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New insights into widely linear MMSE receivers
for communication networks using data-like

rectilinear or quasi-rectilinear signals - Part II:
three-inputs receivers

Pascal Chevalier, Jean-Pierre Delmas, and Roger Lamberti

Abstract—Widely linear (WL) processing has raised up
a great interest since nearly three decades for multi-user
(MUI) interference mitigation in radiocommunications net-
works using rectilinear (R) or quasi-rectilinear (QR) signals
in particular. This topic remains of interest for many current
applications using R or QR signals such as anti-collisions in Ra-
dio Frequency Identification (RFID) or satellite-AIS systems,
grant free massive access in NB-IOT networks, multipaths
mitigation in the Control and Non Payload Communications
(CNPC) link of Unmanned Aerial Vehicle (UAV) or FBMC-
OQAM networks. Most of WL receivers currently available
for MUI mitigation are WL MMSE receivers implemented
at the symbol rate after a matched filtering operation to the
pulse shaping filter. These WL receivers have thus a particular
structure constraint which prevents them from exploiting the
cyclostationarity of the data-like MUI and which makes them
suboptimal within the WL MMSE receivers. For this reason,
two alternative WL MMSE receivers, without any structure
constraint and exploiting or not the cyclostationarity of the
MUI have been computed and analyzed in the companion
paper [2]. The first one is the optimal one, which requires
the a priori knowledge or estimation of the MUI channels,
which may be cumbersome in practice. The second one does
not require the a priori knowledge of the MUI channels,
is quasi-optimal for R signals and small bandwidth but
remains suboptimal otherwise. In this context, to improve the
performance of the latter receiver while keeping its advantages,
the purpose of this paper is to propose, for both R and QR
signals, a new WL MMSE receiver, called three-input WL
FRESH MMSE receiver, and to analyze, both analytically and
by computer simulations, its performance. This new receiver
is shown to be quasi-optimal in most situations and open new
perspective for implementation optimization of WL MMSE
receivers and for the implementation of the optimal receiver
from the only knowledge of the SOI channel.
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I. INTRODUCTION

W IDELY linear (WL) processing [1] has raised up a
great interest since nearly three decades for multi-

user interference (MUI) and multi-antenna interference
(MAI) mitigation in radio-communication networks using
rectilinear (R) or quasi-rectilinear (QR) modulations in
particular. Definition of R and QR signals, jointly with
numerous papers about MUI mitigation by WL processing
in radiocommunications networks may be found in the
companion paper [2]. However, despite these numerous
papers, this topic remains of great interest for several current
and future applications. Among the latter we may cite
anti-collisions processing in Radio Frequency Identification
systems [3] or in dense machine-type networks such as
grant-free narrow-band Internet of Things (IoT) networks
for uplink transmissions [4], which use R and QR signals re-
spectively, and in satellite-AIS systems for maritime surveil-
lance which use GMSK signals [5]–[7]. Another application
corresponds to 5G and Beyond 5G (B5G) networks, where
WL processing may allow to support a massive number of
low data rate devices through one-dimensional signaling [8],
[9], potentially jointly with MIMO non-orthogonal multiple
access (MIMO-NOMA) systems [10], or fully or over-
loaded large MU-MIMO systems using R signals [11].
Moreover, as explained in [2], QR interference mitigation by
WL processing remains also of great interest for the bidirec-
tional Control and Non Payload Communications (CNPC)
link of Unmanned Aerial Vehicles (UAVs or drones), which
uses the GMSK modulation [12], and for networks which
use FBMC-OQAM waveforms [13], which are candidate for
B5G and future Internet of Things networks [14].

In this stimulating context, we must note that most of the
WL receivers, which have been developed in the literature
for R or QR MUI mitigation, correspond to a WL MMSE
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receiver which is implemented at the symbol rate, after
a matched filtering operation to the pulse shaping filter.
This WL MMSE receiver has thus a particular structure
constraint (see [2] and reference herein) and is denoted by
(sc) WL MMSE receiver in [2] and this paper. It has been
shown in [2] that this (sc) WL MMSE receiver is generally
suboptimal within the WL MMSE receivers, for frequency
selective channels in particular but also for channels without
any delay spread, since the structure constraint prevents
them to exploit the cyclostationarity of the data-like MUI
in particular. For this reason, using a continuous-time (CT)
approach, whose advantages have been presented in [2],
two alternative WL MMSE receivers, without any structure
constraint, have been computed and analyzed in [2], in
presence or absence of data-like MUI, for both R and
QR signals. The first one, denoted by (o) WL MMSE
receiver, corresponds to the optimal WL MMSE receiver.
It fully exploits the cyclostationarity properties of the MUI
but its implementation requires the a priori knowledge or
estimation of the MUI channels, which may be cumbersome
in practice. The second one, denoted by (s) WL MMSE
receiver, does not exploit the cyclostationarity of the MUI
by falsely assuming them as stationary. This receiver is
very interesting in practice since it does not require the a
priori knowledge or estimation of the MUI channels. In the
absence of interference, it has been shown in [2] that the (o)
and (s) WL MMSE receivers coincide and outperform the
(sc) WL MMSE receiver for frequency selective channels,
hence their great interest. In the presence of interference and
for R signal of interest (SOI) and data-like MUI, the (s) WL
MMSE receiver has been shown in [2] to be quasi-equivalent
to the (sc) WL MMSE receiver for channels with no delay
spread and quasi-optimal (and thus quasi-equivalent to the
(o) WL MMSE receiver) for reduced bandwidth, but with
an increasing sub-optimality as the bandwidth increases.
However, for QR SOI and data-like MUI, the (s) WL MMSE
receiver has been shown in [2] to be less powerful than
the (sc) WL MMSE receiver for channels with no delay
spread and always sub-optimal whatever the bandwidth. This
different results obtained for R and QR signals show in
particular the non-equivalence of R and QR signals for WL
MMSE receivers, results which has already been obtained
in [15], [16] for WL pseudo-MLSE receivers without and
with frequency offsets.

To improve, for both R and QR signals, the performance
of the (s) WL MMSE receiver in the presence of data-like
MUI, while keeping its advantages, we propose in this paper,
through the CT approach presented in [2], an extended (s)
WL MMSE receiver corresponding to a (s) three-input WL
frequency shifted (FRESH) MMSE receiver, denoted by (s)
three-input WL MMSE receiver in this paper. This receiver,
which exploits the SO cyclostationarity of the MUI, has
no structure or architecture constraint, excepted its three-
input structure, and does not require the a priori knowledge

or estimation of the MUI channels, hence its great interest
for practical implementations. Note that a three-input WL
receiver has already been proposed in [15], [16] for QR
signals but using a pseudo-MLSE approach instead of a
MMSE one. It is shown in this paper, both analytically
and by computer simulations, that for both R and QR
signals, the (s) three-input WL MMSE receiver is quasi-
optimal in the absence and presence of data-like MUI for
most of pulse shaping filters, constellations and propagation
channels. This interesting result open new perspectives for
the implementation optimization of WL MMSE receivers
in the presence of data-like MUI and, in particular, for the
implementation of (o) WL MMSE receivers from the only
knowledge of the SOI channel.

The paper is organized as follows. Section II recalls
the observation model and the extended one, introduced in
[2], for standard two-input WL processing of both R and
QR signals. Section III recalls, for R and QR signals, the
expressions of (o), (s) and (sc) L and standard two-input WL
MMSE receivers computed in [2]. Section IV introduces,
for both R and QR signals, the (s) three-input WL MMSE
receiver and gives a general closed-form expression of the
SINR on the current symbol at the real-part output of this
receiver. Section V analyses, both analytically and by com-
puter simulations, the performance of the (s) three-input WL
MMSE receiver, in terms of output SINR, in the presence
of one data-like MUI and compares this performance to
that of the (o), (s) and (sc) two-input WL MMSE receivers.
Section VI shows that the results obtained through the output
SINR criterion are still valid for the output symbol error rate
(SER). Finally section VII concludes this paper.

