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Abstract
Community detection is a popular approach to understand the organization of interactions in static
networks. For that purpose, the Clique Percolation Method (CPM), which involves the percolation
of k-cliques, is a well-studied technique that offers several advantages. Besides, studying interac-
tions that occur over time is useful in various contexts, which can be modeled by the link stream
formalism. The Dynamic Clique Percolation Method (DCPM) has been proposed for extending
CPM to temporal networks.

However, existing implementations are unable to handle massive datasets. We present a novel
algorithm that adapts CPM to link streams, which has the advantage that it allows us to speed up
the computation time with respect to the existing DCPM method. We evaluate it experimentally
on real datasets and show that it scales to massive link streams. For example, it allows to obtain
a complete set of communities in under twenty-five minutes for a dataset with thirty million links,
what the state of the art fails to achieve even after a week of computation. We further show that
our method provides communities similar to DCPM, but slightly more aggregated. We exhibit the
relevance of the obtained communities in real world cases, and show that they provide information
on the importance of vertices in the link streams.
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1 Introduction

Detecting communities in complex networks has been a focus of interest since the early
years of the field to the point that even the number of surveys on the topic is large. While
the first ones aimed at giving a general view of the landscape (e.g., [9]), more recent ones
tend to focus on a particular issue, for instance the underlying purpose of the community
detection [24] or a specific family of networks [16].

The Clique Percolation Method (CPM) proposed by Palla et al. [20] is a well studied
technique to detect communities in a graph. It is appreciated for the advantages that its
definition confers: the communities are defined locally and in a deterministic way and there
is no need to use heuristics or optimization functions that are hard to interpret. Also,
it allows the communities to overlap each other, by contrast with most other techniques

1 http://www.sociopatterns.org
2 https://icon.colorado.edu
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which lead to a partition of the nodes. It is a desirable property in general as the frontier
between communities is often difficult to decide. While the early implementations were
computationally costly, it was later improved [14, 22] and the most recent one scales up to
graphs with hundreds of millions of nodes and edges [2].

Considering temporal networks, where the structure evolves dynamically, a standard ap-
proach consists in examining them as a sequence of snapshots and run graph community
detection algorithms on each of them. Then, it makes sense to match the communities ob-
tained from a time step to the next to obtain consistent groups through time [1]. Another
approach following the same purpose is to design communities that ensure cohesive struc-
ture continuity over a time interval [25]. This strategy has been investigated for various
applications, including mobile communication networks [18] or social networks analysis [23].
However, the instability of many community detection methods makes this task hard to
achieve properly [6]. In addition, some works stress the importance of achieving online
community detection, in which case the communities are updated at each time step, by ag-
gregating new information to the existing communities [7, 21]. If the method is fast enough,
it is possible to achieve a streaming community analysis of the data. However, this type of
method often comes at the cost of losing part of the long term meaning that a community
might have.

CPM can be implemented on graph snapshots and avoid instabilities from one step to the
next due to its deterministic nature; it thus appears as a good candidate for the approach
described above. It was in fact proposed quite early on, in [19]; we refer to this approach as
the Dynamic Clique Percolation Method (DCPM). Recently, Boudebza et al. [4] introduced
a faster algorithm to do this, called Online Clique Percolation Method (OCPM). However,
describing a temporal network as a sequence of snapshots has shortcomings. Indeed, it misses
the fact that the time step of analysis chosen is frequently arbitrary, while in general the data
do not exhibit an obvious timescale of analysis. This is why formalisms to describe temporal
networks have been developed to circumvent these limitations [5, 11, 15]. Among those, the
link stream formalism stresses the symmetric roles of structure and time in the representation
of data, and aim at describing temporal networks at the intersection of graph theory and
time series analysis [15]. As the notion of clique has been recently extended to this formalism
and the search for cliques is implemented efficiently [3, 28], it is now possible to investigate
extensions of CPM to link streams. This makes possible to design faster algorithms than
the state-of-the-art DCPM implementations. In this way, we obtain a community detection
technique that can process data online and maintain relevant communities which naturally
spread through time.

This is the main contribution of this paper: we propose an algorithm for this goal as
well as an open source implementation that scales to large link streams 3. In Section 2, we
give the necessary background definitions and notations. Then, we describe our method in
Section 3 and derive an expression of its theoretical complexity; note that this method uses
a novel k-clique enumeration algorithm in link streams. Finally, we provide in Section 4
an extensive experimental investigation which shows its efficiency on several real-world in-
stances, compares the obtained communities to the DCPM ones, and illustrates its relevance
to draw information about the data examined.

3 https://gitlab.lip6.fr/baudin/lscpm
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2 Definitions and notations

First, we start with some basic reminders about (static) graphs. A graph is a pair G = (V, E),
where V is a set of vertices, and E is a set of edges of the form {u, v}, where u, v ∈ V and
u ̸= v. A k-clique in G is a set of k vertices that are all connected pairwise by an edge. Finally,
the definition of CPM communities is given by the fact that two k-cliques are adjacent when
they have k − 1 vertices in common. Then, a CPM community of G is the set of vertices
belonging to a maximal set of k-cliques that can be reached from one to another by a series
of adjacent k-cliques (it forms a connected component of the graph whose vertices are the
k-cliques of G and edges are defined by the adjacency relation just explained).

2.1 Cliques in link streams
In this article, we work with the link stream model, which represents interactions over time.
Formally, a link stream is a triplet L = (T, V, E) where T is a time interval, V a set of
vertices and E ⊆ T × T × V × V a set of links (b, e, u, v) such that e ≥ b; we call e− b the
duration of such a link. Throughout the paper, we consider link streams with no self-loop,
i.e. for any link (b, e, u, v) ∈ E, then u ̸= v. Moreover, links on the same vertices exist
over disjoint time intervals, i.e. if (b, e, u, v), (b′, e′, u, v) ∈ E, with b ̸= b′ or e ̸= e′, then
[b, e] ∩ [b′, e] = ∅.

