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Mean Field Games in a Stackelberg problem with an informed
major player

Philippe Bergault∗ Pierre Cardaliaguet† Catherine Rainer‡

November 6, 2023

Abstract

We investigate a stochastic differential game in which a major player has a private information
(the knowledge of a random variable), which she discloses through her control to a population of
small players playing in a Nash Mean Field Game equilibrium. The major player’s cost depends on
the distribution of the population, while the cost of the population depends on the random variable
known by the major player. We show that the game has a relaxed solution and that the optimal
control of the major player is approximatively optimal in games with a large but finite number of
small players.
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1 Introduction
We are interested in a model with a major player and infinitely many small players. In this model, the
major player has a private information, which is disclosed to her at the beginning of the game. The game
is then played in a Stackelberg equilibrium: the major player announces her strategy and, given this
strategy, the small players play a mean field game (MFG) Nash equilibrium. The whole point is that, as
the strategy of the major player might depend on her private information, the realization of her control
gives a hint on this private information to the small players along the time.
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The paper relies on the literature on mean field games, which investigates differential games with
infinitely many players. Since the pioneering works of Lasry and Lions [31, 32, 33, 34] and of Caines,
Huang and Malhamé [25, 26, 27], the topic has known a fast growth: we refer the interested reader to the
monographs [1, 8, 12] and the references therein. Here we consider an MFG with a major player: such class
of models has been introduced by Huang in [24] and discussed further in [4, 6, 7, 15, 16, 17, 36, 38, 39, 42].
We follow here the approach of [4, 36, 38], in which the problem is played in a Stackelberg equilibrium,
the major player being the leader. A related work is [21], which makes the link between the litterature of
principal-agent problems and MFG. The very interesting and recent paper [20] makes the link between
Stackelberg equilibria in games with finitely many players and a major player and with mean field games
with a major player: it shows in particular how to use the optimal strategy of the limit game in the
N−player game.

Little is known on MFG problems with information issues. Şen and Caines [42] and Firoozi and
Caines [22] study a MFG problem in which the small players observe only partially a major agent. The
approach uses nonlinear filtering theory to build an associated completely observed system. Casgrain and
Jaimungal investigate in [18] a MFG in which the agents have a different belief on what model the real
world follows. In [5] Bertucci considers MFG problems with a lack of information, in which the players
have the same information, and builds an associated master equation. The recent paper [3] investigates
situations where the players have to spend some effort to obtain information on their state. The main
difference between the works [3, 5, 18, 22, 42] quoted above and our framework is that, in our setting,
the major player actively manipulates her information in order to reach some goal.

In order to present our contribution, let us describe a little further our model. We consider a MFG
problem with an informed player in a Stackelberg problem.

• At time 0 (before the game starts), nature chooses at random an index i ∈ {1, . . . , I} with law
p0 = (p0

i )i=1,...,I and announces the result to the major player only. The index i is the private
information of the major player.

• The goal of the major player is to minimize over her (random) control (u0 = (u0
i )i=1,...,I)) a cost

of the form

E

[∫ T

0

L0
i (t,u0

i,t,mt)dt | i = i

]
where mt is the (random) distribution of the small players.

• Once the major player has announced her strategy, the small players, observing the realization u0
i

of the control of the informed player and their own state, minimize (in a decentralized way through
a mean field game) their cost

E

[∫ T

0

Li(Xt, αt) + Fi(Xt,mt)dt+Gi(XT ,mT )

]
,

where (αt) is the control of a typical small player and (Xt) is the process

Xt = Z +

∫ t

0

αsds+
√

2Bt, t ∈ [0, T ].

Above, Z is a random variable on Rd with law m0 ∈ P2(Rd), B is a standard d−dimensional
Brownian motion, with Z, B and (i,u0) independent. For any i ∈ {1, . . . , I}, Li : Rd × Rd → R
is the cost for a small player to play a control, Fi, Gi : Rd × P2(R2) → R are the interaction costs
between the small players, L0

i : [0, T ]× U0 × P2(R2)→ R is the running cost for the major player.
The maps Li, Fi, Gi and L0

i are at least continuous and locally bounded.

The fact that the small player’s cost is given by a mean field game equilibrium means that the
distribution of players mt is the conditional law of the optimal path X∗ given u0.

Note that, in contrast with the major player, the minor players do not know the index i. However
they can obtain some information on i by observing the major player’s actions.
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In this very elementary game, interactions between major and minor players are minimal: the small
players appears in the major player’s cost only through the distribution of their state, while the major
player influences the minor player’s actions only by revealing (or not) information on i. This information
structure is inspired by Aumann-Maschler theory of repeated games with incomplete information: see
[2] for a presentation of the theory and [9] for its extension to two player zero-sum stochastic differential
games.

Our main results are the following: first we rewrite the problem in a relaxed form and show that the
major player has an optimal strategy for the game (Theorem 3.5). This relaxed formulation involves the
theory of MFG with a common noise (common noise being here the information disclosed by the major
player) as developed in [11]. Second, we show that such an optimal strategy is still approximatively
optimal in Stackelberg games with finite many small players (Theorem 4.1). The fact that the optimal
strategy in a mean field game provides an approximated Nash equilibria for the associated game with
finitely many players is very classical: see [12, 25] for instance. The extension of such a property to
Stackelberg equilibria in MFG with a large player has only been handled very recently in [20, Theorem
2.20] in a very general framework, but quite different from our: indeed in [20], the major player can
choose among the Nash equilibria of the N−player game, while in our set-up it is more natural that she
has to handle any such Nash equilibrium. This difference leads us to show the approximate optimality of
the control for the major player when the small players play any (approximate) Nash equilibria. To prove
such a stability, we use in a very strong way the characterization of the limit of (approximate and open
loop) Nash equilibria in differential games with a large number of players as discussed by Lacker [29] and
Fischer [23], as well as the standard Lasry-Lions monotonicity condition which ensures the uniqueness
of the MFG Nash equilibrium. The main difference with Lacker (besides the framework, which is much
more general in [29]) is the fact that, in our case, the common noise is the revelation by the major player
of her private knowledge (and thus does not have a fixed law), while in [29] it is a fixed Brownian motion.
Let us finally underline that, in the game with finitely many players, we allow the small players to play
only “open loop strategies”: following Lacker and Flem [30] and Djete [19], an extension to problems in
which the small players are allowed to play closed loop strategies is probably doable, but the proof would
be much more technical.

Let us finally comment upon the choice of Stackelberg versus Nash equilibria. As explained above,
the analysis of Nash equilibria for MFG problems with a major player is well understood [7, 15, 16,
17]. However the analysis of Nash equilibria with incomplete information seems much more challenging.
Indeed, in order to study this question, one should understand how the small players could play in such
a game without knowing a priori the major player’s strategy: this question is understood in a two player
zero-sum game framework [9], but remains completely open for nonzero-sum differential games.

2 Notation, assumption and definitions

2.1 Notation and assumptions
We work within the set P(Rd) of Borel probability measures on Rd. The set P2(Rd) is the subset of
P(Rd) of measures with finite second order moment; it is endowed with the Wasserstein distance d2.

We fix I ∈ N, with I ≥ 2. We denote by ∆(I) the simplex ∆(I) = {p ∈ RI+,
∑
i pi = 1} interpreted

as the set of probability measures over {1, . . . , I}. We also fix p0 ∈ ∆(I), which is the initial belief of the
small players on the random variable i (which has law p0).

Let D be the set of càdlàg functions from R → ∆(I), endowed with the Meyer-Zheng topology. Let
us recall that, if D is not a Polish space, it is continuously embedded into the Polish space P of Borel
probability measures on [0, T ]×∆(I) with first marginal equal to the Lebesgue measure. Hence any Borel
probability measure on D may be viewed as a Borel probability measure on the Polish space P. We use
this property throughout the paper.

Recall that, for any i ∈ {1, . . . , I}, Li : Rd × Rd → R is the cost for a small player to play a control,
Fi, Gi : Rd×P2(R2)→ R are the interaction costs between the small players, L0

i : [0, T ]×U0×P2(R2)→ R
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is the running cost for the major player. Given p ∈ ∆(I), x, u, ξ ∈ Rd and m ∈ P(Rd), we set

L(x, u, p) =

I∑
i=1

piLi(x, u), F (x,m, p) =

I∑
i=1

piFi(x,m), G(x,m, p) =

I∑
i=1

piGi(x,m), (2.1)

H(x, ξ, p) = sup
u∈Rd

−ξ · u− L(x, u, p),

L0(s, u0, p,m) =

I∑
i=1

piL
0
i (s, u

0, p,m), L̄0(s, p,m) = inf
u0∈U0

L0(s, u0, p,m).

Let us recall that a continuous, bounded map K : Rd × P(Rd)→ R is monotone if∫
Rd

(K(x,m1)−K(x,m2))(m1 −m2)(dx) ≥ 0 ∀m1,m2 ∈ P(Rd).