Notations: Before proceeding, we fix the notations used
throughout the paper. Non boldface symbols are scalar
whereas lower (upper) case boldface symbols denote col-
umn vectors (matrices). T , H and ∗ means the transpose,
conjugate transpose and conjugate, respectively. ⊗ is the
convolution operation. 0K,L and IK are the zero and the
identity matrices of dimension K × L and K, respectively
and J2K is the 2K × 2K exchange matrix. δ(x) is the
Kronecker symbol such that δ(x) = 1 for x = 0 and
δ(x) = 0 for x 6= 0. Moreover, all Fourier transforms of
vectors x and matrices X use the same notation where time
parameters t or τ is simply replaced by frequency f .

II. MODELS AND EXTENDED ONES FOR TWO-INPUT WL
PROCESSING

A. Observation model

We recall in this section the observation model introduced
in [2]. More precisely, we consider an array of N narrow-
band antennas receiving the contribution of a R or QR SOI,
P data-like MUI and a background noise. The N×1 vector
of complex amplitudes of the data at the output of these
antennas after frequency synchronization can then be written
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as

x(t) =
∑
`

a`g(t−`T )+
∑

1≤p≤P

∑
`

ap,`gp(t−`T )+ε(t)

=
∑
`

G(t−`T )a`+ε(t)
def
=
∑
`

a`g(t−`T )+n(t).(1)

Here, (a`, ap,`) = (b`, bp,`) for R signals, whereas
(a`, ap,`) = (j`b`, j

`bp,`) for QR signals, where b` and bp,`,
1 ≤ p ≤ P are real-valued zero-mean independent identi-
cally distributed (i.i.d.) random variables, corresponding to
the SOI and MUI p symbols respectively for R signals and
directly related to the SOI and MUI p symbols, respectively
for QR signals, T is the symbol period for R, π/2-BPSK,
π/2-ASK, MSK and GMSK signals and half the symbol
period for OQAM signals, g(t) = v(t)⊗ h(t) is the N × 1
impulse response vector of the SOI global channel, v(t)
and h(t) are respectively the scalar and N × 1 impulse
responses of the SOI pulse shaping filter and propagation
channel, respectively, gp(t)

def
= v(t) ⊗ hp(t) where hp(t)

is the impulse response vector of the propagation channel
of the MUI p, G(t) is the N × (P + 1) matrix defined
by G(t)

def
= [g(t),g1(t), ...,gp(t)] = v(t) ⊗ H(t) where

H(t)
def
= [h(t),h1(t), ...,hp(t)], a` is the (P +1)×1 vector

defined by a`
def
= [a`, a1,`, ..., ap,`]

T , ε(t) is the N × 1
background noise vector assumed to be zero-mean, circular,
stationary, temporally and spatially white and n(t) is the
total noise vector composed of the P MUI and background
noise. Note that model (1) with (a`, ap,`) = (j`b`, j

`bp,`) is
exact for π/2-BPSK, π/2-ASK, MSK and OQAM signals
whereas it is only an approximated model for GMSK
signals.

For R signals, the filter v(t) is assumed to correspond to
a normalized (with unit-energy) square root raised cosine
(SRRC) filter with a roll-off ω and a bandwidth B =
(1 +ω)/T . For QR signals, four normalized filters v(t) are
considered, depending on the QR constellation. For π/2-
BPSK or π/2-ASK constellations, v(t) is the same as for
R signals. For OQAM signals, v(t) is also a normalized
SRRC filter but for the symbol duration 2T instead of T .
For a MSK signal, v(t) is defined by

v(t) =

{ 1√
T

sin( πt2T ), t ∈ [0, 2T ]

0, elsewhere,
(2)

whereas for a GMSK signal, v(t) is, ideally, approximately
defined by the c0(t) pulse of the Laurent decomposition
[17]. However, as c0(t) is a complicate function of t, in this
paper we approximate this pulse by the following Gaussian
filter

v(t) ≈ 1

(σT
√

2π)1/2
e
− (t−2T )2

4(σT )2 , (3)

where σ has to be chosen to approximate c0(t). The value
σ = 1 seems to be a good choice [18].

B. Extended models for standard or two-input WL process-
ing

For R signals, a standard or two-input WL processing
of x(t) linearly processes the extended two-input model
x̃(t)

def
= [xT (t),xH(t)]T , defined by

x̃(t) =
∑
`

G̃(t− `T )b` + ε̃(t) =
∑
`

b`g̃(t− `T ) + ñ(t),

(4)
where ε̃(t)

def
= [εT (t), εH(t)]T , ñ(t)

def
= [nT (t),nH(t)]T ,

G̃(t)
def
= [g̃(t), g̃1(t), .., g̃P (t)], g̃(t)

def
= [gT (t),gH(t)]T ,

g̃p(t)
def
= [gTp (t),gHp (t)]T , 1 ≤ p ≤ P , and b`

def
=

[b`, b1,`, ...bP,`]
T .

For QR signals, a derotation preprocessing of the data
is required before standard WL filtering. Using (1) for QR
signals, the derotated observation vector can be written as

xd(t)
def
= j−t/Tx(t) =

∑
`

Gd(t− `T )b` + εd(t)

=
∑
`

b`gd(t− `T ) + nd(t), (5)

where εd(t)
def
= j−t/T ε(t), nd(t)

def
= j−t/Tn(t), Gd(t)

def
=

[gd(t),g1,d(t), ..,gP,d(t)] = vd(t) ⊗ Hd(t), gd(t)
def
=

j−t/Tg(t), gp,d(t)
def
= j−t/Tgp(t), vd(t)

def
= j−t/T v(t),

Hd(t)
def
= [hd(t),h1,d(t), ..,hP,d(t)], hd(t)

def
= j−t/Th(t)

and hp,d(t)
def
= j−t/Thp(t). Note that the derotation op-

eration might also be defined by xd(t)
def
= jt/Tx(t). A

standard or two-input WL processing of QR signals, linearly
processes the extended two-input derotated model x̃d(t)

def
=

[xTd (t),xHd (t)]T , defined by

x̃d(t) =
∑
`

G̃d(t−`T )b` + ε̃d(t) =
∑
`

b`g̃d(t̀T ) + ñd(t),

(6)
where ε̃d(t)

def
= [εTd (t), εHd (t)]T , ñd(t)

def
= [nTd (t),nHd (t)]T ,

G̃d(t)
def
= [g̃d(t), g̃1,d(t), .., g̃P,d(t)], g̃d(t)

def
=

[gTd (t),gHd (t)]T and g̃p,d(t)
def
= [gTp,d(t),g

H
p,d(t)]

T ,
1 ≤ p ≤ P .

C. M -input generic model for L and standard WL process-
ing

In the following, we consider L and WL receivers as one
and two-input receivers, respectively. Then, for the M -input
MMSE receivers (M = 1, 2), we denote by xM (t) the
generic observation vector. For linear receivers (M = 1),
xM (t) reduces to x(t) for R signals and to xd(t) for
QR signals. For standard WL receivers (M = 2), xM (t)
corresponds to x̃(t) for R signals and to x̃d(t) for QR
signals. We then deduce from (1) and (4) to (6), that xM (t)
always takes the form

xM (t)=
∑
`

b`gM (t−`T )+
∑

1≤p≤P

∑
`

bp,`gp,M (t−`T )+εM (t)
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=
∑
`

GM (t− `T )b` + εM (t)

def
=

∑
`

b`gM (t− `T ) + nM (t). (7)

Here, gM (t), gp,M (t), εM (t) and nM (t) are defined in a
similar way as xM (t), where x(t) is replaced by g(t), gp(t),
ε(t) and n(t), respectively, whereas G1(f) = G(f) for
R signals and G1(f) = Gd(f) for QR signals, G2(f) =
G̃(f) for R signals and G2(f) = G̃d(f) for QR signals.

III. LINEAR AND TWO-INPUT WL MMSE RECEIVERS

A. L and two-input WL MMSE receivers without any struc-
ture constraint

A generic M -input MMSE receiver having no structure
constraint corresponds to a continuous-time (CT) receiver,
w∗M (−t), of dimension N × 1 (for M = 1) and 2N × 1
(for M = 2), whose output, yM (t) = w∗M (−t) ⊗ xM (t),
minimizes, at each time sample nT , the MSE criterion, MSE
= E(|bn − yM (nT )|2).

