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Abstract 

Background Alzheimer’s disease and related dementia (ADRD) are characterized by multiple and progressive 
anatomo‑clinical changes including accumulation of abnormal proteins in the brain, brain atrophy and severe cogni‑
tive impairment. Understanding the sequence and timing of these changes is of primary importance to gain insight 
into the disease natural history and ultimately allow earlier diagnosis. Yet, modeling changes over disease course 
from cohort data is challenging as the usual timescales (time since inclusion, chronological age) are inappropriate 
and time‑to‑clinical diagnosis is available on small subsamples of participants with short follow‑up durations prior 
to diagnosis. One solution to circumvent this challenge is to define the disease time as a latent variable.

Methods We developed a multivariate mixed model approach that realigns individual trajectories into the latent dis‑
ease time to describe disease progression. In contrast with the existing literature, our methodology exploits the clini‑
cal diagnosis information as a partially observed and approximate reference to guide the estimation of the latent dis‑
ease time. The model estimation was carried out in the Bayesian Framework using Stan. We applied the methodology 
to the MEMENTO study, a French multicentric clinic‑based cohort of 2186 participants with 5‑year intensive follow‑up. 
Repeated measures of 12 ADRD markers stemmed from cerebrospinal fluid (CSF), brain imaging and cognitive tests 
were analyzed.

Results The estimated latent disease time spanned over twenty years before the clinical diagnosis. Consider‑
ing the profile of a woman aged 70 with a high level of education and APOE4 carrier (the main genetic risk factor 
for ADRD), CSF markers of tau proteins accumulation preceded markers of brain atrophy by 5 years and cognitive 
decline by 10 years. However we observed that individual characteristics could substantially modify the sequence 
and timing of these changes, in particular for CSF level of A β42.

Conclusion By leveraging the available clinical diagnosis timing information, our disease progression model does 
not only realign trajectories into the most homogeneous way. It accounts for the inherent residual inter‑individual 
variability in dementia progression to describe the long‑term anatomo‑clinical degradations according to the years 
preceding clinical diagnosis, and to provide clinically meaningful information on the sequence of events.
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Trial registration clinicaltrials.gov, NCT01926249. Registered on 16 August 2013.

Keywords Multivariate mixed model, Disease progression model, Latent time, Neurodegenerative disease, 
Alzheimer’s disease

Background
Alzheimer’s disease and related dementia (ADRD) 
are characterized by progressive changes in multiple 
anatomo-clinical domains including decline in one or 
several cognitive functions (such as memory, language 
and executive function) leading to clinical dementia, 
functional dependency and death [1]. Alzheimer’s dis-
ease (AD) neuropathology is identified by the abnormal 
accumulation of proteins that form amyloid plaques and 
tau neurofilaments in the brain [2]. It is well established 
that brain vascular pathology contributes to cognitive 
impairment and dementia [3]. Especially small vessel 
disease (causing white matter lesions and silent brain 
infarcts) could double the risk of clinical dementia [4, 5]. 
Progressive atrophy of some brain regions, more specifi-
cally the hippocampus [6] or the medial temporal lobe 
[7], due to neurons deaths, was also highlighted to con-
tribute to higher dementia risk. A decade ago, an hypo-
thetical model of disease progression was proposed [8] to 
temporally order these progressive changes. It postulates 
that amyloid and tau are involved in cellular mechanisms 
of protein deposition that would induce later neuronal 
dysfunction and brain structures atrophy. Decline in 
cognitive functions then appears as a result of the loss of 
neural tissues. Several studies found evidence supporting 
the initiating role of the amyloid protein on these patho-
logical changes [9–11], but these results were obtained 
among study participants at distinct clinical stages and 
no study provided a clear understanding of the anatomo-
clinical changes over the entire natural history of the dis-
ease. In addition, the initial model completely ignored 
vascular contribution to cognitive impairment [8].

Modeling disease progression from cohort studies is 
statistically straightforward in many diseases using the 
mixed model theory for instance [12, 13], but it faces a 
fundamental statistical challenge in ADRD. Indeed, since 
neuropathological changes likely occur 15 to 25 years 
before any clinical diagnosis can be reached [10, 14], con-
firming the sequence and timing of the associated neuro-
pathological changes would require a follow-up of more 
than 20 years before diagnosis of clinical dementia which 
is only possible in population-based cohorts recruiting 
persons before middle age. Yet markers of neuropatho-
logical changes are mainly collected in clinical cohorts in 
which repeated measures of the most recent brain mag-
netic resonance imaging (MRI), brain positron emission 
tomography scanner (PET scan) and cerebrospinal fluid 

(CSF) derived biomarkers of ADRD before clinical diag-
nosis can be set up. This is the case with the MEMENTO 
cohort, a french nationwide clinic based study with 2323 
participants followed up for 5 years, that gathers clini-
cal examination, amyloid and tau biomarkers from cer-
ebropsinal fluid, multiple brain images from MRI and 
PET scans (amyloid and glucose), and a neuropsycho-
logical tests battery. As illustrated in Fig. 1 (C) from the 
MEMENTO cohort data, modeling trajectories of the 
different markers according to the time to diagnosis in 
clinical ADRD cohorts usually both limits the analysis to 
the ultimate stages of the disease and reduces the sample 
size since most participants are not followed-up for more 
than 5 years (e.g. [15, 16]). Alternative timescales, such as 
time since inclusion or chronological age (see individual 
markers trajectories in Fig. 1 (A) and (B), respectively), do 
not solve this temporal challenge for describing disease 
progression. Indeed, time since inclusion does not have 
any biological meaning, covers only a short period and is 
very heterogeneous because participants are included at 
different clinical stages. Although much more relevant in 
research on ADRDs and age-related disorders, chrono-
logical age still induces too much inter-individual hetero-
geneity as people do not age similarly and ADRD onset 
may arise at various ages.

