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Spatial linear stability analysis is used to study the axisymmetric screech tones generated
by twin converging round nozzles at low supersonic Mach numbers. Vortex-sheet and
finite-thickness models allow for identification of the different waves supported by the
flow at different conditions. Regions of the frequency-wavenumber domain for which the
upstream-propagating guided jet modes are observed to be neutrally stable are observed
to vary as a function of solution symmetry, jet separation, S, and the velocity profile
used. Screech frequency predictions performed using wavenumbers obtained from both
models agree well with experimental data. Predictions obtained from the finite-thickness
model better align with the screech tones measured experimentally and so are seen to be
an improvement on predictions made with the vortex sheet. Additionally, results from
the finite-thickness model predict both symmetric and antisymmetric screech tones for
low S that are found in the vortex-sheet model only at greater S. The present results
indicate that the feedback loop generating these screech tones is similar to that observed
for single-jet resonance, with equivalent upstream and downstream modes.

Key words: Authors should not enter keywords on the manuscript.

1. Introduction

Screech tones are observed in jets operating away from their design Mach number, ap-
pearing as high-amplitude discrete peaks in the acoustic spectrum. Along with broadband
shock-associated noise (BBSAN) and turbulent-mixing noise, they form the three compo-
nents of supersonic jet noise (Tam 1995). The appearance of screech tones is undesirable
due to both the high intensity noise emitted and the potential to induce vibrations in the
surrounding structure, which can lead to failure (Berndt 1984; Raman et al. 2012). These
characteristics of screech tones have led to many studies on understanding and mitigating
the phenomenon, as shown by reviews from Raman (1999); Edgington-Mitchell (2019).
Jets from round convergent nozzles exhibit screech in discrete modal stages that can

be classified into the A1 and A2 axisymmetric modes, the C helical mode and the B
and D flapping modes (Merle 1957; Davies & Oldfield 1962; Powell et al. 1992). Powell
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(1953a,b) first described screech as arising from a resonance feedback loop within the
jet. This loop is comprised of four stages (Edgington-Mitchell 2019). The first is a
downstream-propagating disturbance, which travels with the flow until reaching some
point downstream. At this downstream point there is a conversion from a downstream-
propagating disturbance into an upstream-propagating one. This upstream-propagating
disturbance then travels back until reaching an upstream reflection point, where it creates
a new downstream-propagating disturbance, completing the resonance loop. The present
work here considers free jets and thus the upstream and downstream reflection points
take the form of the nozzle plane and shock-cell structure, respectively.

A better understanding of screech can only be achieved through knowledge of the
underlying physics involved in each step of the resonance cycle. Since the identification
of coherent structures in high-speed jets, by Mollo-Christensen (1967) and Crow &
Champagne (1971), that were previously considered to be dominated by stochastic
processes, considerable effort has been directed towards the modelling and prediction of
these structures. For jet screech, such modelling involves considering the forms that the
downstream and upstream-propagating disturbances take. Initially these were modelled
to take the form of a Kelvin-Helmholtz (KH) instability and a free-stream sound wave,
respectively (Powell 1953b). Recent results have shown that the upstream-travelling mode
is a guided jet mode, first studied by Tam & Hu (1989) and known to exist over a finite
frequency range (Towne et al. 2017). The work of Shen & Tam (2002) was the first to
consider the upstream-propagating guided jet mode (k−p ) as the closure mechanism for
the resonance loop in a free jet. They proposed that whilst screech modes A1 and B were
still closed by the free-stream acoustic mode, it was the k−p mode that closed resonance
for the A2 and C modes. The finite existence region, frequencies over which the mode
is propagative for a given set of jet parameters, of the k−p mode was considered by both
Gojon et al. (2018) and Edgington-Mitchell et al. (2018) for a single jet. In these works
the A1 and A2 screech modes were shown to be encompassed by the frequencies defining
this existence region, and so could be explained by the characteristics of the k−p mode.

Screech frequency predictions were then performed using a vortex-sheet model for a
single jet by Mancinelli et al. (2019). This followed the resonance criteria set out in
Landau & Lifshitz (2013), later applied to the case of jet-edge interactions by Jordan
et al. (2018). These predictions were made considering a k−p mode and showed close
agreement with experiments, in contrast with the poor agreement achieved by considering
resonance to be closed by free-stream sound waves. Later, Mancinelli et al. (2021) showed
that improvements could be made in these screech frequency predictions by instead
considering a finite-thickness model. The presence of the k−p mode in the resonance cycle
was also confirmed both experimentally and by linear stability analysis in Edgington-
Mitchell et al. (2021). Following the hypothesis of Tam & Tanna (1982), they showed that
the interaction between the KH mode and the shock-cell structure gives rise to new waves
in the flow that may close the resonance loop. Recent work by Edgington-Mitchell et al.
(2022) expanded on this and demonstrated that the modal staging behaviour of screech
could be explained when considering interactions involving the sub-optimal wavenumbers
describing the shock-cell structure. Such sub-optimal wavenumbers arise when taking a
Fourier transform of the mean flow in the axial direction and represent the axial variations
of the shock-cell structure (Nogueira et al. 2022a). Nogueira et al. (2022b) has verified
the hypothesis of Tam & Tanna (1982), showing how screech is underpinned by an
absolute instability mechanism involving the k−p mode and the KH mode, providing a
characterisation of the phenomenon in line with early descriptions based on experiments
such as Powell (1953b).

Additional complexities arise when considering a twin-jet due to acoustic and hydro-
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(a) (b)

Figure 1: (a) Twin-jet setup and (b) Experimental setup.

dynamic interactions between the two jets. This is highlighted in an early study by Seiner
et al. (1988), where pressure amplitudes where found to be more than double the single jet
equivalent. Screech tones in a twin-jet system use the same naming convention as for the
single jet, with the exception that C is a flapping mode as the system has been shown not
to support helical modes (Rodŕıguez et al. 2022). Previous studies (Bell et al. 2018; Knast
et al. 2018) considered the coupling dynamics at play between the two jets. Bell et al.
(2021) later showing that a round twin-jet system exhibits intermittent coupling and at
some jet operating conditions can uncouple entirely. This behaviour was proposed to be
due to competition between modes of the flow associated with the different symmetries.
The twin-jet vortex sheet was considered previously first by Sedel’Nikov (1967a), Morris
(1990) and later Du (1993). While in these works the characteristics of both the upstream
and downstream-propagating waves were considered, their roles in resonance were not
explored directly. Interest in modelling was renewed by Rodŕıguez et al. (2018) and
Nogueira & Edgington-Mitchell (2021). The former studied KH instabilities in subsonic
twin-jets using parabolised stability equations (PSE), whilst the latter applied a spatial
stability analysis to explore coupling and resonance behaviour of a supersonic twin-jet
system with an ideally-expanded jet Mach number (Mj) of 1.7. This latter study linked
the k−p mode to twin-jet resonance at those specific conditions. The analysis was limited
to a single set of jet conditions for which experimental data was available. The success of
linear stability analysis in predicting the coherent structures and screech characteristics in
this previous work suggests such a framework may shed light on the underlying resonance
mechanism for other conditions.
In this work, linear stability analysis will be performed for the twin-jet system using

both vortex-sheet and finite-thickness models, with comparisons made to experimental
acoustic data. The parameter space will be limited to relatively low supersonic Mach
numbers where the system exhibits axisymmetric screech modes, as prior modelling
efforts for single screeching jets indicate that the vortex-sheet approximation performs
best at these conditions (Mancinelli et al. 2019, 2021).

The paper is organised as follows. The twin-jet setup and experimental methodology
are detailed in §2. In §3 the mathematical models for both the vortex-sheet, finite-
thickness, and screech frequency prediction models are outlined. Results are shown in
§4, with concluding remarks made in §5.

