Legendrian submanifold of J 1 (S 2n × S 1 ), ξ can , contact isotopic to the zero section. It thus has a generating function quadratic at infinity F : R 2n+1 × R N → R, unique up to fibre preserving diffeomorphism and stabilization, which is invariant with respect to the action of Z generated by the map (x, y, θ, ζ) → (x, y, θ + 1, ζ).

The next proposition can be proved as in [San11a, Lemma 3.2].

Proposition 2.9. Let ϕ be a compactly supported Hamiltonian symplectomorphism of (R 2n , ω 0 ), and let f : R 2n × R N → R be a normalized generating function of ϕ. Then

F : R 2n+1 × R N → R , F (x, y, θ, ζ) = f (x, y, ζ)
is a generating function of the lift of ϕ to (R 2n+1 , ξ 0 ).

Z k -invariant functions detecting k-periodic points of Hamiltonian symplectomorphisms

An important ingredient to define the Z k -equivariant homology of domains of (R 2n , ω 0 ) is the following composition formula from [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF] (which is given there only in the case of generating functions without fibre variables, but can easily be adapted to the general case).

Proposition 3.1. Let k be an odd natural number. Suppose that F : R 2n ×R N → R is a generating function of a Hamiltonian symplectomorphisms ϕ of (R 2n , ω 0 ). Then the function

F k : R 2n × (R 2n(k-1) × R N k ) → R
defined by

F k (x 1 , y 1 ; x 2 , y 2 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = k j=1 F x j + x j+1 2 , y j + y j+1 2 , ζ j + 1 2 (x j+1 y j -x j y j+1 ) ,
with the convention (x k+1 , y k+1 ) = (x 1 , y 1 ), is a generating function of ϕ k . Moreover, if ϕ is compactly supported and F is normalized then F k is also normalized.

Proof. For every j we have

∂F k ∂ζ j (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = ∂F ∂ζ j x j + x j+1 2 , y j + y j+1 2 , ζ j , thus ∂F k ∂ζj (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = 0 if and only if xj +xj+1 2 , yj +yj+1 2 
, ζ j is a fibre critical point of F . In this case we define (5)

X j = xj +xj+1 2 Y j = yj +yj+1 2
and we let (X j , Y j ) ∈ R 2n be the image of (X j , Y j , ζ j ) by the inverse of the diffeomorphism (3). Then (6)

X j = Xj +ϕx(Xj ,Y j ) 2 Y j = Y j +ϕy(Xj ,Y j ) 2 and d 1 F (X j , Y j , ζ j ) = ϕ y (X j , Y j ) -Y j d 2 F (X j , Y j , ζ j ) = X j -ϕ x (X j , Y j ) .
Moreover, note that (5) implies (7)

x j = k-1 l=0 (-1) l X j+l y j = k-1 l=0 (-1) l Y j+l .
For every j we have

∂F k ∂x j (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = 1 2 d 1 F x j + x j+1 2 , y j + y j+1 2 , ζ j + 1 2 d 1 F x j-1 + x j 2 , y j-1 + y j 2 , ζ j-1 - 1 2 (y j+1 -y j-1 ) = 1 2 d 1 F (X j , Y j , ζ j ) + 1 2 d 1 F (X j-1 , Y j-1 , ζ j-1 ) -Y j + Y j-1 = 1 2 ϕ y (X j , Y j ) -Y j + 1 2 ϕ y (X j-1 , Y j-1 ) -Y j-1 - 1 2 Y j + ϕ y (X j , Y j ) + 1 2 Y j-1 + ϕ y (X j-1 , Y j-1 ) = ϕ y (X j-1 , Y j-1 ) -Y j ,
and similarly

∂F k ∂x j (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = X j -ϕ x (X j-1 , Y j-1 ) . Thus (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) is a fibre critical point of F k if and only if (X j , Y j , ζ j ) is a fibre critical point of F for all j and (8) (X j , Y j ) = ϕ(X j-1 , Y j-1 )
for j = 2, . . . , k. We leave to the reader the verification that the differential of the vertical derivative of F k at a fibre critical point has maximal rank, and so F k satisfies the transversality condition in the definition of generating functions. In order to prove that F k is a generating function of ϕ k it then remains to show that the Lagrangian immersion i F k : Σ F k → T * R 2n induces a diffeomorphism between Σ F k and im(Γ ϕ k ). But for any fibre critical point (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) of F k the relations (6), ( 7) and (8) give

(x 1 , y 1 ) = X 1 + (ϕ k ) x (X 1 , Y 1 ) 2 , Y 1 + (ϕ k ) y (X 1 , Y 1 ) 2 and ϕ(X k , Y k ) = ϕ k (X 1 , Y 1 ) ,
and so we have

i F k (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = x 1 , y 1 , ∂F k ∂x 1 (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ), ∂F k ∂y 1 (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = X 1 + (ϕ k ) x (X 1 , Y 1 ) 2 , Y 1 + (ϕ k ) y (X 1 , Y 1 ) 2 , (ϕ k ) y (X 1 , Y 1 ) -Y 1 , X 1 -(ϕ k ) x (X 1 , Y 1 ) = Γ ϕ k (X 1 , Y 1 ) . Thus i F k : Σ F k → T * R 2n is the composition of Γ ϕ k with the diffeomorphism (9) Σ F k → R 2n , (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) → (X 1 , Y 1 ) ,
and so F k is a generating function of ϕ k . In particular, the diffeomorphism (9) induces a 1-1 correspondence between the critical points of F k and the fixed points of ϕ k . Suppose now that ϕ is compactly supported and 6) and (7) give x j = X j and y j = Y j . By Proposition 2.5 we thus have

F is normalized. If (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) is a critical point of F k then (
F k (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = k j=1 F (X j , Y j , ζ j ) + 1 2 (x j+1 y j -x j y j+1 ) = k j=1 S(X j , Y j ) = A ϕ k (X 1 , Y 1 ) ,
and so F k is normalized.

The function

F k : R 2nk × R N k → R
is invariant by the action of Z k generated by the map

(10) (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) → (x 2 , y 2 , . . . , x k , y k , x 1 , y 1 , ζ 2 , . . . , ζ k , ζ 1 ) .
Using the notations of the proof of Proposition 3.1, we have seen that (x 1 , y 1 , . . . ,

x k , y k , ζ 1 , . . . , ζ k ) is a critical point of F k if and only if (X 1 , Y 1 ) is a k-periodic point of ϕ.
It follows from the proof of Proposition 3.1 that, under this bijection between the critical points of F k and the k-periodic points of ϕ, the Z k -action (10) corresponds to the Z k -action on the set of k-periodic points of ϕ generated by the map that sends a k-periodic point p to the k-periodic point ϕ(p).

We end this section with a discussion on the relation between the index of the Hessian of F k at a critical point and the Maslov index of the corresponding fixed point of ϕ k . This relation is needed in Section 8, in the calculation of the equivariant homology of balls. Recall first from [START_REF] Théret | A Lagrangian camel[END_REF] that the Maslov index of a fixed point of a Hamiltonian symplectomorphism of (R 2n , ω 0 ) can be defined using generating functions as follows. The Maslov index of a path {L t } t∈[0,1] of linear Lagrangian submanifolds of (T * R m , ω can ) is defined by

ν {L t } t∈[0,1] = ind(Q 1 ) -ind(Q 0 ) ,
where Q t is any 1-parameter family of generating quadratic forms for {L t } t∈[0,1] and where we denote by ind(Q) the index of a quadratic form Q (the maximal dimension of a linear subspace on which Q is negative definite). The Maslov index ν(p) of a fixed point p of a Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ) is then defined to be the Maslov index of the path

p → im Γ dϕt(p)
of linear Lagrangian submanifolds of (T * R 2n , ω can ), where {ϕ t } is any Hamiltonian isotopy with ϕ 1 = ϕ. If F t : E → R is a 1-parameter family of generating functions for {ϕ t } then d 2 F t Φ Ft (p) , where Φ Ft denotes the diffeomorphism from R 2n to Σ Ft defined in (3), is a 1-parameter family of generating quadratic forms for {im Γ dϕt(p) }, and so

ν(p) = ind d 2 F 1 Φ F1 (p) -ind d 2 F 0 Φ F0 (p) .
We can now prove the following result.

Proposition 3.2. Let ϕ be a compactly supported Hamiltonian symplectomorphism of (R 2n , ω 0 ) with generating function quadratic at infinity F , and consider the associated generating function F k of ϕ k . Then for every fixed point p of ϕ k we have

ν(p) = ind d 2 F k Φ F k (p) -k ind(Q) -n(k -1) ,
where Q denotes the quadratic at infinity part of F .