We use the definition of a clique in a link stream which follows the one in [27], with
a minor difference to avoid cliques over time intervals of null length: a clique is a pair
(C, [t0, t1]), where C ⊆ V , |C| ≥ 2 and t0, t1 ∈ T , t0 < t1, such that for all u, v ∈ C, u ̸= v,
there is a link (b, e, u, v) in E such that [t0, t1] ⊆ [b, e]. A k-clique is a clique containing
k vertices. Notice that if (C, [t0, t1]) is a k-clique, then (C, [t′

0, t′
1]) is also a k-clique for all

t′
0, t′

1 such that t0 ≤ t′
0 < t′

1 ≤ t1. We are therefore interested in maximal k-cliques:

▶ Definition 1 (maximal k-clique). For k ∈ [[2, +∞[[, a maximal k-clique is a clique
(C, [t0, t1]) having k vertices (|C| = k), and such that its time interval is maximal: there is
no t′

0 < t0 nor t′
1 > t1 such that (C, [t′

0, t1]) or (C, [t0, t′
1]) is a clique.

With this definition, we can introduce the notion of k-clique adjacency, which will allow defin-
ing a generalization of CPM communities to link streams: two maximal k-cliques (C, [t0, t1])
and (C ′, [t′

0, t′
1]) are said to be adjacent if they share k − 1 vertices and overlap over a time

interval with strictly positive length, i.e. , |C ∩C ′| = k − 1 and |[t0, t1] ∩ [t′
0, t′

1]| > 0, where
|I| denotes the length of interval I.

2.2 Communities in link streams
In a dynamical context, it is natural to define a temporal community as a set of temporal
vertices of the form (u, I), where u is a vertex, and I is a set of disjoint time intervals, which
are the time intervals during which u is present in the community. Then, the notion of
LSCPM community is similar to the one of CPM community in graphs, but with the notion
of maximal k-clique adjacency adapted to link streams:

▶ Definition 2 (LSCPM community). A LSCPM community is a temporal community whose
temporal vertices belong to a maximal set of k-cliques that can be reached from one to another
by a series of adjacent k-cliques.

A few observations can be made about this definition. First, as k increases, the com-
munities may only split and/or lose temporal vertices. In other words, if k1 < k2, each
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community computed with k2 is included in a community computed with k1. This property
is illustrated and further discussed in Section 4.5.

Second, let us recall the definition of the dynamic CPM (DCPM) communities introduced
in [19]. The idea is to compute the CPM communities at each snapshot. Then, comparing the
communities obtained for two consecutive snapshots allows finding whether each community
evolves by gaining vertices, losing vertices, dying (disappearing or merging with a larger
one), or being born (appearing or being detached from a larger one). Notice that DCPM
communities can be considered as temporal communities: given two consecutive snapshots
at ti and ti+1, a vertex of a CPM community at ti belongs to the DCPM community on
[ti, ti+1[. Most importantly, a LSCPM community is a union of DCPM communities. Indeed,
the temporal vertices of a CPM community in a snapshot are all included in a same LSCPM
community; and a CPM community that gains or loses vertices from one snapshot to the
next remain included in the same LSCPM community. Note that two DCPM communities
that are merged (resp. split) in the next snapshot belong to the same LSCPM community.

To illustrate these definitions, we show in Figure 1a an example of a link stream, with time
on the X-axis and vertices on the Y-axis. Links are represented as connections between two
vertices, and the horizontal line indicate their duration. For example, there is a link between
vertices c and d over the time interval [1, 13]. In Figure 1b, we represent its maximal k-cliques
in color, in Figure 1c its LSCPM communities, and in Figure 1d its DCPM communities.
The background of each vertex is colored according to the time during which it belongs
to its clique or community. Notice that the red LSCPM community is composed of three
DCPM communities: the red one, but also the green one because {e, f, g} is not adjacent to
{c, d, e} at time t = 3; and the purple one because {e, f, g} is no longer adjacent to {d, e, f}
for t ≥ 9.

(a) Example of a link stream. (b) Link stream of Figure 1a and all its maximal
3-cliques in color.

(c) Link stream of Figure 1a and its two LSCPM
communities in color.

(d) Link stream of Figure 1a and its four DCPM
communities in color.

Figure 1 Example of a link stream with its maximal k-cliques for k = 3 and the associated
LSCPM communities and DCPM communities.
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3 Algorithms

Our main idea to compute efficiently LSCPM communities in link streams is to use tech-
niques similar to those developed for enumerating maximal cliques in link streams [3, 28].
Indeed, it is possible to enumerate k-cliques in a link stream efficiently by going through
each link only once and aggregate adjacent ones using a temporal Union-Find data structure.
In the DCPM case however, the comparison of communities at each time step to detect their
evolution is more demanding. We present an algorithm to efficiently enumerate k-cliques in
Section 3.1. We then adapt the best existing method for computing CPM communities, and
propose an efficient algorithm that, given as input the k-cliques of a link stream, computes
its communities, in Section 3.2.

3.1 k-clique enumeration algorithm in link streams
We take inspiration from our recent work [3] which enumerates the maximal cliques to
design the algorithm for enumerating k-cliques in a link stream. The key idea is to use
graph k-clique enumeration, as very efficient algorithms have been designed for this task [8].
Then, we compute the starting and ending time of each induced maximal k-clique in the
link stream.

Algorithm 1 k-clique enumeration in link streams.

