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A B S T R A C T   

Connectivity conservation and restoration are key strategies to preserve biodiversity under the pressure of 
habitat loss and fragmentation. Numerous quantitative approaches have been developed to help conservation 
practitioners take the most effective and cost-efficient actions to conserve, restore or create habitat patches or 
corridors that preserve or enhance landscape connectivity. This problem is often solved by ranking habitat 
patches (or corridors) with suboptimal algorithms that do not account for the cumulative effects that may occur 
in the case of simultaneous or sequential losses (or enhancements) of multiple habitat patches. Accounting for 
these cumulative effects is one of the current challenges for connectivity conservation. Here, we quantify these 
cumulative effects and explore the trade-off between solution quality and computational time when optimizing 
the selection of conservation/restoration actions that maximize landscape connectivity under a budget 
constraint; connectivity is here measured by the frequently-used Equivalent Connected Area. We compare the 
solutions obtained with a new optimization pipeline with solutions obtained with four simpler algorithms used in 
most connectivity conservation studies. Comparison is performed for four case studies covering a wide range of 
possible applications for conservation practitioners. We show that the simpler algorithms can provide suboptimal 
solutions, when conservation/restoration actions have a strong impact on least-cost paths between the habitat 
patches, and that optimal resolution should be considered whenever possible.   

1. Introduction 

Connectivity conservation has been identified as an essential lever 
for biodiversity conservation in the face of natural habitat loss and 
fragmentation (Crooks and Sanjayan, 2006; Lawler, 2009). Imple-
menting connectivity conservation requires that conservation practi-
tioners identify areas where habitat conservation or restoration will be 
most effective and cost-efficient for landscape connectivity (Beier et al., 
2011). A multitude of frameworks have been developed to address this 
question for a variety of contexts and biological systems (Magris et al., 
2016; Albert et al., 2017; Tarabon et al., 2019). However, they largely 
struggle to account for the cumulative effects that can occur when 
multiple impacts or small-scale decisions accumulate over large habitat 
networks (Foley et al., 2017; Whitehead et al., 2017). 

One of the most typical workflows, widely applied by conservation 
practitioners, is to rank each of the individual habitat patches (or cor-
ridors) of the study area according to their importance in maintaining 
overall landscape connectivity. This ranking thus guides decision- 

making for conservation measures, with high-ranked patches (or corri-
dors) targeted for conservation or restoration actions within a given 
budget and low-ranking ones allocated to other human uses (Yemshanov 
et al., 2019). Quantifying the contribution of habitat patches (or corri-
dors) to connectivity can be conducted through a variety of methods and 
metrics, including graph-based approaches (Urban and Keitt, 2001). 
Measures of connectivity which relate to habitat availability, such as the 
Equivalent Connected Area (hereafter ECA, Saura et al. (2011)) or the 
Probability of Connectivity (hereafter PC, Saura and Pascual-Hortal 
(2007)), that are currently widely used for this purpose (Schivo et al., 
2020) as they have received encouraging experimental support (M. 
Pereira et al., 2011; Awade et al., 2012). The ranking of habitat patches 
(or corridors) is then estimated by a patch removal experiment, i.e. by 
calculating the relative decrease in connectivity obtained when patches 
are hypothetically removed in turn (Bodin and Saura, 2010). Similarly, 
such virtual experiments can be made to identify the best candidates for 
restoration or re-creation of habitat patches or corridors by calculating 
the relative increase in connectivity (Blazquez-Cabrera et al., 2019). 
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(C.H. Albert).  