2. Setup

The round twin-jet setup considered here is as shown in figure 1(a) with x the axial
direction orientated out of the page. Each jet is of diameter D and has an individual
coordinate system, (r1, θ1) and (r2, θ2), in r and θ. The separation of the jets is measured
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(a) SS (b) SA

Figure 2: Visualisation of the twin-jet solution symmetries considered in this work, (a)
SS and (b) SA. Shown are the real components of the k−p (0, 2) pressure eigenfunctions
found using the finite-thickness twin-jet model with, S = 2, Mj = 1.16, St = 0.69, δ =
0.2.

centre-to-centre and denoted by S, which is normalised by D. In this configuration,
solutions can be classified based on their symmetries about the x− y and x− z planes.
These solutions are classified as SS, SA, AS and AA (Rodŕıguez et al. 2018), which is
the convention now commonly used in the literature among both round (Nogueira &
Edgington-Mitchell 2021; Stavropoulos et al. 2022) and rectangular (Yeung et al. 2022)
twin-jet studies. The first letter (S or A) denotes symmetry or antisymmetry about the
x − y plane and the second about the x − z plane. These symmetries are visualised in
figure 2. In the present work attention is focused solely on the axisymmetric, A1 and A2,
screech modes. As such, only twin-jet symmetries that allow axisymmetric solutions will
be investigated. This results in only the SS and SA symmetries being considered as AS
and AA symmetries cannot support axisymmetric solutions.
Acoustic measurements were taken at the supersonic jet anechoic facility (SJAF) in the

Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) at Monash
University. Details on the facility can be found in Wong et al. (2020) with the nozzle plate
design described in Knast et al. (2018). The twin-jet nozzles have an exit diameter of 8mm
and are purely converging unheated jets. Measurements are taken using a GRAS Type
46BE 1/4 in. pre-amplified free-field microphone with a frequency range of 4Hz–100kHz,
calibrated using a GRAS 42AB sound calibrator. It is positioned at a distance of 33D
downstream and 29D in the radial direction, taken from the centre of the system as seen
in figure 1(b). For each spacing the nozzle pressure ratio (NPR) was varied from 2-2.5
in increments of 0.025, with a total of 1M samples obtained at an acquisition frequency
of 200kHz for each NPR. Acoustic power spectral densities (PSD) are obtained through
a fast Fourier transform (FFT) applied using the Welch method (Welch 1967) with 75%
overlap for 4096 points to ensure a fine discretisation in frequency.
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3. Mathematical models

3.1. Vortex-sheet model

In the vortex-sheet approximation the jet boundary is represented by an infinitesimal
shear layer (Lessen et al. 1965; Sedel’Nikov 1967b; Michalke 1970; Morris 2010). Within
the locally-parallel framework, the streamwise velocity is taken as constant within the
jet and zero outside of it. Following Morris (1990) and Du (1993) the flow is divided into
mean and perturbed components. Applying the normal mode ansatz to the perturbed
component, the pressure field may be written as

P̃ (x, r1,2, θ1,2, t) = P (r1,2, θ1,2)e
−iωt+ikx, (3.1)

with k the wavenumber and ω the angular frequency. Upon substitution into the Euler
equations this allows an equation for the perturbed pressure amplitude to be written as,

∂2P

∂r21,2
+

1

r1,2

∂P

∂r1,2
+

1

r21,2

∂2P

∂θ21,2
− λ2

i,oP = 0, (3.2)

where subscripts i and o denote inner, within the jet, and outer, outside of the jet,
solutions respectively, and

λi =

√
k2 − 1

T
(ω −Mk)2,

λ0 =
√
k2 − ω2. (3.3)

Here M is the acoustic Mach number and T the temperature ratio between jet and free
stream. Quantities are normalised using the free-stream density, free-stream sound speed
and jet diameter. Solutions of this equation for both inner and outer regions expressed
in forms consistent with the symmetry classification defined above are given by

Pi(r1,2, θ1,2) =

∞∑
m=0

ÂmIm(λir1,2)cos(mθ1,2) + B̂mIm(λir1,2)sin(mθ1,2) (3.4)

Po(r1, θ1, r2, θ2) =

∞∑
m=0

Am[Km(λ0r1)cos(mθ1) + (−1)mKm(λ0r2)cos(mθ2)]+

∞∑
m=0

Bm[Km(λ0r1)cos(mθ1)− (−1)mKm(λ0r2)cos(mθ2)]+

∞∑
m=1

Cm[Km(λ0r1)sin(mθ1)− (−1)mKm(λ0r2)sin(mθ2)]+

∞∑
m=1

Dm[Km(λ0r1)sin(mθ1) + (−1)mKm(λ0r2)sin(mθ2)],

(3.5)

withm the azimuthal mode number and Im,Km the modified Bessel functions of first and
second kind, respectively. Each line of Eq. (3.5) corresponds to one of the four solutions,
SS, SA, AS, AA mentioned previously. In Eq. (3.4) the first term corresponds to SS and
SA symmetry, whilst the second to AS and AA symmetry.
To proceed further it is necessary to re-cast the outer solution into a function of only

a single coordinate system. This is shown just for the SS symmetry solution and can be
achieved through the Bessel addition formula (Lee & Chen 2011), such that
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Symmetry Eq. 3.12 Eq. 3.10

SS + +
SA + -
AS - -
AA - +

Table 1: Value of ± terms in twin-jet vortex-sheet model for each solution symmetry.

Km(λ0r2)cos(mθ2) =

∞∑
n=−∞

(−1)nKm−n(λ0S)In(λ0r1)cos(nθ1). (3.6)

Equation (3.6) can then be substituted into Eq. (3.5) which, after simplification, yields,

Po(r1, θ1) =

∞∑
n=0

AnδmnKn(λ0r1)cos(nθ1) +

(−1)nϵnIn(λ0r1)cos(nθ1)

∞∑
m=0

Am(−1)m[Km−n(λ0S) +Km+n(λ0S)],

(3.7)

with δmn the Kronecker delta and ϵn = 0.5 for n = 0, and ϵn = 1 otherwise. Inner and
outer solutions are matched at the ideally expanded jet diameter, Dj , itself normalised by
jet diameter and calculated following Tam & Tanna (1982) with a design Mach number
of 1. Boundary conditions applied are continuity of pressure and displacement (Morris
2010). These are given by,

Pi

(
Djλi

2

)
= Po

(
Djλo

2

)
, (3.8)

∂Pi

∂r1,2 |r1,2=0.5Dj

=
1

T

(ω − kM)2

ω2

∂P0

∂r1,2 |r1,2=0.5Dj

. (3.9)

Equations (3.4), (3.7), (3.8) and (3.9) can now be combined into a single dispersion
relation for the twin-jet system as

∞∑
m=0

Am[annδmn ± (−1)mcmn] = 0, (3.10)

with

ann =
1

(1− kM
ω )2

− 1

T

λo

λi

K
′

n(
Djλ0

2 )In(
Djλi

2 )

I ′
n(

Djλi

2 )Kn(
Djλ0

2 )
, (3.11)

cmn = (−1)nϵn[Km−n(λ0S)±

Km+n(λ0S)]

[
In(

Djλ0

2 )

Kn(
Djλ0

2 )

1

(1− kM
ω )2

− 1

T

λo

λi

In(
Djλi

2 )I
′

n(
Djλ0

2 )

Kn(
Djλo

2 )I ′
n(

Djλi

2 )

]
.

(3.12)

The ± in Eqs. (3.10) and (3.12) are used to define symmetry or antisymmetry about
both the x − z and x − y planes as detailled in table 1. A key difference between the
dispersion relation for the twin-jet and the single jet, studied by Lessen et al. (1965),
Michalke (1970) and Towne et al. (2017), is that the former is unable to be solved for
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only a single azimuthal mode number, m. Instead, by truncating Eq. (3.10) to a finite
value (N) the system is solved for all m up to N − 1 for both SS and SA modes.
Equation (3.10) is solved with N = 20 for all calculations, with convergence checked

up to N = 50. It is worth noting that Eq. (3.11) takes the exact same form as the
dispersion relation for a single jet as shown by Towne et al. (2017). This allows for
recovery of the single jet solution at large S, as Eq. (3.12) tends to 0 as S → ∞. On
this basis, classification of twin-jet solutions is defined based on the equivalent single-jet
solution they tend to at large spacing. For a given ω, any value of k that satisfies Eq.
(3.10) is an eigenvalue of the vortex sheet, and Eqs. (3.4) and (3.5) are used to build the
corresponding pressure eigenfunctions.