Input: Link stream L = (T, V, E); k ∈ [[3, +∞[[.
Output: All k-cliques of L without duplicates.

1 G← empty graph
2 E ← empty associative array // E associates ending times to edges
3 for (b, e, u, v) ∈ E sorted by increasing b do
4 Add edge {u, v} to G

5 E(u, v)← e // Record the ending time of {u, v}
6 Remove from G all edges {x, y} with E(x, y) < b

7 GCliques← all k-cliques of G containing u and v

8 for C ∈ GCliques do
9 end← min

x,y∈C
(E(x, y))

10 output k-clique (C, [b, end])

Algorithm 1 lists all the maximal k-cliques. It starts from an empty graph (Line 1), and
processes the link stream in chronological order (Line 3). For each link (b, e, u, v), it updates
the graph (Lines 4 to 6). Then, it enumerates the maximal k-cliques containing u and v

induced by the links seen up till then. They match the static k-cliques in G that contain u

and v (Line 7). Finally, each of these maximal k-clique starts at b, because the link between
u and v does not exist before b, and lasts as long as all its links exist, so its ending time is
the minimum of the ending times of the edges composing it (Line 9).

The complexity of Algorithm 1 is given by Theorem 3. Its proof is given in Appendix.

▶ Theorem 3 (k-clique enumeration time complexity). Algorithm 1 enumerates all k-cliques
of the input link stream in time O

(
m · k3 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
, where m is the

number of links and d the maximal degree of a node, that is its maximal number of neighbors
at any given time.
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The largest factor in this complexity is m. d can in theory be large with respect to m

but, since it is the maximal number of neighbors of a node at any given time, it is small in
practice. It is therefore the value of k that determines how efficient the enumeration can be,
as the factors k3 and

(
d
2
)k−2 show that this method remains efficient only for small values

of k.

3.2 LSCPM: CPM algorithm in link streams
To the best of our knowledge, the most efficient algorithmic implementation of CPM in
graphs is [2]. In a few words, this algorithm stores each CPM community as the set of the
(k − 1)-cliques composing its k-cliques. It builds these sets on the fly, by processing each
k-clique one by one, testing to which community each of its (k−1)-cliques currently belongs.
Then, it merges these communities or creates a new one if needed. For this purpose, the
algorithm uses a Union-Find data structure, as it is efficient to do these operations. It is a
forest of trees, where each node corresponds to a (k−1)-clique, and each tree corresponds to
a CPM community, identified by its root. It has three intrinsic functions: UF.Find(id) that
returns the root of the tree containing the node id, UF.Union(p,q) that performs the union of
two trees by connecting their roots and returns the root of the new tree, and UF.MakeSet()
which creates a new tree on a new root q, and returns this root.

We take inspiration from the algorithm above to extend the percolation of k-cliques to its
definition in link streams. The procedure is given in Algorithm 2 and follows a similar logic:
each LSCPM community is stored as the set of the temporal (k − 1)-cliques of its maximal
k-cliques. A (k − 1)-clique of a maximal k-clique (Ck, [t0, t1]) is of the form (Ck−1, [t0, t1]),
with Ck−1 ⊆ Ck containing k − 1 vertices. These communities are constructed on the
fly, by processing each maximal k-clique one by one, following the chronological order of
their starting time, given by Algorithm 1. For each maximal k-clique (Ck, [t0, t1]) (Line 5),
Algorithm 2 checks the community to which each of its (k− 1)-clique belongs on an interval
that (strictly) intersects [t0, t1] if it exists (Line 10), or creates a new one if needed (Line 16),
then merges them (Lines 13 and 17). It also extends the membership duration of the (k−1)-
cliques in case they did not belong to this community until t1 (Line 11). To do so, in addition
to the Union-Find structure UF, we use an associative array TimeUF, which associates each
Ck−1 to a list of elements of the form (id, [t0, t1]), where id is the identifier of a Union-Find
element and [t0, t1] is the interval during which Ck−1 belongs to the community of id. In
these lists, the intervals are disjoint, and the pairs are sorted in ascending chronological
order. Each list is initialized to [(-1,-1,-1)] (Lines 3 and 4), meaning that the corresponding
Ck−1 has not yet been added to any community. Figure 2 gives an example of the update
of TimeUF and UF structures, when applying Algorithm 2 to the link stream of Figure 1.

Finally, we need to transform the Union-Find structure into the adequate format to get
the output as a temporal community. This is done with a loop through the elements of
TimeUF. Each one is of the form Ck−1 → I, where Ck−1 is a set of k − 1 vertices, and
I is a list of pairs (id, [t0, t1]) corresponding to a Union-Find element and a time interval.
Each Union-Find element belongs to a single set, which is one of the LSCPM communities
and that we obtain with the Find procedure. We then add each vertex of Ck−1 to this
community, on the time interval [t0, t1].

The complexity of Algorithm 2 is given by Theorem 4 (demonstrated in Appendix). Note
that Algorithm 2 takes as input the set of (k−1)- and k-cliques of the link stream. Therefore,
the total complexity given in Theorem 4 takes into account the time needed to perform their
enumeration as well as the time needed to compute the communities.
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Algorithm 2 Clique Percolation Method in link streams (LSCPM).

Input: (k − 1)-cliques then k-cliques of a link stream L = (T, V, E); k ∈ [[3, +∞[[.
Output: Union-Find structure representing all LSCPM communities of L.