Contents lists available at ScienceDirect 

Biological Conservation 

journal homepage: www.elsevier.com/locate/biocon 

https://doi.org/10.1016/j.biocon.2023.110066 
Received 23 January 2023; Received in revised form 31 March 2023; Accepted 7 April 2023   

mailto:francois.hamonic@lis-lab.fr
mailto:basile.couetoux@lis-lab.fr
mailto:yann.vaxes@lis-lab.fr
mailto:cecile.albert@imbe.fr
www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2023.110066
https://doi.org/10.1016/j.biocon.2023.110066
https://doi.org/10.1016/j.biocon.2023.110066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2023.110066&domain=pdf
calbert
Rectangle

calbert
Rectangle

calbert
Rectangle



Biological Conservation 282 (2023) 110066

2

Despite its widespread use, this approach still largely fails to capture 
the cumulative effects that may occur in the case of simultaneous or 
sequential losses (or enhancements) of multiple patches (or corridors) 
through time (Foley et al., 2017). Indeed, a large majority of studies use 
this framework with single-node (nodes being habitat patches) or single- 
link (links being corridors in a graph-based approach) removal/addition 
(Table A.1). This means that they assess the potential effects of 
conserving (or restoring) each patch (or corridor) independently and 
therefore do not take into account the potential interactions of multiple 
changes, i.e. the cumulative effects. These interactions can be: synergies 
when potential changes are in series and only their combination might 
improve the connectivity, redundancies when potential changes are in 
parallel and choosing only one might be sufficient, or antagonisms when 
a potential change might make no sense without additional actions 
(Fig. 1). A few years ago, Rubio et al. (2015) have warned that single- 
node approaches might lead to suboptimal conservation solutions. For 
instance, single-node approaches will overlook the potential benefit of 
connecting large parks through a series of stepping stones (Fig. 1). Rubio 
et al. (2015) also pointed out that identifying the N most important 
patches in the study area on the basis of an exhaustive search through all 
combinations of deletions of patches is computationally demanding and 
can quickly become impractical for networks with more than 20 nodes. 

Since then, a few studies have used greedy algorithms that build 
solutions iteratively (Hodgson et al., 2016; Tarabon et al., 2019). At each 
step, simulations are performed taking into account the decisions made 
in the previous steps and the best element is added to the solution. 
Various algorithms have also been developed for multi-node selection 
based on network centrality or habitat availability (An and Liu, 2016; J. 
Pereira et al., 2017) for landscapes with up to 150 nodes, or in the 
specific case of dendritic networks (Wu et al., 2014; Sethi et al., 2017). 
In particular, Xue et al. (2017) have proposed a new algorithm to obtain 
the exact optimal solution when optimizing PC on a graph, but it re-
mains applicable to few nodes only due to computational constraints 
(<30). Consequently, no study has yet compared optimal and 

approximated solutions for larger graphs. This means that we still do not 
know, both ecologically speaking and in terms of decision-making, how 
important it is to consider cumulative effects in connectivity 
conservation. 

Here, we propose to quantify these cumulative effects on larger 
graphs (up to hundreds of habitat patches) and to explore the trade-off 
between computational time and solution quality for real case studies. 
To do this, we place ourselves in the case of the framework described 
above, namely the identification of the N most important elements 
(nodes or links) to be targeted for conservation or restoration actions 
when maximizing the ECA under a budget constraint. We compare the 
optimal solution — which takes cumulative effects into account — with 
solutions obtained with simplified approaches classically used by ecol-
ogists that do not account for cumulative effects (single node/link se-
lection) or partially account for them (greedy selection). To obtain the 
optimal solution, we use the new pipeline we have developed (Hamonic 
et al., 2023) which combines a preprocessing algorithm and a mixed 
integer formulation and allows to solve larger problems than previous 
methods while accounting for all the cumulative effects. We compare 
the different algorithms both in terms of solution quality and compu-
tational time on four contrasted case studies that cover a wide range of 
possible applications for conservation and restoration practitioners. We 
address the following questions: 1) Should we account for the synergies 
and redundancies among options when running connectivity conserva-
tion/restoration prioritization analyses? 2) Are the greedy algorithms 
sufficient to address these synergies/redundancies or do we need an 
optimal solution? 

2. Methods 

2.1. Model and problem formulation 

The landscape is modeled by a graph G = (V,A,w, π) where each 
node u ∈ V represents a habitat patch, and is associated with a weight wu 
that represents its ecological quality (e.g. habitat area for a given spe-
cies). Each directed link (u, v) ∈ A represents a connection that in-
dividuals of this species can use to move from node u to node v and πuv is 
the probability for an individual to succeed in this move. 