We say that the map K is strongly monotone if there exists α > 0 such that∫
Rd

(K(x,m1)−K(x,m2))(m1 −m2)(dx) ≥ α
∫
Rd

(K(x,m1)−K(x,m2))2dx. (2.2)

It is called strictly monotone if∫
Rd

(K(x,m1)−K(x,m2))(m1 −m2)(dx) ≤ 0 implies m1 = m2. (2.3)

A classical example of a map K satisfying the strict and strong monotonicity conditions, which goes back
to [31, 32, 33, 34], is

K(x,m) = f(·,m ∗ ρ(·)) ∗ ρ. (2.4)

where ρ is a smooth, non negative and radially symmetric kernel with Fourier transform ρ̂ vanishing
almost nowhere, and f : Rd × R → R is strictly increasing and Lipschitz continuous in the second
variable, that is, there exists α ∈ (0, 1) such that

α ≤ ∂f

∂s
(x, s) ≤ α−1,

with f(x, 0) bounded.

Assumption: The following conditions are in force throughout the paper:

(H1) Cost functions of the major player:

The control set (U0, d0) for the major player is a compact convex subset
of a finite dimensional space, not reduced to a singleton, and

for i = 1, . . . , I, L0
i : [0, T ]× U0 × P1(Rd)→ R is continuous and bounded.

(2.5)

(H2) Regularity and monotonicity of the cost functions of the small players:
Fi, Gi : Rd × P1(Rd)→ R are Lipschitz continuous and bounded,
supm∈P1(Rd) ‖Fi(·,m)‖C2+α + ‖Gi(·,m)‖C2+α ≤ C, for C,α > 0,
Fi and Gi are strongly monotone, and Fi is strictly monotone.

(2.6)

(H3) Regularity of the Hamiltonians of the small players: for each i ∈ {1, . . . , I}, the map
Hi : Rd × Rd → R satisfies:

there exists C > 0 such that, for all x, ξ ∈ Rd, C−1|ξ|2 − C ≤ Hi(x, ξ) ≤ C(|x|2 + 1), (2.7)
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{
for all R > 0, Rd ×BR 3 (x, ξ) 7→ Hi(x, ξ) is uniformly bounded and Lipschitz;
ξ 7→ Hi(x, ξ) is uniformly convex, for all R > 0, ‖H(·, ·)‖C2+α(Rd×BR) ≤ CR,

(2.8)

and
for some λ0, C0 > 0 and all t ∈ [0, T ], ξ, ξ′ ∈ Rd, and |z| = 1,
|DxH(x, ξ)| ≤ C0 + λ0(ξ ·DξH(x, ξ)−H(x, ξ)) and

λ0 (DξH(x, ξ) · ξ −H(x, ξ)) +D2
ξξH(x, ξ)ξ′ · ξ′ + 2D2

ξxH(x, ξ)z · ξ′ +D2
xxH(x, ξ)z · z ≥ −C0.

(2.9)

A typical Hamiltonian satisfying the properties above is H(x, ξ) = a(x)|ξ|2, where a : R → R is
smooth and bounded above and below by positive constants.

Note that the (strong/strict) monotonicity assumption of the Fi implies the (strong/strict) monotonic-
ity of the map F (·, ·, p) for any p ∈ ∆(I). Assumption (2.9), introduced in [11], ensures the solution to the
Hamilton-Jacobi equation in the MFG system to be wellposed and plays a key role in the construction
of a solution to this MFG system.

2.2 The mean field game system
We will use throughout the paper MFG equilibria and their relationships with the MFG system. Let
(Ω,F ,P) be a probability space endowed with a filtration (Ft)t∈[0,T ] satisfying the usual conditions. Let
p = (pt) be a càdlàg process taking values in ∆(I) and adapted to (Ft). As explained below, pt can be
interpreted as the information available at time t to the minor players.

We are interested in the MFG system dφt(x) = {−∆φt(x) +H(x,Dφt(x), pt)− F (x,mt, pt)} dt+ dMt(x) in (0, T )× Rd
dmt(x) = {∆mt(x) + div(Hξ(x,Dφt(x), pt)mt(x))} dt in (0, T )× Rd
m0(x) = m̄0(x), φT (x) = G(x,mT , pT ) in Rd

(2.10)

The following definition is directly borrowed from [11]. We will see below that, under our standing
assumptions, it can be simplified.

Definition 2.1 ([11]). We say that a triple (φ,m,M) is a solution to (2.10) on (Ω,F ,P, (Ft)t∈[0,T ]) if

(i) φ : [0, T ]× Ω→ C(Rd) is a càdlàg process adapted to the filtration (Ft), with φT (·) = G(·,mT ).

(ii) M : [0, T ]× Ω→Mloc(Rd) ∩W−1,∞(Rd) is a càdlàg martingale with respect to (Ft) starting at 0,

(iii) m : [0, T ]× Ω→ P2(Rd) is a continuous process adapted to the filtration (Ft), with m0 = m̄0, and
such that mt has a bounded density on Rd P−a.s. and for any t ∈ [0, T ],

(iv) there exists a deterministic constant C > 0 such that, with probability one and for a.e. t ∈ [0, T ]

‖Dφt‖∞ + ess− sup m+(D2φt) + ‖Mt‖Mloc∩W−1,∞ + ‖mt‖∞ ≤ C. (2.11)

(v) (φ,M) satisfies, in the distributional sense on Rd, for all t ∈ [0, T ] and P−a.s., the equality:

φt(x) = G(x,mT , pT )+

∫ T

t

(∆φs(x)−H(x,Dφs(x), ps)+F (x,ms, ps))ds+Mt(x)−MT (x). (2.12)

(vi) P−a.s. and in the sense of distributions, m solves the Fokker-Planck equation

dmt(x) = {∆mt(x) + div(Hξ(x,Dφt(x), pt)mt(x))} dt in (0, T )× Rd. (2.13)

We refer to [11] for the notation Mloc(Rd) and W−1,∞(Rd). As we explain now, as the diffusion is
nondegenerate, the solution has more regularity and the notion of solution can be simplified.
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Theorem 2.2. Under our standing assumptions, there exists a unique solution (φ,m,M) to (2.10).
In addition, D2φt and Mt are absolutely continuous with a Radon-Nykodim derivative bounded in L∞:
P−a.s. and for every t ∈ [0, T ],

‖D2φt‖∞ + ‖Mt‖∞ ≤ C. (2.14)

Finally the solution is unique in law: if p and p̃ have the same law on D and (φ,m,M) and (φ̃, m̃, M̃) are
the associated solution of the MFG system, then (m, p) and (m̃, p̃) have the same law on C0([0, T ],P2(R2))×
D.

A consequence of the additional regularity (2.14) is that (Mt(x)) is, for a.e. x ∈ Rd a martingale (and
not only a martingale measure). In addition the Hamilton-Jacobi equation (2.12) can be understood in
a pointwise sense (and not only in the sense of distributions).

Proof. We only sketch the proof, which is an easy adaptation of the proof of Theorems 4.1 and 4.2 of [11]
and of Theorem 3.4 of [10]. The starting point is a space and time discretization of the process p. Fix
n ∈ N large. We discretize the set ∆(I) into ∆n(I) a finite and increasing in n subset of ∆(I) such that
∪n∆n(I) is dense in ∆(I). Let πn : ∆(I)→ ∆n(I) be a Borel measurable map such that

lim
n→∞

sup
q∈∆(I)

|πn(q)− q| = 0.

Let tnk = kT/2n for k ∈ {0, . . . , 2n} a discretization of [0, T ]. We set

pnt = πn(ptnk ) for t ∈ [tnk , t
n
k+1), k = 0, . . . 2n, pnT = πn(pT ),

and denote by (Fnt ) the complete right-continuous filtration generated by pn (it is a subfiltration of (Ft)).
Note that, by construction, (Fnt ) is finite. Proposition 4.1 of [11] (inspired by [14]) implies the existence
of a solution (φn,mn,Mn) to (2.10) for the filtration (Fnt ) and for the process (pnt ) instead of (pt). In
addition, the constant C in (2.11) is independent of n (see [11, Lemma 2.2]).

In order to pass to the limit as n→∞, we now use the argument in the proof of Theorem 3.4 of [10]1.
Following Lemma 3.8 in [10] and its proof, we have, for any n, n′ ≥ 1,

E
[
‖G(·,mn

T , p
n
T )−G(·,mn′

T , p
n′

T )‖d+2
∞ +

∫ T

0

‖F (·,mn
t , p

n
t )− F (·,mn′

t , p
n′

t )‖d+2
∞ dt

]
≤ C( sup

q∈∆(I)

|πn(q)− q|+ sup
q∈∆(I)

|πn
′
(q)− q|).

Then, by Lemma 3.9 of [10], we infer that the family (φn) is a Cauchy sequence with respect to the family
of seminorms (

sup
t∈[0,T ]

(
E
[
‖φt‖d+1

L∞(BR)

])1/(d+1)
)
R>0

We can then conclude as in the proof of Theorem 3.4 of [10] that there exists a unique solution to (2.10).

We now show the extra regularity of φ and M . Note that, by (2.12), we have the following represen-
tation formula for the solution:

φt(x) = E

[
(Γ(·, T − t) ∗G(·,mT ))(x) +

∫ T

t

(Γ(·, s− t) ∗ hs)(x)ds | Ft

]

where Γ is the heat kernel and

ht(x) = H(x,Dφt(x), pt)− F (x,mt, pt),

1The approach of [10] requires stronger monotonicity assumptions on F and G than [11] but avoids the notion of weak
solution of [11].
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which is adapted and bounded. By our regularity assumptions of G(·,m) (uniform in m) and the fact
that h is bounded, we infer that, for any α ∈ (0, 1),

sup
t∈[0,T ]

‖φt(·)‖C1,α ≤ Cα.

for some constant Cα. This in turn (with the regularity of H and F (·,m) and the bound on ‖Dφt‖∞)
implies that

sup
t∈[0,T ]

‖ht(·)‖Cα ≤ Cα.