Proof. Let {ϕ t } be a compactly supported Hamiltonian isotopy with ϕ 1 = ϕ, and let F t be a 1parameter family of generating functions quadratic at infinity for {ϕ t }. Without loss of generality we can assume that F 1 = F and F 0 = Q. In view of the above discussion it is then enough to show that ind

d 2 F k 0 Φ F k 0 (p) = k ind(Q) + n(k -1) .
But this holds because

F k 0 (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) = k j=1 Q(ζ j ) + k j=1 1 2 (x j+1 y j -x j y j+1 ) ,
and the index of the quadratic form

k j=1 1 2 (x j+1 y j -x j y j+1 ) is n(k -1).
4. Z k -equivariant generating function homology for domains of (R 2n , ω 0 )

In order to define the homology of domains of (R 2n , ω 0 ) the idea, as in [START_REF] Traynor | Symplectic homology via generating functions[END_REF] (and similarly to [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF], where the construction is presented in the contact case for domains of (R 2n × S 1 , ξ 0 )), is to first define the homology of compactly supported Hamiltonian symplectomorphisms and then consider the limit, in a certain sense, of the homologies of all the Hamiltonian symplectomorphisms supported in a given domain. More precisely, in [START_REF] Traynor | Symplectic homology via generating functions[END_REF] the homology of a domain is defined by taking the inverse limit of the homologies of the Hamiltonian symplectomorphisms supported in the domain, which are considered to form an inverse system over the mentioned set of Hamiltonian symplectomorphisms, the latter being a directed set under the partial order ≤ defined by setting

ϕ 0 ≤ ϕ 1 if ϕ 1 • ϕ -1
0 is the time-1 map of the flow of a compactly supported non-negative Hamiltonian function. The property of being an inverse system relies on having an induced morphism ι * from the homology of ϕ 1 to the homology of ϕ 0 whenever ϕ 0 ≤ ϕ 1 . As noted in [START_REF] Fraser | Contact non-squeezing via generating functions: A low-tech proof in the language of persistence modules[END_REF], however, well-definedness of this morphism is not addressed in [START_REF] Traynor | Symplectic homology via generating functions[END_REF] (nor in [START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF]). One point not discussed explicitly in the homology theories of [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] is that the homology group (Z 2vector space) associated to a Hamiltonian symplectomorphism is by construction only determined up to certain isomorphisms (since generating functions are only unique up to stabilization and fibre preserving diffeomorphisms); it is therefore, formally speaking, a groupoid of vector spaces, not a vector space. However, claimed maps between homologies are defined in [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] only on specific vector spaces of each groupoid (arising from specific generating functions) but are never shown to pass to morphisms of the associated groupoids. Moreover, it is a priori not clear whether the concrete calculations done with specific vector spaces and morphisms in [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] also carry over to the mentioned groupoids. We thus deviate from [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF] and give the following more precise construction. It avoids the above concerns by taking as underlying directed set Hamiltonian isotopies instead of their time-1 maps, and by using a category theoretic formulation that we believe also provides advantages for future work. Z k , * {ϕ t } of a compactly supported Hamiltonian isotopy {ϕ t } t∈[0,1] of (R 2n , ω 0 ). Recall that, by Proposition 2.1, there exists a 1parameter family of generating functions quadratic at infinity F t for {ϕ t } such that F 0 is a nondegenerate quadratic form. Moreover, by Lemma 2.2(iii), for any two such 1-parameter families F (0) t and F

(1) t there are non-degenerate quadratic forms Q 0 and Q 1 and a 2-parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id so that

F (0) t ⊕ Q 0 = (F (1) t ⊕ Q 1 ) • Φ 1,t .
We thus consider the category F {ϕ t } whose objects are the 1-parameter families F t of generating functions quadratic at infinity for {ϕ t } such that F 0 is a non-degenerate quadratic form, and whose morphisms are finite compositions of the following two types of morphisms:

(1) given a non-degenerate quadratic form Q, we set [Q] :

F (0) t → F (1) t if F (1) t = F (0) t ⊕ Q and [Q] : F (0) t → F (1) t if F (0) t = F (1) t ⊕ Q;
(2) given a 2-parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id, we set

[Φ] :

F (0) t → F (1) t if F (1) t = F (0) t • Φ 1,t .
For a ≤ b in R ∪ {±∞} that are not in the action spectrum of (ϕ 1 ) k we define a functor G 

Z k , * (F t ) = H Z k , * +kι+n(k-1) {(F 1 ) k ≤ b} , {(F 1 ) k ≤ a}; Z k
, where ι denotes the index of the quadratic at infinity part of F 1 , with the convention that (F 1 ) k ≤ ∞ means (F 1 ) k ≤ c for c > 0 big enough and (F 1 ) k ≤ -∞ means (F 1 ) k ≤ c for c < 0 with |c| big enough, and by associating to any morphism

F (0) t → F (1) t a homomorphism G (a,b] Z k , * (F (1) t ) → G (a,b] Z k , * (F (0)
t ) as follows:

(1) consider a morphism [Q] : Z k , * ([Q]) to be the inverse of the Z k -equivariant Thom isomorphism with respect to the quadratic form Q ⊕k ;

F (0) t → F (1) t of type (1); then (F (1) t ) = (F (0) t ) k ⊕ Q ⊕k ,
(2) consider a morphism [Φ] :

F (0) t → F (1) t of type (2); then F (1) 1 (x, y, ζ) = F (0) 1 • Φ 1,1 (x, y, ζ) = F (0) 1 (x, y, ζ ) and so (F (1) 1 ) k = (F (0) 1 ) k • (Φ 1,1 ) k , where (Φ 1,1 ) k is the Z k -equivariant diffeomorphism (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) → (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) defined by x j + x j+1 2 , y j + y j+1 2 , ζ j = Φ 1,1 x j + x j+1 2 , y j + y j+1 2 , ζ j ; we then define G (a,b] Z k , * ([Φ]
) to be the isomorphism ((Φ 1,1 ) k ) * . (3) for a morphism uv with u and v of different type we consider the composition of the homomorphism associated to v with that associated to u.

We then define G

(a,b] Z k , * {ϕ t } = lim ← - G (a,b] Z k , * (F t ) Ft∈F ({ϕt}) .
By definition of the limit, for every object F t in F {ϕ t } there exists a natural homomorphism

i Ft : G (a,b] Z k , * {ϕ t } → G (a,b]
Z k , * (F t ), which is functorial with respect to F t . This homomorphism is in fact an isomorphism, as shown in the next proposition.

Proposition 4.1. For every object F t in F {ϕ t } the natural homomorphism

i Ft : G (a,b] Z k , * {ϕ t } → G (a,b] Z k , * (F t ) is an isomorphism.
Proof. The result follows from the fact that any two objects F (0) t and F

(1) t in F({ϕ t }) are related by a morphism, and all the morphisms between them induce the same isomorphism G 

Z k , * (F (1) t ) → G (a,b] Z k , * (F (0)
t ). The first statement follows by Lemma 2.2(iii). For the second, observe first that, since any composition of a fibre preserving diffeomorphism followed by a stabilization can be written as the composition of a stabilization followed by a fibre preserving diffeomorphism, and since the Thom isomorphism is natural, it is enough to show that if

F (1) t = F (0) t • Φ 1,t = F (0) t • Ψ 1,t for two 2-parameter families Φ s,t and Ψ s,t then G (a,b] Z k , * ([Φ]) = G (a,b] Z k , * ([Ψ]
). This can be seen as follows. Let

F (s) t = F (0) t • Φ s,t and F (s) t = F (0) t • Ψ s,t . Since the two paths F (s) 1 and F (s)
1 are both homotopic to the path obtained by going from

F (0) 1 to F (0) 0 along F (0) t and then from F (0) 0 = F (1) 0 to F (1) 1 along F (1) t , there is a 1-parameter family of paths G (s) u such that G (s) 0 = F (s) 1 , G (s) 1 = F (s)
1 and, for every s, G

u is a lift to the space of generating functions of the (contractible) loop based at ϕ 1 obtained by going from ϕ 1 to some ϕ t(s) along {ϕ t } and then back to ϕ 1 . By Proposition 2.1, the contraction of this 1-parameter family of loops to the 1-parameter family of constant loops can be lifted to the space of generating functions. The time-1 map of this lift gives a 1-parameter family of paths

I (s) u from F (s) 1 to F (s) 1 such that each I (s) u
is a generating function of ϕ 1 and such that the loops I (0) u and I

(1) u are contractible in the space of generating functions quadratic at infinity of ϕ 1 . Applying Lemma 2.2(ii) we thus obtain a 2-parameter family χ s,u of fibre preserving diffeomorphisms with

I (s) u •χ s,u = F (s) 1 , in particular F (s) 1 •χ s,1 = F (s)
1 and thus (F

(s) 1 ) k •(χ s,1 ) k = (F (s) 1 ) k . The restriction to {(F (0) 1 ) k ≤ b} , {(F (0) 1 ) k ≤ a} of (Ψ s,1 ) k • (χ s,0 ) k • (Φ s,1 ) -1 k is a homotopy from (χ 0,0 ) k to (Ψ 1,1 ) k • (χ 1,0 ) k • (Φ 1,1 ) -1
k . Since, by construction, the restriction to

{(F (0) 1 ) k ≤ b} , {(F (0) 1 ) k ≤ a} and {(F (1) 1 ) k ≤ b} , {(F (1)
1 ) k ≤ a} respectively of (χ 0,0 ) k and (χ 1,0 ) k are homotopic to the identity through Z k -equivariant homotopies, we conclude that the restriction to {(F

(0) 1 ) k ≤ b} , {(F (0) 1 ) k ≤ a} of (Ψ 1,1 ) k • (Φ 1,1 ) -1 k is homotopic to the identity through a Z k -equivariant homotopy, thus G (a,b] Z k , * ([Φ]) = G (a,b] Z k , * ([Ψ]
), as we wanted.