The ECA indicator (Saura et al., 2011) is a combined measure of 
habitat amount and connectivity derived from the Probability of Con-
nectivity index (Saura and Pascual-Hortal, 2007). While PC is defined as 
the probability that two animals randomly placed within the landscape fall 
into habitat areas that are reachable from each other, ECA is the area of a 
single habitat patch that would have the same PC value as the landscape. ECA 
is computed as: 

ECA(G = (V,A,w, π) ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

s,t∈V
ws⋅wt⋅Πst

√

where Πst is the probability of the most probable path from s to t where 
the probability of a path is the product of the probabilities of its links. 

We define the Max-ECA problem as follows. Let G = (V,A,w, π) be a 
landscape and let Φ be a set of options. Each option i ∈ Φ has a cost ci, a 
weight wi

u ≥ 0 for each node u ∈ V and a probability πi
uv ≥ πuv for each 

link (u, v) ∈ A. The Max-ECA problem consists in finding the set of op-
tions S ⊆ Φ whose total cost remains below a budget B and which 
maximizes the ECA value of the landscape improved by these options, i. 
e. ECA(G′

= (V,A,w′

, π′

) ). The improved weight of a patch u is calcu-
lated as w′

u = wu +
∑

i∈Swi
u, i.e. the improvements of different options on 

the same patch accumulate, and the improved probability of a link (u, v)
is calculated as π′

uv = max
(
πuv,maxi∈Sπi

uv
)
, i.e. only the best allowed 

probability of the link is taken. This problem captures both restoration 
and conservation problems. In the case of restoration, G is the current 
landscape, Φ is the set of restoration options, wi

u represents the amount 
by which the habitat area of the node u is increased and πi

uv represents 

Fig. 1. Hypothetical case study of the restoration of corridors between pro-
tected areas, for the conservation of a monkey species. The acquisition of a dash 
costs one budget unit. A single-link approach will primarily lead to the recon-
nection of red and/or orange parks to larger ones. It will overlook the potential 
benefit of linking the two larger parks through a series of stepping stones. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

F. Hamonic et al.                                                                                                                                                                                                                               

calbert
Rectangle

calbert
Rectangle

calbert
Rectangle



Biological Conservation 282 (2023) 110066

3

the increased probability of the link (u, v) if the option i is chosen. In the 
case of conservation, G represents the landscape as it would be if no 
conservation action is taken, Φ is the set of conservation options, wi

u 
represents the amount of habitat area of the node u that is protected by 
the option i and πi

uv is a lower bound on the probability of the link (u, v)
guaranteed by the choice of i. In both cases, the Max-ECA problem is to 
find a set of options S of total cost at most B that maximizes the ECA of 
the restored (resp. protected) landscape G′ . 

2.2. Algorithms 

For the Max-ECA problem, we compare the optimal solution, ob-
tained with the mixed integer program of Hamonic et al. (2023), to the 
solutions obtained with four simpler algorithms: the incremental local, 
the decremental local, the incremental greedy and the decremental greedy. 
Local algorithms correspond to single-node approaches while greedy 
algorithms take decisions step by step, taking into account their past 
decisions at each step. Incremental selection means we start with the 
empty solution and add iteratively the most beneficial improvements 
while decremental selection means we start with all the improvements 
and progressively remove the less interesting ones. 

The incremental local algorithm starts by calculating the potential 
gain in ECA, Δ+

i , for each option i ∈ Φ, i.e. the difference between the 
ECA value of the graph without enhanced elements and the ECA value of 
the graph where only the elements of the option i are enhanced. It then 
selects, in descending order, the options with the greatest ECA gain/cost 
ratio, i.e. Δ+

i /ci, that fit within the budget. The incremental local algo-
rithm does not take cumulative effects into account as options are 
chosen independently of each other. To overcome this problem, the 
incremental greedy algorithm iteratively selects the option with the best 
ECA gain/cost ratio and recalculates these ratios at each step based on 
the graph updated with the options that were taken in the previous steps. 
In this way, the incremental greedy algorithm partly takes into account 

the cumulative effects between the options taken, but at the cost of 
additional calculations. Because it does not question past decisions, it 
can easily miss synergies that exist in certain combinations of options. 