In the absence of a relevant completely-observed time-
scale, latent disease progression models have been devel-
oped with the aim to directly retrieve the unobserved 
disease time from the data. These data-driven methods 
usually consist in re-aligning the participants trajecto-
ries according to the unobserved disease time by assum-
ing that participants experience overall the same disease 
progression. After a first methodology proposed by Jedy-
nak et al. [17] to estimate a continuous disease time and 
describe the long-term progression of the biomarkers, 
many approaches have been developed and improved. 
Re-alignment of the individual trajectories into the dis-
ease progression time scale is managed using time-
warping functions, through either an individual-specific 
time-shift [18–23], or an individual time-shift combined 
with individual rate of progression [17, 24–27] or the def-
inition of an exponential progression score [28]. Initially 
estimated individual by individual [17], most techniques 
now estimate the time-warping functions using random 
effects, thus entering the framework of nonlinear mixed 
models [19–23, 27]. Beyond the use of time-warping 
functions, the different models also varied according to 



Page 3 of 15Lespinasse et al. BMC Medical Research Methodology          (2023) 23:199  

the type of information on participants considered (bio-
logical samples, brain images and/or neuropsychological 
evaluations) and according to the specification of the tra-
jectories with sigmoid or exponential functions applied 
to Gaussian markers in their natural scales or after per-
centile transformations combined with linear mixed 
models.

Despite the rise of disease progression models based 
on a latent disease time, none of the techniques directly 
considered the partially-observed information provided 
by the clinical dementia diagnosis. Yet, when based on 
a clinical expertise, diagnosis represents a landmark in 
the natural history of the disease that could help anchor 
the definition of the latent disease time along the actual 
ADRD process. We thus propose in this work a latent 
disease time model that directly incorporates the par-
tially-observed diagnosis information to re-align the 
individual trajectories along the ADRD disease time. 
This Disease Progression Anchored Model (DPAM) is 
an extension of the latent time joint mixed effect model 
(LTJMM) developed by Li et al. (2017) [19] and estimated 
in the Bayesian framework using Stan. The methodology 
was applied to describe the progression of 12 biomark-
ers including markers of AD neuropathology, small vessel 

disease, brain atrophy and cognitive functioning in the 
French clinic-based MEMENTO study.

Methods
The MEMENTO cohort
The MEMENTO cohort is a clinic-based study that 
recruited consecutively 2323 participants between April 
2011 and June 2014 within the French national net-
work of university-based memory clinics (Centres de 
Mémoires de Ressources et de Recherche [CMRR]). Par-
ticipants were followed-up every 6 to 12 months during 
5 years. Inclusion criteria required that participants were 
not demented, had a clinical dementia rating (CDR) ≤ 
0.5, and performed 1 standard deviation worse than the 
subject’s own age, sex and educational-level group mean 
in one or more cognitive functions (from neuropsycho-
logical tests performed within 6 months preceding the 
screening phase). Participants with isolated subjective 
complaints were also eligible if aged 60 years or older. 
This study was performed in accordance with the Dec-
laration of Helsinki. All participants provided written 
informed consent. The MEMENTO cohort protocol was 
approved by an ethics committee (“Comité de Protection 
des Personnes Sud-Ouest et Outre Mer III”; approval 

Fig. 1 Individual trajectories of 12 markers in the MEMENTO Cohort, France, 2011‑2019 (2186 participants, 286 incident cases of dementia) 
according to 4 different timescales: (A) time in the study (or follow‑up time), (B) age, (C) time to diagnosis (available only for the incident cases) 
and (D) the latent disease time estimated using the disease progression anchored model
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number 2010-A01394-35) and was registered in Clinical-
Trials.gov (Identifier: NCT01926249).

The study protocol is described in details in [16]. Every 
year, participants underwent a clinical evaluation that 
included an extensive battery of neuropsychological 
tests. Suspected cases of dementia during follow-up were 
reviewed by an independent expert committee and final 
clinical dementia diagnoses were established. At inclu-
sion and at 24 months follow-up, all the patients were 
invited to undergo cerebral MRI, a 18F-fluorodeoxyglu-
cose PET (FDG-PET) brain scan, and to have a lumbar 
puncture. The analytical sample consisted of the 2186 
participants with at least one measure for one biomarker 
during the follow-up and without missing information on 
risk factors of interest in this work i.e. age, sex, education 
years and APOE status (apolipoproteine E gene).

Markers of ADRD
Repeated measures of 12 markers of AD neuropathol-
ogy, or small vessel disease, or brain atrophy or cognitive 
functioning were analyzed.

Biomarkers of AD neuropathology
The three markers of AD neuropathology were the amy-
loid-β 42 peptide (Aβ42), total tau (t-tau), and phospho-
rylated tau (p-tau181) measured from CSF using the 
standardized commercially available INNOTEST sand-
wich enzyme-linked immunosorbent assay (Fujirebio, 
Ghent, Belgium).