If the SO cyclostationarity of the MUI is exploited in
the MSE criterion minimization, the associated M -input
MMSE receiver, which then becomes optimal, is denoted
by w∗Mo

(−t), called (o) in the following, and its frequency
response, w∗Mo

(f), has been proved in [2] to be defined by

wMo
(f) = GM (f)[(N0/πb)IP+1

+ 1/T
∑
`

GH
M (f − `/T )GM (f − `/T )]−1f

def
= GM (f)Cd

Mo
(f)f

def
= GM (f)cdMo

(f). (8)

Here πb
def
= E(b2k), N0 is the power spectral density of each

component of the noise vector ε(t), f is the (P+1)×1 vector
defined by f = [1, 0, ..., 0]T , Cd

Mo
(f) is the (P+1)×(P+1)

inverse matrix appearing in (8), which is periodic of period
1/T , whereas cdMo

(f)
def
= Cd

Mo
(f)f is a (P + 1)× 1 vector.

Note that the implementation of the receivers (8) requires
the a priori knowledge or estimation of N0 and G(t), and
then of H(t), i.e., of the impulse response of both the SOI
and MUI channel vectors, which may be cumbersome for a
practical implementation.

If the SO cyclostationarity of the MUI is not exploited
in the MSE criterion minimization, by falsely assuming
stationary MUI, the associated M -input MMSE receiver is
denoted by w∗Ms

(−t), called (s) in the following, and its
frequency response, w∗Ms

(f), has been proved in [2] to be
defined by

wMs(f) =
{

(1/πb) + (1/T )
∑
`

gHM (f − `/T )

[R0
n,M (f − `/T )]−1gM (f − `/T )

}−1
[R0

nM (f)]−1gM (f)

def
= cdMs

(f)[R0
nM (f)]−1gM (f). (9)

Here, cdMs
(f) is the inverse scalar term appearing in (9),

which is periodic of period 1/T , g1(f) = g(f) for R

signals and g1(f) = gd(f) for QR signals, g2(f) = g̃(f)
for R signals and g2(f) = g̃d(f) for QR signals, R0

n,M (f)

defined as the Fourier transform of R0
n,M (τ)

def
=< E[nM (t+

τ/2)nHM (t − τ/2)] > corresponds to the power spectral
density matrix of nM (t) and is given by:

R0
n,M (f) =

πb
T

P∑
p=1

gp,M (f)gHp,M (f) +N0INM

= R0
x,M (f)− πb

T
gM (f)gHM (f), (10)

where gp,M (f) is defined in a similar way as gM (f) but
where g(f) is replaced by gp(f) and where R0

x,M (f) is
the power spectral density matrix of xM (t), defined in a
similar way as R0

n,M (f), with xM (t) instead of nM (t).
Note that the implementation of the receivers (9) requires
the a priori knowledge or estimation of R0

n(f) and g(t),
and then of h(t), i.e., of the impulse response of the SOI
channel vector only, discarding the need to estimate the MUI
channel vectors, which may be advantageous for a practical
implementation.

B. L and two-input WL MMSE receivers with a particular
structure constraint

Most of L and WL MMSE receivers of the literature are
implemented at the symbol rate, after a matched filtering op-
eration to the pulse shaping filter, and have thus a particular
structure constraint. To compute these MMSE receivers, we
denote by xv(t)

def
= v∗(−t)⊗x(t), and xv,M (t) the observa-

tion vector and the M -input observation vector respectively,
after matched filtering operation to the pulse-shaping filter.
Note that xv,M (t) is defined in a similar way as xM (t) but
where x(t) is replaced by xv(t). Denoting by wd

Msc

∗
(−kT ),

the M -input discrete time (DT) receiver whose output at
time nT , yM (nT ) =

∑
kw

d
Msc

H
(−kT )xv,M ((n − k)T )),

minimizes the MSE, it has been proved in [2] that the
frequency response, wd

Msc

∗
(f), of this receiver, called (sc)

in the following, is such that

wd
Msc

(f) = πb[R
d
xv,M (f)]−1gdv,M (f) (11)

if v(f) does not vanish in [−1/2T,+1/2T ]. Otherwise
wd
Msc

(f) = 0 for the frequencies f which are
outside the support of gdv,M (f), i.e., such that
xdv,M (f) = 0, where xdv,M (f) is the Fourier transform of
xv,M (nT ). Here, gdv,M (f) is the frequency response
of the DT SOI channel vector gv,M (kT ), where
gv,M (t) is defined in a similar way as xM (t) but
where x(t) is replaced by gv(t)

def
= v∗(−t) ⊗ g(t),

whereas Rd
xv,M (f) is the Fourier transform of matrix

Rd
xv,M (kT )

def
= E[xv,M (nT )xHv,M ((n − k)T )]. Note that

the implementation of the receivers (11) requires the a
priori knowledge or estimation of Rd

xv,M (f) and gdv,M (f)
and then of h(kT ), i.e., of the DT impulse response of the
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SOI channel vector only.

C. Generic output of the linear and two-input WL MMSE
receivers before decision

It has been deduced in [2] from (8), (9) and (11) that the
generic output of the L and WL receivers considered in [2]
can be written as

yMg
(k) =

∫
wH
Mg

(f)xMg
(f)ej2πfkT df (12)

where

(yMg
(k),wMg

(f),xMg
(f)) = (yMo

(k),wMo
(f),xM (f))

= (yMs
(k),wMs

(f),xM (f))

= (yMsc
(k),wd

Msc
(f),xvM (f))

for the (o), (s) and (sc) receivers, respectively.

IV. THREE-INPUT (S) WL MMSE RECEIVERS

We explain, in this section, why the suboptimality of the
(s) two-input WL MMSE receiver in the presence of MUI
is more pronounced for QR signals and increases with the
bandwidth for both R and QR signals. Then, we propose
a (s) three-input WL MMSE receiver, which is shown to
be quasi-optimal in most cases, and whose implementation
does not require the MUI channel knowledge, hence its
practical interest.

A. Sub-optimality of (s) two-input WL MMSE receivers

It has been recalled in [2] that, for both R and QR
data-like MUI, the total noise n(t) has both non-conjugate
and conjugate SO cyclostationarity. More precisely, under
the previous assumptions, it is easy to verify that the two
correlation matrices, Rn(t, τ)

def
= E[n(t+τ/2)nH(t−τ/2)]

and Cn(t, τ)
def
= E[n(t + τ/2)nT (t − τ/2)], of n(t) are

periodic functions of t, whose periods are equal to T and
T , respectively for R signals, and to T and 2T , respectively
for QR signals. These two matrices have then Fourier series
expansions, generating the so-called non-conjugate, αi and
conjugate, βi, i ∈ Z, SO cyclic frequencies respectively of
observations [2]. For R signals, αi = βi = i/T , whereas for
QR signals, αi = i/T and βi = (2i+1)/2T [19]–[21]. Note
that the different behavior of the (s) two-input WL MMSE
receiver for R and QR signals is mainly directly related
to the different conjugate SO cyclostationarity properties
of the latter. Indeed, for R signals, the (s) two-input WL
MMSE receiver only exploits the information contained at
the zero non-conjugate and conjugate, (α, β) = (0, 0), SO
cyclic frequencies of x(t) through the exploitation of the
temporal mean of the first correlation matrix, Rx̃(t, τ)

def
=

E[x̃(t + τ/2)x̃H(t − τ/2)]. For QR signals, the derota-
tion operation does not modify the non-conjugate cyclic

frequencies but translates the conjugate cyclic frequencies
of −1/2T . The non-conjugate and conjugate SO cyclic
frequencies of nd(t) are thus given by αd,i = αi = i/T
and βd,i = βi − 1/2T = i/T , respectively. In this case,
for QR signals, the (s) two-input WL MMSE receiver only
exploits the information contained at the zero non-conjugate
and conjugate, (αd,0, βd,0) = (0, 0), SO cyclic frequencies
of xd(t) through the exploitation of the temporal mean of the
first correlation matrix, Rx̃d(t, τ)

def
= E[x̃d(t+ τ/2)x̃Hd (t−

τ/2)]. This is equivalent to exploit the energy contained in
(α0, β0) = (0, 1/2T ).