As ∫
Rd
|D2Γ(x, t)||x|αdx ≤ Cαtα/2−1,

we deduce that

|D2φt(x)| ≤ ‖D2G‖∞ + E

[∫ T

t

∫
Rd
|D2Γ(x− y, s− t)||hs(y)− hs(x)|dyds | Ft

]

≤ ‖D2G‖∞ + sup
(t,ω)∈[0,T ]×Ω

‖ht(·)‖Cα
∫ T

t

∫
Rd
|D2Γ(x− y, s− t)||y − x|αdyds

≤ Cα(1 +

∫ T

t

(s− t)α/2−1ds) ≤ Cα.

Recalling (2.12) and the fact that M0 = 0 also gives the L∞ bound on M .

The uniqueness in law can be proved as in [11, Theorem 4.2].

We now show that, given a random distribution of players, the solution to the backward Hamilton-
Jacobi (HJ) equation can be interpreted as a value function:

Proposition 2.3. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space and p = (pt) be a càdlàg process
taking values in ∆(I) and adapted to (Ft). Let also (mt) be a continuous random process with values in
P2(Rd), adapted to the filtration (Ft). Then the HJ equation{

dφt(x) = {−∆φt(x) +H(x,Dφt(x), pt)− F (x,mt, pt)} dt+ dMt(x) in (0, T )× Rd
φT (x) = G(x,mT , pT ) in Rd (2.15)

has a unique solution in the sense described above. Let also (Ω1,F1,P1, (F1
t )) be another filtered probability

space supporting a Brownian motion B and a random variable Z on Rd of law m̄0 (B and Z being
independent) and α∗ and X∗ be given by

X∗t = Z −
∫ t

0

Hξ(X
∗
s , Dφs(X

∗
s ), ps)ds+

√
2Bt, α∗t = −Hξ(X

∗
t , Dφt(X

∗
t ),mt, pt), t ∈ [0, T ].

Then, for any control α ∈ L2((0, T )× Ω× Ω1) adapted to the filtration generated by (p,m,B),

EP⊗P1

[φ0(Z)] = EP⊗P1

[∫ T

0

(L(X∗s , α
∗
s , ps) + F (X∗s ,ms, ps))ds+G(X∗T ,mT , pT )

]

≤ EP⊗P1

[∫ T

0

(L(Xs, αs, ps) + F (Xs,ms, ps))ds+G(XT ,mT , pT )

]

− C−1EP⊗P1

[∫ T

0

|αs +Hξ(Xs, Dφs(Xs), ps)|2ds

]
,

where Xt = Z +
∫ t

0
αsds+

√
2Bt, t ∈ [0, T ].
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Proof. The proof is standard and we only sketch it. As the probability space is fixed in the proof, we set
E[· · · ] = EP⊗P1

[· · · ]. We discretize time, setting tnk = kT/2n for k ∈ {0, . . . , 2n} and

(mn
t , p

n
t ) = (mn

tnk
, pntnk ) on [tnk , t

n
k+1)

Then we consider the solution (φn,Mn) to{
dφnt (x) = {−∆φnt (x) +H(x,Dφnt (x), pnt )− F (x,mn

t , p
n
t )} dt+ dMn

t (x) in (0, T )× Rd,
φnT (x) = G(x,mn

T , pT ) in Rd,

adapted to the complete filtration (Fnt ) generated by (mn, pn). Then Mn is constant on each interval
(tnk , t

n
k+1) and thus (φn,Mn) is a classical solution to

∂tφ
n
t (x) = {−∆φnt (x) +H(x,Dφnt (x), pnt )− F (x,mn

t , p
n
t )} dt in (tnk , t

n
k+1)× Rd,

φn(tnk+1)−(x) = E
[
φn(tnk+1)(x) | Fntnk

]
in Rd, k < 2n,

φnT (x) = G(x,mT , pT ) in Rd.

Given a control α adapted to the filtration generated by (p,m,B) and Xt = Z +
∫ t

0
αsds+

√
2Bt, we can

compute on each time interval

φn(tnk+1)−(Xtnk+1
) = φntnk (Xtnk

) +

∫ tnk+1

tnk

(∂tφ
n
t (Xt) + ∆φn(Xt) + αt ·Dφnt (Xt))dt+

∫ tnk+1

tnk

Dφnt (Xt) · dBt

= φntnk (Xtnk
) +

∫ tnk+1

tnk

(H(Xt, Dφ
n
t (Xt), p

n
t )− F (Xt,m

n
t , p

n
t ) + αt ·Dφnt (Xt))dt+

∫ tnk+1

tnk

Dφnt (Xt) · dBt

≥ φntnk (Xtnk
) +

∫ tnk+1

tnk

(−L(Xt, αt, p
n
t )− F (Xt,m

n
t , p

n
t ) + C−1|αt +Hξ(Xt, Dφ

n
t (Xt), p

n
t )|2)dt+

∫ tnk+1

tnk

Dφnt (Xt) · dBt,

with an equality only if αt = −Hξ(Xt, Dφ
n
t (Xt), p

n
t ) for a.e. t and a.s.. Taking expectation and summing

over k gives

E [G(XT ,mT , pT )] ≥ E [φ0(Z)]−E

[∫ T

0

(L(Xt, αt, p
n
t ) + F (Xt,m

n
t , p

n
t ) + C−1|αt +Hξ(Xt, Dφ

n
t (Xt), p

n
t )|2)dt

]
,

with an equality only if X = Xn where Xn
t = Z −

∫ t
0
Hξ(X

n
s , Dφ

n
s (Xn

s ), pns )ds + Bt and α = αn =
−Hξ(X

n, Dφn(Xn), pn). Letting n→∞ gives the result.

2.3 Formulation of the Stackelberg problem
We now come back to our original Stackelberg problem. Let us recall that p0 ∈ ∆(I) is the initial belief
on the random variable i shared by the small players: i = i with probability p0

i .

Admissible control of the major player. We denote by U0([t0, T ]) the set of measurable maps
u0 : [t0, T ]→ U0, endowed with the L1-distance:

d(u0, v0) =

∫ T

t0

d0(u0
s, v

0
s)ds ∀u0, v0 ∈ U0([t0, T ]).

We abbreviate U0([t0, T ]) into U0 when t0 = 0 and endow U0 with its Borel σ−algebra B(U0). We denote
by u0 its canonical process and by (F0

t )t∈[0,T ] the filtration generated by the canonical process t → u0
t .

Let ∆(U0) be the set of random controls for the major player, that is the set of Borel probability measures
on U0. An admissible strategy for the major player is an element u0 = (u0

i )i=1,...,I of (∆(U0))I . The
interpretation of such a strategy is that the major players can choose her control in function of the index
i chosen by nature. However, in order to use her information, she also needs to hide it by randomizing
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it. Letting Ω0 = {1, . . . , I}, the probability u0 generates the probability Pu0

on (Ω0 × U0,B(Ω0 × U0))
defined by

Pu0

({i} ×A0} = p0
iu

0
i (A) ∀i ∈ {1, . . . , I}, A ∈ B(U).

The mean field game equilibria. Given an admissible control u0 = (u0
i )i=1,...,I ∈ (∆(U0))I of the

major player, the small players observe along the time a realization s → u0
s of this strategy and deduce

information on the random variable i from this observation. Throughout this section we fix a filtered
probability space (Ω1,F1,P1, (F1

t )) supporting a Brownian motion B and a random variable Z on Rd

of law m̄0. We denote by (Fu0,1
t ) the completion of the filtration generated by Z and by the process

t→ (u0
t , Bt) with respect to the probability Pu0 ⊗ P1 on (Ω0 × U × Ω1,B(Ω0 × U)⊗ F1).

Definition 2.4. Given an admissible control u0 = (u0
i )i=1,...,I ∈ (∆(U0))I , an MFG equilibrium associ-

ated to u0 is a pair (αu0

,mu0

) of processes on (Ω0×U0×Ω1,B(Ω0×U0)⊗F1, Pu0 ⊗P1, (Fu0,1
t )), where

αu0

takes its values in Rd, mu0

in P2(Rd), and

1. αu0

is optimal in the control problem

inf
α

EP
u0
⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

u0

t ))dt+Gi(X
α
T ,m

u0

T )

]

where the infimum is taken over all Rd−valued, (Fu0,1
t )−adapted controls α and

Xα
t = Z +

∫ t

0

αsds+
√

2Bt, t ∈ [0, T ],

2. for any t ∈ [0, T ], mu0

t is the conditional law of Xαu0

t given σ({s→ u0
s, s ≤ t}).

Definition 2.5 (The major player’s problem). The problem of the major player then consists in mini-
mizing over her admissible controls u0 ∈ (∆(U0))I the cost

J0(u0) = sup
(αu0 ,mu0 )

EP
u0
⊗P1[∫ T

0

I∑
i=1

p0
iL

0
i (t, u

0
s,m

u0

s )ds
]
, (2.16)

where the sup is taken over all MFG equilibria (αu0

,mu0

) associated with u0.

We take the supremum with respect to the MFG Nash equilibria in order to handle the worst case
for the informed player; however we will see that the MFG Nash equilibrium is unique (Corollary 3.2),
so that this supremum is actually useless.