The decremental local algorithm starts from the graph with all po-
tential improvements made and computes the potential loss in ECA Δ−

i , 
for each option i ∈ Φ, i.e. the difference between the ECA value of the 
graph with all improvements and the ECA value of the graph with all 
improvements except those of the option i. Then it iteratively removes 
the option with the smallest ECA loss/cost ratio, i.e. Δ−

i /ci until the 
remaining options fit within the budget. The decremental greedy does 
the same, but recomputes potential losses in ECA after each option 
removal. 

2.3. Case studies 

We have selected four case studies that cover a wide range of po-
tential applications for conservation practitioners (Fig. 2), including 
conservation and restoration problems focused on habitat patches or 
corridors for different types of organisms (mammal, fish, bird, 
amphibian) in different types of ecosystems (terrestrial or freshwater). 
These case studies also reflect different types of graphs or topologies that 
are classically used in connectivity conservation studies, such as the tree 
graph (which contains only the minimum number of links to connect all 
nodes, typically used for river systems), the complete graph (which 
contains all possible links to connect all the pairs of nodes), the mini-
mum planar graph (Fall et al., 2007) (which contains only links that 
connect two adjacent nodes with no crossings allowed) or the lattice 
graph (which forms a regular tiling of the study area). Note also that case 
studies 2 and 3 account for the resistance to movement that animals can 
encounter when moving among patches in the landscape matrix while 
case studies 1 and 4 don’t. These case studies relate to real conservation 
or restoration problems, but the results presented here and the param-
eterizing of the models aim to be illustrative. In each case, the param-
eters selected (dispersal distance, matrix resistance) are intended to 

Fig. 2. Case studies.  
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reflect the biology of the study species and the parameters related to the 
improvement of nodes or links in the graph have been arbitrarily set to 
highlight the effects of potential conservation or restoration actions. 
Application-oriented results would require the involvement of local 
stakeholders, which was beyond the scope of this study. We imple-
mented our model as well as the preprocessing and greedy algorithms in 
C++ using Gurobi Optimizer (Gurobi Optimization, 2022). 

Case study 1 consists in identifying among a set of 15 dams present 
on the Aude river (France) those that need to be equipped with fish 
passes in order to restore the river connectivity for trout (Saint-Pé, 
2019). The river is modeled by a graph whose 34 nodes represent the 
river stretches obtained by cutting the river tributaries at each conflu-
ence point and each dam (Erös and Lowe, 2019; Segurado et al., 2013). 
The weight of each stretch is its length, as an approximation for its area. 
Two adjacent stretches u and v are connected by reciprocal links (u, v)
and (v, u) which represents the ability for an individual to move from the 
center of one stretch to the center of the other in upstream and down-
stream directions. Each link (u, v) is associated with a probability πuv 
representing the feasibility for an individual to make the corresponding 
movement. If the stretches u and v are separated by a dam we fix this 
probability to zero, i.e. πuv = 0, otherwise we compute it according to 
the negative exponential model, considering a median dispersal range of 

10 km (Crook, 2004), i.e. πuv = exp
(
−

log(0.5)
10000 ⋅d(u, v)

)
where d(u, v) is the 

distance in meters between the centers of the stretches u and v along the 
river course. The installation of a fish pass on a dam is modeled by 
increasing the probability of the corresponding links from 0 to 80 % of 
the probability computed with the negative exponential model. We as-
sume that all fish passes have the same construction cost. 