1 UF ← empty Union-Find data structure
2 TimeUF ← empty associative array
3 for each maximal (k − 1)-clique (Ck−1, [t0, t1]) of L do
4 TimeUF[Ck−1]← [(−1,−1,−1)]
5 for each maximal k-clique (Ck, [t0, t1]) of L, sorted by increasing t0 do
6 p← −1
7 for each u ∈ Ck do
8 Ck−1 ← Ck \ {u}
9 (id, [t′

0, t′
1])← last element of TimeUF[Ck−1]

10 if t0 < t′
1 then // is in the current community

11 last element of TimeUF[Ck−1] ← (id, [t′
0, max(t1, t′

1)])
12 q ← UF.Find(id)
13 p← UF.Union(p, q) // merge with other (k − 1)-cliques

14 else // not yet or no longer in the community
15 if p = −1 then
16 p← UF.MakeSet()

17 Append (p, [t0, t1]) to TimeUF[Ck−1] // add to community of p

TimeUF[{d, f}] = [ ]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]
TimeUF[{d, e}] = [(i1, [2, 13])]

TimeUF[{e, f}] = [(i2, [3, 5])]
TimeUF[{e, g}] = [(i2, [3, 5])]
TimeUF[{f, g}] = [(i2, [3, 5])]

UF: i1 i2

(a) After processing the
3-clique: ({e, f, g}, [3, 5]))

TimeUF[{d, f}] = [(i1, [4, 9])]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]

TimeUF[{d, e}] = [(i1, [2, 13])]
TimeUF[{e, f}] = [(i2, [3, 9])]

TimeUF[{e, g}] = [(i2, [3, 5])]
TimeUF[{f, g}] = [(i2, [3, 5])]

UF: i1 i2

(b) After processing the
3-clique: ({d, e, f}, [4, 9]))

TimeUF[{d, f}] = [(i1, [4, 9])]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]
TimeUF[{d, e}] = [(i1, [2, 13])]

TimeUF[{e, f}] = [(i2, [3, 12])]
TimeUF[{e, g}] = [(i2, [3, 5]), (i1, [8, 12])]
TimeUF[{f, g}] = [(i2, [3, 5]), (i1, [8, 12])]

UF: i1 i2

(c) After processing the 3-clique:
({e, f, g}, [8, 12]))

Figure 2 Example of updates of TimeUF and UF of Algorithm 2, during the processing of the
second, third and fourth 3-cliques of the link stream of Figure 1. Note that all lists in TimeUF begin
by a (−1, −1, −1) triplet which we omit for readability. We show only the part of TimeUF relevant
to the cliques under study. At each time step, the (k − 1)-cliques corresponding to the added clique
are shown in red. In 2a, three (k − 1)-cliques are added to the structure. In 2b, communities of
i1 and i2 are merged, as the k-clique contains one (k − 1)-clique in i1 and another in i2; also one
(k − 1)-clique is added: {d, f}, one is extended in time: {e, f}, and one remains unchanged because
it is already present in the community over a longer time interval: {d, e}. In 2c, one (k − 1)-clique
is extended in time: {e, f}, and as the other two, {e, g} and {f, g}, were not in the community any
more, they are re-added over the time interval of the k-clique [8, 12]. At the end of the process, the
structure matches the information represented by the red LSCPM community of Figure 1.

▶ Theorem 4 (LSCPM time complexity). The time complexity of Algorithm 2 is in
O ((k + α(nk)) · k · nk + c(k)), where α is the inverse Ackermann function, nk the num-
ber of k-cliques of the link stream, and c(k) the complexity of enumerating k-cliques, given
in Theorem 3. It is thus in O

(
(k + α(nk)) ·m · k2 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
.

This complexity is expressed with the inverse Ackermann function α, which is known to
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grow extremely slowly, and can be considered as a constant at the scale of our data. Thus,
we see from this theorem that the time complexity is close to O

(
k2 · nk + c(k)

)
. This shows

that our algorithm is efficient in the way each k-clique is processed, once the k-cliques have
been computed. Indeed, each k-clique contains k (k − 1)-cliques, and therefore it is not
possible to process them in less than k · nk operations, using an approach similar to ours.

The second part of the theorem is obtained by replacing c(k) by the expression of The-
orem 3 and nk by a bound on its value. If we do not take into account the factor α(nk), the
complexity is in O

(
k3 ·m ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
. As noted above, this complexity

depends almost linearly on m and the factor d is small in practice. Nevertheless, the cubic
factor in k and the

(
d
2
)k−2 make it manageable only for small values of k. We will see in

Section 4 that small values of k allow for a fast building of the communities and are sufficient
to observe interesting properties of the datasets.

In practice, Algorithm 2 needs to store in memory all the (k − 1)-cliques in the link
stream. It can be limiting, for example if the input dataset contains a very large clique. For
instance, if there is a clique of size 1000, and that we are looking for 6-clique communities,
then there are more than 1015 5-cliques to store from this large clique. Still, data from real-
world interactions are known not to exhibit many large cliques, which makes the k-clique
approach interesting for their study, and this memory feature has not been prohibitive during
our experiments.

4 Experiments

For the experimental study, we implemented our algorithm in Python and the code is avail-
able online 4. Throughout this section, we set k = 3 unless otherwise specified. We will see
that this value allows for a fast computation while being sufficient to provide interesting
information on the datasets. Also, we present in Section 4.5 the impact of increasing k on
the community structures, which induces smaller communities and therefore allows targeting
their core, with more or less strength depending on the value by which k has been increased.

4.1 Datasets
We run our experiments on real-world link streams of various sizes and types of interactions.
Even though many datasets consist of links with duration, in many cases these data are
registered with regular discrete time intervals, because of the practical data acquisition pro-
tocol. This is the case for instance of proximity between individuals data, usually captured
using RFID tags. Therefore, currently there is a larger range of publicly available instant-
aneous link streams with links of the form (t, u, v), where u and v are vertices interacting
at time t. So, we transform these link streams by adding a duration ∆ creating links of
the form (t, t + ∆, u, v). Note that the value of ∆ will impact the number and extension of
cliques in the link stream. Practically, we choose uniform ∆ values which are consistent with
the typical time scales of the interactions considered for the datasets under study. These
values, while consistent, remain arbitrary, and we use them to demonstrate the efficiency
and relevance of our algorithm. Users can adjust the values according to their requirements
and to the nature of the studied datasets.