In particular, Proposition 4.1 implies that if, similarly to [START_REF] Traynor | Symplectic homology via generating functions[END_REF][START_REF] Sandon | Contact homology, capacity and non-squeezing in R 2n × S 1 via generating functions[END_REF], for a compactly supported Hamiltonian symplectomorphism ϕ of (R 2n , ω 0 ) we define

G (a,b] Z k , * (ϕ) = H Z k , * +kι+n(k-1) {F k ≤ b} , {(F k ≤ a}; Z k
for any generating function quadratic at infinity F of ϕ, where ι denotes the index of the quadratic at infinity part of F , then we have

G (a,b] Z k , * (ϕ) ∼ = G (a,b]
Z k , * {ϕ t } for any compactly supported Hamiltonian isotopy {ϕ t } t∈[0,1] with ϕ 1 = ϕ. However this isomorphism is not canonical, since it depends on the choice of generating functions. The advantage of working with the groups G Z k , * {ϕ t } , defined as above by a categorical definition 2 that does not require the choice of specific generating functions, is that, as we will see, the homomorphisms involved in the limit construction to define the homology of domains are canonical, and so the Z k , * {ϕt} in principle could be given also for single Hamiltonian symplectomorphisms, but in the case of Hamiltonian symplectomorphisms it would not be clear to us that the analogue of Proposition 4.1 would hold.

functorial properties of the homology are easier to prove. For instance, the first part of the proof of the following proposition implies that for any ϕ and ψ the groups G Z k , * (ψϕψ -1 ) are isomorphic, but we obtain a canonical isomorphism only when considering the homology groups associated to Hamiltonian isotopies. Proposition 4.2. Let {ϕ t } be a compactly supported Hamiltonian isotopy of (R 2n , ω 0 ), and suppose that a ≤ b in R ∪ {±∞} are not in the action spectrum of (ϕ 1 ) k . Then every compactly supported Hamiltonian isotopy {ψ t } t∈[0,1] induces a well-defined isomorphism

λ {ψt} : G (a,b] Z k , * {ϕ t } → G (a,b] Z k , * {ψ 1 ϕ t ψ -1 1 } . Proof. Let F (s) t
: R 2n × R N → R be a 2-parameter family of generating functions quadratic at infinity for the 2-parameter family of Hamiltonian symplectomorphisms {ψ s ϕ t ψ -1 s }, and consider the corresponding 2-parameter family of generating functions (F

(s) t ) k : R 2nk × R N k → R for {(ψ s ϕ t ψ -1 s ) k } = {ψ s (ϕ t ) k ψ -1 s }.
The critical points of (F (s) 1 ) k are in 1-1 correspondence with the fixed points of ψ s (ϕ 1 ) k ψ -1 s , and the critical values are given by the symplectic actions. Since the action spectrum is invariant by conjugation, the set of critical values of (F (s) 1 ) k is thus independent of s. Since a and b are regular values of (F (0) 1 ) k , it follows that they are regular values of (F (s) 1 ) k for all s, and so by following the flow of the time dependent gradient of the family (F

(s) 1 ) k we obtain a Z k -equivariant isotopy {θ s } of R 2nk × R N k mapping the sublevel sets of (F (0)
1 ) k at a and b to those of (F (s) 1 ) k . In particular, this gives an isomorphism

(θ 1 ) * : G (a,b] Z k , * (F (0) t ) → G (a,b] Z k , * (F (1)
t ) , and so an isomorphism (11)

λ {ψt} := (i F (1) t ) -1 • (θ 1 ) * • i F (0) t : G (a,b] Z k , * {ϕ t } → G (a,b] Z k , * {ψ 1 ϕ t ψ -1 1 } .
This isomorphism is well-defined. Indeed, suppose that F (s) t is another 2-parameter family of generating functions quadratic at infinity for {ψ s ϕ t ψ -1 s }. By Lemma 2.2(iii), we can assume that

F (s) t = (F (s) t ⊕ Q) • Φ s,t
for a non-degenerate quadratic form Q and a 2-parameter family of fibre preserving diffeomorphisms Φ s,t , and so (F

(s) t ) k = ((F (s) t ) k ⊕ Q ⊕k ) • (Φ s,t ) k . The family (F (s) 1 ) k defines the Z k -equivariant isotopy (Φ s,1 ) -1 k • (θ s × id) • (Φ 0,1 ) k . The corresponding isomorphism (θ 1 ) * = (Φ 1,1 ) -1 k • (θ 1 × id) • (Φ 0,1 ) k * : G (a,b] Z k , * F (0) t → G (a,b] Z k , * F (1) t fits into the commutative diagram G (a,b] Z k , * {ϕ t } G (a,b] Z k , * (F (0) t ) G (a,b] Z k , * (F (1) t ) G (a,b] Z k , * {ψ 1 ϕ t ψ -1 1 } G (a,b] Z k , * (F (0) t ) G (a,b] Z k , * (F (1) t ) i F (0) t i F (0) t (θ1) * i F (1) t i F (1) t (θ 1 ) *
and so it induces the same isomorphism (11).

We now define the Z k -equivariant generating function homology

G (a,b] Z k , * (U) of a domain U of (R 2n , ω 0 ). Let H k a,b ( 
U) be the set of compactly supported Hamiltonian isotopies {ϕ t } t∈[0,1] supported in U and such that a and b do not belong to the action spectrum of (ϕ 1 ) k . We define a partial order ≤ on H k a,b (U) by posing {ϕ

(1)

t } ≤ {ϕ (2) t } if {ϕ (2) t • (ϕ (1) 
t ) -1 } is a non-negative Hamiltonian isotopy, i.e. an isotopy generated by a non-negative compactly supported Hamiltonian function. For {ϕ

(i) t } and {ϕ (j) t } in H k a,b (U) with {ϕ (i) t } ≤ {ϕ (j)
t } there is an induced homomorphism

λ j i : G (a,b] Z k , * {ϕ (j) t } → G (a,b] Z k , * {ϕ (i) t } ,
which is defined as follows. Consider the non-negative Hamiltonian isotopy {ϕ t } defined by ϕ t = ϕ 

(j) t •(ϕ (i) t ) -1 . A 1-
F (0) t ≤ F (1)
t , and so (F

(0) t ) k ≤ (F (1)
t ) k . The inclusion of the sublevel sets at a and b of (F

(1) 1 ) k into those of (F (0) 1 ) k induces a homomorphism (i F (1) t ,F (0) t ) * : G (a,b] Z k , * (F (1) t ) → G (a,b] Z k , * (F (0) t ) ,
and so a homomorphism (12)

λ j i := (i F (0) t ) -1 • (i F (1) t ,F (0) t ) * • i F (1) t : G (a,b] Z k , * {ϕ (j) t } → G (a,b] Z k , * {ϕ (i)
t } , which can be seen to be well-defined by an argument similar to the one in the proof of Proposition 4.2. The homomorphisms λ j i satisfy the cocycle conditions

λ i i = id λ j i • λ l j = λ l i for {ϕ (i) t } ≤ {ϕ (j) t } ≤ {ϕ (l) t } . Thus G (a,b] Z k , * {ϕ t } {ϕt}∈H k a,b ( 
U ) is an inversely directed family of graded modules over Z k , and we define G

(a,b] Z k , * (U) = lim ← - G (a,b] Z k , * {ϕ t } {ϕt}∈H k a,b (U ) .
Using Proposition 4.2 we now show that these groups are symplectic invariants.