Biomarkers of brain atrophy
The markers of brain atrophy were cortical thickness in 
three regions associated with ADRD progression (middle 
temporal, enthorhinal, fusiform)[29] and hippocampal 
volume respectively measured from MRI T1-weighted 
with FreeSurfer[30] and SACHA[31]. Hippocampal vol-
ume was relative to the total intracranial volume. Glucose 
metabolism, a marker of neuronal loss, was measured 
by the mean FDG-PET uptake in AD-specific regions 
expressed as standard uptake value ratios (SUVr) [32, 33].

Biomarker of small vessel disease
We used white matter lesions volumes as a marker 
of small vessel disease. MRI 2D-T2 FLAIR sequences 
analysis allowed to assess white matter hyperintensi-
ties (WMH) volume using an automated and validated 
method [34].

Cognitive assessment
Assessment results of three cognitive functions com-
monly impaired with the disease progression [35] were 
included:

– episodic memory with the sum score of the 3 free 
recalls from the free and cued selective reminding 
test (FCSRT), a French adaptation of the Grober and 
Buschke test [36].

– semantic verbal fluency with the number of animals 
cited in 120 seconds [37].

– executive functions with the number of correct 
moves per seconds at the trail making test A (TMT-
A) [38].

Disease progression anchored model
Let’s consider K markers measured repeatedly over 
time. They are denoted Yijk for the value of marker k 
( k = 1, ...,K  ) for subject i ( i = 1, ...,N  ) at time tijk , with j 
the occasion ( j = 1, ..., nik ). Time t is the fully observed 
timescale: age or time since entry in the study in our case. 
The DPAM is defined in three steps: (i) define the latent 
disease time from the observed timescale, (ii) define a 
comparable scale for all the markers, (iii) define the mul-
tivariate mixed model for the marker trajectories accord-
ing to the latent disease time. We describe each step 
below.

Latent disease time definition
A latent disease time can be generically defined as an 
individual-specific monotonic function si(t) of the 
observed time t. In our framework, the latent disease 
time corresponds to the actual time since clinical diag-
nosis had it been made in continuous time. By denoting 
T ∗
i  the actual unobserved time of clinical dementia, the 

latent disease time is defined as:

This definition assumes there is no distortion of time 
between t and s. The time in the disease s is a shift of the 
observed time t so that it is anchored to the actual time of 
clinical dementia: si(T ∗

i )) = 0 . We assume that the actual 
time of clinical dementia is a latent variable with generic 
distribution D . In the main analysis, we considered for 
instance a lognormal distribution: ln(T ∗

i ) ∼ N (µT , σ
2
T ) 

which handles the positivity of T ∗
i  and allows for a poten-

tial long tail in clinical dementia timings [39]. Without 
additional properties, the definition of this latent time 
shift is very standard and unrelated to the prior knowl-
edge we may have about the time to clinical dementia.

In cohorts that focus on ADRD risk factors and natural 
history, only a part of the participants is diagnosed with 
clinical dementia during the follow-up, either because 
some participants dropped out the study or died free 
of clinical dementia diagnosis or were free of clinical 
dementia diagnosis by the end of the planned follow-
up. However, whether a participant was diagnosed with 

(1)si(t) = t − T ∗
i
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clinical dementia or not, valuable information can be lev-
eraged to anchor the latent time T ∗

i  to the actual time of 
clinical dementia.

Prior knowledge on the diagnosis
The clinical stage of the participants at the time of diag-
nosis is relatively homogeneous since clinical dementia is 
diagnosed by an independent committee of experts in the 
context of clinic based cohorts with intensive follow-up. 
Thus, time of clinical dementia diagnosis provides a reli-
able anchor time.

Let Di be the indicator that the participant had a con-
firmed diagnosis of clinical dementia during follow-
up. For participants diagnosed with clinical dementia 
( Di = 1 ) the observed diagnosis time Tdiag

i  is likely in 
the neighbourhood of the actual unobserved time T ∗

i  . 
For participants who dropped out free of clinical demen-
tia ( Di = 0 ), the time at the last clinical evaluation T last

i  
is likely to be smaller than the actual unobserved dis-
ease time T ∗

i  . This was translated into the following 
constraints:

where ǫL and ǫU are fixed scalars translating the lack of 
accuracy around the clinical evaluation and the diag-
nosis of clinical dementia. They have to be determined 
according to the study protocol and frequency of clinical 
evaluations.

Severity scale and comparison of markers
Independently from timescale definition, describing and 
comparing the sequence and speed of degradation across 
markers induces an additional challenge. Each marker 
has its own scale, and some, such as psychometric tests, 
are not necessarily Gaussian. Following previous works 
[18–20], we used a 2-step data-driven approach to trans-
form the raw markers data Yijk into: 

1 percentiles Pijk = FYk (Yijk) ( Pijk ∈ [0, 1] ) using the 
empirical cumulative density function FYk to define a 
common severity scale from 0 (minimum value) to 1 
(maximum value) on which the sequence of markers’ 
impairments could be compared. Note that mark-
ers were flipped when necessary, so that higher val-
ues systematically indicated higher impairment (0 
= best condition observed and 1 = worst condition 
observed).

2 normalized values Yijk = �−1(Pijk) using the inverse 
of the Gaussian cumulative distribution function �−1 
to apply multivariate linear mixed models for normal 
dependent variables Ỹ .