3 The relaxed problem
In this section we rewrite the problem for the major player as an optimal control problem over a suitable
set of martingales with values in ∆(I).

3.1 Definition of the relaxed problem

Fix u0 ∈ (∆(U0))I and denote by (Fu0

t ) the completion with respect to Pu0

of the filtration generated
by the canonical process t→ u0

t over (Ω0×U ,B(Ω0×U)). Knowing u0 and observing the realization u0
i ,

the small players have access to the martingale process (with values in the simplex ∆(I))

pu0

t = Eu0
[
ei | Fu0

t

]
, (3.17)

where (ei) is the canonical basis on RI . Note that (pu0

t ) is a (Fu0

t )−martingale; we always consider its
càdlàg version. The next lemma shows how to rewrite the cost of the small players in terms of (pu0

t ).
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Lemma 3.1. Fix u0 ∈ (∆(U0))I and let (Ω1,F1,P1, (F1
t )) a filtered probability space supporting a Brow-

nian motion B and a random variable Z on Rd of law m̄0 (B and Z being independent). Let (mt) be
a random distribution of the players, i.e., a P2(Rd)−valued and (Fu0

t )−adapted process. Then, for any
Rd−valued, (Fu0,1

t )−adapted control α, and if

Xα
t = Z +

∫ t

0

αsds+
√

2Bt, t ∈ [0, T ],

then

EP
u0
⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,mt))dt+Gi(X

α
T ,mT )

]

= EP
u0
⊗P1

[∫ T

0

L(Xα
t , αt,p

u0

t ) + F (Xα
t ,mt,p

u0

t )dt+G(Xα
T ,mT ,p

u0

T )

]
,

where the maps H, F and G are defined in (2.1).

Proof. Indeed, as (F1
t ) is independent of (Fu0

t ),

pu0

t = E
[
ei|Fu0

t

]
= E

[
ei|Fu0,1

t

]
,

thus we have

E

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,mt))dt+Gi(X

α
T ,mT )

]

=

∫ T

0

E
[
E
[
ei · ((Li(Xα

t , αt) + Fi(X
α
t ,mt)))i=1,...,I | Fu0,1

t

]]
dt+ E

[
E
[
ei · (Gi(Xα

T ,mT ))i=1,...,I | Fu0,1
T

]]
=

∫ T

0

E
[
pu0

t · ((Li(Xα
t , αt) + Fi(X

α
t ,mt)))i=1,...,I

]
dt+ E

[
pu0

T · (Gi(Xα
T ,mT ))i=1,...,I

]
=

∫ T

0

E
[
L(Xα

t , αt,p
u0

t ) + F (Xα
t ,mt,p

u0

t )
]
dt+ E

[
G(Xα

T ,mT ,p
u0

T )
]
.

Corollary 3.2. Under the notation and assumption of Lemma 3.1, there is a unique MFG equilibrium
(αu0

,mu0

) associated to u0 which is given by

αu0

t = −Hξ(X
∗
t , Dφt(X

∗
t ),pu0

t ) (3.18)

with X∗t = Z−
∫ t

0
Hξ(X

∗
s , Dφs(X

∗
s ),pu0

s )ds+
√

2Bt and mu0

= m, where (φ,m,M) is the unique solution
to the MFG system (2.10) associated to (pu0

) on (Ω0 × U0,B(Ω0 × U0), Pu0

, (Fu0

t )).

A consequence of the corollary is that the “sup” in Definition 2.5 is not needed.

Proof. Let (φ,m,M), mu0

= m, X∗ and αu0

be as in the lemma. In view of Lemma 3.1, we have, for
any control α (and Xα defined as in that Lemma),

EP
u0
⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

u0

t ))dt+Gi(X
α
T ,m

u0

T )

]

= EP
u0
⊗P1

[∫ T

0

L(Xα
t , αt,p

u0

t ) + F (Xα
t ,m

u0

t ,p
u0

t )dt+G(Xα
T ,m

u0

T ,p
u0

T )

]
.
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Recalling Proposition 2.3, we obtain

EP
u0
⊗P1

[
φ̃0(Z)

]
= EP

u0
⊗P1

[∫ T

0

L(X∗t , α
u0

t ,pu0

t ) + F (X∗t ,m
u0

t ,p
u0

t )dt+G(X∗T ,m
u0

T ,p
u0

T )

]

≤ EP
u0
⊗P1

[∫ T

0

L(Xα
t , αt,p

u0

t ) + F (Xα
t ,m

u0

t ,p
u0

t )dt+G(Xα
T ,m

u0

T ,p
u0

T )

]

− C−1EP
u0
⊗P1

[∫ T

0

|αt − αu0

t |2dt

]
.

Therefore αu0

is optimal in the control problem

inf
α

EP
u0
⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

u0

t ))dt+Gi(X
α
T ,m

u0

T )

]
.

By Itô’s formula and the definition of Xαu0

, the conditional law of Xαu0

t given σ({s→ u0
s, s ≤ t}) solves

the Fokker-Planck equation in (2.10). By uniqueness of the solution to this equation, we infer that it is
equal to mu0

t .

Conversely, let (α∗,m∗) be an MFG equilibrium associated to u0. Let (φ∗,M∗) be the unique solution
to the HJ equation on (Ω0 × U0,B(Ω0 × U0), Pu0

, (Fu0

t )) (see [11]){
dφ∗t (x) =

{
∆φ∗t (x)−H(x,Dφ∗t (x),pu0

t ) + F (x,m∗t ,p
u0

t )
}
dt+ dM∗t (x) in (0, T )× Rd,

φ∗T (x) = G(x,m∗T ,p
u0

T ) in Rd.

Proposition 2.3 states that ᾱt = −Hξ(X̄t, Dφ
∗
t (X̄t),p

u0

t ), where X̄ solves X̄t = Z−
∫ t

0
Hξ(X̄s, Dφ

∗
s(X̄s),p

u0

s )ds+√
2Bt, is the unique minimizer of the problem

inf
α

EP
u0
⊗P1

[∫ T

0

(L(Xα
t , αt,p

u0

t ) + F (Xα
t ,m

∗
t ),p

u0

t )dt+G(Xα
T ,m

∗
T ,p

u0

T )

]

= inf
α

EP
u0
⊗P1

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

∗
t ))dt+Gi(X

α
T ,m

∗
T )

]
.

As (α∗,m∗) is an MFG equilibrium associated to u0, this implies that α∗t = ᾱt a.s. and for a.e. t,
and therefore that Xα∗ = X̄. On the other hand, as m∗t is the conditional law of Xα∗

t = X̄t given
σ({s→ u0

s, s ≤ t}), Itô’s formula implies that m∗ solves{
dm∗t (x) =

{
∆m∗t (x) + div(Hξ(x,Dφ

∗
t (x),pu0

t )m∗t (x))
}
dt in (0, T )× Rd

m∗0(x) = m̄0(x), in Rd

Therefore the triple (φ∗,m∗,M∗) is a solution to the MFG system associated to (pu0

). By uniqueness
we conclude that (φ∗,m∗,M∗) = (φ,m,M). This completes the proof.

Recall that D is the set of càdlàg functions from R to D(I), endowed with the Meyer-Zheng topology.
Let t 7→ p(t) be the coordinate mapping on D, G be the Borel σ−algebra on D and (Gt) be the filtration
generated by t 7→ p(t). Given p0 ∈ ∆(I), we denote by M(p0) the set of probability measures P on D
such that, under P, (p(t), t ∈ R) is a martingale and pt = p0 for t ≤ 0. Finally for any measure P on D,
we denote by FP the completion of the filtration (Gt) with respect to P and by EP[. . . ] the expectation
with respect to P.
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Definition 3.3 (The relaxed problem). The relaxed problem is

min
P∈M(p0)

J̄0(P) where J̄0(P) := EP
[∫ T

0

min
u0∈U0

L0(s, u0,mP
s , ps)ds

]
,

where (φP,mP,MP) is the unique solution to the MFG system (2.10) on (D,G,P, (FP
t )) (in the sense

of Definition 2.1): dφPt (x) =
{
−∆φPt (x) +H(x,DφPt (x), pt)− F (x,mP

t , pt)
}
dt+ dMP

t (x) in (0, T )× Rd
dmP

t (x) =
{

∆mP
t (x) + div(Hξ(x,Dφ

P
t (x), pt)m

P
t (x))

}
dt in (0, T )× Rd

mP
0 (x) = m̄0(x), φPT (x) = G(x,mP

T , pT ) in Rd
(3.19)

We now explain the link between the original problem for the major player (see Definition 2.5) and
the relaxed problem (Definition 3.3).

Proposition 3.4. Let u0 ∈ (∆(U0))I , pu0

be given by (3.17) and P be its law on D. Then

J̄0(P) ≤ J0(u0),

where J0 is defined in (2.16).
Conversely, given P ∈M(p0), there exists a sequence ū0,n ∈ (∆(U0))I such that

lim
n
J0(u0,n) = J

0
(P).