Case study 2 consists in identifying the remnant forest patches that 
need to be preserved from deforestation in the Montreal vicinity (Can-
ada) to guarantee habitat connectivity for the wood frog (Albert et al., 
2017). Here the 518-nodes graph is a minimal planar graph (Fall et al., 
2007) whose 909 links are least-cost paths among habitat patches. Each 
link is weighted with a probability of movement which is a negative 
exponential function of the least-cost path length among patches, with a 
median dispersal of 300 m. For each node u, we have an estimate of the 
area it could lose by 2050 to agriculture or urbanisation (‘business as 
usual’ scenario, Albert et al., 2017). A total of 260 nodes could be 
reduced in size (wi

u > 0), of which 80 could disappear if not protected 
(wi

u = wu). While for partially-threatened nodes we consider that in-
dividuals can continue to move across adjacent links with unchanged 
probabilities, for each fully-threatened node u we also set the probability 
of each incident link {u, v} to 0, so that they no longer contribute to any 
most-probable path. The disappearance of these nodes thus also affects 
the nodes to which they were connected. We assume that the protection 
cost of each node is proportional to its potential area loss by 2050. 

Case study 3 consists in identifying street sections in which planting 
trees can improve the connectivity of the urban canopy for the European 
red squirrel in the city of Aix-en-Provence (France). The landscape is 
here modeled with 6186 hexagon grid cells of 187 m2 each. A hexagon is 
associated with a quality weight of 1 if it contains mostly treed areas and 
0 otherwise. Each hexagon u is also associated with a probability of 
connection μu (probability that an individual succeeds when moving 
through it) that depends on the underlying land cover: 1 for habitat, 0.97 
for partially treed areas, 0.7 for low vegetated areas, 0.45 for non 
vegetated areas, 0.25 for roads and 0 for buildings. These values 
correspond to a median dispersal distance of about 2 km when matrix is 
suitable and lower otherwise (Wauters et al., 2010). The probability of 
each link (u, v) is computed as πuv = (μu⋅μv)

1
2. As a substitute for 

empirical data, we assume that planting trees along a street section al-
lows squirrels to travel 6 times further: the probability of using the link 
uv increases, πi

uv = (πuv)
1
6; the cost of these actions is proportional to the 

number of crossed hexagons. For illustration, we chose here a set of 47 
candidate street sections for which we implemented ECA optimization. 

Case study 4 consists in identifying the unbuilt lots (usually biodi-
versity rich grasslands or shrublands) in the city of Marseille (France) 
that need to be preserved from development to maintain connectivity 
among urban parks and the surrounding natural areas, both of which 
provide habitat for songbirds (e.g. Eurasian blackcap). These unbuilt 
lots, that are mainly present in the city periphery, can indeed act like 
stepping stones between natural areas and urban parks. The baseline 
graph is composed of 196 nodes of which 42 model the frontier of 
natural areas (20 ha each), 43 represents smaller parks (1 ha), 11 larger 
parks (5 ha), and 100 unbuilt lots (0.1 ha). The graph is nearly complete, 
and each link is weighted with a probability of movement which is a 
negative exponential function of the border to border distance among 
patches, with median dispersal distance of 3000 m (Paradis et al., 1998). 
We have arbitrarily chosen to remove links with probabilities less than 
0.135 in order to reduce the graph size and to speed up the calculations. 
When an unbuilt lot is not selected for conservation, its area becomes 
zero and it no longer contributes to any shortest path (probability of 
moving along adjacent links set to zero). When selected, its attributes 
and those of its adjacent links do not change. 

3. Results 

3.1. Solution quality 

By comparing the quality of the solutions obtained by the different 
algorithms, we have confirmed experimentally that greedy and local 
algorithms can return - at least for some values of the budget - subop-
timal solutions (Fig. 3). In all cases, the four simpler algorithms converge 
towards the optimal solutions as the budget increases, rapidly up to 
10–20 % of the maximum budget (all options are chosen), then more 
slowly. As expected, the greedy algorithms lead on average to solutions 
closer to the optimum than the local algorithms (Fig. A.1). The decre-
mental greedy algorithm leads on average to slightly better solutions 
than the incremental greedy algorithm, while the decremental local 
algorithm leads on average to worse solutions than the incremental local 
algorithm. Although solutions can quickly approach the optimal solu-
tion as the budget increases, we also observe sharp drops in solution 
quality for the four simpler algorithms. In the case of Montreal, the in-
cremental local suddenly deviates from the optimum around 11 % of the 
maximum budget. In the case of Marseille, the decremental local de-
viates from the optimum around 4 % of the maximum budget. In the case 
of Aude, the incremental local and incremental greedy show smaller but 
frequent deviations from the optimum up to 80 % of the maximum 
budget. The observed deviations from the optimum mean that at some 
point previous decisions were not the best given the new decisions that 
can be made as the budget increases. Our results also show some dis-
crepancies between the cases, with the solutions being on average better 
for Marseille and Montreal cases than for Aix and Aude cases (Fig. 3). 