However, the main SO cyclic energy of R signals is con-
tained in the SO cyclic frequencies (α0, β0) = (0, 0), what-
ever the real-valued filter v(t), whereas the SO cyclic energy
contained in αi = βi = i/T, i 6= 0, increases with the signal
bandwidth, hence the quasi-optimality of the (s) two-input
WL MMSE for small bandwidth and the suboptimality of
the latter as the bandwidth increases. On the contrary, the
main SO cyclic energy of QR signals is contained in the
SO cyclic frequencies (α0, β0, β−1),= (0, 1/2T,−1/2T ),
whatever the real-valued filter v(t), with a similar cyclic
energy on β0 and β−1. Besides, the SO cyclic energy
contained in αi = i/T , i 6= 0, and βi = (2i + 1)/2T ,
i 6= 0 and i 6= −1, increases with the signal bandwidth. As
a consequence, the (s) two-input WL MMSE receiver only
exploit half of the main conjugate SO cyclic information,
and is thus suboptimal for QR signals whatever the band-
width, even small, whereas its sub-optimality increases with
the bandwidth.

B. Three-input FRESH model

To overcome, for both R and QR signals, the limitations
of the (s) two-input WL MMSE receiver, it is necessary to
implement, in both cases, a WL MMSE receiver which is
able to take full account of more SO cyclic energy than the
(s) two-input receiver. To optimize a compromise between
performance and complexity, we limit the analysis to three-
input receivers instead of two-input ones. Such a receiver
can be obtained, for R and QR signals, by implementing
the (s) WL MMSE receiver from the three-input FRESH
model defined, for R signals, by

x3(t)
def
= [xT (t),xH(t), e−j2πt/TxH(t)]T (13)

and for QR signals, by

x3(t)
def
= [xTd (t),xHd (t), e−j2πt/TxHd (t)]T

= j−t/T [xT (t), ej2πt/2TxH(t), e−j2πt/2TxH(t)]T

def
= j−t/Tx′3(t). (14)

In both cases, using (1), x3(t) can be written as

x3(t) =
∑
`

b`g3(t−`T )+
∑

1≤p≤P

∑
`

bp,`gp,3(t−`T )+ε3(t)
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=
∑
`

G3(t−`T )b` + ε3(t)

def
=

∑
`

b`g3(t− `T ) + n3(t). (15)

Here, ε3(t) and n3(t) correspond to x3(t) with ε(t) and
n(t), respectively, instead of x(t) for both R and QR signals,
whereas g3(t)

def
= [gT (t),gH(t), e−j2πt/TgH(t)]T for R

signals and g3(t)
def
= [gTd (t),gHd (t), e−j2πt/TgHd (t)]T for

QR signals. The vector gp,3(t) is defined in a similar way as
g3(t) but where gp(t) replaces g(t), whereas matrix G3(t)

is defined by G3(t)
def
= [g3(t),g1,3(t), ..,gP,3(t)]. Note that,

for R signals, the three-input model might also be defined by
x3(t)

def
= [xT (t),xH(t), ej2πt/TxH(t)]T . For QR signals,

the three-input model x′3(t) might have also been chosen
instead of x3(t), which has been done in [15]. An alternative
three-input model for QR signals might also be defined
by x3(t)

def
= [xTd (t),xHd (t), ej2πt/TxHd (t)]T provided that

xd(t) is, in this case, defined by xd(t)
def
= jt/Tx(t).

It is straightforward to verify that the temporal mean
of the first correlation matrix, Rx3

(t, τ)
def
= E[x3(t +

τ/2)xH3 (t − τ/2)] of x3(t), exploits the information con-
tained in (α0, α−1, α1, β0, β−1) = (0,−1/T, 1/T, 0,−1/T )
for R signals, and in (α0, α−1, α1, βd,0, βd,−1) =
(0,−1/T, 1/T, 0,−1/T ) for QR signals, which corre-
sponds, in this latter case, to (α0, α−1, α1, β0, β−1) =
(0,−1/T, 1/T, 1/2T,−1/2T ). This allows us to exploit the
main non-conjugate and conjugate SO cyclic frequencies of
R and QR signals whatever the pulse shaping filter. Note
that a TI linear processing of x3(t) becomes now a time
variant (TV) WL processing of x(t), called here three-input
WL FRESH processing of x(t).

C. The (s) three-input WL MMSE receiver

To compute, for R and QR signals, the (s) three-input
WL MMSE receiver, we assume that the total noise, n3(t),
appearing in (15) is falsely SO stationary. We denote by
w∗3s(−t) the associated 3-input WL MMSE receiver, whose
output, y3s(t) = wH

3s(−t) ⊗ x3(t) minimizes, at each time
sample nT , the MSE criterion, MSE = E(|bn−y3s(nT )|2).
Under these assumptions, using a method similar to that
used in [2] to compute the (s) two-input WL MMSE
receiver, it is straightforward to prove that the frequency
response, w∗3s(f), of this receiver is such that

w3s(f) =
{

(1/πb) + (1/T )
∑
`

gH3 (f−`/T )

[R0
n3

(f − `/T )]−1g3(f−`/T )
}−1

[R0
n3

(f)]−1g3(f)

def
= cd3s(f)[R0

n3
(f)]−1g3(f). (16)

Here, cd3s(f) is the inverse scalar term appearing in (16),
which is periodic of period 1/T , whereas R0

n3
(f), defined as

the Fourier transform of R0
n3

(τ)
def
=< E[n3(t+τ/2)nH3 (t−

τ/2)] >, corresponds to the power spectral density matrix of
n3(t). Using (15), it is easy to verify that R0

n3
(f) is given

by
R0
n3

(f) = R0
x3

(f)− πb
T
g3(f)gH3 (f), (17)

where R0
x3

(f) is the power spectral density matrix of x3(t),
defined in a similar way as R0

n3
(f), with x3(t) instead of

n3(t). The output, at time kT , of the associated receiver as
depicted in Fig. 1, is given by

y3s(k) =

∫
wH

3s(f)x3(f)ej2πfkT df

=

∫
cd3s(f)gH3 (f)[R0

n3
(f)]−1x3(f)ej2πfkT df. (18)

Note that the implementation of the receivers (16) requires
the a priori knowledge or estimation of R0

n3
(f) and g3(f),

and then of h(t), i.e., of the impulse response of the SOI
channel vector only, discarding the need to estimate the MUI
channel vectors, which may be advantageous for a practical
implementation.

x3(t)
gH
3 (f)[R0

n3
(f)]−1

t = kT

cd3s(f)
y3s(k)

Fig. 1. Structure of the three-input WL MMSE receiver

Furthermore, it is important to note, which is proved in
Appendix A, that, for both R and QR signals, the optimal
three-input WL MMSE receiver whose input is x3(t), is
the receiver whose frequency response, w∗3o(f), is given
by w∗3o(f) = [wH

2o(f),0T ]T , where w2o(f) is given by
(8) for M = 2. This confirms that the optimal two-
input WL MMSE receiver optimally exploits all the SO
cyclostationarity of the MUI.