Proof. Let u0 ∈ (∆(U0))I , (pu0

) be given by (3.17) and P be its law on D. Let (φP,mP,MP) be the
solution of the MFG system (3.19) on (D,G,P, (FP

t )). Assume that (αu0

,mu0

) is an MFG equilibrium
associated to u0 and let (φ,m,M) be the solution to the MFG system (2.10) associated to (pu0

) on
(Ω0 × U0,B(Ω0 × U0), Pu0

, (Fu0

t )). We know by Corollary 3.2 that mu0

= m and that

αu0

t = −Hξ(X
∗
t , Dφt(X

∗
t ),pu0

t )

where X∗t = Z −
∫ t

0
Hξ(X

∗
s , Dφs(X

∗
s ),pu0

s )ds +
√

2Bt. Now, as pu0

has law P, we know from Theorem
2.2 that (mP, p) has the same law as (m,pu0

), which proves that

J0(u0) = EP
u0
⊗P1[∫ T

0

I∑
i=1

p0
iL

0
i (t, u

0
s,m

u0

s )ds
]

= EP
u0
⊗P1[∫ T

0

L0(t, u0
s,m

u0

s ,p
u0

s )ds
]

≥ EP
u0
⊗P1[∫ T

0

min
u0∈U0

L0(t, u0,mu0

s ,p
u0

s )ds
]

= EP
[∫ T

0

min
u0∈U0

L0(s, u0,mP
s , ps)ds

]
= J̄0(P).

Hence J̄0(P) ≤ J0(u0).
Conversely, letP ∈M(p0) and (φP,mP,MP) be the solution of the MFG system (3.19) on (D,G,P, (FP

t )).
For each n ∈ N∗, we introduce the regular subdivision ∆n = {0 = t0 < t1 < . . . < tn = T} of step T

n of
the interval [0, T ]. We also introduce εn = T

2n .

Let us consider I distinct elements of U0, denoted respectively by a1, . . . , aI ∈ U0. For each n ∈ N∗,
we introduce the piecewise constant control u0,n as follows:

for each k ∈ {0, . . . , n− 1}, for each t ∈ [tnk + εn, t
n
k+1),

u0,n
t = arg min

u0∈U0

L0(tnk , u
0,mP

tnk
, ptnk )

and for each i ∈ {1, . . . , I}, for each t ∈

[
tnk +

(
i−1∑
j=0

(ptnk )i

)
εn, t

n
k +

(
i∑

j=0

(ptnk )i

)
εn

)
,

u0,n
t = ai.
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The above definition allows to encode the values of
(
ptnk
)
k
in the process u0,n, such that for each k ∈

{0, . . . , n− 1},
σ
(
u0,n
t , t < tnk+1

)
= σ

(
ptnl , l < k + 1

)
.

It is then clear that for each k ∈ {0, . . . , n− 1} and t ∈ [tnk + εn, t
n
k+1),

pu0,n

t = ptnk .

Finally, by Assumption (H1), we can conclude that

J0(u0,n) = EP
u0,n
⊗P1
[∫ T

0

L0(t,u0,n
s ,mu0,n

s ,pu0,n

s )ds
]
n→+∞−−−−−→ EP

[∫ T

0

min
u0∈U0

L0(s, u0,mP
s , ps)ds

]
= J̄0(P).

3.2 Existence of a relaxed solution
Theorem 3.5. Under our standing assumptions, there exists a minimum to J̄0.

Proof. Let (Pn) be a minimizing sequence in M(p0) for the relaxed problem (Definition 3.3). Let
(φn,mn,Mn) be the unique solution to the MFG system (3.19) on (D,G,Pn, (FPn

t )).
Recall that M(p0) is compact, when D is endowed with the Meyer-Zheng topology. Hence (Pn) has

a converging subsequence, denoted in the same way; let P ∈ D be its limit. Let also (φ,m,M) be the
unique solution to the MFG system (3.19) on (D,G,P, (FPnt )). Let finally γn be an optimal coupling
between Pn and P. We claim that

lim
n

∫ T

0

d1(mn(t, p),m(t, p′))γn(dp, dp′) = 0. (3.20)

Indeed, according to Lemma 4.5. of [11], we have, for any R > 0,

lim
n

sup
t∈[0,T ]

∫
D×D

sup
|x|≤R

|φnt (x, p)− φt(x, p′)|γn(dp, dp′) = 0

and

lim
n

∫
D×D

∫ T

0

∫
BR

|Dφnt (x, p)−Dφt(x, p′)|dxdtγn(dp, dp′) = 0.

Let (Ω1,F1,P1, (F1
t )) be a filtered probability space supporting a Brownian motion B and a random

variable Z on Rd of law m̄0 (independent of p). On (D×D×Ω1,G ⊗G ⊗F1,Pn⊗P⊗P1, (FPn⊗P⊗P1

t ))

( est-ce Pn ⊗ P ou leur optimal coupling ?) (where the filtration (FPn⊗P⊗P1

t ) is the completion of
(FPn

t ⊗FP
t ⊗F1

t )) satisfying the usual conditions), let Xn solve the SDE

Xn
t (p, p′, ω) = Z(ω)−

∫ t

0

Hξ(X
n
s (p, p′, ω), Dφns (Xn

s (p, p′, ω), p), ps)ds+
√

2Bt(ω), (pourquoi on écrit des ω là ?)

and X be the solution to

Xt(p, p
′, ω) = Z(ω)−

∫ t

0

Hξ(Xs(p, p
′, ω), Dφs(Xt(p, p

′, ω), p), p′), p′t)ds+
√

2Bt(ω).

Then mn
t is the conditional law of Xn

t given (FPn

t ) while mt is the conditional law of Xt given (FP
t ).

Hence, as ‖D2φ‖∞ ≤ C,

EPn⊗P⊗P1

[|Xn
t −Xt|] ≤ CEPn⊗P⊗P1

[∫ t

0

(|Xn
s −Xs|+ |Dφns (Xs, p)−Dφs(Xs, p

′)|)ds
]
,
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so that, by Gronwall’s inequality and for any R > 0,

EPn⊗P⊗P1

[|Xn
t −Xt|] ≤ C

∫ T

0

EPn⊗P⊗P1 [
|Dφns (Xs, p)−Dφs(Xs, p

′)|1|Xs|≤R
]
ds+ CR−1

≤ C
∫ T

0

∫
D×D

∫
BR

|Dφns (x, p)−Dφs(x, p′)|ms(dx, p
′)γn(dp, dp′)ds+ CR−1

≤ C
∫ T

0

∫
D×D

∫
BR

|Dφns (x, p)−Dφs(x, p′)|dxγn(dp, dp′)ds+ CR−1

where we used for the first inequality that Xt has a uniformly bounded second order moment, the fact
that mt is the conditional law of Xt given (FP

t ) for the second one and that mt has a uniformly bounded
density for the last one. This shows that∫

D×D

∫ T

0

d1(mn
t (p),mt(p

′))dt γn(dp, dp′) ≤
∫ T

0

EPn⊗P⊗P1
[
EPn⊗P⊗P1

[
|Xn

t −Xt| | FPn

t ⊗FP
t

]]
dt

≤ C
∫
D×D

∫ T

0

∫
BR

|Dφns (x, p)−Dφs(x, p′)|dxdsγn(dp, dp′) + CR−1,

which tends to 0 as n→∞ and then R→∞. This proves (3.20).
We conclude the proof by noticing that

|J̄0(Pn)− J̄0(P)| ≤ EPn⊗P

[∫ T

0

|L̄0(s, ps,ms(p))− L̄0(s, p′s,ms(p
′))|ds

]

≤
∫
D×D

∫ T

0

(|pt − p′t|+ d1(mn
t (p),mt(p

′)))dtγn(dp, dp′),

which tends to 0 as n→∞. As (Pn) is a minimizing sequence, P is optimal.

4 Application to problems with finitely many players

4.1 Statement of the main result
Fix N ∈ N, N being the large number of small players. We consider Stackelberg equilibria of a differential
game in which the N small players interact with a major player. The major player announces a (random)
strategy and the small players answer through a family of (“decentralized”) controls based on their observa-
tion of the Brownian motions of all players and of the control of the major player. For simplicity we assume
as before that a strategy of the informed player is a probability measure u0 = (u0

i )i=1,...,I ∈ (∆(U0))I

on the set of controls. In particular it is independent of the Brownian motions of the players, of their
strategies and of the initial positions.

Let us fix a filtered probability space (Ω,F , (Ft),P) supporting, for any N ≥ 1, a family of i.i.d.
F0−measurable initial conditions (xN,k0 )k=1,...,N of law m̄0 and a family of independent Brownian motions
(Bk), independent of the (xN,k0 )k=1,...,N .

For δ > 0, let

JN,0(u0, δ) = sup
(αN,j) δ−Nash

EPu0
⊗P

[∫ T

0

L0
i (t, u0

s,m
N
XN
s

)ds

]
(4.21)

where the supremum is taken over all the open-loop δ−Nash equilibria (αN,j) associated to the costs

JN,j(u0, (αN,k)) = EPu0
⊗P

[∫ T

0

Li(X
N,j
t , αN,jt ) + Fi(X

N,j
t ,mN,j

XN
t

)dt+Gi(X
N,j
T ,mN,j

XN
t

)

]
,
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each control (αN,j) being adapted to the filtration generated by the initial conditions (xN,k0 ), the control
u0 and the Brownian motions (Bk), and XN,j satisfying

XN,j
t = xN,j0 +

∫ t

0

αN,js ds+
√

2Bjt ∀t ∈ [0, T ]. (4.22)

We have set XN
t = (XN,1

t , . . . , XN,N
t ) and mN,j

XN
t

= 1
N−1

∑
k 6=j δXN,kt

. The fact that (αN,j) is a δ−Nash
equilibrium means that, for any j ∈ {1, . . . , N} and any control α adapted to the filtration generated by
the initial conditions (xN,k0 ), the control u0 and the Brownian motions (Bk),

JN,j(u0, α, (αN,k)k 6=j) ≥ JN,j(u0, αN,j , (αN,k)k 6=j)− δ.