3.2. Execution time 

Execution time varies considerably between case studies and algo-
rithms, ranging from a few milliseconds to a few minutes. It thus varies 
by several orders of magnitude for a given case study processed by the 
different algorithms (Fig. 4). It is not easy to disentangle the different 
sources of time distribution. 

The incremental local algorithm is the fastest for all case studies, 
followed by the decremental local algorithm (Fig. 4). For both local 
algorithms the computation time depends mainly on the graph’s size, 
because the change in ECA is calculated once for each option and the 
time needed to calculate ECA depends directly on this. 

The greedy algorithms have a longer computation time than the local 
algorithms, and can be faster (Aix and Aude cases) or equivalent to the 
optimal algorithm (Montreal and Marseille cases, Fig. 4). Their 
computation times depend on the graph’s size but also on the value of 
the budget (Fig. A.2). Indeed, the incremental (resp. decremental) 
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greedy algorithm needs to compute ECA after each option selection 
(resp. removal) a larger (resp. smaller) value of the budget may increase 
the number of steps of the algorithm and thus the number of times ECA 
has to be computed. Therefore, the two greedy algorithms are equivalent 
in terms of computation time at an intermediate point of the budget. 

The computation time of the optimal algorithm is higher than that of 

the other algorithms in the cases of Aix and Aude, but is between the 
computation time of the local algorithms and the greedy algorithms in 
the cases of Montreal and Marseille (Fig. 4). It depends on the space that 
needs to be explored on the decision tree of options. The search time is at 
most a function of 2N (N being the number of options), but the optimi-
zation process allows a large reduction of this time by cutting some 
branches of the decision tree that cannot lead to an optimal solution. 

Note that here the preprocessing time is included in the computation 
time of the optimal algorithm (it corresponds to a constant part of this 
computation time as it does not depend on the budget and could be 
performed only once if several budgets were to be tested as different 
scenarios of a same project), it allows to reduce the computation time by 
a factor of 6 to 60, depending on the case study and the density of the 
graph (Hamonic et al., 2023). 

4. Discussion 

To better integrate biodiversity issues into land use planning, it is 
now necessary to determine whether the cumulative effects of decisions 
should be taken into account (Rubio et al., 2015). Here, we use a new 
optimal algorithm developed to solve the Max-ECA problem (Hamonic 
et al., 2023) on several full-size instances whose optimal solutions were 
out of reach by brute force algorithms. We compare this new method 
with four simpler algorithms that are currently widely used in conser-
vation (Table A.1) but can lead to suboptimal solutions Rubio et al. 
(2015). Below, we discuss the potential limits of the different algo-
rithms. Based on four contrasted case studies, we establish some 
guidelines to help decide. 

Fig. 3. Percentage gain in ECA achieved by the solutions of the different algorithms compared to the optimal solution (Hamonic et al., 2023) as a function of 
the budget. 

Fig. 4. Box plot synthesizing the computation times achieved by the different 
algorithms for each case study with different budget values. The whiskers 
represent the min and max values, the box corresponds to the values between 
the 25th and 75th percentiles, the horizontal line is the median and the dashed 
line is the mean. 
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4.1. Quality of the solutions for the different algorithms 

As expected, the mixed integer optimization algorithm always finds 
the best solution for a given budget (higher ECA values), while the local 
and greedy algorithms mostly lead to under-optimal solutions. The 
greedy algorithms lead on average to solutions that are closer to the 
optimum than the local algorithms, because they partly account for 
cumulative effects. All algorithms, whether local or greedy, incremental 
or decremental, deviate from the optimal solution for some budget 
values. There are two possible and non-exclusive explanations to these 
deviations. 