T ∗
i > T last − ǫL for Di = 0

Tdiag − ǫL < T ∗
i < Tdiag + ǫU for Di = 1

Ideally, the severity scale should translate equi-distrib-
uted levels of impairments with 0.5 corresponding to a 
medium impairment. Yet, percentiles obtained with the 
empirical cumulative distribution function FYk are sam-
ple-dependent. In the case of the MEMENTO cohort 
for instance, most patients remain at a very early clini-
cal stage so that 0.5 severity would still correspond to an 
early stage, and a medium impairment would likely be 
at the highest percentiles of the distribution. The sever-
ity scale with equi-distributed levels of impairments was 
retrieved by reweighting marker measures according to 
the participant clinical stage at entry. The function FYk 
was replaced by the weighted cumulative density func-
tion (implemented in the Hmisc R package [40]) with 
each weight computed from the inverse proportion of 
observation in the clinical stage. Predictions were com-
puted in the percentile scale using the back-transforma-
tion Pijk = �(Ỹijk).

Multivariate linear mixed effects model
We described the marker trajectories in the normalized 
scale Ỹijk according to the latent disease time si(tijk) using 
the following multivariate linear mixed model:

where F  is a basis of time functions defining the shape 
of the trajectory according to the disease time. Associ-
ated with βk , it gives the mean trajectory of normalized 
marker k (for the reference profile of covariates). X i(tijk) 
are adjustment covariates associated with fixed effects γ k 
and εijk are the independent Gaussian error of measure-
ment with marker-specific variance σ 2

εk
 . Finally uik are the 

individual-and-marker-specific random effects defining 
the individual departure from the marker-mean trajec-
tory. We assumed uik ∼ N (0,Bk) with Bk an unstruc-
tured variance covariance matrix. Random effects and 
errors are assumed independent. In addition, we assumed 
that the markers-specific random deviations were inde-
pendent across markers so that the latent time-shift cap-
tured the inter-markers correlation.

DPAM specification for the MEMENTO cohort
Four clinical stages were defined in the MEMENTO 
cohort from the CDR-SB (CDR sum of the boxes) score at 
entry in the study. Each individual weight was then com-
puted as a quarter of the inverse proportion of the clinical 
stage, thus ensuring that the sum of the weights equals N: 
CDR-SB = 0, N = 784, wi = 0.697; CDR-SB = 0.5, N = 
794, wi = 0.688; CDR-SB = 1, N = 323, wi = 1.692; and 
CDR-SB > 1, N = 285, wi = 1.918.

We considered in the application a linear marker-spe-
cific trajectory ( F (s) = (1, s)⊤ ) and constrained βk ≥ 0 to 

(2)Ỹijk = F (si(tijk ))
⊤βk + X i(tijk )γ k + F (si(tijk ))

⊤
uik + εijk
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impose a mean degradation over time for all the biomark-
ers. We also included a random slope only for the neu-
ropsychological tests. This was to prevent any numerical 
non-identifiability issues for MRI and CSF markers where 
a maximum of two measures was collected. In addition, 
we considered as adjustment covariates: age, sex, years of 
education and APOE4 status. Finally, we added an indica-
tor of first visit for the neuropsychological tests to correct 
for the first passing effect [41].

Given clinical dementia diagnoses were performed 
every 6 months in the cohort, we set the lack of accuracy 
around clinical evaluation to ǫL = ǫU = 1.5 years in the 
main analysis.

Estimation procedure
The estimation of our disease progression model was 
done in the Bayesian framework using Hamiltonian 
Monte Carlo No-U-turn sampling algorithm (HMC-
NUTS) [42] to approximate the posterior distribution 
of the parameters with Markov Chain Monte Carlo 
(MCMC). We used Stan software (version 2.20.0) [43, 
44] through the CmdStan interface with parallel compu-
tations on both the chains and the individuals. A com-
mented version of our program, freely adapted from 
LTJMM [19], is available at https:// github. com/ jrmie/ 
dpm_ ancho red.

Prior distributions
We considered standard weakly-informative priors 
for the multivariate mixed model parameters in equa-
tion (2) with for all k = 1, ...,K  : each element of βk and 
γ k following N (0, 102) (with βk imposed to be posi-
tive), and σεk and the variances of the random-effects 
uik following half-Cauchy(0, 2.5) . For the latent dis-
ease time, we assumed the following distribution to 
incorporate the ǫL constraint and allow for negative T ∗

i  : 
ln(T ∗

i + ǫL) ∼ N (µTǫ , σTǫ) with µTǫ ∼ N (10, 102) , and 
σTǫ ∼ half-Cauchy(0, 2.5).

Posterior summaries
We ran 4 chains of 6000 iterations burn-in and 2000 
iterations for sampling, and we retained 1 iteration every 
4 iterations to avoid auto-correlation issues from con-
secutive samples. Thus we approximated the posterior 
distribution with D=2000 iterations (500 by chain) and 
reported posterior means and 95% confidence intervals 
(95%CI) of the parameters.

Diagnostic checks
Diagnostic tools of Stan were used to evaluate the esti-
mation procedure: convergence of the MCMC with the 
Gelman and Rubin [45] potential scale reduction statistic 

R̂ which compares variances between and within chains 
and effective sample size ratio (ESS) [46] which esti-
mates sample size without any auto-correlation. These 
indicators were considered as satisfied if R̂ < 1.05 and 
ESS/D ≥ 0.1 ) for all parameters of the model.