Proposition 4.3. For every compactly supported Hamiltonian isotopy {ψ t } t∈[0,1] of (R 2n , ω 0 ) and every domain U there is a well-defined isomorphism λ {ψt} : G 

(a,b] Z k , * (U) → G (a,b] Z k , * ψ 1 (U) . Proof. If {ϕ t } ∈ H k a,b (U) then {ψ 1 ϕ t ψ -1 1 } ∈ H k a,b ψ 1 (U) ,
Z k , * {ϕ t } → G (a,b] Z k , * {ψ 1 ϕ t ψ -1 1 } . Moreover, for {ϕ (0) t } ≤ {ϕ (1) t } we have {ψ 1 ϕ (0) t ψ -1 1 } ≤ {ψ 1 ϕ
(1) t ψ -1 1 }, and the induced homomorphisms commute with the maps λ {ψt} . This can be seen as follows. Consider the 2-parameter family {ψ s ϕ (0) t ψ -1 s }, and the nonnegative Hamiltonian isotopy

ϕ t = ϕ (1) t • (ϕ (0) t ) -1 . Then {ψ s ϕ ut ϕ (0) t ψ -1 s } u∈[0,1]
is a 2-parameter family of non-negative Hamiltonian isotopies. A 2-parameter version of the proof of [San11a, Proposition 2.10] shows that there is a 3-parameter family F (u) s,t of generating functions quadratic at infinity for {ψ s ϕ ut ϕ

(0) t ψ -1 s } with d du F (u) s,t ≥ 0. In particular, F (0) 0,t , F (0) 1,t , F (1) 
0,t and F

(1) 1,t are 1-parameter families of generating functions respectively for {ϕ

(0) t }, {ψ 1 ϕ (0) t ψ -1 1 }, {ϕ (1) 
t } and {ψ 1 ϕ

(1)

t ψ -1 1 } that satisfy F (0) 0,t ≤ F (1) 0,t and 
F (0) 1,t ≤ F (1) 1,t . We then have a commutative diagram G (a,b] Z k , * (F (1) 0,t ) G (a,b] Z k , * (F (0) 0,t ) G (a,b] Z k , * (F (1) 1,t ) G (a,b] Z k , * (F (0) 0,t ) , (θ (1) 1 ) * (i F (1) 0,t ,F (0) 0,t ) * (θ (0) 1 ) * (i F (1) 1,t ,F (0) 1,t ) *
where the vertical arrows are defined as in the proof of Proposition 4.2. This implies that the isomorphisms λ {ψt} induce a well-defined isomorphism G

(a,b] Z k , * (U) → G (a,b] Z k , * ψ 1 (U) . If U 1 ⊂ U 2 , the inclusion of posets H k a,b (U 1 ) ⊂ H k a,b (U 2 ) induces a homomorphism G (a,b] Z k , * (U 2 ) → G (a,b] Z k , * (U 1 ) .
Moreover, for U 1 ⊂ U 2 ⊂ U 3 and for any compactly supported Hamiltonian isotopy {ψ t } t∈[0,1] these homomorphisms fit into commutative diagrams

G (a,b] Z k , * (U 3 ) G (a,b] Z k , * (U 2 ) G (a,b] Z k , * (U 1 ) and G (a,b] Z k , * (U 2 ) G (a,b] Z k , * (U 1 ) G (a,b] Z k , * ψ 1 (U 2 ) G (a,b] Z k , * ψ 1 (U 1 )
.

λ {ψ t } λ {ψ t } 5. Z k -invariant functions detecting translated k-chains of contactomorphisms
We have seen that in the symplectic case there is a composition formula that, given a generating function of a Hamiltonian symplectomorphism ϕ, allows to obtain a generating function of ϕ k that is invariant by a natural Z k -action. Such a composition formula cannot exist in the contact case. Indeed, if we had a generating function of the k-th iteration φ k of a contactomorphism φ of (R 2n+1 , ξ 0 ) that is invariant by a natural Z k -action then its set of critical points would also be invariant by the Z k -action, and would be in 1-1 correspondence with the set of translated points of φ k ; but, there is no natural Z k -action on the set of translated points of φ k . On the other hand, we have seen in the introduction that there is a natural Z k -action on the set of translated k-chains of φ. We thus construct in this section Z k -invariant functions that detect the translated k-chains of contactomorphisms of (R 2n+1 , ξ 0 ). These functions will be used in Section 6 to define the Z k -equivariant homology of domains of (R 2n × S 1 , ξ 0 ).

Let φ be a contactomorphism of (R 2n+1 , ξ 0 ) with generating function F : R 2n+1 × R N → R.

Consider the function

F k : R (2n+2)k × R N k → R defined by F k (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = k j=1 e rj F e -r j 2 x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j + 1 2 (x j+1 y j -x j y j+1 ) + e rj-1 (θ j -θ j+1 ) .
For any a ∈ R this function satisfies

F k (e a 2 x 1 , e a 2 y 1 , θ 1 , r 1 + a, . . . , e a 2 x k , e a 2 y k , θ k , r k + a, ζ 1 , . . . , ζ k ) = e a F k (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) .
Its critical points thus come in R-families, and have critical value equal to zero.

Proposition 5.1. The R-families of critical points of F k are in 1-1 correspondence with the discriminant points of φ k , i.e. the translated points of φ k of zero action.

Proof. Let (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) be a critical point of F k . For every j we have

0 = ∂F k ∂ζ j (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = e rj ∂F ∂ζ j e -r j 2 x j + x j+1 2 e -r j 2 y j + y j+1 2 , θ j+1 , ζ j , thus e -r j 2 xj +xj+1 2 e -r j 2 yj +yj+1 2 , θ j+1 , ζ j is a fibre critical point of F . Define (13)      X j = e -r j 2 xj +xj+1 2 Y j = e -r j 2 yj +yj+1 2 Θ j = θ j+1 ,
and let (X j , Y j , Θ j ) ∈ R 2n+1 be the image of (X j , Y j , Θ j , ζ j ) by the inverse of the diffeomorphism (4). Then

       X j = e 1 2 g(X j ,Y j ,Θ j ) Xj +φx(Xj ,Y j ,Θj ) 2 Y j = e 1 2 g(X j ,Y j ,Θ j ) Y j +φy(Xj ,Y j ,Θj ) 2 Θ j = Θ j ,      d 1 F (X j , Y j , Θ j , ζ j ) = φ y (X j , Y j , Θ j ) -e 1 2 g(Xj ,Y j ,Θj ) Y j d 2 F (X j , Y j , Θ j , ζ j ) = e 1 2 g(Xj ,Y j ,Θj ) X j -φ x (X j , Y j , Θ j ) d 3 F (X j , Y j , Θ j , ζ j ) = e g(Xj ,Y j ,Θj ) -1 and F (X j , Y j , Θ j , ζ j ) = φ θ (X j , Y j , Θ j ) -Θ j + e 1 2 g(Xj ,Y j ,Θj ) X j φ y (X j , Y j , Θ j ) -Y j φ x (X j , Y j , Θ j ) 2 .
For every j we have

0 = ∂F k ∂θ j+1 (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = e rj d 3 F e -r j 2 x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j + e rj -e rj-1 = e rj d 3 F (X j , Y j , Θ j , ζ j ) + e rj -e rj-1
= e rj e g(Xj ,Y j ,Θj ) -1 + e rj -e rj-1 = e rj +g(Xj ,Y j ,Θj ) -e rj-1 , thus (14) r j + g(X j , Y j , Θ j ) = r j-1 .

In particular,

k j=1 g(X j , Y j , Θ j ) = 0 . Moreover, 0 = ∂F k ∂x j (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = 1 2 e r j 2 d 1 F e -r j 2 x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j + 1 2 e r j-1 2 d 1 F e -r j-1 2 x j-1 + x j 2 , e -r j-1 2 y j-1 + y j 2 , θ j , ζ j-1 - 1 2 (y j+1 -y j-1 ) = 1 2 e r j 2 d 1 F (X j , Y j , Θ j , ζ j ) + 1 2 e r j-1 2 d 1 F (X j-1 , Y j-1 , Θ j-1 , ζ j-1 ) -e r j 2 Y j + e r j-1 2 Y j-1 = 1 2 e r j 2 φ y (X j , Y j , Θ j ) -e 1 2 g(Xj ,Y j ,Θj ) Y j + 1 2 e r j-1 2 φ y (X j-1 , Y j-1 , Θ j-1 ) -e 1 2 g(Xj-1,Y j-1,Θj-1 ) Y j-1 - 1 2 e r j 2 e 1 2 g(Xj ,Y j ,Θj ) Y j + φ y (X j , Y j , Θ j ) + 1 2 e r j-1 2 e 1 2 g(Xj-1,Y j-1,Θj-1 ) Y j-1 + φ y (X j-1 , Y j-1 , Θ j-1 ) = e r j-1 2 φ y (X j-1 , Y j-1 , Θ j-1 ) -e r j 2 + 1 2 g(Xj ,Y j ,Θj ) Y j , thus, using (14), Y j = φ y (X j-1 , Y j-1 , Θ j-1 ) . (15) 
Similarly, the vanishing of

∂F k ∂yj at (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) gives X j = φ x (X j-1 , Y j-1 , Θ j-1 ) .
Finally we have