D. SINR at the output of the (s) three-input WL MMSE
receiver

D1) Output of the (s) three-input WL MMSE receiver:
Inserting the Fourier transform x3(f) of x3(t) given by (15)
in (18), we obtain

y3s(k) = bk

∫
wH

3s(f)g3(f)df

+
∑
` 6=k

b`

∫
wH

3s(f)g3(f)ej2πf(k−`)T df

+

∫
wH

3s(f)n3(f)ej2πfkT df

def
= bku3s,0 + e3s(k), (19)

where it is easy to verify from (16) and (19), that u3s,0 is
positive real-valued and where e3s(k) is the contribution
of the inter-Symbol Interference (ISI), the MUI and the
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background noise in y3s(k). As bk are real-valued, it is well-
known that, assuming e3s(k) circular Gaussian distributed,
a conventional ML receiver whose input is (19) decides the
symbols from the real-part z3s(k) of y3s(k) given by

z3s(k)
def
= Re(y3s(k)) = bku3s,0 +Re(e3s(k)). (20)

D2) SINR at the output of the (s) three-input WL MMSE
receiver before decision: The SER at the output of the (s)
three-input WL MMSE receiver wH

3s(f) is directly linked
to the SINR in z3s(k), denoted by SINR3s(k). Using the
property that the quantities bku3s,0 and Re(e3s(k)) are
uncorrelated, we deduce that SINR3s(k) can be written as

SINR3s(k) =
πbu

2
3s,0

E[(Re(e3s(k)))2]

=
2πbu

2
3s,0

E[|y2
3s

(k)|] + Re(E[y2
3s

(k)])− 2πbu2
3s,0

. (21)

In the presence of R or QR MUI, the CT output y3s(t)
is SO cyclostationary, which implies that E[|y2

3s(k)|] and
E[y2

3s(k)] have Fourier series expansions given by

E[|y2
3s(k)|] =

∑
γi

ej2πγikT
∫
rγiy3s (f)df (22)

E[y2
3s(k)] =

∑
δi

ej2πδikT
∫
cδiy3s (f)df. (23)

Here, the quantities γi and δi denote the non-conjugate
and conjugate SO cyclic frequencies of y3s(t), respectively,
whereas rγiy3s (f) and cδiy3s (f) are the Fourier transforms of
the first, rγiy3s (τ), and second, cδiy3s (τ), cyclic correlation
functions of y3s(t) for the delay τ and the cyclic frequencies
γi and δi, respectively. Moreover, as y3s(t) is the output of
the TI filter, whose frequency response is wH

3s(f) and whose
input is x3(t), we can write

rγiy3s (f) = wH
3s(f+γi/2)Rγi

x3
(f)w3s(f−γi/2) (24)

cδiy3s (f) = wH
3s(f+δi/2)Cδi

x3
(f)w∗3s(δi/2−f), (25)

where Rγi
x3

(f) and Cδi
x3

(f) are the Fourier transforms of
the first, Rγi

x3
(τ), and second, Cδi

x3
(τ), cyclic correlation

matrices of x3(t) for the delay τ and the cyclic frequency
γi and δi respectively. In the presence of data-like MUI, it
is straightforward to verify that for both R and QR signals,
γi = δi = αi = βd,i = i/T , i ∈ Z.

This implies that (22) and (23) and then, SINR3s(k) do
not depend on k and the latter is simply denoted by SINR3s .
Using (22) to (25) into (21), we finally obtain

SINR3s = (26)
2πb[

∫
wH

3s(f)g3(f)df ]2
∑
αi

∫
[wH

3s(f+αi/2)Rαi
x3

(f)w3s(f−αi/2)
+Re(wH

3s(f+αi/2)Cαi
x3

(f)w∗3s(αi/2−f))]df
−2πb[

∫
wH

3s(f)g3(f)df ]2

,

where g3(f)
def
= [gT (f),gH(−f),gH(−1/T − f)]T for R

signals, whereas g3(f)
def
= [gTd (f),gHd (−f),gHd (−1/T −

f)]T = [gT (f + 1/4T ),gH(1/4T − f),gH(−3/4T − f)]T

for QR signals.

V. SINR ANALYSIS FOR ONE MUI

A. Total noise model and statistics

We assume in this section that the total noise n(t) is
composed of a background noise and one data-like MUI,
which generates the observation model (1) with P = 1. In
this context, the purpose of this section is to compute, for R
and QR signals, the SINR at the output of the (s) three-input
WL MMSE receivers and to compare the latter with those of
the two-input MMSE receivers (8), (9) and (11) computed in
[2]. Under these assumptions, following a similar approach
as in [15], it is straightforward to prove that, for R and QR
signals, the matrices Rαi

x3
(f) and Cαi

x3
(f), appearing in (26),

can be written as

Rαi
x3

(f) =
πb
T

[g3(f + αi/2)gH3 (f − αi/2)

+ g1,3(f + αi/2)gH1,3(f − αi/2)]

+ Rαi
ε3 (f) (27)

Cαi
x3

(f) =
πb
T

[g3(f + αi/2)gT3 (αi/2− f)

+ g1,3(f + αi/2)gT1,3(αi/2− f)]

+ Cαi
ε3 (f). (28)

Here, g1,3(f)
def
= [gT1 (f),gH1 (−f),gH1 (−1/T −

f)]T for R signals, whereas g1,3(f)
def
=

[gT1,d(f),gH1,d(−f),gH1,d(−1/T − f)]T = [gT1 (f +

1/4T ),gH1 (1/4T − f),gH1 (−3/4T − f)]T for QR signals.
Moreover Rαi

ε3 (f) and Cαi
ε3 (f) are given by

Rαi
ε3 (f) = N0δ(αi)I3N +N0δ(αi + 1/T )JT1

+ N0δ(αi − 1/T )J1 (29)
Cαi
ε3 (f) = N0δ(αi)J2 +N0δ(αi + 1/T )J3, (30)

where N0 is the power spectral density of each component
of the background noise ε(t), whereas J1, J2 and J3 are
the 3N × 3N matrices defined by

J1 =

0 0 0
0 0 I
0 0 0

, J2 =

0 I 0
I 0 0
0 0 0

, J3 =

0 0 I
0 0 0
I 0 0

.
(31)

B. Channels with no delay spread

B1) Propagation model: To analyze the comparative be-
havior of the M -input WL MMSE receivers (M = 2, 3), for
R and QR signals, in the presence of interference, we assume
in this section the presence of one MUI and propagation
channels with no delay spread such that

h(t) = µδ(t)h and h1(t) = µ1δ(t− τ1)h1. (32)
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Here µ and µ1 control the amplitude of the SOI and MUI
respectively and τ1 is the delay of the MUI with respect to
the SOI. The vectors h and h1, random or deterministic,
with components h(i) and h1(i), i = 1, ..., N , respectively
and such that E[|h(i)|2] = E[|h1(i)|2] = 1, i = 1, .., N ,
correspond to the channel vectors of the SOI and MUI,
respectively. The mean SOI and MUI energy per antenna,
Es and E1 respectively are given by Es = πbµ

2 and
E1 = πb1µ

2
1, where πb1

def
= E(b21,k). We then denote by

ε and ε1 the quantities εs
def
= Es E(‖h‖2)/N0 = NEs/N0

and ε1
def
= E1 E(‖h1‖2)/N0 = NE1/N0.

B2) Deterministic channels and SRRC filters with zero
roll-off: Under the previous assumptions, analytical inter-
pretable expressions of SINR3s defined by (26) are only
possible for a SRRC filter v(t) for the symbol duration
T with a zero roll-off ω, i.e., for R, π/2-BPSK and π/2-
ASK constellations with ω = 0, which is assumed in
this subsection. Otherwise, the computation of SINR3s can
only be done numerically by computer simulations and
will be discussed in the following subsections. Moreover,
we assume in this subsection deterministic channels and
we denote by αs,1 = |αs,1|ejφs,1

def
= hHh1/‖h‖‖h1‖

the spatial correlation coefficient between the SOI and the
MUI, such that 0 ≤ |αs,1| ≤ 1. Finally, we denote by
SINRR3s

and SINRQR3s
the SINR (26) for R and QR

signals, respectively.

After cumbersome derivations, whose some steps are
given in Appendix B, it is proved that, for synchronous SOI
and MUI (τ1 = 0), whatever the values of εs, ε1 and αs,1,
SINRR3s

= SINRQR3s
, showing equivalent performance of

the (s) three-input WL MMSE receiver for R and QR
signals, which was not the case for the (s) two-input WL
MMSE receiver, as shown in [2].