Sensitivity analyses
We assessed the influence of our definition of the latent 
disease time and the associated constraints in sensitiv-
ity analyses. Specifically, we compared our DPAM using 
the actual dementia time defined according to a lognor-
mal distribution and the use of prior information on the 
observed diagnoses times with the non-anchored disease 
progression model specification in which T ∗

i  followed a 
Gaussian distribution without any constraint. We also 
evaluated the stability of the results when considering 
weaker constraints ( ǫL = ǫU = 3 year) to guide the esti-
mation of the disease time. The comparison was based on 
the residual root mean squared error (RMSE).

Predictions of the biomarkers’ mean trajectories 
in the severity scale
A central output of this methodology is the descrip-
tion of biomarkers mean trajectories according to 
latent disease time s. Let define Pik(si(tijk)) = Pijk and 
Ỹik(si(tijk)) = Ỹijk . The mean trajectory of biomarker k 
for a covariate profile x (independent of time for simplic-
ity) according to latent disease time s in the severity scale 
is:

where fỸ (s)|Xi(t)=x
 is the density function of Ỹ (s) given 

Xi(t) = x . At each iteration d of the MCMC, this integral 
can be approximated by the Monte Carlo technique as 
E(Pik (s)|Xi(t)=x) ≈ P̂ik (s, x) =

1

M

∑M
m=1 �(ỹm) where ỹm is ran-

domly drawn from N
(
F (s)β

(d)

k
+ xγ

(d)

k
,F (s)⊤B

(d)

k
F (s)⊤ + σ 2

ε
(d)

k

)
 

where (d) indicates the value of the parameters at the 
MCMC iteration d. We considered M = 1000.

The mean and its 95%CI over the iterations are retained 
to describe the mean biomarker trajectory P̂ik(s, x) 
over latent disease time for covariate profile x between 
s = −30 years before dementia to s = 5 years after.

Results
Participants in the analytical sample (N=2186) were 
aged 70.9 years (SD=8.7) on average, 61.7% were women, 
39.2% had more than 12 years education and 29.9% car-
ried at least 1 allele ǫ 4 of APOE gene (APOE4, a major 
genetic risk factor for ADRD). Additional description of 
the analytical sample at inclusion is reported in Table 1. 

(3)E(Pik(s)|Xi(t)=x) =

∫
�(ỹ)fỸ (s)|Xi(t)=x

(ỹ)dỹ

https://github.com/jrmie/dpm_anchored
https://github.com/jrmie/dpm_anchored
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During the 5-year follow-up, 284 participants developed 
dementia.

A description of the distribution markers at baseline 
is reported in Table 1 and individual trajectories are dis-
played in Fig.  1 (A,B,C). Almost all participants had a 
least one cognitive measure at baseline, 2047 participants 
had volumetric MRI, 1236 had PET-FDG and 342 had 
CSF biomarkers. The number of repeated measures var-
ied between 0 and 2 for CSF, MRI and FDG-PET, 0 and 6 
for cognitive measures.

Estimated latent disease time
Individual estimated times of actual clinical dementia T ∗

i  
were used to display the estimated delay to actual clini-
cal dementia from entry in the cohort si(0) (Fig. 2). For 
instance, si(0) = −3 corresponds to an estimated actual 
time of clinical dementia of 3 years after entering the 
cohort.

Figure 1 (D) displays the individual observed markers’ 
trajectories according to the estimated clinical demen-
tia time. Participants entered the cohort on average 10.3 
years before the estimated actual clinical dementia onset 
with a range from 0.74 to 30.8 years. Among incident 
dementia cases, time to dementia onset varied between 
0.74 and 6.15 years. These times to dementia were very 
close to the observed clinical dementia diagnoses with an 
inaccuracy ranging from 1.01 years prior to the estimated 
time and 0.59 years after the estimated time (while the 
constraints allowed up to +/- 1.5 years).

Covariates association with the biomarker levels
Figure 3 displays the mean and corresponding 95%CI of 
the covariates associations with each biomarker. All coef-
ficients γk are reported in standard deviation (SD) of the 
considered marker and adjusted for the other covariates. 
Age was significantly associated with worse levels for all 
markers.

Table 1 Descriptive characteristics of the analysis sample at inclusion and over follow‑up, MEMENTO cohort, France, 2011‑2019 
(N=2186)

SD standard deviation, APOE4 allele ǫ 4 of the apoliprotein E gene, CDR clinical dementia rating, AD Alzheimer’s disease, CSF cerebrospinal fluid, t-tau total tau, p-tau 
phosphorylated tau, Aβ42 isoform 42 of protein amyloid, WMH white matter hyperintensities, PET positron emission tomography, FDG fluorodeoxyglucose, SUVr 
standard uptake value ratio, TMT-A trail making test A, FCSRT free and cued selective reminding test