If there is no δ−Nash equilibrium for JN,j(u0, ·), we simply set JN,0(u0, δ) = +∞. Note that we take
the sup over δ−Nash equilibria in the definition of JN,0 in order to take into account the worst possible
case for the informed player. In general there are many δ−Nash equilibria, so choosing a supremum or
and infimum in the definition (4.21) of JN,0 makes a difference a priori.

Our main result states that the problem with infinitely many players described by in Section 2.3 gives
a good approximation of the N−player problem when N is large:

Theorem 4.1. Assume that L0, Hi, Fi and Gi satisfy conditions (2.5), (2.6), (2.8), (2.9). Assume in
addition that m̄0 ∈ P1(Rd) has a smooth and bounded density and a finite 4th order moment. Fix ε > 0
and let ū0 be an ε−minimizer for the limit functional J0 defined in (2.16). Then there exists δ > 0 and
N0 ∈ N such that, for any N ≥ N0, ū0 is 3ε−optimal for JN,0(·, δ).

Remark 4.1. It can be easily seen in the proof that the result would also hold with an infimum in the
definition (4.21) of JN,0 instead of a supremum.

The proof of Theorem 4.1 requires two intermediate results. The first one claims the existence of
δ−Nash equilibria for N large enough given any control u0. The second one, given again any u0, shows
that the empirical measure associated to any δ−Nash equilibrium is close to the corresponding MFG
equilibrium. The proof of the first statement is standard and relies on arguments going back to Huang
et al. [25], Carmona and Delarue [12]. It is given after the on-going proof of Theorem 4.1. The proof
of the second statement, which is inspired by similar statement by Lacker [29] and Fischer [23], is much
more intricate and postponed to the next section.

Lemma 4.2. Under the assumptions of Theorem 4.1, for any δ > 0, there exists Nδ ∈ N such that, for
any control u0 ∈ (∆(U0))I and any N ≥ Nδ, there exists a δ−Nash equilibrium for (JN,j(u0, ·)).

Proposition 4.3. Under the assumptions of Theorem 4.1, fix ε > 0 small. Then there exists δ > 0 and
N ′δ ≥ Nδ such that, for any control u0 ∈ (∆(U0))I , for all N ≥ N ′δ, and any δ−Nash equilibrium (αN,j)
for (JN,j(u0, ·)) satisfies,

sup
t∈[0,T ]

EPu0
⊗P
[
d1(mN

XN
t
,mu0

t ))
]
≤ ε,

where mN
XN
t

= 1
N

∑N
k=1 δXN,kt

is the empirical distribution of the positions XN,k
t defined in (4.22) and

where (φu
0

,mu0

,Mu0

) is the solution to the MFG system (2.10) associated to (pu0

) on (Ω0×U0,B(Ω0×
U0), Pu0

, (Fu0

t )), (pu0

) being defined by (3.17).

Proof of Theorem 4.1. Fix ε > 0 and let δ, N ′δ as in Proposition 4.3 for ε/(2C), where C is the Lipschitz
constant of L0 with respect to m. Fix N ≥ N ′δ and let u0 be a control for the major player. Let (αN,j)
be any δ−Nash equilibrium for JN,j(u0, ·) and (ᾱN,j) be a δ−Nash equilibrium for JN,j(ū0, ·) which is
ε−optimal for JN,0(ū0, ·) in (4.21): such δ−Nash equilibria exist thanks to Lemma 4.2. We denote by
XN,j the solution associated to αN,j and X̄N,j the solution associated to ᾱN,j . Finally, (φu

0

,mu0

,Mu0

)

is the solution to the MFG system (2.10) associated to (pu0

) on (Ω0 × U0,B(Ω0 × U0), Pu0

, (Fu0

t )),
while (φ̄u

0

, m̄u0

, M̄ū0

) is the solution to the MFG system (2.10) associated to (pū0

) on (Ω0×U0,B(Ω0×
U0), Pu0

, (Fu0

t )).
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Using respectively the definition of JN,0, Proposition 4.3, the ε−optimality of ū0 and Proposition 4.3
again, we obtain,

JN,0(u0, δ) ≥ E
[∫ T

0

I∑
i=1

piL
0
i (t,u

0
i,s,m

N
XN
s

)ds
]
≥ E

[∫ T

0

I∑
i=1

piL
0
i (t,u

0
i,s,m

u0

s )ds
]
− C(ε/(2C))

≥ E
[∫ T

0

I∑
i=1

piL
0
i (t, ū

0
i,s,m

ū0

s )ds
]
− 3ε/2

≥ E
[∫ T

0

I∑
i=1

piL
0
i (t, ū

0
i,s,m

N
X̄N
s

)ds
]
− 2ε ≥ JN,0(ū0, δ)− 3ε.

This shows the 3ε−optimality of ū0.

We now prove the first intermediate result.

Proof of Lemma 4.2. The argument is standard and relies on the conditional propagation of chaos. Fix
a control u0 and let (φu

0

,mu0

,Mu0

) be the solution to the MFG system (2.10) associated to (pu0

) on
(Ω0 × U0,B(Ω0 × U0), Pu0

, (Fu0

t )). For j ∈ {1, . . . , N}, let (X̄N,j) be the solution to

X̄N,j
t = xN,j0 −

∫ t

0

DξH(X̄N,j
s , Dφu

0

s (X̄N,j
s ),pu0

s )ds+
√

2Bjt , t ∈ [0, T ]

and
ᾱN,js := −DξH(X̄N,j

s , Dφu
0

s (X̄N,j
s ),pu0

s ).

As the (xN,j0 ) and the (Bj) are independent, the (X̄N,j) are iid given (Fu0

) with conditional law mu0

.
By the Glivenko-Cantelli Law of large numbers (see for instance the proof of Theorem II-2.12 of [13]), we
have

sup
t∈[0,T ]

E
[
d1(mN

X̄N
t
,mu0

t )
]
≤ CN−γ , (4.23)

where C depends only on the data and γ ∈ (0, 1) depends on the dimension d only (we use here the
assumption that m̄0 has a fourth order moment, which propagates to the XN,j

t ).
Fix j ∈ {1, . . . , N} and let α be a control adapted to the initial conditions (xN,k0 ), the filtration

generated by the control u0 and the Brownian motions (Bk). We denote by Xα the solution associated
with α. Our aim is to show that

JN,j(u0, α, (ᾱN,k)k 6=j) ≥ E

[∫ T

0

(Li(X̄
N,j
t , ᾱN,jt ) + Fi(X̄

N,j
t ,mu0

t ))dt+Gi(X̄
N,j
T ,mu0

T )

]
− CN−γ .

By the coercivity of Li and the L∞ bounds on the Fi, Gi, this inequality is obvious if ‖α‖L2([0,T ]×Ω) > C,
for C large enough. We now assume that

‖α‖L2([0,T ]×Ω) ≤ C. (4.24)

Then

JN,j(u0, α, (ᾱN,k)k 6=j) = E

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

N,j

X̄N
t

))dt+Gi(X
α
T ,m

N,j

X̄N
t

)

]

≥ E

[∫ T

0

(Li(X
α
t , αt) + Fi(X

α
t ,m

u0

t ))dt+Gi(X
α
T ,m

u0

T )

]
− CN−γ

≥ E

[∫ T

0

(Li(X̄
N,j
t , ᾱN,jt ) + Fi(X̄

N,j
t ,mu0

t ))dt+Gi(X̄
N,j
T ,mu0

T )

]
− CN−γ ,
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where the first inequality comes from (4.23) and the fact that E[d1(mN
X̄N
t
,mN,j

X̄N
t

)] ≤ C/N (thanks to the
bound (4.24)), while the second one holds by the optimality of ᾱN,j in the limit problem (Proposition
2.3). Using once more (4.23), we obtain

JN,j(u0, α, (ᾱN,k)k 6=j) ≥ E

[∫ T

0

(Li(X̄
N,j
t , ᾱN,jt ) + Fi(X̄

N,j
t ,mN,j

X̄N
t

)dt+Gi(X̄
N,j
T ,mN,j

X̄N
T

)

]
− 2CN−γ

= JN,j(u0, (ᾱN,k))− 2CN−γ .

This proves that (ᾱN,j) is a δ−Nash equilibrium if one chooses N ≥ Nδ for Nδ large enough.