When |αs,1| 6= 1, i.e., when there exists a spatial dis-
crimination between the SOI and the MUI (which requires
N > 1), assuming a strong MUI (ε1 � 1), we deduce from
the results of Appendix B, the following expressions:

SINRR3,s
≈ 2εs

(
1− |αs,1|2(

(1+8 cos2 φs,1)−|αs,1|2(1+2 cos2 φs,1)2

9− |αs,1|2(5 + 4 cos2 φs,1)

))
.(33)

SINRQR3,s ≈ 2εs
(
1− |αs,1|2(

A(εs, |αs,1|2, cos2 ψs,1, cos2 ζs,1)

B(εs, |αs,1|2, cos2 ψs,1, cos2 ζs,1)

))
(34)

where A and B are second-order polynomial in εs, whereas
ψs,1

def
= φs,1 − πτ1/2T and ζs,1

def
= φs,1 + πτ1/2T . We

deduce from (33) and (34) that SINRR3s/εs does not depend
on εs, while SINRQR3s/εs depends on εs, which proves the
absence (for R signals) and the presence (for QR signals) of
ISI in the output z3s(k). Note that for εs � 1, i.e., when the
ISI becomes negligible with respect to the noise in z3s(k),

(34) reduces to

SINRQR3,s
≈ 2εs

(
1− |αs,1|2(

(1−|αs,1|2)(1+Γ)2 + (2−Γ)Γ

(1−|αs,1|2)(5+2Γ) + 2(2−Γ)

))
; εs � 1, (35)

where Γ
def
= cos2 ψs,1 + cos2 ζs,1. For synchronous SOI and

MUI, Γ = 2 cos2 φs,1 and we verify that (33) and (35) give
the same expressions.

Furthermore, when |αs,1| = 1, i.e., when there is no spa-
tial discrimination between the SOI and the MUI, which is in
particular the case for N = 1, assuming ε1 � 1, we obtain
after cumbersome derivations the following expressions:

SINRR3,s ≈ 2εs(1− cos2 φs,1); φs,1 6= kπ (36)

=
2εs

1 + 2ε1
; φs,1 = kπ (37)

whereas (34) reduces to

SINRQR3,s ≈ 2εs

(
1− cos2 ψs,1 + cos2 ζs,1

2

)
;

(ψs,1, ζs,1) 6= (k1π, k2π) and εs � 1 (38)

=
2εs

1 + 2ε1
; (ψs,1, ζs,1)=(k1π, k2π).(39)

Again, for synchronous SOI and MUI, ψs,1 = ζs,1 = φs,1
and we verify that (38) corresponds to (36). Note that
expressions (35) and (38), obtained for εs � 1, correspond
to the SINR at the output of the three-input WL pseudo-
MLSE receiver obtained in [15, (63) and (64)] for QR
signals, which does not take into account the ISI in z3s(k),
which is processed by the Viterbi algorithm. Comparing (36)
to [2, (60)], we deduce, for ε1 � 1, the following result:

SINRR3,s
= SINRR2,o

= SINRR2,s
= SINRR2,sc

≈ 2εs(1− cos2 φs,1); φs,1 6= kπ, (40)

while comparing (38) to [2, (62) and (64)], we deduce, for
εs � 1� ε1, that

SINRQR3,s
= SINRQR2,o

= SINRQR2,sc

≈2εs

(
1− cos2ψs,1+cos2ζs,1

2

)
; (ψs,1, ζs,1) 6=(k1π, k2π)(41)

SINRQR2,s
≈ 2εs

(
1− 1 + cos2 ψs,1

2

)
. (42)

These results show, for SRRC filter with zero roll-off, a
strong MUI (for R signals) and a strong MUI and a weak
SOI (for QR signals), the optimality of the (s) three-input
WL MMSE receiver. However, while it does not improve
the performance of the (s) two-input WL MMSE receiver
for R signals, since the latter is optimal, it outperforms the
performance of the latter for QR signals since SINRQR3,s

≥
SINRQR2,s

.

To illustrate the previous results, Figs. 2a and 2b show,
for the two-input (o), (s) and the three-input (s) WL MMSE
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receivers, the variations of the output SINR as a function
of φs,1 for εs = 10 dB, ε1 = 20 dB, synchronous (τ1 = 0)
SOI and MUI and |αs,1| = 1 (N = 1) (a), |αs,1| = 0.75
(b). Similarly, in the same scenario, Figs. 3a and 3b show
the variations of the output SINR as a function of τ1 for
φs,1 = π/3. Figs. 2a and 2b show, for synchronous SOI and
MUI, for both R and QR signals and for the three receivers,
an increasing output SINR as cos2 φs,1 decreases. Moreover,
SINRQR2s

is lower for εs = 10 dB than for εs � 1, due
to ISI. Finally, note for N = 1, the equivalent optimal
performance of the three receivers, except the (s) two-input
receiver for QR signals which is clearly sub-optimal. Note
for N > 1, the equivalent quasi-optimal performance of
the (s) three-input receiver for R and QR signals and the
sub-optimal performance of the (s) two-input receiver for
QR signals. Fig. 3 clearly shows, for R signals, optimal
performance, independent of τ1, for the three receivers,
contrary to QR signals for which output performance depend
on τ1. Note, in this case, quasi-optimal performance of the
(s) three-input receiver and sub-optimal performance of the
(s) two-input receiver. Note finally, for τ1 6= 2kT , k ∈ Z,
lower performance of the optimal receiver for QR signals
with respect to R ones, showing again the non equivalence
of R and QR signals for optimal WL MMSE receivers.
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Fig. 2. SINRR and SINRQR as a function of φs,1 (|αs,1| = 1 (a),
|αs,1| = 0.75 (b), εs = 10 dB, ε1 = 20 dB, τ1 = 0, ω = 0 deterministic
channels).

B3) Deterministic channels and SRRC filter with arbitrary
roll-off: To compare the performance of the (s) three-input
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Fig. 3. SINRR and SINRQR as a function of τ1 (|αs,1| = 1 (a), |αs,1| =
0.75 (b), εs = 10 dB, ε1 = 20 dB, φs,1 = π/3, ω = 0 deterministic
channels).

WL MMSE receiver to the two-input (o), (s) and (sc) WL
MMSE receivers for R and QR signals, ω = 0 and arbitrary
values of φs,1 and τ1 and also to extend the analysis to
arbitrary values of the roll-off ω, we must adopt a statistical
perspective. For this purpose, we still consider deterministic
channels and we assume that (φs,1, τ1) are r.v. uniformly
distributed on [0, 2π] × [0, 4T ]. Under these assumptions,
choosing εs = 10 dB and ε1 = 20 dB, Figs. 4 and 5 show,
for R and QR signals respectively, for N = 1, M = 2, 3
and ω = 0 and 1, the variations of Pr[(SINRMg/2εs)dB ≥
xdB]

def
= PMg (x) as a function of x (dB). Note that the

curves appearing in these figures are built from 105 Monte-
Carlo simulations where the SINRMg

have been computed
from the general expressions [2, eq. (37)] and (26). Fig. 4
shows, for R signals, equivalent performance, independent
of the roll-off, of the (sc) and (s) two-input WL MMSE
receivers, becoming optimal for ω = 0 and whose sub-
optimality increases with ω, due to an increasing power
on the cyclic frequency βd,−1 = −1/T . On the contrary,
Fig. 4 shows increasing performance with the roll-off of
the (s) three-input WL MMSE receiver, which is quasi-
optimal whatever the roll-off and which always improve the
performance of the (s) two-input WL MMSE receiver. Fig. 5
shows, for QR signals, increasing performance with the roll-
off of the four WL MMSE receivers. Note the optimality of
the (sc) two-input WL MMSE receiver for a zero roll-off and
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an increasing sub-optimality of this receiver as the roll-off
increases. Note the worst performance of the (s) two-input
WL MMSE receiver and the quasi-optimal performance of
the (s) three-input WL MMSE receiver, strongly improving
the performance of the (s) two-input receiver, whatever the
roll-off value.
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g(x
)

x(dB)

R2o
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(b)

Fig. 4. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, ω = 0 (a) and 1 (b), deterministic channel, R signals)

B4) Deterministic channels, and MSK and GMSK signals:
Figs. 6 and 7 show the same variations as Fig. 5, under the
same assumptions, but for MSK and GMSK QR signals
respectively. We still note, in both cases, the worst perfor-
mance of the (s) two-input WL MMSE receiver, the sub-
optimality of the (sc) two-input WL MMSE receiver and the
quasi-optimal performance of the (s) three-input WL MMSE
receiver, strongly improving the performance of the (s) two-
input receiver. We also note better performance obtained for
the MSK signals with respect to GMSK signals due to a
greater power on the cyclic frequency βd,−1 = −1/T [22].