Inclusion in the study Follow-up

 Variable Mean/n SD/% N Repeated measures N∗

Individuals characteristics

     Age (years) 70.9 8.7 2186

     Female 1349 61.7% 2186

     >12 years education 856 39.2% 2186

     APOE4 carrier 654 29.9% 2186

     CDR sum of the boxes

         = 0 784 35.9% 2186

         = 0.5 794 36.3% 2186

         = 1 323 14.8% 2186

         > 1 285 13.0% 2186

Markers of AD (CSF)

     t‑tau (pg/ml) 376.0 264.8 341 1.3 395

     p‑tau (pg/ml) 62.6 29.5 342 1.3 396

     Aβ42 (pg/ml) 1096.2 411.2 342 1.3 396

Brain imaging markers

     WMH volume (mm3) 9.9 13.2 1993 1.7 2056

     Hippocampal volume (cm3) 6.5 1.3 2047 1.7 2048

     Entorhinal cortex (mm) 3.3 0.4 2041 1.7 2057

     Middle temporal cortex (mm) 2.7 0.1 2047 1.7 2064

     Fusiform cortex (mm) 2.6 0.1 2047 1.7 2064

     PET‑FDG (SUVr) 2.1 0.3 1236 1.5 1400

Cognitive tests

     Verbal Fluency (animals cited) 28.3 8.8 2147 4.6 2164

     TMT‑A (good moves/sec) 0.6 0.2 2165 4.6 2184

     Free recalls FCSRT (sum score) 26.1 8.3 2169 4.5 2176
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Fig. 2 Posterior distribution of the estimated individual time to actual dementia at entry in the MEMENTO Cohort (France, 2011‑2019, N=2186) 
according to the last dementia diagnosis status

Fig. 3 Estimated association of age, sex, education, APOE4 status, and first practice effect with each of the 12 biomarkers in the normalized scale, 
the MEMENTO Cohort, France, 2011‑2019 (N=2186)
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The association with sex showed a substantially 
greater severity for men in memory domain (mean dif-
ference (MD)=0.33, 95%CI=[0.26, 0.40]), hippocampal 
volume (MD=0.37, 95%CI=[0.29, 0.44]) and FDG-PET 
(MD = 0.39, 95%CI = [0.30, 0.48]), and to a lesser extent 
on amyloid level (CSF A β42 ) (MD=0.28, 95%CI=[0.12, 
0.45]), WMH volume (MD=0.14, 95%CI=[0.05, 
0.22]) and cortical thicknesses of fusiform (MD=0.14, 
95%CI=[0.06, 0.21]) and middle temporal (MD=0.14, 
95%CI = [0.07, 0.22]). Men tended to have higher level 
of p-tau (MD=-0.18, 95%CI=[-0.36, 0.00]).

High education (>12 years) was related to substan-
tially better scores at cognitive tests: memory (MD=-
0.40, 95%CI=[-0.46, -0.434]), language (MD=-0.48, 
95%CI=[-0.55, -0.42]) and executive function (MD=-
0.29, 95%CI=[-0.36, -0.23]); high education was also 
slightly associated with lower degradation in FDG-PET 
(MD=-0.13, 95%CI=[-0.22, -0.05]) and hippocampal 
volume (MD=-0.11, 95%CI=[-0.19, -0.04]) but it was 
not related to cortical thicknesses, WMH volume or 
CSF markers.
APOE4 carriers displayed on average worse results 

on ADRD biomarkers with larger differences for A β42 
(MD=0.60, 95%CI=[0.45, 0.74]), p-tau (MD=0.39, 
95%CI=[0.25, 0.54]) and t-tau (MD=0.44, 95%CI=[0.29, 
0.59]) in CSF.

Trajectories of the markers in the latent disease time
Figure  4 displays the averaged trajectories of markers’ 
progressions, between 30 years prior to clinical demen-
tia to 5 years after, for a typical participant: woman of 
70 years old, with more than 12 years of education and 
carrier of APOE4 allele. For better clarity 95%CI are not 
shown.

Marker severities
Thirty years prior to clinical dementia, all the mark-
ers were on average at low levels of severity (below 
25%) with the highest levels for total tau and p-tau (23% 
(95%CI=[0.14,0.32]) and 30% (95%CI=[0.20,0.40]), 
respectively). In comparison, the average 30% sever-
ity level was reached for A β42 , WMH volume, volumet-
ric neuroimaging (cortical thicknesses, hippocampal 
volume, FDG-PET), memory and executive function-
ing about 10 to 12 years later (that is 18-20 years prior 
to clinical dementia) and about 15 years later for verbal 
fluency. Total tau and p-tau remained the more impaired 
markers at all times although they degraded more slowly. 
WMH volume showed the fastest degradations with cor-
tical thicknesses.

Order of marker changes
Figure  5 summarizes the order in which the markers 
reach 50% severity with the corresponding uncertainty 

Fig. 4 Mean trajectories of the 12 biomarkers of progression in the percentile scale according to latent disease time for a women of 70 years old, 
with more than 12 years of education and APOE4 carrier, the MEMENTO Cohort, France, 2011‑2019 (N=2186)
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(95%CI) in the time scale of the disease (years before 
clinical dementia) for the same typical covariate profile 
as previously. According to the weighted severity scale 
the 50th percentile may give an indication of the entry 
into moderate severity. This level was first reached by 
p-tau and total-tau 15.4 (95%CI=[10.6, 20.3]) and 13.4 
(95%CI=[9.5,17.3]) years before clinical dementia. About 
5 years later the moderate severity was reached by A β 42 
along with WMH volume, and cortical thicknesses of 
the middle temporal and entorhinal regions: respec-
tively 9.1 (95%CI=[5.8, 12.3]), 9.3 (95%CI=[7.7, 11.0]), 
and 9.4 (95%CI=[7.8, 11.1]) years before clinical demen-
tia. Then fusiform cortical thickness, hippocampus atro-
phy and glucose metabolism followed 1.5 to 3 years later 
with moderate severity reached 7.9 (95%CI=[6.3,9.5]), 
7.8 (95%CI=[5.9,9.5]) and 6.2 (95%CI=[4.2,8.2]) years 
before clinical dementia, respectively. Finally, cognitive 
tests reached the moderate severity about 10 years after 
the p-tau in CSF. That was 4.2 (95%CI=[2.5,6.0]), 4.8 
(95%CI=[3.0,6.7]) and 4.9 (95%CI=[2.9,6.9]) years before 
clinical dementia for language, memory and executive 
function, respectively.