3.2. Finite-thickness model

The finite-thickness formulation used here was developed initially by Lajús et al. (2019)
and later applied to twin-jet systems by Nogueira & Edgington-Mitchell (2021). All
parameters are non-dimensionalised by the free-stream sound speed and density, and jet
diameter. The compressible Euler equations in polar coordinates are linearised assuming
disturbances of the form

P̃ (x, r, θ, t) = P (r, θ)ei(kx−ωt), (3.13)

with k and ω the non-dimensional streamwise wavenumber and frequency respectively
and P̃ representing the pressure perturbations. With the linearised Euler equations
written in polar coordinates, the symmetry of the mean flow imposes a θ-periodicity
in the coefficients of the equations, as P̄ (r, θ) = P̄ (r, θ + nπ) with n an integer. Using
this periodicity, disturbances may be written with the Floquet ansatz

P (r, θ) = P̂ (r, θ)eiµθ, (3.14)

where µ is the Floquet exponent, associated with the different symmetries supported by
the flow. Computations then need only be done on a subsection of the azimuthal domain
(for this case in the interval θ = [−π

2 , π
2 ) from figure 1(a)), reducing the computational

cost; disturbances are extended to the entire cross-plane via equation (3.14). This leads
to a generalised eigenvalue problem (EVP), expressed here in terms of pressure, of the
form

LP̂ = kRP̂ , (3.15)

with operators L and R functions of the mean flow, its derivatives and flow variables
ω, Mj , S, µ and the ratio of specific heats γ. When solving, a Fourier discretisation is
used in azimuth and Chebyshev polynomials in radius (Trefethen 2000), with boundary
conditions imposed following Nogueira & Edgington-Mitchell (2021), and the matrix
operators described in Appendix A. The numerical mapping of Bayliss & Turkel (1992)
is applied to ensure appropriate resolution in the shear layer of the jets. Sparsity of the
system is also considered, which further reduces the computational cost of the method.
This formulation introduces the need for a velocity profile as an input, which is not

required when using the vortex-sheet model. Two hyperbolic tangent velocity profiles,
one for each jet, of the same form used in Michalke (1971),

U(r) = M

[
0.5 + 0.5 tanh

((
Rj

r
− r

Rj

)
1

2δ

)]
, (3.16)

are considered following Nogueira et al. (2022a) with M the acoustic Mach number, Rj

the ideally expanded jet radius and δ used to characterise the shear layer thickness. The
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Figure 3: Sample twin-jet mean flow, U, used for the finite-thickness model for Mj =
1.16, S = 3, δ = 0.2.

corresponding twin-jet mean flow is then constructed through the addition of these two
single jet mean flows, following Rodŕıguez (2021). In each case, the mean temperature is
obtained from Eq. 3.16 through the Crocco-Busemann relation. An example of a typical
mean flow used is provided in figure 3, here visualised over both jets. Equation (3.15) is
solved over a domain length of 4S; a domain length of 8S was found to yield negligible
change in the computed wavenumbers.

3.3. Prediction model

Screech frequency predictions are performed using the model developed in Jordan
et al. (2018) and Mancinelli et al. (2019, 2021), applied in these previous works to jet-
edge interaction tones and for single-jet screech, respectively. This model considers two
reflection points in the flow: the first (upstream) is the nozzle lip, where the KH mode
is excited; the second (downstream) is the sth shock-cell, where the upstream wave is
considered to be generated (Mancinelli et al. 2023). It may be used to impose both phase
and amplitude criteria (Jordan et al. 2018; Mancinelli et al. 2019, 2021). Following the
neutral-mode assumption (Mancinelli et al. 2021), only the phase criterion is considered
here,

k+ − k−p =
(2p+ ϕ)π

Ls
, (3.17)

with k+ the real component of the KH mode wavenumber, p the number of cycles included
in the resonance loop, ϕ the phase between reflection coefficients as a fraction of π, and
Ls the distance between the nozzle lip and the sth shock-cell. This distance is given by,

L1 =
π

2.4048

√
M2

j − 1,

Ls = ((1− α)s+ α)L1, (3.18)

with α = 0.06 the shock-cell length decrease rate with downstream distance (Harper-
Bourne & Fisher 1974) and L1 the first shock-cell length from Pack (1950). More recent
considerations of Eq. 3.18 have also shown the strong alignment with it when compared
to experiments (Mancinelli et al. 2021). The distances to each shock cell could also be
computed via simulation, such as a Reynolds-averaged Navier-Stokes simulation (RANS),
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Morris Du Present Study

Type I Family 1 SS
Type II Family 4 AS
Type III Family 2 SA
Type IV Family 3 AA

Table 2: Symmetry notation for solutions of twin-jet vortex sheet

however for the purpose of this work in drawing comparisons between the feedback
loops in single and twin jets the simple model of Eq. 3.18 is sufficient. For any pair
of wavenumbers (k+, k−p ), obtained by solving Eq. (3.10) or (3.15), that satisfy Eq.
(3.17) for given s, p and ϕ, the corresponding frequency is then a prediction of the
screech frequency. As shown in Mancinelli et al. (2021), this resonance model can lead to
similar frequency predictions compared to the absolute instability framework for the right
choice of parameters. Note, however, that the specific values of p and s used for a given
prediction are less important than the ratio of the two, p/s. For the specific case of ϕ = 0
this ratio is equivalent to the ratio between the standing-wave wavenumber (ksw) and the
shock-cell wavenumber (ks) (Mancinelli et al. 2021). As mentioned previously, multiple
wavenumbers, dominant (ks1) and sub-optimal (ks2), are required to accurately describe
the shock-cell variation (Nogueira et al. 2022a). Equation 3.17 does not consider sub-
optimal wavenumbers and thus agreement between it and the wave interaction model
outlined by Tam & Tanna (1982) occurs only when considering ks1. Such agreement
occurs for a value of p/s = 1 (Mancinelli et al. 2021). This indicates that any prediction
using Eq. 3.17 with p/s = 1 corresponds to a consideration of the dominant wavenumber
and any where p/s ̸= 1 corresponds to the wavenumbers describing the axial variation
in the shock-cell spacing.

4. Results

4.1. Comparison to past formulations

To validate the numerical implementation of Eq. 3.10, a comparison is performed with
Morris (1990) and Du (1993) who had both previously calculated dispersion relation
eigenvalues of the twin-jet vortex-sheet model. These calculations were made for Mj =
1.32, St = 1/π and jet temperature ratio based on an isentropic expansion, where St is
the non-dimensional frequency defined by St = fD/Uj . Only the symmetries SS and SA
are considered, for m = 0, 1, 2. The nomenclature for solution symmetry used in these
previous works differs from the current convention with a guide between them provided
in table 2, note that Du (1993) had mislabelled family 3 and 4 solutions which has been
rectified in the present table. Figure 4(a) shows the results of Morris (1990) with those
from Eq. 3.10 overlaid for SS symmetry. Plotted are the growth rates of the KH mode
for the first three azimuthal modes. It can be seen that the results obtained here match
the previous work. Conversely, in figure 4(b) the growth rates for SA do not match. A
comparison between the current work and Du (1993) for both SS and SA growth rates is
shown in figure 5, they can be seen to be in agreement; Du (1993) also noted a mismatch
with the results of Morris (1990). Note that the formulation used here and in Du (1993)
is identical to that provided in Morris (1990), suggesting that the discrepancy may arise
due to an implementation error in the earlier work rather than a theoretical one. With
the current twin-jet vortex-sheet model validated, it can be used with confidence for the
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(a) SS comparison (b) SA comparison

Figure 4: Comparison between the computed KH growth rates with those of Morris
(1990) for (a) SS and (b) SA with Mj = 1.32 and St = 1/π. Note that growth rate
values plotted here are scaled by jet radius.