On the one hand, the deviations could be due to the suboptimality of 
the greedy and local algorithms for the knapsack problem, a problem in 
combinatorial optimization. The knapsack problem seeks to determine, 
given a set of objects with a weight and a value, which objects should be 
chosen to fill a knapsack so that the total weight is less than or equal to 
its load limit and the total value is as large as possible (Nemhauser and 
Wolsey, 1988). It is similar to our problem of resource allocation, where 
the decision-makers have to choose from a set of non-divisible options 
under a fixed budget. Thus, even if there are no cumulative effects be-
tween the chosen options, local and greedy algorithms do not guarantee 
an optimal budget allocation (Dilkina et al., 2011). However, this sub-
optimality issue only arises when the costs of the options are not all the 
same. Otherwise, i.e. when the options all have equal costs, the knapsack 
can easily be filled optimally by choosing the options with the highest 
values first. Unlike the other three cases, in the Aude case, all options 
have a similar cost, so we know that the observed deviations cannot be 
explained by the suboptimality of the greedy algorithm for the knapsack 
problem. 

On the other hand, these deviations could be due to synergies or 
redundancies of certain combinations of options, i.e., cumulative effects. 
The fact that the four simpler algorithms perform poorly in some arbi-
trary and unpredictable cases is due to the way they work sequentially, 
and their inability to question previous decisions based on novel ones. 
As stated earlier, we know that in the Aude case the observed deviations 
in quality between the simpler algorithms and the optimal algorithm are 
not related to the suboptimality of greedy algorithms for the knapsack 
problem; we thus assume these deviations are due to interactions among 
the potential options and the order in which they are chosen. Sequential 
selections may overlook the potential effects of selecting multiple op-
tions along the same branch if each individual option brings only small 
improvements in ECA (e.g. Fig. 1). In the other three cases, we assume 
that the observed deviations may be due to both explanations; the size 
and density of the graphs make it difficult to understand the effect of 
each option or budget level on the overall graph and its ECA value. 

4.2. Computation time of the different algorithms 

Computation time varies by several orders of magnitude between 
case studies and between algorithms. The computation time of the 
different algorithms depends on several elements, including: the search 
procedure, the size of the graph, the number of options, the budget, and 
the complexity of the problem (existence of synergies/redundancies 
among options), all being not necessarily independent. For both local 
algorithms, the computation time depends only on the number of 
possible options and the time needed to calculate ECA (so the graph 
size). That is why they are faster to compute, and that also explains why 
they are currently largely used in applied conservation problems 
(Table A.1). Here, decremental (less used in practice) is a bit longer than 
incremental due to implementation procedure which implies more 
calculation steps. For both greedy algorithms, the computation time 
depends on the number of options, but also largely on the size of the 
graph, as the time required to compute ECA directly depends on it, and 
ECA needs to be recalculated N − k times for each kth additional option. 
The computation time of the incremental greedy algorithm increases 
with the value of the budget, this is due to the fact that a larger budget 

allows for the inclusion of more options and therefore requires the 
addition of the computation of the effects of these additional options on 
top of those already chosen. 

For the optimal algorithm, the computation time depends on the 
space that needs to be explored on the decision tree of options, which is 
at most a function of 2N (N being the number of options), but the opti-
mization process allows a large reduction of this time by cutting 
branches of the decision tree that cannot lead to an optimal solution. For 
this reason, the computation time of the optimal algorithm is shorter for 
smaller problems (smaller graphs with fewer options) but also when the 
problem is simpler (fewer complex interactions between the potential 
solutions) because more branches can be pruned earlier. This can also 
occur when the maximal ECA value has been reached and additional 
options only marginally (or do not) improve this value; in the case of 
Aix, for instance, this arises around 30 % of the budget (or 80 % in the 
case of Aude). The computation time of the optimal algorithm is overall 
less predictable. 