Covariate profiles
Because of the differential effect of the covariates on the 
markers, the degradation sequence differed according 
to the profile participants. To give a better sense of the 
heterogeneity of the sequence, we displayed in Fig. 6 the 

averaged trajectories (along with 95%CI) of 4 landmark 
biomarkers (p-tau level, A β42 level, hippocampal volume 
and memory test score) according to education years and 
APOE4 status.

The anteriority of p-tau degradation was found mainly 
among the high education groups. Memory impairment 
progressed years later (among highly educated profiles) 
or contemporaneously (among less educated profiles) 
with p-tau level and hippocampus atrophy. A β 42 level 
was the most variable marker in the sequence. It reached 
moderate severity level years later hippocampus atrophy 
and even after memory impairment in the profile APOE4 
non carriers and low education while the degradation of 
A β 42 marker was at about the same time as the one of 
hippocampus atrophy for APOE4 carriers.

Sensitivity analyses
The fit to the data was unchanged when considering a 
larger uncertainty around the observed clinical diagnoses 
with ǫL=ǫU =3 years (RMSE=0.0858 for both models, see 
Fig. S1 in supplementary materials for RMSE per marker), 
and the results remained virtually the same. We also 
compared our DPAM that assumed a log-normal distri-
bution for the latent disease time and anchored the latent 
disease time along the clinical dementia diagnosis with a 
non-anchored disease progression model (similar to the 
LTJMM methodology [19]) in which the latent disease 
time definition was completely data-driven and the latent 

Fig. 5 Ordering sequence and uncertainty (95%CI) of the biomarkers reaching the moderate severity for a women of 70 years old, with more 
than 12 years of education and APOE4 carrier, the MEMENTO Cohort, France, 2011‑2019 (N=2186)
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time shift distribution was assumed as normal. In this 
non-anchored model, the latent disease time is centered 
on the average stage of the analytical sample at entry in 
the cohort. The non-anchored approach performed very 
similarly as our DPAM with RMSE = 0.0825 and RMSE 
= 0.0858, respectively. The slight gain in RMSE of the 
non-anchored model was due to a slightly better fit of the 
neuropsychological data (see Fig.  S1 in the supplemen-
tary materials for a RMSE separated by marker). In this 
model, the estimated latent disease times of individuals 
diagnosed with clinical dementia were very far from the 
actual time to clinical diagnosis with a span over 15 years 
(Fig. S2 in the supplementary materials). Indeed, as com-
pletely data-driven, the latent time shift was determined 
as the one homogenizing at most the data, and it was 
more influenced by the neuropsychological markers than 
MRI and CSF markers as the former brought much more 
information with more repeated measures. This under-
lines the importance of anchoring the model to realign 
the trajectories in link with the patient staging rather 
than only the inter-marker correlation.

Discussion
We developed a disease progression model to describe 
the markers’ trajectories of the anatomo-clinical dimen-
sions identified in ADRD progression towards clini-
cal dementia. Using the intensive follow-up data of 
the French MEMENTO Cohort, we identified a large 

variability in the patients staging at study entry with an 
estimated time to actual clinical dementia spanning over 
30 years. The sequence of markers progression substan-
tially varied according to education and APOE4 status. 
However, we consistently identified p-tau as the first 
marker showing a pathological progression years before 
the onset of structural damage visible at brain imaging. 
Moreover, white matter hyperintensities, occurring con-
comitantly to regional brain atrophies, seemed to pro-
gress faster than other markers.

Compared to the rich literature on disease progression 
modelling using latent disease times ([17, 19–21, 28]), 
our adopted approach goes one step further. As previous 
works, we defined the latent disease time as an individual 
latent time shift shared by the disease markers and esti-
mated it from the data. However, we also leveraged prior 
information on the clinical diagnoses to guide the esti-
mation of the latent time-shift towards an actual clinical 
dementia diagnosis. As shown in the sensitivity analyses, 
without this prior information, the latent time-shift may 
over homogenize the trajectories of the markers. In con-
trast, anchoring the definition of latent time shift around 
the observed clinical diagnosis made it possible to rea-
lign markers trajectories around the actual time of clini-
cal dementia (which is an important step in the clinical 
management of patients) while preserving the inherent 
heterogeneity in disease progression across individuals. 
In autosomal-dominant Alzheimer’s disease, Wang et al. 