B5) Rayleigh channels and SRRC filters with arbitrary
roll-off:

To complete the previous results, we consider the assump-
tions of Figs. 4b and 5b, for R and QR signals respectively.
Under these assumptions, Fig. 8 shows, for R and QR
signals and for ω = 1, the same variations as Figs. 4b and
5b but for Rayleigh fading channels for which h(1) and
h1(1) are i.i.d zero mean circular Gaussian distributed r.v..
The conclusions of Figs. 4b and 5b hold for Fig. 8a and
Fig. 8b with less sub-optimality of (s) and (sc) two-input
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Fig. 5. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1 =
20 dB, ω = 0 (a) and 1 (b), deterministic channel, π/2-ASK QR signals)
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Fig. 6. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, deterministic channel, MSK signals)

WL MMSE receivers with respect to (s) three-input and (o)
two-imput WL MMSE receivers.

C. Two-tap deterministic channels

We consider in this subsection a one-tap deterministic
channel for the SOI and a two-tap frequency selective
deterministic channel for the MUI such that

h(t) = µδ(t)h

h1(t) = µ11
δ(t−τ1)h11

+ µ12
δ(t−τ1−T )h12

, (43)

where µ11
and µ12

control the amplitudes of the first and
second paths of the MUI, whereas h11

and h12
correspond

to the channel vectors of the latter, such that ‖h11
‖2 =
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Fig. 7. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, deterministic channel, GMSK signals)
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Fig. 8. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, ω = 1, Rayleigh channel, (a) R and (b) π/2-ASK QR signals)

‖h12
‖2 = N . Under these assumptions and for SRRC

pulse shaping filters, it is straightforward to verify that
π1 = (µ2

11
+ µ2

12
)πb1 . We assume that (φs,11

, φs,12
, τ1)

are r.v. uniformly distributed on [0, 2π] × [0, 2π] × [0, 4T ],
where φs,11 and φs,12 are the phases of hHh11 and hHh12 ,
respectively. Under these assumptions, Figs. 9a and 9b show,
for R and QR signals, respectively and for ω = 1, the same
variations as Figs. 4b and 5b for µ11

= µ12
. The conclusions

of Figs. 4b and 5b hold for Figs. 9a and 9b.
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Fig. 9. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1 =
20 dB, µ11 = µ12 , ω = 1, deterministic channel, (a) R and (b) π/2-ASK
QR signals)

VI. SER AT THE OUTPUT OF THE WL MMSE
RECEIVERS FOR ONE MUI

We show in this section that the main messages of the
previous section, deduced from an output SINR analysis
remain valid from an output SER analysis.

A. Theoretical closed-form expressions

To compare the previous M-input (M = 2, 3) WL MMSE
receivers for R and QR signals from an output SER analysis,
we still assume in this section that the total noise n(t) is
composed of a Gaussian distributed background noise ε(t)
and a single MUI, which generates the observation model
(7) with P = 1. From (7) and (15) we get the generic real
part, zMg (k), of the generic output yMg (k), of the different
M -input WL MMSE receivers for g = o, s, sc.

zMg
(k) = bkuMg,0︸ ︷︷ ︸

SOI

+
∑
6̀=k

b`uMg,k−`︸ ︷︷ ︸
ISI

+
∑
`

b1,`uM1,g,k−`︸ ︷︷ ︸
MUI

+ εMg
(k)︸ ︷︷ ︸

BN

(44)

where uMg,k

def
= Re[

∫
wH
Mg

(f)gMg
(f)ej2πfkT df ],

uM1,g,,k

def
= Re[

∫
wH
Mg

(f)g1,Mg (f)ej2πfkT df ] and

εMg
(k)

def
= Re[

∫
wH
Mg

(f)εMg
(f)ej2πfkT df ] is the
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background noise (BN) component which is zero-mean
Gaussian distributed with variance σ2

εMg
whose expression

is derived in Appendix C.
When the number of ISI and MUI terms at the output of

the M -input WL MMSE receivers is large and when there
are no dominant term in the ISI and MUI, an approximation
of the central limit theorem (Lyapounov theorem [24, th.
27.3]) for independent non identically distributed r.v. can
be applied and the SER is directly deduced from the SINR.
For example, for BPSK symbols bk and b1,k, we get the
approximation:

SERMg ≈ Q(
√

SINRMg ), (45)

with Q(x)
def
=
∫ +∞
x

1√
2π
e−

u2

2 du. This relation (45) con-
firms that the performance in term of output SINR and SER
are equivalent.

When this number of ISI and MUI terms is weak and/or
there is a dominant term in the ISI or MUI, the approxima-
tion is no longer valid, but an exact analytical expression of
the SER can be derived. If S and I denote the sets of the ISI
and MUI symbols, respectively, with respect to the symbol
b0, we now get by conditioning with respect to these BPSK
symbols where S = {−1,+1}|S| and I = {−1,+1}|I|:

SERMg =
1

2|S |2|I|
∑

(..,b−1,b+1,..)∈S

∑
(..,b1,−1,b1,0,b1,+1,..)∈I

Q

(
uMg,0

− (
∑
k 6=0 bkuMg,k

+
∑
k b1,kuM1,g,k

)

σεMg

)
. (46)

B. Monte-Carlo experiments

When the conditions for which (45) can apply are not
satisfied, we can resort to (46) for BPSK modulations. But
this closed-form expression presents no engineering insights
and shows that the SER and SINR are not directly related.
To confirm that the results obtained in Sections V for output
SINR are still vaild for output SER, we present in the
following some Monte Carlo simulations.

B1) One tap deterministic channels: We consider the
transmission of 1000 frames of 200 binary symbols (bk ∈
{−1,+1} and b1,k ∈ {−1,+1}) and we assume, in this
subsection, one tap deterministic channels which are con-
stant over a frame and random from a frame to another. For
each frame, we assume that (φs,1, τ1) are i.i.d. uniformly
distributed on [0, 2π] × [0, 4T ]. Under these assumptions,
Fig. 10 shows the variations of the SER given by the binary
detector at the output of the different receivers for both R
(BPSK) and QR (π/2-BPSK) signals, as a function of εs
for N = 1, ε1/εs = 10 dB and ω = 1.

The results of Fig. 10 confirm, for both R and QR signals
and from a SER perspective, the sub-optimality of the s
and sc two-input receivers and the quasi-optimality of the s
three-input receiver.

B2) One tap Rayleigh channels:
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Fig. 10. SER as a function of εs (N = 1, ε1/εs = 10 dB, ω = 1,
deterministic one tap channel, R (a) and π/2-ASK QR (b) signals

To complete the previous results and under the assump-
tions of Fig. 10, Fig. 11 shows the same variations as Fig.
10, but as a function of E(εs) for Rayleigh fading channels
for which h(1) and h1(1) are zero-mean circular Gaussian
independently distributed, such that E[ε1]/E[εs] = 10 dB.
The conclusions of Fig. 10 hold for Fig. 11.