The datasets on which we performed the experiments are described in Table 1. House-
holds is a link stream representing contacts between members of five households in rural

4 https://gitlab.lip6.fr/baudin/lscpm
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Kenya in 2012 [13]; Highschool corresponds to contacts between students of five classes of a
preparatory school in Marseilles (France) during one week in 2012 [10] and Infectious con-
sists of contacts between visitors to a museum in Dublin (Ireland) in 2009 [12]. These three
datasets represent contacts between individuals, for which we have chosen to take a link
duration ∆ = 1 hour. The Foursquare dataset is extracted from the eponymous application,
where users check-in in venues that they visit, located in New-York City in our case [29].
It can thus be represented as a bipartite link stream between visitors and locations, where
timestamps correspond to the check-in time. In this link stream, we set ∆ = 6 hours, then
we project it on the set of locations: if a user is connected to two locations over an over-
lapping time interval, this will create a link between these locations during the overlap. If
the time interval of two links created in this way overlap, they are merged into a single link
over the union of the initial time intervals. Finally, we use the link stream Wikipedia, which
represents links between Wikipedia pages, timestamped by the time of the link creation,
over several years in the 2000s [17]. We choose a ∆ = 1 week duration, essentially to explore
how our method scales to massive link streams.

Link stream ∆ m n d D r

Households 1 hour 2,136 75 19 3 days 1 hour
Highschool 1 hour 5,528 180 18 8 days 20s
Infectious 1 hour 44,658 10,972 43 3 months 5 min
Foursquare 6 hours 268,472 33,153 81 10 months 15 min
Wikipedia 1 week 38,953,380 1,870,709 33,217 2.3 years 20s

Table 1 Link stream datasets. ∆ is the link duration, m the number of links, d the maximal
degree, n the number of nodes, D the total duration from the first to the last link and r the time
resolution, that is the smallest duration between the beginning of two links.

The link stream parameter that affects most dramatically the running time of the com-
munity detection is its number of k-cliques nk, as the complexity depends strongly on k

and nk according to Theorem 4. In Table 2, we report the number of k-cliques for each
dataset, for k ranging from 3 to 7. It allows anticipating the differences in computation time
between the datasets, which are detailed in Section 4.2. We notice that for large datasets,
nk increases with k, certainly because these datasets contain some large cliques. Indeed,
within a clique containing c vertices, there are

(
c
k

)
cliques with k vertices, and that quantity

grows with k (as long as k ≤ c
2 ). In particular, Foursquare is a projection of a bipartite

network, and projections are known to contain many large cliques.

Link stream k = 3 k = 4 k = 5 k = 6 k = 7
Households 3,951 4,721 3,929 2,324 987
Highschool 2,468 583 97 11 1
Infectious 79,836 128,157 202,181 274,181 300,850
Foursquare 571,768 2,423,011 17,823,050 155,466,085 1,302,290,726
Wikipedia 3,757,877 1,148,832 1,763,386 4,545,105 11,853,134

Table 2 Number of k-cliques (nk) for each dataset and for k from 3 to 7.
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4.2 LSCPM: faster and scaling to massive real-world link streams
We now compare our algorithm to the DCPM one in terms of running time. Note that the
comparison focuses on the running time and not on the complexity as the complexity of
the DCPM method or the existing OCPM implementation are not given by their authors.
In our implementation, the k-cliques are streamed to the standard input of the LSCPM
algorithm, which reads them as the enumeration proceeds. These two operations are done
on two different threads; but for comparison purposes with the DCPM running time, we
measure its computation time as the sum of the time spent on each of these two threads.
The DCPM runtime is provided by the best implementation available [4]. We refer to this
implementation as OCPM (standing for Online CPM). We performed all the experiments on
a Linux machine, equipped with two processors Intel Xeon Silver 4210R with twenty cores
each, at 2.40Ghz, and with 252Gb of RAM.

Table 3 presents the computation times of communities with the OCPM implementation
of DCPM and our LSCPM implementation, on all the datasets of Table 1, for k from 3 to 7.
These values are also plotted in Figure 3 for readability purposes. We observe that LSCPM
is significantly faster, particularly on more massive datasets. For example, with k = 3 or
k = 4, it takes a few seconds with LSCPM to compute the Foursquare communities, while
it takes a few hours with OCPM. Moreover, for the massive Wikipedia link stream, OCPM
is unable to compute the set of communities in a week, while our algorithm provides the
communities in less than 30 minutes for all k values tested. Our algorithm thus allows to
study a community structure in massive datasets for which the state of the art does not
provide a result.

k = 3 k = 4 k = 5 k = 6 k = 7
Link stream OCPM LSCPM OCPM LSCPM OCPM LSCPM OCPM LSCPM OCPM LSCPM
Households 1.5s 0.1s 1.0s 0.1s 0.7s 0.2s 0.6s 0.2s 0.5s 0.2s
Highschool 3.6s 0.1s 1.9s 0.1s 1.6s 0.1s 1.3s 0.1s 1.3s 0.1s
Infectious 10min49s 1.4s 6min12s 3.3s 3min58s 6.2s 3min02s 17.2s 2min30s 16.2s
Foursquare 3h01min 9.2s 2h28min 43s 2h12min 6min39s 2h08min 1h15mins 2h07min 12h35min
Wikipedia - 13min44s - 15min29s - 15min44s - 17min38s - 23min39s

Table 3 Time computation of communities in seconds with both OCPM and LSCPM, for all
our datasets, with k varying from 3 to 7. The symbol “-” means that the computation time exceeds
one week.