4.2 Proof of Proposition 4.3
This part is devoted to the proof of Proposition 4.3. It relies on the construction of Lacker [29] (see also
Fischer [23] and Djete [19]). We argue by contradiction, assuming that there exists ε > 0 and, for any n
large, a random control u0,n ∈ (∆(U0))I , a number of playersNn ≥ n and a probability space (Ωn,Fn,Pn)
on which are defined i.i.d. initial conditions xn,j0 ∈ Rd, Nn d−dimensional independent Brownian motions
(Bn,j), independent of the initial conditions, and an 1/n−Nash equilibrium (αNn,j)j=1,...,Nn for the payoffs
(JNn,j(u0,n, ·)) such that

sup
t∈[0,T ]

En
[
d1(mNn

X̄Nn
t

,mu0,n

t ))
]
> ε, (4.25)

where X̄Nn = (X̄Nn,1, . . . , X̄Nn,Nn) is the trajectory associated with (αNn,j)j=1,...,Nn as in (4.22) and
(φu0,n

,mu0,n

,Mu0,n

) is the solution to the MFG system (2.10) associated to (pu0,n

) on (Ω0×U0,B(Ω0×
U0), Pu0,n

, (Fu0,n

t )), (pu0,n

) being defined as usual by

pu0,n

t = Eu0,n
[
ei | Fu0,n

t

]
.

We first place ourselves on the space X = (C0([0, T ],Rd))2 × (C0([0, T ],P2))2 ×D. Let (FXt ) be the
canonical filtration on X , i.e., FXt is the σ−algebra generated by the maps

X 3 ω := (x,w,m, m̂, p) 7→ (xs, ws,ms, m̂s, ps) for s ≤ t.

Let

Qn =
1

Nn

Nn∑
j=1

Pu0,n

⊗ Pn ◦ (XNn,j , Bn,j ,mNn
XNn

,mu0
n ,pn)−1.

Assumption (4.25) can be rephrased as follows:

sup
t∈[0,T ]

∫
X
d1(ms, m̂s)Q

n(dx, dw, dm, dm̂, dp) > ε. (4.26)

Lemma 4.4. The family (Qn) is relatively compact in P1(X ).

The lemma relies on standard arguments that we briefly recall.

Proof. As (αNn,j)j=1,...,Nn is a 1/n−Nash for the payoffs (JNn,j(u0,n, ·)), our assumptions on the running
and terminal cost, as well as the growth conditions on L give the existence of a constant C (independent
of j and n) such that

E

[∫ T

0

|αNn,js |2ds

]
≤ C ∀j, n.

This implies the tightness of (Qn) by classical arguments (see for instance [29, section 5.2] or [23] in
closely related frameworks).
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From now on we fix Q any limit (up to subsequence) of (Qn). For simplicity we argue as if Q is the
limit of the whole sequence (Qn). We denote by FQ the completion of the filtration FX for Q.

Lemma 4.5. In (X ,FQ, Q),

1. w is a Wiener process, p is a càdlàg martingale valued in ∆(I), with pt = p0 for t < 0 and
Q ◦ x−1

0 = m̄0.

2. x0, w and (p,m, m̂) are independent.

3. m = Q[x ∈ ·|(m, p)] a.s. That is, m is a version of the conditional law of x given (m, p).

Proof. 1. On (X ,FX , Q), w is a Wiener process as this is the case for Qn. Moreover, using [35], p is a
càdlàg martingale valued in ∆(I). Note that, Q−a.s., we have pt = p0 for t < 0 and P (pT = i) = p0,i

for any i = 1, . . . , I as this is the case for Qn. This implies that the same holds for the completed
filtration (X ,FQ, Q). In addition, for any continuous and bounded map φ : Rd → R,

EQ
n

[φ(x0)] =
1

Nn

Nn∑
j=1

EPu0,n
⊗Pn

[
φ(XN,j

0 )
]

=

∫
Rd
φ(x)m̄0(dx).

Thus Q ◦ x−1
0 = m̄0.

2. Let φ1 : Rd → R, φ2 : C0 → R, φ3 : D× (C0
P2

)2 → R be continuous and bounded. Then

EQ
n

[φ1(x0)φ2(w)φ3(p,m, m̂)] =
1

Nn

Nn∑
j=1

EPu0,n
⊗Pn

[
φ1(XN,j

0 )φ2(Bj)φ3(pn,mNn
XNn

,mu0
n)
]

Since the (XN,j
0 , Bn,j) are iid with law m̄0 ⊗Wd (Wd being the Wiener measure on C0) we have,

by the law of large numbers,

lim
n

EPu0,n
⊗Pn

∣∣∣∣∣∣ 1

Nn

Nn∑
j=1

φ1(XN,j
0 )φ2(Bj)−

∫
Rd×C0

φ1φ2dm̄0 ⊗Wd

∣∣∣∣∣∣
∣∣∣φ3(pn,mNn

XNn
,mu0

n)
∣∣∣
 = 0.

Thus
lim
n

EQ
n

[φ1(x0)φ2(w)φ3(p,m, m̂)] = (

∫
Rd
φ1dm̄0)(

∫
C0

φ2dWd)EQ [φ3(p,m, m̂)] ,

which shows that the x0, w and (p,m, m̂) are independent.

3. This is an adaptation of Lemma 5.5 in Lacker [29]. For any ψ1 : C0([0, T ],P2(Rd)) ×D → R and
ψ2 : C0([0, T ],Rd)→ R bounded and continuous,

EQ [ψ1(m, p)ψ2(x)] = lim
n

EQ
n

[ψ1(m, p)ψ2(x)]

= lim
n

Eu0,n⊗Pn

ψ1(mNn
XNn

,pn)
1

Nn

Nn∑
j=1

ψ2(XNn,j)


= lim

n
Eu0,n⊗Pn

[
ψ1(mNn

XNn
,pn)

∫
C0([0,T ],Rd)

ψ2(x)mNn
XNn

(dx)

]

= EQ
[
ψ1(m, p)

∫
C0([0,T ],Rd)

ψ2(x)m(dx)

]

The next step consists in identifying x as the solution of a SDE with square integrable drift.
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Lemma 4.6. Under Q, there exists an FQ−progressively measurable process (αt) with values in Rd such
that ∫

X

∫ T

0

|αs|2dsdQ <∞,

xt − x0 −
√

2wt =

∫ t

0

αsds ∀t ∈ [0, T ], Q− a.s..

Proof. Using the quadratic growth of the Hamiltonians (see (2.7)), we have, for any k ∈ N large and any
j ∈ {1, . . . , Nn},

Eu0,n⊗Pn
[k−1∑
l=0

∣∣∣XNn,j
(l+1)/k −X

Nn,j
l/k −

√
2(Bn,j(l+1)/k −B

n,j
l/k)

∣∣∣2]
= Eu0,n⊗Pn

[k−1∑
l=0

∣∣∣ ∫ (l+1)/k

l/k

αNn,js ds
∣∣∣2] ≤ k−1E

[∫ T

0

∣∣∣αNn,js

∣∣∣2ds] ≤ Ck−1.

Hence, averaging over j and passing to the limit:

EQ
[k−1∑
l=0

∣∣∣x(l+1)/k − xl/k −
√

2(w(l+1)/k − wl/k)
∣∣∣2] ≤ Ck−1.

Let us set

αmt = k−1(x(l+1)/k − xl/k −
√

2(w(l+1)/k − wl/k)) for t ∈ [l/k, (l + 1)/k).

We have just checked that αk is bounded in L2([0, T ] × Ω). Therefore a subsequence converges weakly
in L2 to a random variable α ∈ L2([0, T ] × Ω). Fix t ∈ [0, T ] and A a bounded random variable. Let
lk = [kt]. Then we have by definition of αm and by the estimates above:

EQ[A(xt − x0 −
√

2wt −
∫ t

0

αsds)] = lim
k→∞

EQ[A(xt − xlk/k −
√

2(wt − wlk/k)−
∫ t

lk/k

αksds)] = 0.

Thus (using the a.s. continuity in time of all arguments), Q−a.s.,

xt = x0 +
√

2wt +

∫ t

0

αsds ∀t ∈ [0, T ].

It is clear that α is a FX−progressively measurable process, thanks to the representation above and
because x and w are FX−progressively measurable.

On (X , Q, (FQt )), let (φ̃Q, M̃Q) be the solution of the backward HJ equation{
dφ̃Qt (x) =

{
−∆φ̃Qt (x) +H(x,Dφ̃Qt (x), pt)− F (x,mt, pt)

}
dt+ dM̃Q

t (x) in (0, T )× Rd

φ̃QT (x) = G(x,mT , pT ) in Rd
(4.27)

given in Proposition 2.3. Let also α = (x− w)′ as defined in Lemma 4.6.

Lemma 4.7. We have Q−a.s. and for a.e. t ∈ (0, T ),

αt = −Hξ(xt, Dφ̃
Q
t (xt), pt)

and therefore (φ̃Q,m, M̃Q) is a solution to the MFG system (2.10).
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Proof. Following Proposition 2.3, equation (4.27) has a unique solution. In addition, one can check (using
the argument in the proof of Theorem 2.2 above and the construction of the solution in [11]) that, Q−a.s.,

‖D2φ̃Q‖∞ + ‖M̃Q‖∞ ≤ C.

Let (X∗t ) be the unique solution to

X∗t = x0 −
∫ t

0

Hξ(X
∗
s , Dφ̃

Q
s (X∗s ), pt)ds+

√
2wt, t ≥ 0. (4.28)

We set α∗t = −Hξ(X
∗
t , Dφ̃

Q
t (X∗t ), pt). By construction α∗ is bounded and adapted to the filtration

(FQt ). Using Lemma 4.8 below one can find a sequence of uniformly bounded, Carathéodory maps
αm : [0, T ]×X → Rd, progressively measurable with respect to the filtration (FQt ) such that

lim
m

EQ
[∫ T

0

|αms − α∗s |ds

]
= 0.