0 = ∂F k ∂r j-1 (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = e rj-1 F e -r j-1 2 x j-1 + x j 2 , e -r j-1 2 y j-1 + y j 2 , θ j , ζ j-1 - 1 2 e rj-1 e -r j-1 2 x j-1 + x j 2 d 1 F e -r j-1 2 x j-1 + x j 2 , e -r j-1 2 y j-1 + y j 2 , θ j , ζ j-1 - 1 2 e rj-1 e -r j-1 2 y j-1 + y j 2 d 2 F e -r j-1 2 x j-1 + x j 2 , e -r j-1 2 y j-1 + y j 2 , θ j , ζ j-1 + e rj-1 (θ j -θ j+1 ) = e rj-1 F (X j-1 , Y j-1 , Θ j-1 , ζ j-1 ) - 1 2 e rj-1 X j-1 d 1 F (X j-1 , Y j-1 , Θ j-1 , ζ j-1 ) - 1 2 e rj-1 Y j-1 d 2 F (X j-1 , Y j-1 , Θ j-1 , ζ j-1 ) + e rj-1 (Θ j-1 -Θ j ) = e rj-1 φ θ (X j-1 , Y j-1 , Θ j-1 ) -Θ j-1 + e 1 2 g(Xj-1,Y j-1,Θj-1) X j-1 φ y (X j-1 , Y j-1 , Θ j-1 ) -Y j-1 φ x (X j-1 , Y j-1 , Θ j-1 ) 2 - 1 4 e rj-1 e 1 2 g(Xj-1,Y j-1 ,Θj-1) X j-1 + φ x (X j-1 , Y j-1 , Θ j-1 ) • φ y (X j-1 , Y j-1 , Θ j-1 ) -e 1 2 g(Xj-1,Y j-1,Θj-1) Y j-1 - 1 4 e rj-1 e 1 2 g(Xj-1,Y j-1,Θj-1 ) Y j-1 + φ y (X j-1 , Y j-1 , Θ j-1 ) • e 1 2 g(Xj-1,Y j-1,Θj-1 ) X j-1 -φ x (X j-1 , Y j-1 , Θ j-1 ) +e rj-1 (Θ j-1 -Θ j ) = e rj-1 φ θ (X j-1 , Y j-1 , Θ j-1 ) -Θ j , thus Θ j = φ θ (X j-1 , Y j-1 , Θ j-1 ) . We conclude that (X j , Y j , Θ j ) = φ(X j-1 , Y j-1 , Θ j-1 )
for all j, and so, since (15) also holds, (X 1 , Y 1 , Θ 1 ) is a discriminant point of φ k . The map

(x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) → (X 1 , Y 1 , Θ 1 )
gives thus a 1-1 correspondence between the R-families of critical points of F k and the discriminant points of φ k .

Remark 5.2. The discriminant points of φ k are in 1-1 correspondence with the R-families of fixed points of the lift of φ k to the symplectization. The function F k can be obtained by applying a version of the composition formula of Proposition 3.1 to a generating function of the lift of φ to the symplectization, after appropriate identifications of the symplectization of (R 2n+1 , ξ 0 ) with (R 2n+2 , ω 0 ) and of the symplectic product of (R 2n+2 , ω 0 ) with (T * R 2n+2 , ω can ).

Let φ be a contactomorphism of (R 2n+1 , ξ 0 ), and let F : R 2n+1 ×R N → R be a generating function of φ. By Remark 2.8, for any t ∈ R the function

F t : R 2n+1 × R N → R , F t (x, y, θ, ζ) = F (x, y, θ, ζ) -t
is a generating function of ϕ α0 t • φ, where {ϕ α0 t } denotes the Reeb flow. By Proposition 5.1, the R-families of critical points of the function

(F t ) k : R (2n+2)k × R N k → R
are in 1-1 correspondence with the discriminant points of (ϕ α0 t • φ) k , i.e. with the translated k-chains of φ of contact action tk. Consider now the function 

G (k) F : (R (2n+2)k × R N k ) × R → R , G (k) F (p, t) = (F t/k ) k (p) ,
G (k) F -1 (0) (R (2n+2)k × R N k ) × R t R R t . P (k) F G (k) F pr t For (p, t) ∈ G (k) F -1 (0), (p, t) is a critical point of P (k) 
F if and only if p is a critical point of (F t/k ) k . The R-families of critical points of P 

F : R (2n+2)k × R N k → R defined by P (k) F (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = k k j=1 e rj k j=1
e rj F e -r j 2

x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j + 1 2 (x j+1 y j -x j y j+1 ) + e rj-1 (θ j -θ j+1 ) .
This function is invariant by the action of R generated by the map

(x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) → (e a 2 x 1 , e a 2 y 1 , θ 1 , r 1 + a, . . . , e a 2 x k , e a 2 y k , θ k , r k + a, ζ 1 , . . . , ζ k ) . (17) 
Its critical points come thus in R-families. The above discussion implies the following result.

Proposition 5.3. The R-families of critical points of P (k) F are in 1-1 correspondence with the translated k-chains of φ, with critical values given by the contact action.

The function P (k)

F is invariant by the action of Z k generated by the map

(x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) → (x 2 , y 2 , θ 2 , r 2 , . . . , x k , y k , θ k , r k , x 1 , y 1 , θ 1 , r 1 , ζ 2 , . . . , ζ k , ζ 1 ) . (18)
Using the notations of the proof of Proposition 5.1, (x 1 , y 1 , θ 1 , r 1 , . . . ,

x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) is a critical point of P (k) F if and only if (X 1 , Y 1 , Θ 1 ), . . . , (X k , Y k , Θ k ) is a translated k-chain of φ.
It follows from the proof of Proposition 5.1 that, under this bijection between the R-families of critical points of P (k) F and the translated k-chains of φ, the Z k -action (18) corresponds to the Z k -action on the set of translated k-chains of φ generated by the map that sends a translated k-chain (p 1 , . . . , p k ) to the translated k-chain (p 2 , . . . , p k , p 1 ).

Note finally that if F : R 2n+1 × R N → R is a generating function of a lift to (R 2n+1 , ξ 0 ) of a contactomorphism of (R 2n × S 1 , ξ 0 ) then, since F (x, y, θ + 1, ζ) = F (x, y, θ, ζ), the associated function P

(k)

F is also invariant by the action of Z generated by the map

(x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) → (x 1 , y 1 , θ 1 + 1, r 1 , . . . , x k , y k , θ k + 1, r k , ζ 1 , . . . , ζ k ) . (19)
6. Z k -equivariant generating function homology for domains of (R 2n × S 1 , ξ 0 ) As in the symplectic case, in order to define the Z k -equivariant generating function homology of domains of (R 2n × S 1 , ξ 0 ) the first step is to define the Z k -equivariant homology G (a,b] Z k , * {φ t } of a compactly supported contact isotopy {φ t } t∈[0,1] of (R 2n × S 1 , ξ 0 ). Let F {φ t } be the category whose objects are the 1-parameter families F t of generating functions quadratic at infinity for {φ t } such that F 0 is a quadratic form, and whose morphisms are finite compositions of the following two types of morphisms:

(1) given a non-degenerate quadratic form Q, we set [Q] :

F (0) t → F (1) t if F (1) t = F (0) t ⊕ Q and [Q] : F (0) t → F (1) t if F (0) t = F (1) t ⊕ Q;
(2) given a 2-parameter family Φ s,t of fibre preserving diffeomorphisms with Φ 0,t = id, we set

[Φ] :

F (0) t → F (1) t if F (1) t = F (0) t • Φ 1,t .
For a ≤ b in R ∪ {±∞} that are not equal to the action of a translated k-chain of (φ 1 ) k we define a functor G 

Z k , * (F t ) = H Z k , * +kι+n(k-1) {P (k) F1 ≤ b}/Z , {P (k) 
F1 ≤ b}/Z; Z k , where ι denotes the index of the quadratic at infinity part of F 1 and where the quotient is taken with respect to the Z-action (19), and by associating to any morphism

F (0) t → F (1) t a homomorphism G (a,b] Z k , * (F (1) t ) → G (a,b] Z k , * (F (0)
t ) as follows:

(1) consider a morphism [Q] :

F (0) t → F (1) t of type (1); then P (k) F (1) 1
is the composition of

P (k) F (0) 1 ⊕ Q ⊕k with the Z k -equivariant diffeomorphism (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k , ζ 1 , . . . , ζ k ) → (x 1 , y 1 , θ 1 , r 1 . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k , λ 1 ζ 1 , . . . , λ k ζ k ) ,
where λ j = ke r j k i=1 e r i ; we then define G (2) consider a morphism [Φ] :

F (0) t → F
(1) t of type (2); in particular,

F (1) 1 (x, y, θ, ζ) = F (0) 1 • Φ 1,1 (x, y, θ, ζ) = F (0)
1 (x, y, θ, ζ ) and so P (k)

F (1) 1 = P (k) F (0) 1 • (Φ 1,1 ) k , where (Φ 1,1 ) k is the Z k -equivariant diffeomorphism (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) → (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k )
defined by e -r j 2

x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j = Φ 1,1 e -r j 2

x j + x j+1 2 , e -r j 2 y j + y j+1 2 , θ j+1 , ζ j ;

we then define G Z k , * ([Φ]) to be the isomorphism ((Φ 1,1 ) k ) * .

(3) for a morphism uv with u and v of different type we consider the composition of the homomorphism associated to v with that associated to u.