Another point of interest is that the LSCPM computation time increases with k, while
it decreases with OCPM. This comes from the fact that OCPM implementation obtains its
results by aggregating the maximal cliques of size at least k, while our method enumerates
k-cliques. With larger k, there are fewer maximal cliques to enumerate and process, hence
the decreasing computation time. By contrast, we have seen in Section 4.1 that nk typically
increases with k for larger datasets, which implies that the computation time of LSCPM
increases too according to Theorem 4. Notice however that in spite of this, there is only one
instance where OCPM is faster than LSCPM: Foursquare link stream with k = 7, which as
we have seen as a very large number of k-cliques.

4.3 Comparison between LSCPM and DCPM communities
In what follows, we compare the communities obtained with our LSCPM algorithm to those
obtained with DCPM, on the four datasets where the OCPM implementation provides a
result. Note that, up to our knowledge, there is no reference method to compare overlapping
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Figure 3 Line charts of the running times of OCPM and LSCPM for each dataset. Values are
those in Table 3.

temporal communities. So we do not use tools such as NMI or Rand index which are designed
for comparing partitions of vertices in a graph and thus would require some adaptation to
the context considered in this paper. We have seen in Section 2 that each DCPM community
is included in a LSCPM one and, conversely, that each LSCPM community can be seen as
the union of DCPM communities. This property is illustrated in Figure 4 (left), which gives
an example of a LSCPM community from Infectious dataset, with k = 3 using the python
package tnetwork 5. Vertices are represented on the Y-axis, time on the X-axis, and each
vertex belongs to the community over the period during which it is colored. Each of the
DCPM communities included in this LSCPM community is represented in a different color.
In what follows, we investigate to what extent DCPM communities are grouped into LSCPM
communities.

Figure 4 Composition of LSCPM communities in terms of DCPM communities, with k = 3.
Left: a LSCPM community of Infectious, and the DCPM communities included in it (one color
each). Center: cumulative distribution of the relative size (in number of vertices) of the largest
DCPM community to the corresponding LSCPM community. Right: cumulative distribution of the
number of DCPM community per LSCPM community.

To evaluate the similarity between a LSCPM community and the DCPM communities
that it contains, we compute the relative size (in number of vertices) of the largest DCPM

5 https://tnetwork.readthedocs.io/
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community that each LSCPM community contains. Figure 4 (center) reports the cumulative
distribution of this value. We see a clear peak at the end, which shows that for all datasets,
90% of the LSCPM communities contain as many vertices as their largest DCPM community,
which is the case of the example in Figure 4 (left). Only 1% of LSCPM communities have
its largest DCPM community with less than 70% of the vertices, and none have its largest
DCPM community with less than 50%.

We also observe that there are only a few DCPM communities per LSCPM community. It
is illustrated in Figure 4 (right), which represents the cumulative distribution of the number
of DCPM communities that each LSCPM community contains. In all cases, more than 70%
of LSCPM communities contain only 1 or 2 DCPM communities, and almost never more than
10. However, there are some exceptions: in Highschool, 2.6% of the communities contain
between 10 and 26 DCPM communities, and in Infectious, 1.8% of LSCPM communities
contain between 50 and 115 DCPM communities.

Besides, we observe that there are fewer small LSCPM communities than DCPM ones:
considering communities with 5 or fewer vertices, we observe that Households has 17% more
DCPM communities than LSCPM, Highschool has twice as many and Infectious has six
times as many, (however, the sets of LSCPM and DCPM communities are very similar
for Foursquare). This indicates that small DCPM communities tend to be aggregated into
larger LSCPM ones, as observed in the example of Figure 4 (left). These observations give
the typical scheme of how LSCPM communities compare to the DCPM ones: a LSCPM
community is in general composed of one large DCPM community which contains almost
all the vertices, and possibly a few residual communities. It also indicates that most of the
meaning conveyed by the communities obtained in both cases should be closely related, but
LSCPM method allows streamlining the community analysis by aggregating the smaller, less
meaningful, communities into the larger ones.

4.4 Insights on LSCPM communities
To investigate the relevance of the temporal communities obtained, we have at our disposal
metadata retrieved from the dataset repositories: families of Households, class of Highschool,
and GPS coordinates of locations in Foursquare.

In the case of the Households and Highschool datasets, which are based on person-to-
person interactions, we observe that the communities are homogeneous in terms of these
categories, as could be expected. Indeed, in the case of Households dataset, 95% of com-
munities are composed of members of only one family, and the remaining 5% of two families.
In Highschool, 70% of communities are composed of only one class, 23% of two classes, 6%
of three classes, and 1% of four classes.

Moreover, this metadata provides interesting insight on interactions at the individual
level over time, pointing out who socializes with whom and when. For instance, Figure 5 (left)
is a community of Households, composed of 5 members of a family (in green) and 17 members
of another (in blue). It highlights the existence of an at most one hour gathering between all
these people except one. Similarly, Figure 5 (center) shows a community where we observe
members of three different classes of Highschool, which are the three physics major classes
of the preparatory school. We distinguish three time periods: during the first one, students
from the three classes are grouped together, which suggests a period when students can meet
and mix. Then, the community reduces to a few nodes of the orange class, later joined by
an additional group of students, which might indicate the proximity of the students during
the courses or working groups.