VII. CONCLUSION

Additional insights, with respect to the companion paper
[2], into WL MMSE receivers have been given in this paper,
for both R and QR signals, omnipresent in numerous present
and future applications, in the presence of data-like MUI
and for propagation channels with or without delay spread.
MSK and GMSK QR signals have been considered in this
paper in addition to R and QR signals considered in [2].
Three WL MMSE receivers, corresponding to the optimal
one (o), the one falsely assuming stationary MUI (s) and
the one with a structure constraint (sc) mainly used in the
literature, have been considered and analyzed in [2]. The
(o) receiver requires the a priori knowledge of the MUI
channels contrary to the (s) and (sc) receivers which only
require the SOI channel, hence their practical interests. In
the absence of MUI it has been shown in [2] that the (sc)
WL MMSE receiver is sub-optimal with respect to the two
other ones. In the presence of one MUI, channels with no
delay spread and R signals, the (s) and (sc) WL MMSE
receivers have been shown in [2] and this paper to be quasi-
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Fig. 11. SER as a function of E(εs) (N = 1, E(ε1)/E(εs) = 10 dB,
ω = 1, Rayleigh fading one tap channel, R and π/2-ASK QR signals)

optimal for low values of the SRRC filter roll-off and sub-
optimal with an increasing sub-optimality as the roll-off
increases. In the same context, the (s) and (sc) WL MMSE
receivers have been shown to be always sub-optimal for QR
signals, whatever the constellation and the pulse shaping
filter, showing the non equivalence of R and QR signals
for WL MMSE receivers, due to different cyclostationarity
properties of these signals. To improve the performance of
the (s) WL MMSE receiver for both R and QR signals, a
(s) three-input WL MMSE receiver has be proposed and
analyzed, both analytically and by computer simulations,
in this paper. This receiver exploits the cyclostationarity of
the MUI and requires the knowledge of the SOI channel
only. For both R and QR signals, the (s) three-input WL
MMSE receiver has be shown to be quasi-optimal in most
situations and to outperform both the (sc) and (s) two-
input WL MMSE receivers. This interesting result open
new perspectives for the implementation optimization of WL
MMSE receivers in the presence of data-like MUI and, in
particular, for the implementation of the (o) WL MMSE
receivers from the only knowledge of the SOI channel.

APPENDIX

A. Proofs that the three-input optimal WL MMSE receiver
reduces to two-input optimal WL MMSE receiver

Using the approach consisting to jointly estimate the
SOI and MUI symbols bn

def
= [bn, b1,n, ..bP,n]T , the filter

w∗3(−t) minimizing the MSE criterion corresponds to the
first column of the 3N×(P+1) matrix W∗

3(−t) filter whose
output is y3(t) = WH

3 (−t)⊗x3(t). This filter minimizes the
joint MSE criterion: JMSE = E(‖bn−y3(nT )‖2). Follow-
ing the steps of the proof given in [23, Appendix A], where
contrary to the two-input signal x2(t), the CT background
noise output W∗

3(−t) ⊗ ε3(t) is SO cyclostationary with
cyclic frequencies αi ∈ {− 1

T , 0,+
1
T }, the JMSE criterion

is given by:

JMSE = πbT

∫
∆

Tr
[(
IP+1−

1

T

∑
`

WH
3 (f− `

T
)

G3(f− `

T
)
)(
IP+1−

1

T

∑
`

WH
3 (f− `

T
)G3(f− `

T
)
)H]

df

+

∫
∆

Tr
[ ∑
i=−1,0,+1

∑
k

wH
3 (f−k

T
)Rαi

ε3 (f)w3(f−k+i

T
)
]
df.(47)

This JMSE is a quadratic functional of W3(f − k
T ), k ∈

Z. Following a standard method of the calculus of variations
(see e.g., [25]), this JMSE (47) is minimized by the unique
solution in W3(f) of the following equation:

πbG3(f)

[
IP+1 −

1

T

∑
`

GH
3 (f − `

T
)W3(f − `

T
)

]
=

∑
i=−1,0,+1

Rαi
ε3 (f)W3(f − αi). (48)

Noting that
∑
i=−1,0,+1 R

αi
ε3 (f)W3(f − αi) = W3(f) +

+

 0N,P+1

W3,3(f+ 1
T )

W3,2(f− 1
T )

 with W3(f)
def
=

 W3,1(f)
W3,2(f)
W3,3(f)

, it s

straightforward to show that

W3(f) =

[
G2(f)Cd

2o(f)
0N,P+1

]
is solution of (48).

B. Proofs of (33), (34)

To derive closed-form expressions of the SINR, it is easier
to calculate the powers PSOI, PISI, PMUI and PBN of the
different terms of (44) than to use the global formula (26).

SINR3s =
PSOI

PISI + PMUI + PBN
, (49)
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where the different powers are given by

PSOI =πb

[∫
∆

∑
k

wH
3s(f−

k

T
)g3(f− k

T
)df

]2

(50)

PISI =
πb
2T

(∫
∆

|
∑
k

wH
3s(f−

k

T
)g3(f− k

T
)|2df

+ Re

[∫
∆

(
∑
k

wH
3s(f−

k

T
)g3(f− k

T
))

(
∑
`

wH
3s(−f−

`

T
)g3(−f− `

T
))df

])

− πb

[∫
∆

∑
k

wH
3s(f−

k

T
)g3(f− k

T
)df

]2

(51)

PMUI =
πb
2T

(∫
∆

|
∑
k

wH
3s(f−

k

T
)g1,3(f− k

T
)|2df

+ Re

[∫
∆

(
∑
k

wH
3s(f−

k

T
)g1,3(f− k

T
))

(
∑
`

wH
3s(−f−

`

T
)g1,3(−f− `

T
))df

])
(52)

PBN =
1

2

(∑
α∈A

∫
wH

3s(f+
α

2
)Rα

ε3(f)w3s(f−
α

2
)

+
∑
β∈B

∫
wH

3s(f+
β

2
)Cβ

ε3(f)w∗3s(−f+
β

2
)

 (53)

where A def
= {1/T, 0,+1/T} and B def

= {−1/T, 0}. Includ-
ing the filter w3s(f) (16) in (50)-(53) allows us to derive
after cumbersome algebraic manipulations:

PR,SOI=
c2

πb
ε2s

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 φs,1
1 + 2ε1

)2

(54)

PR,ISI = 0 (55)

PR,MUI =
c2

πb
|αs,1|2εsε1 cos2 φs,1

(
4

(1 + 2ε1)2

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)
(56)

PR,BN =
c2

πb

εs
2

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1+2ε1)2)(1+ε1)
cos2 φs,1

)
(57)

with

c
def
= πb

(
1 + εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 φs,1
1 + 2ε1

))−1

(58)

for R signals and

PQR,SOI = πb

(
1− 1

2πb
(c1 + c2)

)2

=
ε2

4πb

[
c1

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

)
+ c2

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

)]2

(59)

PQR,ISI=
ε2

2πb

[
c1

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

)
− c2

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

)]2

(60)

PQR,MUI =
c21

2πb
|αs,1|2εsε1 cos2 ζs,1

(
4

(1 + 2ε1)2
(61)

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)

+
c22

2πb
|αs,1|2εsε1 cos2 ψs,1

(
4

(1 + 2ε1)2
(62)

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)
(63)

PQR,BN =
c21
πb

εs
4

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1 + 2ε1)2)(1 + ε1)
cos2 ζs,1

))
+

c22
πb

εs
4

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1 + 2ε1)2)(1 + ε1)
cos2 ψs,1

))
(64)

with

c1
def
= πb

(
1+εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

))−1

(65)

c2
def
= πb

(
1+εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

))−1

(66)

for QR signals. From the expressions (54)-(66), we see that
for τ1 = 0, cos2 ψs,1 = cos2 ζs,1, which implies c1 = c2 = c
and thus the powers of the different components of z3s(k)
for R and QR signals are equal and the associated SINR are
equal.

C. Proofs of expressions of σ2
εMg

For the (o) and (s) receivers with M = 1, 2 inputs,
σ2
εMg

= MN0

2

∫
‖wMg (f)‖2df and for the (sc) receiver

σ2
εMsc

= MN0

2

∫
|v(f)|2‖wMsc(f)‖2df for R signals and

σ2
εMsc

= MN0

2

∫
|v(f + 4/T )|2‖wMsc(f)‖2df for QR sig-

nals. For the three-input receiver σ2
ε3s

is given by (53) where
Rα
ε3(f) and Cβ

ε3(f) come from (27) and (28), respectively.
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