(a) SS comparison (b) SA comparison

Figure 5: Comparison between the computed KH growth rates with those of Du (1993)
for (a) SS and (b) SA with Mj = 1.32 and St = 1/π. Note that growth rate values
plotted here are scaled by jet radius.

remainder of this study. Details about the finite-thickness formulation can be found in
Nogueira & Edgington-Mitchell (2021).

4.2. Waves involved in screech

4.2.1. Characteristics of KH and k−p modes

Before considering resonance, an overview of the behaviour of both the KH and k−p
modes in a twin-jet system is considered. Eigenvalues of the dispersion relation calculated
using Eq. (3.10) are plotted in figure 6, as in Tam & Hu (1989). Here results are presented
for isentropic temperature ratio,Mj = 1.16 and S = 2 and 50. In figure 6(a), classification
in the form (m,nr) of the relevant modes is highlighted, where m is the azimuthal mode
number and nr the radial mode number. The latter corresponds to the number of anti-
nodes present in the pressure eigenfunction, as shown by (Tam & Hu 1989; Towne et al.
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(a) SS S = 2 (b) SS S = 50

(c) SA S = 2 (d) SA S = 50

Figure 6: Dispersion relation eigenvalues for Mj = 1.16 for (a) SS, S = 2, (b) SS, S =
50, (c) SA, S = 2 and (d) SA, S = 50, plotted here are just modes corresponding to m
= 0 and 1. Branch (blue) and saddle (green) points are highlighted. Also shown is the
sonic line (yellow) for sound waves travelling upstream. Note, the green and blue bounds
for the (1, 1) mode appear to be almost superimposed due to the close proximity of the
branch and saddle points.

2017; Gojon et al. 2018; Edgington-Mitchell et al. 2018). Since the modes plotted here are
neutrally convectively stable with negative phase speed, the sign of the slope indicates
their propagation direction (group velocity): downstream-propagating waves, denoted
k+d , have positive slope, and k−p have negative slope. Similar to the single jet case (Tam
& Hu 1989) it is observed that the k−p modes exist over a finite range of frequencies.
The smallest frequency at which it exists is known as the branch point, and the highest
frequency is characterised by a saddle point between k+d and k−p (Towne et al. 2017).
Comparing the results between figures 6(a) and (c), S = 2, with figures 6(b) and (d), S
= 50, the existence region of the k−p (0, 2) mode is strongly affected by the jet spacing
only for SA. The branch points for SA are seen to decrease in value significantly as S
increases, resulting in an increase in the k−p (0, 2) existence region for increasing S. This
trend suggests that coupling between the two jets may act to hinder the propagation
of the SA symmetry k−p mode. The changes observed for SS symmetry are significantly
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(a) (b)

Figure 7: Comparison of SA k−p (0, 2) branch point with single-jet value for Mj = 1.16
jet. This is compared directly in (a) and as a fraction in (b), also marked on (b) in red
is the line corresponding to a 1% divergence from the single-jet value.

smaller, with a slight increase in the (1, 1) branch point and a slight (< 1%) decrease in
the (0, 2) branch point. The existence region of the SA symmetry k−p is smaller than that
of SS symmetry throughout figure 6. The dispersion relation plots for SS and SA display
non-negligible differences between the two symmetries even at S = 15; this suggests
that resonant modes may be coupled for high inter-jet distances, which has also been
observed experimentally (Shaw 1990; Knast et al. 2018). The value of S chosen for figures
6(b) and (d) is such that it represents a jet separation where the twin-jet system can
be considered to behave as a single-jet system. There does not currently exist a unique
metric for determining at which S this occurs. For this work we focus on the axisymmetric
screech modes, for which the k−p (0, 2) mode and its frequency band of existence is of
importance. As such, the metric considered will be the frequency discrepancy, in St,
between the SA k−p (0, 2) branch point and that of the single jet. Figure 7(a) shows the
change in SA branch point at Mj = 1.16 across S, where it can be seen to exhibit an
asymptotic convergence towards the single-jet value. Highlighting that whilst it is at low
S where the effect of the second jet is most relevant, there is still a non-negligible effect
from the second jet even at greater S. Note that at higher S the difference in St becomes
lower than the resolution used (∆St = 0.0005) resulting in the curve no longer appearing
smooth. The fractional difference between the single and twin-jet values is given across
S in figure 7(b). Given the asymptotic behaviour , the condition for the twin-jet system
behaving as single jets is defined as when this difference is equal to 0.01 (1% difference
between twin-jet and single-jet values). From figure 7(b) this would correspond to an S
of 50. Hence the use of S = 50 in figure 6 for comparison with the low spacing (S =
2) case. It is, however, important to recognise that the value of S = 50 holds only for
considerations of the k−p (0, 2) branch point, for example if instead the wavenumber or
growth rates of the KH mode were considered then this would result in a much smaller
value of S as these values converge more quickly to the single-jet value (Morris 1990;
Rodŕıguez et al. 2022).

The amplitude structure of the k−p (0, 2) and KH mode eigenfunctions can be obtained
from the vortex-sheet model using Eqs. 3.4 and 3.5. This allows for differences in structure
between SS and SA type solutions to be visualised. In figure 8(a) the eigenfunction
structure for the KH mode are compared for SS and SA plotted along the y axis of figure
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(a) KH m = 0 mode (b) k−
p (0, 2) mode

Figure 8: Absolute value of normalised pressure eigenfunctions along the y axis for SS
(red) and SA (black), (a) KH (m = 0) and (b) k−p (0, 2) mode. Mj = 1.16, S = 3 and St
= 0.67. Jet edges are highlighted in blue.

1. A key difference occurs in the region between the two jets: due to the symmetry of the
problem, the SA solution is forced to reach zero pressure at the centre-point, whereas
the SS solution is forced to reach a zero pressure gradient. Outside of this region the two
profiles are seen to be identical. Conversely, in figure 8(b), the eigenfunction structures
of the k−p (0, 2) modes exhibit significant differences between the SS and SA symmetries.
Between the two jets the SS solution has higher amplitude than the SA, whilst the
opposite occurs away from each jet where the SA solution has higher amplitude than the
SS. The general behaviour of both the KH and k−p modes outside the inter-jet region,
as would be expected, follows the single jet case (Tam & Hu 1989). The KH mode
peaks along the jet boundary and decays away radially, whilst the k−p mode peaks at
the centreline before decaying away more slowly. Differences between single and twin-jet
eigenfunctions arise from the aforementioned behaviour in the inter-jet region.

Eigenfunctions for the KH and k−p (0, 2) modes can also be found using the finite-
thickness model, which allows for insight into how the velocity profile affects the pressure
eigenfunctions. These are plotted in figures 9 and 10 for the same jet parameters as in
figure 8 with values of δ as 0.12, 0.2 and 0.4. There are two main behaviours that can
be seen in figure 9. Within the jet itself, all the models agree well with each other and
there is essentially no difference between them. This changes outside the jet core. For
SS, figure 9(a), increasing shear-layer thickness causes a more rapid radial decay in both
the inter-jet and outer regions. This trend is also observed for SA, figure 9(b). When
considering the region between the jets the SA eigenfunctions all converge to zero at the
midpoint to satisfy the symmetry condition, with the change in δ seen to have only a
small effect on the curvature here. There is less agreement observed between the vortex-
sheet and finite-thickness model for the KH mode, as shown in figure 10. As was seen for
the k−p (0, 2) mode, the KH modes predicted using the finite-thickness model decrease in
magnitude outside the jet more quickly than in the vortex-sheet model. Inside the jet, the
KH modes all follow the same shape but lie apart from each other, with very little overlap
of profiles. There is a dissymmetry seen in the amplitude peaks of the KH eigenfunction
when considering the finite-thickness model, that is not seen for the vortex-sheet model.
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(a) SS (b) SA

Figure 9: Absolute value of normalised k−p (0, 2) pressure eigenfunctions along the y axis
for both vortex-sheet model and varying velocity profiles in finite thickness model. Mj

= 1.16, S = 3 and St = 0.67. Only one jet is shown for both the inter-jet (y/D < 1),
inner (1 < y/D < 2), and outer (y/D > 2) regions. For (a) SS and (b) SA. Vortex sheet
(Black), δ = 0.12 (blue), δ = 0.2 (red) and δ = 0.4 (green)

(a) SS (b) SA

Figure 10: Absolute value of normalised KH (m = 0) pressure eigenfunctions along the y
axis for both vortex-sheet model and varying velocity profiles in finite-thickness model.
Mj = 1.16, S = 3 and St = 0.67. Only one jet is shown for both the inter-jet (y/D < 1),
inner (1 < y/D < 2), and outer (y/D > 2) regions. For (a) SS and (b) SA. Vortex sheet
(Black), δ = 0.12 (blue) and δ = 0.2 (red). For δ = 0.4 the KH mode has stabilised.