We then define G

(a,b] Z k , * {φ t } = lim ← - G (a,b] Z k , * (F t ) Ft∈F ({φt}) .
As in the symplectic case (using now Proposition 2.6 and Lemma 2.7(iii)), any two objects F (0) t and F

(1) t in F({φ t }) are related by a morphism, and all morphisms between them induce the same isomorphism G 

Z k , * (F (1) t ) → G (a,b] Z k , * (F (0)
t ). Thus, as in Proposition 4.1, for every object

F t in F {φ t } the natural homomorphism i Ft : G (a,b] Z k , * {φ t } → G (a,b] Z k , * (F t ) is an isomorphism. We now show that if a, b ∈ kZ ∪ {±∞} then the Z k -equivariant homology groups G (a,b]
Z k , * {φ t } are invariant by conjugation. The key ingredient is the following basic fact: for any two contactomorphisms φ and ψ of (R 2n × S 1 , ξ 0 ), if t ∈ Z then (p 1 , . . . , p k ) is a translated k-chain of φ of action tk if and only if ψ(p 1 ), . . . , ψ(p k ) is a translated k-chain of ψφψ -1 of action tk. Proposition 6.1. Let {φ t } be a compactly supported contact isotopy of (R 2n ×S 1 , ξ 0 ), and suppose that a ≤ b in kZ ∪ {±∞} are not equal to the action of any translated k-chain of (φ 1 ) k . Then every compactly supported contact isotopy {ψ t } t∈[0,1] induces a well-defined isomorphism

λ {ψt} : G (a,b] Z k , * {φ t } → G (a,b] Z k , * {ψ 1 φ t ψ -1 1 } .
Proof. Let F (s) t

: R 2n+1 × R N → R be a 2-parameter family of generating functions quadratic at infinity for the lift to (R 2n+1 , ξ 0 ) of the 2-parameter family of contactomorphisms {ψ s φ t ψ -1 s }, and consider the associated 2-parameter family P 

Z k , * (F (0) t ) → G (a,b] Z k , * (F (1) 
t ) , and so an isomorphism

λ {ψt} := (i F (1) t ) -1 • (θ 1 ) * • i F (0) t : G (a,b] Z k , * {φ t } → G (a,b] Z k , * {ψ 1 φ t ψ -1
1 } . The fact that this isomorphism is well-defined can be seen by an argument similar to the one in the proof of Proposition 4.2.

We now define the Z k -equivariant generating function homology G

(a,b] Z k , * (V) of a domain V of (R 2n × S 1 , ξ 0 ). Let H k a,b ( 
V) be the set of compactly supported contact isotopies {φ t } t∈[0,1] supported in V and such that a and b are not equal to the action of any translated k-chain of φ 1 . We define a partial order ≤ on H k a,b (V) by posing {ϕ

(1)

t } ≤ {ϕ (2) t } if {ϕ (2) t • (ϕ (1) 
t ) -1 } is a non-negative contact isotopy, i.e. an isotopy generated by a non-negative Hamiltonian function. Similarly to the symplectic case, for {φ

(i) t } and {φ (j) t } in H k a,b (V) with {φ (i) t } ≤ {φ (j) t } there is an induced homomorphism λ j i : G (a,b] Z k , * {φ (j) t } → G (a,b] Z k , * {φ (i) t } .
Moreover, the homomorphisms λ j i satisfy the cocycle conditions

λ i i = id λ j i • λ l j = λ l i for {φ (i) t } ≤ {φ (j) t } ≤ {φ (l) t } , making G (a,b] Z k , * {φ t } {φt}∈H k a,b (V) an inversely directed family of graded modules over Z k . We define G (a,b] Z k , * (V) = lim ← - G (a,b] Z k , * {φ t } {φt}∈H k a,b (V) .
As in the symplectic case, using now Proposition 6.1, we have the following invariance result.

Proposition 6.2. For every compactly supported contact isotopy {ψ t } t∈[0,1] of (R 2n × S 1 , ξ 0 ) and every domain V there is a well-defined isomorphism λ {ψt} : G

(a,b] Z k , * (V) → G (a,b] Z k , * ψ 1 (V) .
The groups G Z k , * (V) satisfy the same functorial properties as in the symplectic case.

If V 1 ⊂ V 2 , the inclusion of posets H k a,b (V 1 ) ⊂ H k a,b (V 2 ) induces a homomorphism G (a,b] Z k , * (V 2 ) → G (a,b] Z k , * (V 1
) , and for V 1 ⊂ V 2 ⊂ V 3 and for any compactly supported contact isotopy {ψ t } t∈[0,1] these homomorphisms fit into commutative diagrams

G (a,b] Z k , * (V 3 ) G (a,b] Z k , * (V 2 ) G (a,b] Z k , * (V 1 ) and G (a,b] Z k , * (V 2 ) G (a,b] Z k , * (V 1 ) G (a,b] Z k , * ψ 1 (V 2 ) G (a,b] Z k , * ψ 1 (V 1 ) . λ {ψ t } λ {ψ t }
7. Relation between the equivariant homology of a domain of (R 2n , ω 0 ) and the equivariant homology of its prequantization

We start by describing the relation between the equivariant homology of a compactly supported Hamiltonian isotopy {ϕ t } of (R 2n , ω 0 ) and that of its lift { ϕ t } to (R 2n × S 1 , ξ 0 ). Let f t : R 2n × R N → R be a 1-parameter family of generating function quadratic at infinity for {ϕ t }. Then, by Proposition 2.9,

F t : R 2n+1 × R N → R , F t (x, y, θ, ζ) = f t (x, y, ζ)
is a 1-parameter family of generating function quadratic at infinity for { ϕ t }. In this case the function P

(k) F1 : R (2n+2)k × R N k → R is thus given by P (k) F1 (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = k k j=1 e rj k j=1 e rj f 1 e -r j 2 x j + x j+1 2 , e -r j 2 y j + y j+1 2 , ζ j + 1 2 (x j+1 y j -x j y j+1 ) + e rj-1 (θ j -θ j+1 ) . Proposition 7.1. For every c ∈ R, the space {P (k) F1 ≤ c }/Z is homotopy equivalent to {f k 1 ≤ c} × (R k /Z) by a Z k -equivariant homotopy equivalence. Proof. Consider the 1-parameter family of functions G s : R (2n+2)k × R N k → R given by G s (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = P (k) F1 (x 1 , y 1 , θ 1 , sr 1 , . . . , x k , y k , θ k , sr k , ζ 1 , . . . , ζ k ) . For s = 1 we have G 1 = P (k)
F1 , and for s = 0 we have

G 0 (x 1 , y 1 , θ 1 , r 1 , . . . , x k , y k , θ k , r k , ζ 1 , . . . , ζ k ) = f k 1 (x 1 , y 1 , . . . , x k , y k , ζ 1 , . . . , ζ k ) . For every c ∈ R, {G 0 ≤ c}/Z is homotopy equivalent to {f k 1 ≤ c} × (R k /Z)
, by a Z k -equivariant homotopy equivalence. It remains to show that {G 1 ≤ c}/Z is homotopy equivalent to {G 0 ≤ c}/Z, by a Z k -equivariant homotopy equivalence. But this follows from the fact that all the functions G s are Z-invariant and Z k -invariant, and have the same critical values.

Lemma 7.2. The diagonal

(R k /Z) ∆ = {(θ 1 , . . . , θ k ) | θ 1 = • • • = θ k } ⊂ R k /Z is a Z k -equivariant deformation retraction of R k /Z. Proof. Denote Θ = θ1+•••+θ k k , and consider the Z k -equivariant homotopy H t : R k → R k , t ∈ [0, 1], defined by H t (θ 1 , . . . , θ k ) = (Θ, . . . , Θ) + (1 -t)(θ 1 -Θ, . . . , θ k -Θ) . We have H 0 = id R k , im(H 1 ) ⊂ R k ∆ , and H t | R k ∆ = id R k ∆ for all t ∈ [0, 1].
The result then follows from the fact that the homotopy descends to R k /Z. Using Proposition 7.1 and Lemma 7.2 we obtain

G (a,b] Z k , * (F t ) ∼ = H Z k , * +kι+n(k-1) {f k 1 ≤ b} × (R k /Z) , {f k 1 ≤ a} × (R k /Z) ∼ = H Z k , * +kι+n(k-1) {f k 1 ≤ b} × (R k /Z) ∆ , {f k 1 ≤ a} × (R k /Z) ∆ ∼ = H * +kι+n(k-1) ({f k 1 ≤ b} × (R k /Z) ∆ × EZ k )/Z k , ({f k 1 ≤ a} × (R k /Z) ∆ × EZ k )/Z k ∼ = H * +kι+n(k-1) ({f k 1 ≤ b} × EZ k )/Z k × S 1 , ({f k 1 ≤ a} × EZ k )/Z k × S 1
, where the last equality follows from the fact that Z k acts on (R k /Z) ∆ ∼ = S 1 trivially. By the Künneth formula we thus conclude that