Concerning Foursquare, we can use the metadata to investigate the geographical distribu-
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tion of locations which are visited by the same individuals within a ∆ period. Figure 5 (right)
shows a map of a part of New-York City displaying a sample of four LSCPM communities.
We observe that some of them are relatively clustered geographically, such as the green one,
while others are more extended, which happens when one or several persons move from one
part of the city to another within a ∆ period. Thus here, ∆ allows tuning the geograph-
ical extension of the communities, as lower ∆ should correspond to smaller geographical
extensions.

Figure 5 Examples of LSCPM communities using the metadata of the datasets. Left: a com-
munity of Households with vertices colored according to the family. Center: a community of High-
school with vertices colored according to the class. Right: a map of Manhattan (NYC), where four
Foursquare communities are represented in different colors.

It may also be relevant to evaluate the involvement of vertices in the communities that
they belong to. Indeed, some vertices are active longer than others or belong to more
communities, so it makes it possible to identify particularly important nodes in a group or
nodes which act as bridges between groups. Figure 6 illustrates these two aspects: it is the
cumulative distribution of the number of communities to which each vertex belongs. Points
on the far left correspond to vertices that belong to no community at all. In this regard,
the various datasets yield very different results. For example, in Foursquare, around 20%
of the vertices do not belong to any community; it corresponds to locations where users
rarely visit other places over the time period considered. We observe this for some specific
locations such as medical centers, offices, playgrounds... By contrast, in Households, each
vertex belongs to at least two communities, which is reasonable as it is a contact network
between members of a same household, so no contact at all hardly seems conceivable. In
Highschool, we see that most nodes belong to many communities, which also makes sense,
as students are grouped in classes, and each day makes new LSCPM communities. Finally,
vertices that belong to many communities are on the far right of the distribution. It is
striking on Foursquare, where almost 10% of vertices belong to more than 10 communities,
and a few to more than 100. These can be described as central nodes of the link stream,
which interact with many other nodes throughout the period of observation. For example,
the location of Foursquare that belongs to the most communities by far (1.5 times more than
the second) is the famous Pennsylvania Station, which is the main intercity train station of
New York City.

4.5 Influence of k on the community structure
The size k of the cliques at the base of the LSCPM communities is the key parameter of the
algorithm. Here, we discuss the effect of increasing k on the community structure, in order
to give an intuition to the user as to the choice to make for this value.
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Figure 6 Number of communities to which each vertex belongs, as a cumulative distribution.
Note that the X-axis is in logarithmic scale, except between 0 and 1, in order to show vertices that
belong to no community.

As we saw in Section 2, if k1 < k2, then each community computed with k2 is included
in a community computed with k1. This means that increasing k results in the communities
splitting and/or loosing temporal vertices. Figure 7 gives an example of this phenomenon on
a community of the Foursquare dataset: from left to right we see the community computed
with k = 3 and how it splits and looses nodes when increasing k up to 7. We observe that
the community remains almost identical for k = 4, and that it splits into three communities
for k = 5, and one of these smaller communities split again for k = 7. We also observe that
some nodes which belong to the community for k = 3 at a given time do not belong to any
of the resulting communities at this time for larger values of k. Thus, increasing k leads to
more cohesive communities, but smaller in size and time extension. This allows to change
the granularity of the dynamical communities that can be obtained on a dataset by focusing
on the “core” of the interactions.

Figure 7 Split of a Foursquare community as k increases from k = 3 to k = 7.

This allows to identify consistent sub-communities when metadata is available. For
instance, the vertices of the Foursquare community of Figure 7 correspond to 6 types of loc-
ations (out of the 261 available), all sport-related: Athletic-&-Sport, Bike-Shop, Stadium,
Sporting-Goods-Shop, Gym-/-Fitness-Center, Motorcycle-Shop (most other communities ex-
hibit more diverse labels). We investigate if the splitting of communities when k increases
corresponds to more precise types of locations. For k = 5, the green community has the 6
type labels, but nodes of the blue and red ones only have 3 labels: Sporting-Goods-Shop,
Gym-/-Fitness-Center and Bike-Shop. Also, for k = 7, the green community splits into
two parts, one of which focuses on two-wheeled sports: Motorcycle, Bike, Stadium, which
highlights that the decomposition allows to derive the shared interests of the users.

5 Conclusion and perspectives

In this paper, we address the detection of dynamic communities in temporal networks, using
the link stream formalism. Using the literature of the field, we introduced the notion of
maximal k-clique of a link stream, with an algorithm to enumerate them. This leads to a new
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adaptation of the Clique Percolation Method to dynamical networks, called LSCPM, which
pursues the work initiated by [19]. We provided a theoretical analysis of the complexity of
our algorithm, as well as an open source implementation in Python. Then, we experimented
with the algorithm, comparing it to the state of the art, and showed that it allows to obtain
possibly relevant information on real-world examples.

We believe that the community detection with LSCPM can scale to even more massive
networks and larger values of k. For instance, as memory consumption can be a limiting
factor on massive streams because of the clique storage, the work done in [2] to reduce
the RAM cost of the CPM method on graphs could be adapted to link streams. Also, it
could be better in some cases to percolate maximal cliques instead of k-cliques, as done in
OCPM [4], using efficient maximal clique enumeration methods in link streams such as [3].
In particular, we have seen that this may be an efficient alternative for larger k values.

Moreover, it would be interesting to develop the analysis of the effect of link duration ∆
and its practical implications. Indeed, when ∆ increases, the k-cliques grow longer, resulting
in more aggregated LSCPM communities. This is the opposite effect of what happens when
we increase k. We believe that the experimental study can be extended by testing the
simultaneous tuning of these two parameters, to see how the communities are structured,
and if this allows targeting relevant interaction cores in particular.