As the shear-layer thickness increases the amplitude of the eigenfunction at the outer
mixing layer is seen to decrease slightly.

4.2.2. Branch and saddle point bounds

As was shown in section 4.2.1, and noted in Du (1993), the existence region of the
k−p mode is dependent on jet spacing in twin-jets. Here this dependence is considered
more closely across multiple S and Mj for the k−p (0, 2) mode. This existence region is
important when considering the k−p mode to close the screech feedback loop, as it then
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(a) SS (b) SA

Figure 11: Variation in branch (blue) and saddle (green) points with Mj and S for the
k−p (0, 2) mode using the vortex-sheet model. Computed for SS (a) and SA (b) with, +
S = 2, × S = 3, ◦ S = 4, and □ S = 6.

(a) SS (b) SA

Figure 12: Variation in branch (blue) and saddle (green) points with Mj and δ for the
k−p (0, 2) mode using the finite-thickness model. Computed for (a) SS and (b) SA. S =
3 with, + δ = 0.12, × δ = 0.2 and ◦ δ = 0.4.

serves as a bound for where screech modes may occur. Any variation in the frequency
range over which the k−p modes are propogative, can be associated with variations in
the frequency range over which screech tones are to be expected. In figure 11 the effect
of Mj , S and symmetry on the branch and saddle points are shown for S = 2, 3, 4, 6
using the vortex-sheet model. Only Mj up to 1.16 are considered due to the focus of
this paper on axisymmetric screech modes. As Mj increases both the branch and saddle
points decrease smoothly, following the same trend as the single jet case (Mancinelli et al.
2019). For the SS symmetry, it is seen in figure 11(a) that changing S influences neither
the branch- nor the saddle-point values. In contrast, the SA symmetry (figure 11(b)) is
observed to be heavily dependent on S. As the jet spacing increases, the SA branch-point
frequency decreases, resulting in an increase in the existence region of the k−p (0, 2) mode.
The saddle points of the SA modes remain unchanged with S.
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Variation of branch and saddle points with shear-layer thickness is considered in figure
12, this is achieved through varying the parameter δ of Eq. 3.16 in the range 0.12, 0.2 and
0.4. These values were calculated using a∆St of 0.01, which may lead to some uncertainty
in the values obtained, causing the slight oscillations observed in figure 12. Both the SS,
figure 12(a), and the SA symmetry, figure 12(b), have an existence region that varies with
δ. This is in line with the single jet case, which also exhibited this behaviour (Mancinelli
et al. 2021). Across all values of δ the existence region of SS is greater than SA. In figure
12 the saddle points also have a dependence on δ and decrease slightly as it increases.
When using the finite-thickness model, figure 12, the existence region of SA symmetry is
noticeably greater than that found with the vortex-sheet model, figure 11. Thus, when
considering a screech feedback loop closed by the k−p (0, 2) mode, the finite thickness
model predicts a larger range over which SA symmetry screech tones may be supported.

4.3. Predictions of screech frequency

4.3.1. Single jet

Screech frequency predictions are first preformed for the single-jet system. Such an
analysis has been done previously using both a vortex-sheet and finite-thickness model
(Mancinelli et al. 2021). The equivalent predictions are performed using the experimental
setup considered here for both models. Formulation for the single-jet vortex-sheet model
is given by Eq. 3.11, whilst the finite-thickness formulation follows section 3.2 without the
domain extension, and does not require a discretisation in θ. Predictions are performed
using Eq. 3.17 over a parameter range of, s = 2 - 6, p = 2 - 6 and ϕ = 0, 1

4 ,
1
2 , 1.

Acoustics for the single jet are presented in figure 13 with predictions from the vortex-
sheet model overlaid along with the branch and saddle points of the k−p (0, 2) mode.
Best agreement was observed for parameters, s = 4, ϕ = 0 and p = 3 for the A1 mode,
and s = 4, ϕ = 0 and p = 4 for the A2 mode. These values are summarised in table
3. Agreement between the model and experimental data is good, however for each of
the A1 and A2 screech modes there is an over-prediction of the frequency at lower Mj

and an under-prediction at higher Mj . The branch points of the k−p (0, 2) modes sit just
above the end of each tone and so do not coincide precisely with the cut-off of the screech
tones. Compared to the previous work of Mancinelli et al. (2021), the key difference is
the value of the phase difference between reflection coefficients, ϕ, used for the screech
frequency predictions. They had found best agreement using ϕ = 1/4 whereas here that
agreement is found for ϕ = 0, the reflection coefficients being in-phase. This discrepancy
would be due to differences in the two facilities, as the screech feedback loop has been
noted to display facility sensitivity (Edgington-Mitchell 2019). In this case an example
being the lip thickness of the nozzle which is 15% in the current work and 3% previously
(Mancinelli et al. 2021).
The equivalent predictions of screech frequency for a single jet using the finite-thickness

model are overlaid on the experimental data in figure 14, also shown are the branch and
saddle points of the k−p (0, 2) mode. The hyperbolic tangent profile of Eq. 3.16 is used
with a value of δ = 0.2 for the velocity profile. This value is chosen to match the value
that will be used for twin-jet calculations, and a justification is provided in Appendices
B and C. As before, the parameter range of s = 2 - 6, p = 2 - 6 and ϕ = 0, 1

4 ,
1
2 , 1 is

considered. Best agreement is observed for, s = 4, ϕ = 0 and p = 4 for the A1 mode, and
s = 4, ϕ = 0 and p = 5 for the A2 mode and these parameters are summarised in table
4. Compared to the previous results from the vortex-sheet, figure 13, the predictions
here align more closely with the experimental screech tones and match them in slope.
Thus utilising a model with a more realistic velocity profile is seen to result in better
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Mode s p ϕ

A1 4 3 0
A2 4 4 0

Table 3: Parameters used for single jet vortex-sheet model predictions

Figure 13: Sound pressure levels (dB/St) measured for the single-jet system running
at several Mj . Screech frequency predictions using the vortex-sheet model are shown,
along with k−p (0, 2) branch and saddle points. Lines highlighting the screech peaks are
included. Parameters used for these predictions are, s = 4, p = 3 (A1 mode), 4 (A2
mode) and ϕ = 0.

Mode s p ϕ

A1 4 4 0
A2 4 5 0

Table 4: Parameters used for single jet finite-thickness model predictions

agreement with the experimental data. This agrees with the previous study of Mancinelli
et al. (2021) who observed best agreement between model and data for identical velocity
profile and parameters as given in table 4. Comparing tables 3 and 4 highlights that the
values of p/s are ̸= 1 (A1) and = 1 (A2) for the vortex-sheet model, whilst = 1 (A1)
and ̸= 1 (A2) for the finite-thickness model. This further indicates an improvement when
moving to the finite-thickness model as these p/s ratios align with results from Nogueira
et al. (2022a).
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Figure 14: Sound pressure levels (dB/St) measured for the single-jet system running at
several Mj . Screech frequency predictions using the finite-thickness model with δ = 0.2
are shown, along with k−p (0, 2) branch and saddle points. Lines highlighting the screech
peaks are included. Parameters used for these predictions are, s = 4, p = 4 (A1 mode),
5 (A2 mode) and ϕ = 0.