G (a,b] Z k , * (F t ) ∼ = H Z k , * +kι+n(k-1) ({f k 1 ≤ b}, {f k 1 ≤ a}) ⊗ H * (S 1 ) ∼ = G (a,b] Z k , * (f t ) ⊗ H * (S 1 ) .
This relation between G 

Z k , * ({ ϕ t }) ∼ = G (a,b] Z k , * ({ϕ t }) ⊗ H * (S 1
), and that for any domain U of (R 2n , ω 0 ) we have an isomorphism

G (a,b] Z k , * ( U) ∼ = G (a,b] Z k , * (U) ⊗ H * (S 1 ) so that for every inclusion U 1 → U 2 we have a commutative diagram G (a,b] Z k , * ( U 2 ) G (a,b] Z k , * (U 2 ) ⊗ H * (S 1 ) G (a,b] Z k , * ( U 1 ) G (a,b] Z k , * (U 1 ) ⊗ H * (S 1 ) . ∼ = ∼ = To calculate G (a,∞] Z k ,2nl ({ϕ ρj t }) ∼ = G (a,∞] Z k ,2nl (F (j) t ) = H Z k ,2nl+kιj +n(k-1) {(F (j) 1 ) k ≤ ∞} , {(F (j)
1 ) k ≤ a} for 0 < l < k we then use the following facts: (i) For b 1 < b 2 we have the long exact sequence

• • • -→ G (b1,b2] Z k , * (F (j) t ) -→ G (b1,∞] Z k , * (F (j) t ) -→ G (b2,∞] Z k , * (F (j) t ) -→ G (b1,b2] Z k , * -1 (F (j) t ) -→ • • • of the triple {(F (j) 1 ) k ≤ b 1 } ⊂ {(F (j) 1 ) k ≤ b 2 } ⊂ {(F (j) 1 ) k ≤ ∞}. (ii) If (b 1 , b 2 ] does not contain critical values of (F (j) 1 ) k then G (b1,b2] Z k , * (F (j) t ) ∼ = 0 for all * . If (b 1 , b 2 ]
contains only one critical value c, of index i(c) and critical submanifold X c , then by the equivariant Thom isomorphism we have

G (b1,b2] Z k , * (F (j) t ) ∼ = H Z k , * +kιj +n(k-1)-i(c) (X c ) . In particular G (b1,b2] Z k , * (F (j) t ) ∼ = 0 for all * < i(c) -kι j -n(k -1) , and if c = c k,j,l with 0 < l < k then G (b1,b2] Z k , * (F (j) t ) ∼ = H Z k , * -2nl (S 2n-1 ) ∼ = H * -2nl (L 2n-1 k ) ∼ = Z k if * = 2nl, . . . , 2n(l + 1) -1 0 otherwise.
We can now prove the following result.

Lemma 8.1. Let a > 0 and 0 < l < k with k prime. Then

G (a,∞] Z k ,2nl ({ϕ ρj t }) ∼ = Z k if a < c k,j,l 0 otherwise.
Proof. For a ≥ c k,j,l and * < 2n(l + 1) the long exact sequence in (i) for b 1 = a and b 2 = b > a such that (a, b] contains only one critical value is Z k , * (F (j) t ) in this case we proceed as in [START_REF] Sandon | Equivariant homology for generating functions and orderability of lens spaces[END_REF] (by a calculation that in turn is taken from [START_REF] Milin | Orderability of contactomorphism groups of lens spaces[END_REF]). Consider first a Morse function on S 1 that is invariant by the Z k -action generated by the map z → e 2πi/k z and has k maxima M ν = e 2πiν/k , ν = 0, . . . , k -1 and k minima m ν = e πi(2ν-1)/k , ν = 0, . . . , k -1. After identifying M ν and m ν with T ν , the Morse complex with Z k -coefficients is

0 -→ G (a,∞] Z k , * (F (j) t ) -→ G (b,∞] Z k , * (F ( 
0 -→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 -→ 0 .
Consider now a Morse function on CP n-1 with critical points p 0 , . . . , p n-1 of index i(p η ) = 2η for η = 0, . . . , n -1. The pullback to S 2n-1 by the Hopf map π : S 2n-1 → CP n-1 is a Morse-Bott function with critical submanifolds π -1 (p η ) diffeomorphic to S 1 . Perturbing this function inside small tubular neighborhoods of the critical submanifolds by the above Z k -invariant Morse function on S 1 we obtain a Morse function f : S 2n-1 → R that is invariant by the standard Z k -action and has critical points M ν,η and m ν,η for ν = 0, . . . , k -1 and η = 0, . . . , n -1 of index i(M ν,η ) = 2η + 1 and i(m ν,η ) = 2η. After identifying M ν,η and m ν,η with T ν the Morse complex is

0 -→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 ( * ) --→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 ( * ) --→ • • • ( * ) --→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 -→ 0 .
Since this complex calculates H * (S 2n-1 ; Z k ), the maps ( * ) are multiplication by T k-1 + • • • + T + 1. Now we use the function f to perturb (F (j) 1 ) k inside small tubular neighborhoods of the critical submanifolds X k,j,l and X k,j,l-1 . The complex calculating H * +kιj +n(k-1) {(F } respectively with F (j,2) t ≤ F (j,1) t . We have to show that, for every j, the homomorphism ) induced by the inclusion is an isomorphism. Let s → a s for s ∈ [1, 2] be a decreasing path with a 1 = a and such that, for every s, a s is a regular value of (F (j,s) 1

(j) 1 ) k ≤ b} , {(F (j) 1 ) k ≤ a} is then 0 -→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 T k-1 +•••+T +1 ----------→ Z k [T ] T k -1 T -1 ---→ • • • T -1 ---→ Z k [T ] T k -1 ( * * ) --→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 T k-1 +•••+T +1 ----------→ Z k [T ] T k -1 T -1 ---→ • • • -→ Z k [T ] T k -1 T -1 ---→ Z k [T ] T k -1 - → 0 .
) k . Thus if c

(1) k,j,l-1 < a < c

(1) k,j,l for some l ≤ l then c ) k corresponding to the critical submanifolds of index 2n(l -1) and 2nl respectively, as in the proof of Lemma 8.1. Following the time dependent gradient of the family (F (j,s) 1

) k we obtain a Z k -equivariant isotopy that induces an isomorphism G (a,∞] Z k ,2nl (F Z k ,2nl (F

(j,2) t ) G (a,∞] Z k ,2nl (F (j,2) t ) ∼ =
where the diagonal map is the homomorphism (20) and the vertical map is the homomorphism that fits into the long exact sequence

• • • -→ G (a2,a] Z k ,2nl (F (j,2) t ) -→ G (a2,∞] Z k ,2nl (F (j,2) t ) -→ G (a,∞] Z k ,2nl (F (j,2) t ) -→ G (a2,a]
Z k ,2nl-1 (F Z k ,2nl-1 (F (j,2) t

) ∼ = 0 (we use here that all the critical values of (F (j,2) 1

) k between a 2 and a correspond to critical submanifolds of index 2nm with m < l < k, on which the Z k -action is free). We conclude that the homomorphism (20) is an isomorphism, as we wanted.

Remark 8.4. The same arguments as above also show that for mk < l < (m+1)k and a > mkπR 2 we have

(21) G (a,∞] Z k ,2nl B 2n (R) ∼ =
Z k for a < lπR 2 0 otherwise, and moreover that if mkπR 2 1 < a < lπR 2 1 and mkπR 2 2 < a < lπR 2 2 the homomorphism

G (a,∞] Z k ,2nl B 2n (R 1 ) → G (a,∞]
Z k ,2nl B 2n (R 2 ) induced by the inclusion of B 2n (R 2 ) into B 2n (R 1 ) is an isomorphism. This implies the squeezing requires room result mentioned in Remark 1.2. Indeed, suppose that

1 m + 1 ≤ πR 2 2 < πR 2 1 < πR 2 3 < 1 m
and let k, l such that πR 2 2 ≤ k l < πR 2 1 < πR 2 3 . Then mk < l < (m + 1)k, so we can apply (21). Suppose by contradiction that there is ψ mapping the closure of B 2n (R 1 ) into B 2n (R 2 ) and such that ψ B 2n (R 3 ) = B 2n (R 3 ). Then for * = 2nl the horizontal arrow on the top in the commutative diagram at page 6 is an isomorphism from Z k to Z k , while G (k,∞] Z k ,2nl B 2n (R 2 ) ∼ = 0, and so commutativity of the diagram gives a contradiction.
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  corresponds to the Z k -action on the set of translated k-chains of φ generated by the map that sends a translated k-chain (p 1 , . . . , p k ) to the translated k-chain (p 2 , . . . , p k , p 1 ). For a ≤ b in kZ ∪ {±∞} that are regular values of P (k) F , in Section 6 we define G (a,b] Z k , * (φ) to be the relative Z k -equivariant homology (with coefficients in Z k ) of the sublevel sets of P (k) F at a and b.
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  u,t of generating functions for the same 2-parameter family {L u,t } of Legendrian submanifolds.