Fig. 6 Average trajectories of 4 markers progression (Aβ42, p‑Tau, hippocampal volume and FCSRT) according to latent disease time 
in the percentile scale for the 4 covariate profiles (education and APOE4), the MEMENTO Cohort, France, 2011‑2019 (N=2186)
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[47] have also proposed to anchor a uni-dimensional 
disease progression model onto a pre-determined age 
of onset estimated through systematic review and meta-
analysis according to the person-specific matching muta-
tion in the DIAN observational study. Although initially 
motivated by sporadic ADRD challenges, our approach 
could also apply to DIAN study to realign multi-dimen-
sional biomarker trajectories while accounting for the 
uncertainty surrounding the age of onset previously 
estimated on external data. Another difference with the 
DPM literature is that we assumed a lognormal distribu-
tion for the latent time shift rather than the more com-
mon normal distribution. Temporal shifts are timings 
and a such, they likely have an asymmetric distribution 
with an expected long tail for potentially very distant 
clinical dementia timings. In addition, by anchoring the 
latent disease time around the time of clinical dementia, 
the latent disease time is positive. We thus followed pre-
vious works in parametric time-to-event analyses [39, 48] 
and assumed a lognormal distribution for the prior dis-
tribution of the latent time shift.

In the MEMENTO cohort, estimates of individual dis-
ease times to clinical dementia at study entry extended 
over decades, a consistent result with previous studies 
[14]. Sequence and timing of markers along the natural 
history of the disease were partially consistent with the 
theoretical model of Jack et  al. [8] and we found major 
differences in the sequence and timing of the markers 
according to the individual characteristics. Our find-
ings supported that CSF p-tau showed increasing sever-
ity years before the degradation of glucose metabolism 
and brain atrophy on neuroimaging. Structural brain 
changes also preceded worsening of cognitive function. 
While amyloid deposit is widely considered as the initial 
cause of Alzheimer’s disease [49], timing of CSF A β 42 
was unclear as moderate severity was reached later than 
for CSF p-tau, a consistent result with previous disease 
progression model [50]. Indeed, timing of amyloid deg-
radation substantially varied according to APOE4 status, 
thus contributing to the discussion challenging the cen-
tral role of amyloid peptide in the natural history of the 
disease [51]. Our results also reinforce the hypothesis 
of small vessel disease contribution to cognitive impair-
ment and dementia [3], as volume of white matter hyper-
intensities is the most rapidly deteriorating marker and 
contemporaneous with the degradation of cortical thick-
nesses years before cognitive impairment.

As any disease progression model, our approach relies 
on parametric assumptions. First, we restricted the pre-
sent application to a linear trajectory in the normalized 
marker scales which translated into a sigmoid trajectory 
in the percentile scale. It was in line with previous disease 
progression models in Alzheimer’s disease [17, 19] and it 

was a requirement for the biomarker data as we had at 
most two repetitions. For the psychometric tests, the lin-
ear assumption could have been avoided by considering 
a higher-order polynomial trajectory on the normalized 
scale. However, this was not further investigated as the 
model with the linear assumption already showed good 
individual fits (Figs. S3-S7 in the supplementary materi-
als). Second, to distinguish the inter-marker correlation 
due to the disease staging from the intra-marker cor-
relation, we assumed that the latent time shift captured 
all the correlation shared across markers and considered 
that marker-specific random effects were independ-
ent between markers. This assumption could be relaxed 
by allowing some correlation between subsets of mark-
ers, for instance MRI-derived markers or neurospycho-
logical tests. Finally, we accounted for differences across 
covariate profiles through a global effect on each marker’s 
severity. Although of interest, considering interactions 
between individual characteristics and rate of marker 
degradation would substantially complicate the model 
and the estimation procedure due to the higher number 
of additional parameters to estimate. A few progression 
models considered a covariate effect on the disease time 
[21, 23] rather than on each marker measure separately. 
This may be interesting for exploring covariates that may 
delay the progression towards dementia. However, as 
found in our application, some covariates may differen-
tially modulate markers’ trajectories and the sequence 
of markers’ degradation. This was the case for years of 
education that showed large differences only in the neu-
ropsychological tests, as an illustration of the concept of 
cognitive reserve [52]. Finally, in cohorts on Alzheimer’s 
disease, dropouts and deaths occur and are likely to be 
linked to the disease progression. In the MEMENTO 
sample, 786 (36.0%) patients dropped out or died. By 
using the mixed model theory, our analyses are robust 
to missing data under the missing at random (MAR) 
mechanism which stipulates that the probability of miss-
ing data can be fully predicted by the observations. Given 
the large number of repeated markers we included, the 
MAR assumption for dropout and death is highly plau-
sible (although not checkable) and our results should not 
be impacted. Nevertheless, accounting for informative 
dropout and death would be possible by incorporating 
the DPAM into a joint modeling approach of the risk of 
dropout and death [53]. We leave this to future work.

Conclusion
Disease progression models allow for the characteriza-
tion of the complete natural history of a disease when 
observed time is not relevant as it is the case for ADRD. 
Applied on the MEMENTO clinic-based cohort, we 
showed that the shift of individual trajectories into a 
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latent disease time scale extended over 30 years prior to 
dementia clinical diagnosis. This original work brings 
new insights in the understanding of the natural history 
of ADRD biomarkers both as we used information from 
actual diagnosis time of clinical dementia to estimate 
the latent time underlying the long term progression of 
the markers and as we based our work on a large cohort 
when most published work rely on ADNI data. Replicat-
ing the analyses on a population-based representative 
sample would however be highly valuable to assess the 
generalizability of the findings.
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