Mode s p ϕ

A1 5 4 0
A2 5 5 0

Table 5: Parameters used for twin-jet vortex-sheet model predictions

4.3.2. Twin-jet

Predictions made using a vortex-sheet model can achieve strong qualitative agreement
with experiments, as seen previously for the single jet in section 4.3.1. Given the success
of such a simple model in the prediction of single-jet screech, its performance is now
considered for the twin-jet problem. In figure 15 predictions using the twin-jet vortex-
sheet model are plotted over experimental acoustic data using equations (3.10) and (3.17).
A parameter range of, s = 2 - 6, p = 2 - 6 and ϕ = 0, 1

4 ,
1
2 , 1 was considered with best

agreement found between the model and experimental data for s = 5, ϕ = 0 and p = 4
for A1 equivalent screech modes and s = 5, ϕ = 0 and p = 5 for A2 equivalent screech
modes. These parameters are summarised in table 5. The branch and saddle points for
the k−p (0, 2) mode are also shown in figure 15. The predictions for SS symmetry are
qualitatively close to the experimental peaks. However in a more quantitative evaluation,
the model suffers from under-prediction at higher Mj and over-prediction at lower Mj

for both the A1 and A2 branches. This results in the difference in screech tone variation
with Mj between predictions and data in figure 15. These results are comparable to
those of the single jet, figure 13 and Mancinelli et al. (2021), which displayed the same
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(a) S = 2 (b) S = 3

(c) S = 4 (d) S = 6

Figure 15: Sound pressure levels (dB/St) measured for the twin-jet system running at
several Mj and spacings (a) S = 2, (b) 3, (c) 4 and (d) 6. Screech frequency predictions
using the vortex-sheet model are shown for both SS ◦ and SA □ symmetries. Along
with k−p (0, 2) branch and saddle points for SS x and SA +. Lines highlighting the screech
peaks are included. Parameters used for these predictions are s = 5, p = 4 (A1 mode),
5 (A2 mode) and ϕ = 0.

level of agreement between model and experiment. A key difference between the single
and twin-jet predictions are the parameters used, given in tables 3 and 5. When moving
from the single jet to the twin-jet best agreement is found at greater values of s and
p, suggesting that the downstream reflection point of resonance increases for a twin-jet.
There is a sharp bounding of both the A1 and A2 axisymmetric screech modes by the
SS k−p (0, 2) branch points in figure 15, and these screech modes lie entirely within the
propagative range of the SS k−p (0, 2). This is in contrast to the single-jet vortex-sheet
model where the branch points were unable to bound the screech tones, highlighting the
improvements found when moving to a twin-jet model. When considering the SA k−p
(0, 2) propagative region the screech modes are observed to lie predominantly outside
of it. At S = 2, figure 15(a), there is no overlap whereas a slight overlap is seen for S
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Mode s p ϕ

A1 4 4 0
A2 4 5 0

Table 6: Parameters used for twin-jet finite-thickness model predictions

= 3, figure 15(b), which increases with increasing S in figures 15(c) and (d). Thus, the
vortex-sheet model suggests that the axisymmetric screech modes observed in a twin-jet
system are predominantly SS symmetry for low spacings, and that there are only small
regions where SA symmetry could be supported. In the regions where both SS and SA
symmetry are permitted the model produces identical predictions for both symmetries,
providing no clear way to determine which symmetry the screech mode is expected to
be.

Predictions of the screech frequency for the finite-thickness model are obtained using
Eq. 3.17 with the k−p (0, 2) and KH wavenumbers computed from Eq. 3.15. The value of δ
used in Eq. 3.16 is 0.2, which is justified through fitting velocity profiles to experimental
particle image velocimetry (PIV) data and considering the region in which the KH mode
is unstable (see Appendix B). The same parameter range of s = 2 - 6, p = 2 - 6 and ϕ = 0,
1
4 ,

1
2 , 1 was considered; with best agreement found for s = 4, ϕ = 0 and p = 4 for the A1

equivalent screech modes, and s = 4, ϕ = 0 and p = 5 for the A2 equivalent screech modes,
summarised in table 6. These screech frequency predictions, along with the branch and
saddle points of the k−p (0, 2) mode are plotted over the experimental data in figure 16.
The parameters used here for best agreement match those found for the single-jet finite-
thickness model, table 4. This results in the same p/s ratios (= 1 or ̸= 1) as were seen
for the single jet, suggesting that the shock-cell wavenumber (dominant or sub-optimal)
associated with each of the A1 or A2 screech modes is the same for the twin-jet system
as it is for the single jet. Considering first the branch and saddle points of the k−p (0, 2)
mode, the screech modes lie entirely within the SS propagative region but there is a less-
sharp bounding by the branch and saddle points for this value of δ. The SA propagative
region is larger for the finite-thickness model than the vortex-sheet model for all S and,
by S = 6, (figure 16(d)) the screech tones are completely bounded by it. Although there
is not a sharp lower bound on the screech tones by the SS branch points, as was observed
using the vortex-sheet model in figure 15, the saddle points lie significantly closer to
the screech tones. Overall this serves as a closer bounding of the screech tones by the
SS branch and saddle points, highlighting an immediate improvement in moving from
the vortex-sheet model to the finite-thickness model for twin jets. In addition changing
the parameter δ (or equivalently, choosing a position further upstream/downstream for
the analysis) may lead to branch points closer to the lower bounds of the screech tones
observed experimentally (Mancinelli et al. 2021; Nogueira & Edgington-Mitchell 2021).
Predictions obtained with the finite-thickness model offer a clear improvement over those
found with the vortex-sheet model, with the slope of the prediction curve aligning closely
with the screech tones themselves. This improvement when moving from a vortex-sheet
to finite-thickness model matches what was observed for the single jet in section 4.3.1.
In regions where the twin-jet finite-thickness model predicts both SS and SA symmetry
there are only slight differences seen between the predictions. While this differs from
the vortex-sheet model which saw identical predictions, it is still not enough to give any
indication of a preferential screech symmetry.
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(a) S = 2 (b) S = 3

(c) S = 4 (d) S = 6

Figure 16: Sound pressure levels (dB/St) measured for the twin-jet system running at
several Mj and spacings (a) S = 2, (b) 3, (c) 4 and (d) 6. Screech frequency predictions
using the finite-thickness model are shown for both SS ◦ and SA □ symmetries. Along
with k−p (0, 2) branch and saddle points for SS x and SA +. Lines highlighting the screech
peaks are included. Parameters used for these predictions are, s = 4, p = 4 (A1 mode),
5 (A2 mode) and ϕ = 0.

4.3.3. Discussion

In figure 17(a) the screech frequencies of the A1 and A2 axisymmetric screech modes,
obtained experimentally, are compared across multiple jet separations and with the single
jet. It can be seen that there is near negligible change in screech frequency for the A1
mode, whilst the A2 mode exhibits some slight differences but is also mostly unchanged
with spacing. This suggests, primarily for the A1 mode, that the screech frequency is not
affected by the jet separation. Figures 17(b) and (c) compare the finite-thickness model
screech-frequency predictions for both SS and SA symmetry. For SS symmetry it is seen
that the prediction lines lie together with no difference for S, aside from the single-jet
prediction that sits just above the others. The SA symmetry, however, exhibits small
differences in the prediction lines with spacing and these differences display noticeable
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(a) Experiment

(b) SS (c) SA

Figure 17: Screech-frequency peaks of the A1 and A2 axisymmetric screech modes from
experiment and predicted by the finite-thickness model. These predictions use the same
parameters as tables 4 and 6 for, S = 2, 3, 4, 6 and the single jet. (a) experimental data,
(b) SS and (c) SA.