  Our first step is to define the Z k -equivariant homology G (a,b]

  from F {ϕ t } to the category of graded modules over Z k by posing G (a,b]

  and we define G (a,b] Z k , * ([Q]) to be the Z k -equivariant Thom isomorphism with respect to the quadratic form Q ⊕k ; similarly, we define G (a,b]

2

  A categorical definition similar to the one for G (a,b]

  (a,b] Z k , * (ϕ) and G (a,b]

  and by Proposition 4.2 we have a canonical isomorphism λ {ψt} : G (a,b]

  and the function P (k) F defined by the diagram

F

  correspond thus to all the translated k-chains of φ. For (p, t) ∈ G

Z

  k , * from F {φ t } to the category of graded modules over Z k by posing G (a,b]

  (a,b] Z k , * ([Q]) to be the isomorphism induced by the Z k -equivariant Thom isomorphism with respect to the quadratic form Q ⊕k ; similarly, we define G (a,b] Z k , * ([Q]) to be the inverse of the isomorphism induced by the Z k -equivariant Thom isomorphism with respect to the quadratic form Q ⊕k ;

:,

  R (2n+2)k × R N k → R. By Proposition 5.3, the critical points of P 1 correspondence with the translated k-chains of (ψs φ 1 ψ -1 s ) k = ψ s φ k 1 ψ -1 s ,and the critical values are given by the actions. Since a and b are in kZ ∪ {±∞} and are regular values of P it follows that they are regular values of P (k) F (s) 1 for all s, and so by following the time dependent gradient of the family P (k) F (s) 1we obtain a Z k -equivariant isotopy {θ s } of R (2n+2)k × R N k mapping the sublevel sets of P

Z

  k , * (F t ) and G (a,b] Z k , * (f t ) and the naturality of the involved isomorphisms imply that G (a,b]

  t ). By crossing one by one all the critical values bigger than a we thus obtainG (a,∞] Z k , * ({ϕ ρj t }) ∼ = G (a,∞] Z k , * (F (j) t ) ∼ = 0 . For c k,j,l-1 ≤ a < c k,j,l and * = 2nl the long exact sequence in (i) for b 1 = a and b 2 = b with c k,j,l < b < c k,j,l+1 is 0 t ) ∼ = Z k . Finally, for * = 2nl with l > 1 and a < c k,j,l-1 we have G c k,j,l < b < c k,j,l+1 . To calculate G (a,b]

-}

  k ≤ a} ∼ = 0 , the map ( * * ) is multiplication byT k-1 + • • • + T + 1. The equivariant homology G (a,b] Z k , * (F (j)t ) is obtained by taking the homology of the quotient of the above chain complex by the Z k -action, i.e. the homology of the complex0 -→ Z k 0 k -→ 0 .We thus obtain G (a,b] Z k ,2nl (F (j) t ) ∼ = Z k , as we wanted.Using Lemma 8.1 in a similar way as in[START_REF] Traynor | Symplectic homology via generating functions[END_REF] 7.5] we obtain the following result.Proposition 8.2. If k is prime and 0 < l < k then for any a > 0 we haveG (a,∞] Z k ,2nl B 2n (R) ∼ = Z k for a < lπR 2 0 otherwise.Finally we prove the last ingredient entering in the proof of Theorem 1.1.Proposition 8.3. If k is prime, 0 < l < k and a < lπR 2 2 < lπR 2 1 then the homomorphism G (a,∞] Z k ,2nl B 2n (R 1 ) → G (a,∞] Z k ,2nl B 2n (R 2 ) induced by the inclusion of B 2n (R 2 ) into B 2n (R 1 ) is an isomorphism. Proof. Let H (1) (z 1 , . . . , z n ) = Z k , * B 2n (R 1 ) and G (a,∞]Z k , * B 2n (R 2 ) can be calculated using respectively the sequences {ϕ ρ1are the flows of the Hamiltonian functions H(1)ρj = ρ j • H (1) and H (2) ρj = ρ j • H (2) respectively. For s ∈ [1, 2] let R s = (2 -s)R 1 + (s -1)R 2 , and define H (s) (z 1 , . . . , z n ) = n j=1 |zj | 2 R 2 s and H (s) ρj = ρ j •H(s) . Then for every j the family s → H (s) ρj is decreasing, and so by a 1-parametric version of [San11a, Proposition 2.10] we obtain a 2-parameter family F (j,s) t : R 2n × R Nj → R of generating functions quadratic at infinity for {ϕ

  ,l for all s, where c (s) k,j,l-1 and c (s) k,j,l denote the critical values of (F (j,s) 1

  parameter version of the proof of [San11a, Proposition 2.10] shows that there is a 2-parameter family F

				(s) t	of generating functions quadratic at infinity for the 1-parameter family
	{ϕ st ϕ	(i) t } s∈[0,1] of non-negative Hamiltonian isotopies with d ds F	(s) t	≥ 0; in particular, F t (0)	and
	F	(1) t	are 1-parameter families of generating functions quadratic at infinity for {ϕ (i) t } and {ϕ (j) t }
	respectively with	

We do not know whether there exist compactly supported contactomorphisms of (R

2n × S 1 , ξ 0 ) that are not contact isotopic to the identity, thus whether the notion of contact squeezing and coarse contact squeezing are indeed different.1

Calculations for balls

In this section we calculate the equivariant homology G (a,∞] Z k ,2nl B 2n (R) for a > 0 and 0 < l < k with k prime. Our arguments are based on the calculations in the non-equivariant case done in [START_REF] Traynor | Symplectic homology via generating functions[END_REF], and are similar to those in [START_REF] Sandon | Equivariant homology for generating functions and orderability of lens spaces[END_REF], [START_REF] Milin | Orderability of contactomorphism groups of lens spaces[END_REF], [START_REF] Fraser | Contact non-squeezing at large scale in R 2n × S 1[END_REF], [START_REF] Chiu | Non-squeezing property of contact balls[END_REF], [START_REF] Zhang | Capacities from the Chiu-Tamarkin complex[END_REF].

Consider the Hamiltonian function

and its flow

which is periodic of period πR 2 . Let ρ : R ≥0 → R be a function supported in [0, 1] such that ρ ≥ 0, ρ (m) > 0 for m with ρ (m) ∈ -N • πR 2 , and ρ | [0,δ] ≡ c for some c < 0 and δ > 0. The flow

, and is given by ϕ ρ t (z) = ϕ tρ (H(z)) (z) . Consider now a sequence ρ j : R ≥0 → R of such functions with lim j→∞ ρ j (0) = ∞, lim j→∞ ρ j (0) = -∞ and so that the associated Hamiltonian functions H ρj form an unbounded sequence

given by the flows {ϕ ρj t } of the Hamiltonian functions H ρj . For each j, let F (j) t

: R 2n × R Nj → R be a 1-parameter family of generating functions quadratic at infinity for {ϕ ρj t }, and consider the associated 1-parameter family of generating functions (F

The critical points of (F (j) 1 ) k are in 1-1 correspondence with the fixed points of (ϕ ρj 1 ) k . A point z is a fixed point of (ϕ ρj 1 ) k if and only if ρ j H(z) = -l k πR 2 for some integer l ≥ 0. The space of fixed points of (ϕ ρj 1 ) k is thus the union of the spaces

, where, for l = 1, . . . , l j , m k,j,l is the point of [0, 1] such that ρ j (m k,j,l ) = -l k πR 2 . It follows from the calculations in [START_REF] Traynor | Symplectic homology via generating functions[END_REF]7.4] that Z ∞ is a non-degenerate fixed point of action kρ j (0) j→∞ ---→ ∞ and Maslov index 2n(l j + 1), Z k,j,l is for every l a nondegenerate submanifold of fixed points of action

and Maslov index 2nl, diffeomorphic to S 2n-1 , and Z j,0 is a space of fixed points of action c k,j,0 = 0. Let X k,j,∞ , X k,j,0 and X k,j,l be the critical submanifolds of (F (j) 1 ) k corresponding to the spaces Z ∞ , Z j,0 and Z k,j,l of fixed points of (ϕ ρj 1 ) k . Then, by Proposition 3.1 and Proposition 3.2, X k,j,∞ is a non-degenerate critical point of critical value kρ j (0) and Morse index 2n(l j +1)+kι j +n(k -1), where ι j denotes the index of the quadratic at infinity part of F (j) 1 , X k,j,l is a non-degenerate critical submanifold diffeomorphic to S 2n-1 of critical value c k,j,l and Morse-Bott index 2nl+kι j +n(k-1) and X k,j,0 is a space of critical points of critical value c k,j,0 = 0. Recall also that the Z k -action on the critical submanifolds of (F (j) 1 ) k corresponds to the Z k -action on the space of fixed points of (ϕ ρj 1 ) k generated by the map that sends a fixed point p to ϕ ρj 1 (p). If k is prime and l < k the Z k -action on X k,j,l is thus free, and the quotient is diffeomorphic to a lens space L 2n-1 k .