Finally, we believe that it is possible to adapt the algorithm for enumerating k-cliques
in link streams, into a more general framework of temporal motif listing. Indeed, the call of
the algorithm to enumerate graph cliques could be replaced in principle by any other motif
mining algorithm in a graph, resulting in a related temporal motif. This paves the way to
novel and efficient pattern mining algorithms in temporal networks.
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A Proofs for Section 3 (Algorithms)

▶ Theorem 3 (k-clique enumeration time complexity). Algorithm 1 enumerates all k-cliques
of the input link stream in time O

(
m · k3 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
, where m is the

number of links and d the maximal degree of a node, that is its maximal number of neighbors
at any given time.

Proof. First, we show that the update of G from Lines 4 to 6 is done in O (m · log(m)) in the
whole loop of Line 3. G is stored as an associative array, associating to each vertex the set
of its neighbors, so the addition of an edge at Line 4 is done in constant time. Line 5 is also
done in constant time. Finding all edges that have an ending time smaller than b (Line 6)
can be done by maintaining a sorted list of the end times of links in G, which can be done
in O (log(m)) for each new link. Then, the deletion itself is done in constant time by going
through this list. The global complexity is therefore in O (m · log(m) + m) = O (m · log(m)).

Consider an iteration of the loop starting at Line 3 and (b, e, u, v) its associated link.
We need to compute all k-cliques of G containing u and v. This is equivalent to computing
the (k− 2)-cliques of the graph induced by the common neighbors of u and v, that we note
G(N(u) ∩ N(v)). Computing this induced subgraph is done in O

(
d2)

. Then, the overall
complexity of these operations over all iterations is in O

(
m · d2)

.
Enumerating the (k−2)-cliques of G(N(u)∩N(v)) depends on the value of k. If k = 3 it

consists in enumerating vertices, which is in O (d). If k = 4, it is enumerating the edges, in
O

(
d2)

. If k ≥ 4, then we use the k-clique enumeration algorithm in graphs described in [8].
In that paper, Theorem 5.7 gives the complexity of enumeration in O

(
k ·m ·

(
d
2
)k−2)

. Thus,

the (k − 2)-clique enumeration is in O
(

(k − 2) · d2 ·
(

d
2
)k−4)

and the overall complexity of

Line 7 is in O
(

k ·
(

d
2
)k−2)

, for any value of k. Note that this value sets an upper bound on
the number of k-cliques enumerated by the loop iteration. Each of these k-cliques is then
processed by the loop at Line 8, in O (k · (k − 1)) = O

(
k2)

. Then, the total complexity of
these operations in the iteration is in O

(
k3 ·

(
d
2
)k−2)

, it is thus in O
(

m · k3 ·
(

d
2
)k−2)

for
the entire loop.

Combining the cost of the above operations finally gives the result. Note that this result
can be slightly refined by keeping k ·(k−1)·(k−2) instead of k3, which may have a significant
impact, since k values are usually small (typically ≤ 10). ◀

▶ Theorem 4 (LSCPM time complexity). The time complexity of Algorithm 2 is in
O ((k + α(nk)) · k · nk + c(k)), where α is the inverse Ackermann function, nk the num-
ber of k-cliques of the link stream, and c(k) the complexity of enumerating k-cliques, given
in Theorem 3. It is thus in O

(
(k + α(nk)) ·m · k2 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
.

Proof. With a Union-Find data structure, it is known that the amortized cost of Union
and Find functions is in O (α(N)), if N is the number of elements in the structure (see
for example [26]). Here, the Union-Find structure contains at most 1 element per maximal
k-clique, since there cannot be more than one call to MakeSet (Line 16) in each iteration of
the loop starting at Line 5. Indeed, if a MakeSet is performed, then p is no longer equal to
−1 and no other is performed until the end of this loop. So the complexity of each call to
Union and Find functions in the procedure is in O (α(nk)).

Now, consider a maximal k-clique (Ck, [t0, t1]) corresponding to an iteration of the loop
starting at Line 5. Line 7 performs one iteration per vertex of Ck, that is k iterations. The
operation at Line 9 to find the last element of TimeUF[Ck−1] is in O (k − 1). During this
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loop, there is also at most one call to Union and Find, and other operations in constant
time. So, it runs in O (k + α(nk)). Thus, in total, the loop starting at Line 5 runs in
O (nk · k · (k + α(nk))).

In addition, we have to take into account the complexity of the enumeration of k-
cliques and (k − 1)-cliques given as input to the algorithm. However, Theorem 3 indic-
ates that the complexity of enumerating (k − 1)-cliques is included in the one of enumer-
ating k-cliques, denoted c(k). We thus obtain an overall complexity of Algorithm 2 in
O ((k + α(nk)) · k · nk + c(k)).

Finally, we saw in the proof of Theorem 3 above that at each iteration of the loop at
Line 3 of Algorithm 1, the number of k-cliques listed is in O

(
k ·

(
d
2
)k−2)

. Since there are

m iterations, we get that the number of k-cliques nk is in O
(

m · k ·
(

d
2
)k−2)

. Hence the
second part of the theorem by combining the above bound on nk and Theorem 3. ◀

Note that the output of Algorithm 2 is the Union-Find structure and thus a post-processing
is required to produce the actual communities. This post-processing is done by going through
the set of elements (Ck−1, [t0, t1]) in TimeUF, that are at most k ·nk (at most k per maximal
k-clique). Then, it performs a Find operation on them and adds each of its k− 1 associated
vertices to its community during the corresponding time interval. Adding a vertex to its
community can be done in constant time if the nodes of the Union-Find are browsed in
chronological order, which is possible by storing their creation time order at Line 16. So the
complexity of the post-processing is also in O (k · nk · (k + α(nk))).