trend with the screech-frequency prediction decreasing with increasing S. From this it
could be suggested that the A1 screech mode is of SS symmetry, as both the experiment
and model predictions are unchanged with S. These results do not provide any suggestion
for the symmetry of the A2 mode.
The branch points of the k−p (0, 2) SA modes are seen to be sensitive to two main

geometric characteristics of the system: S and the shear-layer thickness. From figure
12 these branch points, for the twin-jet finite-thickness model, decrease in frequency as
the shear-layer thickness of the mean flow is increased. This then influences where the
model predicts SA symmetry modes to occur, as by considering axial locations further
downstream when constructing the mean flow it increases the range of frequencies over
which the SA k−p mode exists. As such it could be possible to observe a screech tone of SA
symmetry outside of the region predicted by the finite-thickness model in figure 16. This
would then indicate that the k−p mode is generated at a distance further downstream
than was considered by the mean flow utilised here. The dependence on S by the SA
branch points was observed using both twin-jet vortex-sheet and finite-thickness models,
in figures 11 and 12. It is not currently clear why the SA modes in particular are affected
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so strongly. The trend, decreasing branch point frequency with increasing S, suggests
that for lower jet separations, where the jets may be assumed more strongly coupled,
this coupling interferes with the propagation of the SA k−p (0, 2) mode in some way.
Further work to determine the precise nature of this interaction is required and should
shed light more generally on the behaviour of the k−p mode.
When considering the vortex-sheet model screech-frequency predictions for both a

single jet, section 4.3.1, and twin-jet, section 4.3.2, it becomes clear that a single-jet
model could not be applied in an attempt to understand twin-jet screech tones. A primary
difference for this is the performance of the two models. The twin-jet model is able to
bound the screech modes with the branch points of the SS k−p (0, 2) mode (figure 15),
whereas such agreement cannot be seen for the single jet where the branch points lie just
above the lowest frequencies of the screech modes (figure 13). Additionally a single-jet
model, by construction, cannot provide any information about symmetry. This would
leave an important aspect of the twin-jet system unable to be considered. By moving to
the twin-jet vortex-sheet model it provides an indication of where each symmetry, SS or
SA, could be expected to occur for the screech modes.
Vortex-sheet models utilise an idealised ”top-hat” velocity profile that is most accurate

very close to the nozzle. For considerations of phenomena that occur at axial locations
further downstream, using a finite-thickness model allows for a more realistic velocity
profile to be used. Increasing the complexity of the model, by moving to a twin-jet finite-
thickness model, results in better agreement with data (figure 16) and allows for the effect
of the mean flow to be considered. The region in which SA symmetry screech modes could
be expected to occur also increases when moving to the twin-jet finite-thickness model.
The present results indicated the potential for both SS and SA symmetries to be

observed experimentally for the A1 and A2 screech modes. In regions where both
symmetries are supported, either by the vortex-sheet or finite-thickness twin-jet model,
neither model provides enough information to clearly determine a preferred symmetry.
The twin-jet finite-thickness model does propose slight differences between SS and SA
screech frequencies, with the SA symmetry always occurring at the higher frequency
(figure 16), whereas screech frequencies from the twin-jet vortex-sheet model are near
identical for the two symmetries (figure 15). The difficulty in discerning symmetry may
be due to a competition between screech tones of opposing symmetry. The dominant
resonance loop will then be determined by the gain of the resonance loop associated
with either SS or SA symmetry. Such a competition between modes was previously put
forth by Bell et al. (2021) as a possible explanation for the intermittent coupling they
observed for round twin jets at higher Mj. For the lower Mj considered here similar
intermittency between symmetry may also be occurring, with the current models only
able to indicate the competing symmetries. An alternative method could be required,
such as the complex-valued model of Mancinelli et al. (2021) or the spatially periodic
analysis of Nogueira et al. (2022b), to determine the dominant symmetry in such regions
where both SS and SA are supported.
Finally, both twin-jet models, vortex-sheet and finite-thickness, assume that the twin-

jet system is coupled. Due to this the models cannot provide any insight into potential
uncoupling of the jets, a behaviour that has been observed to occur at higher Mj (Bell
et al. 2021).

5. Conclusions

This investigation used both a vortex-sheet and finite-thickness model to analyse
resonance in an under-expanded supersonic twin-jet system running at low supersonic
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Mach numbers, where the flow is expected to be dominated by axisymmetric disturbances
in each jet. Characteristics of both the KH and k−p (0, 2) modes were studied using
the models, allowing identification of the frequency range over which resonance may
occur. The range over which the k−p (0, 2) mode is propagative differs depending on
the jet symmetry, SS or SA, the jet spacing, S, and the velocity profile used when
considering the finite-thickness model. These propagative regions in the vortex-sheet
model, for SS and SA, bound the experimental screech tones well, in particular the
SS branch points which provide a sharp lower bound for the A1 and A2 modes. For
each S, the vortex-sheet model generally over-predicts the screech frequency for low
Mj and under-predicts them for high Mj , but still provides qualitative agreement to
the data. Better agreement was seen for the finite-thickness model with predictions
closely aligning with the experimental data, resulting in stronger agreement than the
vortex-sheet model. Neither model was able to distinguish between predictions of SS
and SA symmetry for the screech tones, with only slight differences observed for the
finite-thickness model, indicating a potential limitation. It is worth recalling that the
screech-frequency predictions made in section 4.3 use linear locally parallel models, and
the agreement observed between them and the experimental data is very favourable.
The improvement seen in moving from a vortex-sheet to finite-thickness model, along
with the prediction parameters used for best agreement, follows what was seen for the
single-jet case. This similarity with the single-jet case, along with the strong agreement
between the twin-jet models and data, suggests that the feedback loop operating in
single and twin-jets share similarities and the resonance feedback loop for axisymmetric
screech tones in round twin-jets is closed through the twin-jet k−p (0, 2) mode.
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Appendix A. Matrix operators for finite-thickness formulation

The spatial eigenvalue problem described by Eq. 3.15 is a simplified representation of a
third-order eigenvalue polynomial problem and as such can be expressed in the following
form (Lajús et al. 2019; Nogueira & Edgington-Mitchell 2021)

 0 I 0
0 0 I

−A0 −A1 −A2

 P̂

kP̂

k2P̂

 = k

I 0 0
0 I 0
0 0 −A3

 P̂

kP̂

k2P̂

 , (A 1)

with each operator Ai being the coefficient of kiP̂ respectively (Bridges & Morris 1984)
and defined as follows,
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with parameters as described in section 3.2.

Appendix B. Choice of velocity profile

When using the finite-thickness model a hyperbolic tangent velocity profile given by
Eq. 3.16 is applied to each jet. A required parameter of the profile is δ, which characterises
the shear layer thickness. To determine an appropriate value for this parameter particle
image velocimetry (PIV) data from Mancinelli et al. (2021) for the single jet at Mj 1.08,
1.12 and 1.16 is considered and Eq. 3.16 is fit to the data at different axial locations. The
results of this procedure are presented in figure 18, to assist in locating an appropriate
value of δ. A further consideration is that the KH mode stabilises as δ increases which
suggests an upper bound to the value of δ that can be chosen. This effect is illustrated in
figure 19 and it can be seen that the growth rate of the KH mode decreases quickly with
δ at higher St number. With the focus of this paper on the axisymmetric screech modes,
that occur at high St, the value of δ must be chosen such that the KH mode is still
unstable at these St. As such, when considering both figures 18 and 19, δ = 0.2 seems
to be an appropriate value that follows both constrains. This value corresponds to the
region within the first few axial diameters of the jet, from figure 18, which is where screech
modes are expected to be dominant (Edgington-Mitchell et al. 2021) and maintains an
unstable growth rate of the KH mode at high St, from figure 19. Considerations of the
finite-thickness model for a single jet use the same value of δ for consistency. A full
parameterisation outlining the regions where the KH mode becomes stable for a twin-jet
will form part of a future work.

Appendix C. Validation of velocity profile

To validate the superimposed tanh velocity profile chosen in Appendix B, it is com-
pared to experimental twin-jet particle image velocimetry (PIV) data. The data was
collected at the same facility as described in section 2. Seeding of the flow used paraffin
oil delivered via an in-house seeder. Images were captured using an ImperX B6640M
camera with resolution 6576 x 4400 pixels. A total of 8000 images were taken at both
Mj considered, 1.1 and 1.16, for S = 2 resulting in 4000 velocity snapshots. Image
pairs were processed with the PIVLab toolbox of MATLAB using a multi-grid cross-
correlation algorithm (Soria 1996). In figure 20 the velocity profiles of both the PIV



26 M. N. Stavropoulos et al.

Figure 18: Values of the shear layer characterisation parameter δ obtained when fitting
the hyperbolic tangent profile to single jet PIV data. Several axial locations (x/D) are
considered for Mj 1.08, 1.12 and 1.16.