As (αNn,j) is a (1/n)−Nash equilibrium,

JNn,j(u0,n, αNn,j , (αNn,k)k 6=j) ≤ JNn,j(u0,n, αm,n,j , (αNn,k)k 6=j) + (1/n), (4.29)

where
αm,n,js = αms (XNn,j , Bn,j ,mNn

XNn
,mu0

n ,pn).

Recall that

JNn,j(u0,n, αm,n,j , (αNn,k)k 6=j) = EPn
[∫ T

0

Li(X
m,n,j
t , αm,n,jt ) + Fi(X

m,n,j
t ,mN,j

XN
t

)dt+Gi(XT ,m
N,j

XN
t

)

]
with

Xm,n,j
t = xn,j0 +

∫ t

0

αm,n,js ds+
√

2Bn,jt , t ∈ [0, T ].

Let ξm : X → C0 be the continuous map

ξm(x,w,m, m̂, p) = (t→ x0 +

∫ t

0

αms (x,w,m, m̂, p)ds+
√

2wt).

Then
ξm(XNn,j , Bn,j ,mNn

XNn
,mu0

n ,pn) = Xm,n,j

and
1

Nn

Nn∑
j=1

JNn,j(u0,n, αm,n,j , (αNn,k)k 6=j) = EQ
n

[J(ξm)] ,

where J : X × C0([0, T ],Rd)→ R ∪ {+∞} is the Caratheodory map defined by

J(ω, y) = J((x,w,m, m̂, p), y)

:=

{ ∫ T
0

(L(ys, βs,ms) + F (ys,ms, ps))ds+G(yT ,mT , pT ) if y − w ∈ H1, with β = (y − w)′

+∞ otherwise

We often omit the first argument in J . Inequality (4.29) becomes therefore

EQ
n

[J(x)] ≤ EQ
n

[J(ξm)] + (1/n).

Note now that

J(ω, ξm(ω)) =

∫ T

0

(L(ξmt (ω), αmt (ω), pt) + F (ξmt (ω),mt))dt+G(ξmT (ω),mT ),
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which is a continuous map of ω. Hence we can let n→∞ and find, by lower semicontinuity of y → J(y)
for the left-hand side,

EQ [J(x)] ≤ EQ [J(ξm(x))] .

We now let m→∞ to find, by dominate convergence,

EQ [J(x)] ≤ EQ
[∫ T

0

L(X∗t , α
∗
t ) + F (X∗t ,mt))dt+G(X∗T ,mT )

]
=: I.

By Proposition 2.3 we have

I = E
[
φ̃Q0 (x0)

]
≤ EQ [J(x)]− C−1E

[∫ T

0

|αt +Hξ(xt, Dφ̃
Q
t (xt))|2dt

]
,

where α is defined in Lemma 4.6. This implies that, Q−a.s.,

αt = −Hξ(xt, Dφ̃
Q
t (xt)) a.e..

By the uniqueness of the solution to (4.28), we find therefore

X∗t = xt ∀t ∈ [0, T ].

Let us now prove that (φ̃Q,m, M̃Q) is a solution to the MFG system. We are just left to show that
m satisfies in the sense of distribution the Fokker-Planck equation

dmt(x) = {∆mt(x) + div(Hξ(x,Dφt(x), pt)mt(x))} dt in (0, T )× Rd.

Let h ∈ C∞c ([0, T )× Rd) be a smooth test function. Then by Itô’s formula we have

0 = h(T, xT )

= h(0, x0) +

∫ T

0

(∂th+ ∆h−Hξ(·, Dφ̃Qs (·)) ·Dh)(s, ·)ds+

∫ T

0

αs · dws

Conditioning with respect to (m, p), we find by Lemma 4.5 (point 3) and recalling that x0, w and (p,m, m̂)
are independent (Lemma 4.5, point 2), that, Q−a.s.,

0 =

∫
Rd
h(0, x)m̄0(dx) +

∫ T

0

∫
Rd

(∂th+ ∆h−Hξ(·, Dφ̃Qs (·)) ·Dh)(s, x)ms(dx)ds,

which proves that m solves the Fokker-Planck equation. Therefore that (φ̃Q,m, M̃Q) is a solution to the
MFG system.

To complete the proof of the previous lemma, we need to check the following:

Lemma 4.8. Let α be a bounded, (FQt )−adapted control. There exists a sequence of uniformly bounded,
Carathéodory maps αm : [0, T ] × X → Rd, progressively measurable with respect to the filtration (FQt )
such that

lim
m

EQ
[∫ T

0

|αms − αs|ds

]
= 0.

Proof. Let α be a bounded, (FQt )−adapted control. There exists a sequence of simple processes βn such
that

E

[∫ T

0

|βnt − αt|dt

]
−→

n→+∞
0
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and for each n ∈ N, there exists a subdivision 0 = tn0 < tn1 < . . . < tnKn = T of [0, T ] and random variables
An0 , . . . , A

n
Kn−1 such that

βnt =

Kn−1∑
k=0

Ank1[tnk ,t
n
k+1)(t),

where Ank is bounded and FQtnk−measurable for each k ∈ {0, . . . ,Kn− 1}. In other words, for each n ∈ N,

k ∈ {0, . . . ,Kn − 1}, there exists a FQtnk−measurable function θnk such that

Ank = θnk (x,w, p,m) .

Let us denote by X̃ the set

X̃ = (C0([0, T ],Rd))2 ×D× C0([0, T ],P2).

Since Q is a Borel probability measure, by the weak Lusin theorem (see [41, Theorem 2.24]), for every
ε > 0, there exists a compact set Hε ⊂ X̃ such that Q

(
X̃ \Hε

)
< ε and the restriction θnk |Hε of θnk to Hε

is continuous. Let us write θnk,ε := θnk |Hε .

Let us denote by Ψ the set of all pseudo-paths (in the sense of Meyer-Zheng [35]). Then Ψ is a Polish
space and for every ε > 0, Hε ⊂ X̃ ⊂ X̃Ψ := (C0([0, T ],Rd))2 × Ψ × C0([0, T ],P2). In particular, X̃Ψ

is a normal space2, and therefore by Tietze theorem (see [37, Theorem 35.1]), there exists a continuous
extension of θnk,ε to X̃Ψ. Let us denote this extension by θ̃nk,ε. In particular, it is continuous on X̃ and we
consider its restriction to X̃ , that we still denote by θ̃nk,ε.

It is clear that
θ̃nk,ε(x,w, p,m)

L1

−→
ε→0

θnk (x,w, p,m) ,

so that the process

αnε,t =

Kn−1∑
k=0

θ̃nk,ε1[tnk ,t
n
k+1)(t)

is Carathéodory and converges to α in the sense of the lemma as ε→ 0 and then n→∞.

We now show that m̂ gives rise to an MFG system. Let (φ̂, M̂) be the solution to{
dφ̂t(x) =

{
−∆φ̂t(x) +H(x,Dφ̂t(x), pt)− F (x, m̂t, pt)

}
dt+ dM̂t(x) in (0, T )× Rd

φ̂T (x) = G(x, m̂T , pT ) in Rd

Lemma 4.9. The flow of measures m̂ solves Q−a.s. and in the sense of distributions,

dm̂t(x) =
{

∆m̂t(x) + div(Hξ(x,Dφ̂t(x), pt)mt(x))
}
dt in (0, T )× Rd.

Hence (φ̂, m̂, M̂) is a solution to the MFG system on (X , Q, (FQt )).

Proof. Let (φn,Mn) be the solution on (X ,F , Qn,FQ
n

) to the backward HJ equation{
dφnt (x) = {−∆φnt (x) +H(x,Dφnt (x), pt)− F (x, m̂t, pt)} dt+ dMn

t (x) in (0, T )× Rd
φnT (x) = G(x, m̂T , pT ) in Rd

Then, (φn, m̂,Mn) is a solution of the MFG system on (X ,F , Qn,FQ
n

) because the law of m̂ under Qn

is the same as the law of mu0,n

under Pu0,n ⊗ Pn (see the proof of Lemma 4.5 of [11]).
2A topological space X is a normal space if, given any disjoint closed sets E and F , there are neighbourhoods U of E

and V of F that are also disjoints. This is true for any metrizable space, for instance.
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Following Lemma 4.5 of [11], we know that, if γn ∈ P1(X × X ) is an optimal coupling3 between Qn
and Q, then, for any R > 0,

lim
n

sup
t∈[0,T ]

∫
X×X

sup
|x|≤R

|φnt (x, ω)− φ̂t(x, ω′)|γn(dω, dω′) = 0

and

lim
n

∫
X×X

∫ T

0

∫
BR

|Dφnt (x, ω)−Dφ̂t(x, ω′)|dxdtγn(dω, dω′) = 0.

We can then conclude, as in the proof of Theorem 4.1 of [11] that (φ̂, m̂, M̂) is a solution to the MFG
system on (X ,F , Q,FQ).

Corollary 4.10. We have Q[m = m̂] = 1.

Proof. We have proved that (φ̂, m̂, M̂) and (φ̃Q,m, M̃Q) are two solutions of the MFG system on
(X , Q, (FQt )). By the uniqueness of the solution (Theorem 2.2), we obtain m = m̂ Q−a.s..

Proof of Proposition 4.3. Corollary 4.10 leads to a contradiction with (4.26) and completes the proof of
Proposition 4.3.
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