Figure 19: Growth rate of the axisymmetric twin-jet KH instability with shear layer
characterisation parameter δ for SS symmetry, S = 3 and Mj = 1.12 at St = 0.5, 0.6,
0.7 and 0.72.

and superimposed tanh profile are compared at S = 2 for both Mj = 1.1 and 1.16,
representing the range of jet Mach numbers considered herein. Here the mean velocity
field is for an axial position of x/D = 2. Strong agreement between the modelled and
experimental velocity profiles is observed. This shows that within this work the velocity
profile chosen is accurate for modelling waves at x/D = 2. Further justification in using
a superimposed tanh profile can be found when considering greater axial locations. This
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(a) Mj = 1.1 (b) Mj = 1.16

Figure 20: Comparison between the modelled, tanh superposition, and experimental, PIV
data, velocity profiles for an S = 2 twin jet at x/D = 2. Jet Mach numbers of 1.1, (a),
and 1.16, (b), are considered.

is shown in figure 21 for the same jet separation and Mach numbers at axial positions
of x/D = 3 and 5. A close fit can be obtained here also by adjusting δ to values of 0.5
and 0.9 respectively. Of particular note is the ability of the model to accurately capture
the velocity profile in the inter-jet region. From this it is clear that over the low Mj

range considered in this work use of a superimposed tanh profile can accurately model a
twin-jet mean flow. Whilst other methods of obtaining a mean flow exist, such as utilising
RANS, the availability of the twin-jet PIV data and agreement observed in figures 20
and 21 facilitate the use of a superimposed tanh profile. For completeness an example
screech-frequency prediction is calculated using the superimposed tanh profile of figure
21(a) (δ = 0.5) for computing the k−p mode wavenumbers, with the wavenumbers of the
KH mode obtained as before using δ = 0.2. This is compared with the previous prediction
from figure 16(a) at Mj = 1.1 in figure 22. It indicates how utilising different values of δ,
corresponding to different axial positions, can lead to differences in the screech-frequency
predictions or even lead to predictions at jet conditions where they did not previously
exist (figure 22). This suggests that in future work it may be beneficial to consider the
specific axial locations where the k−p (0, 2) and KH modes are thought to be generated
and compute their respective wavenumbers there for use in prediction models.

REFERENCES

Bayliss, Alvin & Turkel, Eli 1992 Mappings and accuracy for chebyshev pseudo-spectral
approximations. Journal of Computational Physics 101 (2), 349–359.

Bell, G, Cluts, J, Samimy, M, Soria, J & Edgington-Mitchell, D 2021 Intermittent
modal coupling in screeching underexpanded circular twin jets. Journal of Fluid Mechanics
910.

Bell, Graham, Soria, Julio, Honnery, Damon & Edgington-Mitchell, Daniel 2018 An
experimental investigation of coupled underexpanded supersonic twin-jets. Experiments
in Fluids 59 (9), 1–19.

Berndt, DE 1984 Dynamic pressure fluctuations in the internozzle region of a twin-jet nacelle.
Tech. Rep.. SAE Technical Paper.

Bridges, TJ & Morris, Philip John 1984 Differential eigenvalue problems in which the
parameter appears nonlinearly. Journal of Computational Physics 55 (3), 437–460.



28 M. N. Stavropoulos et al.

(a) Mj = 1.1, x/D = 3 (b) Mj = 1.1, x/D = 5

(c) Mj = 1.16, x/D = 3 (d) Mj = 1.16, x/D = 5

Figure 21: Comparison between the modelled (tanh superposition), and experimental
(PIV), velocity profiles for an S = 2 twin jet at, (a) Mj = 1.1 and x/D = 3, (b) Mj =
1.1 and x/D = 5, (c) Mj = 1.16 and x/D = 3 and, (d) Mj = 1.16 and x/D = 5. Values
of δ used for the tanh superposition are 0.5 and 0.9 respectively for x/D = 3 and 5.

Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. Journal of Fluid
Mechanics 48 (3), 547–591.

Davies, MG & Oldfield, DES 1962 Tones from a choked axisymmetric jet. i. cell structure,
eddy velocity and source locations. Acta Acustica united with Acustica 12 (4), 257–267.

Du, Zihua 1993 Acoustic and Kelvin-Helmholtz Instability Waves of Twin Supersonic Jets.
PhD thesis, Department of Mathematics, The Florida State University, Florida.

Edgington-Mitchell, Daniel 2019 Aeroacoustic resonance and self-excitation in screeching
and impinging supersonic jets–a review. International Journal of Aeroacoustics 18 (2-3),
118–188.

Edgington-Mitchell, Daniel, Jaunet, Vincent, Jordan, Peter, Towne, Aaron, Soria,
Julio & Honnery, Damon 2018 Upstream-travelling acoustic jet modes as a closure
mechanism for screech. Journal of Fluid Mechanics 855.

Edgington-Mitchell, Daniel, Li, Xiangru, Liu, Nianhua, He, Feng, Wong, Tsz Yeung,
Mackenzie, Jacob & Nogueira, Petronio 2022 A unifying theory of jet screech.
Journal of Fluid Mechanics 945.

Edgington-Mitchell, Daniel, Wang, Tianye, Nogueira, Petronio, Schmidt, Oliver,
Jaunet, Vincent, Duke, Daniel, Jordan, Peter & Towne, Aaron 2021 Waves in
screeching jets. Journal of Fluid Mechanics 913.



Axisymmetric screech tones of round twin jets 29

Figure 22: Sound pressure levels (dB/St) measured for the twin-jet system running at
several Mj for S = 2. A line highlighting the A1 screech peaks is included. The k−p (0, 2)
branch and saddle points are computed at Mj = 1.1 for the SA symmetry using a δ of 0.2
(+), and 0.5 (x) respectively. A screech frequency prediction using the finite-thickness
model is shown (◦), with the KH and k−p wavenumbers computed using δ of 0.2 and 0.5
respectively. Parameters used for this prediction are, s = 4, p = 4 and ϕ = 0.

Gojon, Romain, Bogey, Christophe & Mihaescu, Mihai 2018 Oscillation modes in
screeching jets. AIAA Journal 56 (7), 2918–2924.

Harper-Bourne, M & Fisher, MJ 1974 The noise from shock waves in supersonic jets, noise
mechanisms-agard conference on propagation and reduction of jet noise. AGARD CP-131
pp. 11–1.

Jordan, Peter, Jaunet, Vincent, Towne, Aaron, Cavalieri, André VG, Colonius,
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physics. Elsevier.

Lee, WM & Chen, JT 2011 Free vibration analysis of a circular plate with multiple circular
holes by using indirect biem and addition theorem. Journal of Applied Mechanics 78 (1).

Lessen, M, Fox, JA & Zien, HM 1965 The instability of inviscid jets and wakes in compressible
fluid. Journal of Fluid Mechanics 21 (1), 129–143.

Mancinelli, Matteo, Jaunet, Vincent, Jordan, Peter & Towne, Aaron 2019 Screech-
tone prediction using upstream-travelling jet modes. Experiments in Fluids 60 (1), 22.

Mancinelli, Matteo, Jaunet, Vincent, Jordan, Peter & Towne, Aaron 2021 A
complex-valued resonance model for axisymmetric screech tones in supersonic jets. Journal
of Fluid Mechanics 928.

Mancinelli, Matteo, Martini, Eduardo, Jaunet, Vincent, Jordan, Peter, Towne,
Aaron & Gervais, Yves 2023 Reflection and transmission of a kelvin–helmholtz wave
incident on a shock in a jet. Journal of Fluid Mechanics 954, A9.



30 M. N. Stavropoulos et al.

Merle, Mlle Marie 1957 Nouvelles recherches sur les fréquences ultrasonores émises par les
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