We have chosen to illustrate this paper by demonstrating the method 
on cases on which the four algorithms run easily and thus quantify the 
differences in the orders of magnitude required by the different algo-
rithms. Obviously, no one is afraid to run a calculation for a few minutes, 
hours, or even days if they want to arrive at an efficient and cost- 
effective solution to their conservation problem. However, months or 
years quickly become problematic. The experiments presented in 
Hamonic et al. (2023) show that the computation time needed to solve 
the mixed integer program grows almost exponentially with the number 
of options (see Fig. 5). This means that by adding options to the problem, 
one can quickly switch from a calculation time of a few hours to a time of 
a few days. Combining and comparing different conservation scenarios 
with different budgets, or different sets of possible options, would also 
only multiply the computation time by the number of different scenarios 
chosen. 

4.3. Importance of the cumulative effects for connectivity conservation 

Although the optimal algorithm always finds the best solution for a 
given budget, in our case studies, local and greedy algorithms provide 
solutions that are often close to the optimal solution (5 % lower on 
average, Fig. A.1). This suggests that in our case studies, cumulative 
effects have a relatively small impact. However, we also observe some 
discrepancies between the cases, the suboptimal solutions being on 
average better for Marseille and Montreal cases than for Aix and Aude 
cases (Fig. A.1). These discrepancies could be explained by the density of 
these graphs (how close to complete they are); low-density graphs like 
trees being more sensitive to potential synergies among options. More 
generally, this sensitivity is related to the impact of conservation/ 
restoration options. When the options have strong impacts on the least 
cost paths in the graph, we can expect more cumulative effects and thus 
a higher risk that suboptimal algorithms produce poor quality solutions. 

Fig. 5. The average computation time to solve the mixed integer (optimum) 
program in the Marseille case grows exponentially with the number of unbuilt 
lots considered (approximately doubles every 10 unbuilt lots) while the 
computation time of the suboptimal algorithms increases only polynomially. 
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Indeed, if some options have a large impact on the least-cost paths be-
tween nodes, the selection of these options will significantly alter the 
way other options can increase the ECA value. When a large proportion 
of the options have a significant impact on the least-cost paths between 
nodes, larger cumulative effects can be expected, as the effects of de-
cisions are not independent of each other (as illustrated by the stepping 
stones in Fig. 1). This also explains why the different algorithms tend to 
converge towards the optimal solution as the budget increases. The 
maximum value of ECA is reached when all options that maximize the 
connection probabilities between habitat patches have been chosen. 
After this point, additional options are only redundant. This emerging 
property actually corresponds to something we believe is a shortcoming 
of the ECA indicator which only takes into account the shortest path 
distance among pairs of nodes and not the number of short paths: re-
dundancies taken into account by circuit connectivity measures can lead 
to more robust networks (McRae et al., 2008). 

In practice, it also seems that cumulative effects appear more 
strongly when the problem is related to the restoration/conservation of 
links (corridors) as in the cases of Aude and Aix rather than nodes 
(patches) as in the cases of Marseille and Montreal. As we have illus-
trated our work with four very contrasted and complementary case 
studies, we believe that our results are rather robust and are not related 
to the modelling of the landscape (graph types) nor to the type of 
problem (conservation or restoration, node or link). 

4.4. Practical guidelines 

As we have seen, both local and greedy algorithms can lead to sub-
optimal solutions, especially when the budget is small, when the 
network is weakly connected, or when conservation/restoration options 
strongly impact the least-cost paths in the graph. We thus conclude that 
the optimal resolution is to be preferred whenever possible. However, 
the computation time of the optimal algorithm depends on a combina-
tion of factors and is not easy to predict accurately. To help conservation 
practitioners decide which algorithm is best to use in their case study, 
we therefore propose a rule of thumb as follows. 

If the number of variables in the Max-ECA problem (i.e. the number 
of columns in the mixed integer program matrix) reaches one million, 
we believe that the execution of the optimal algorithm may become 
complicated. As an order of magnitude, the number of variables can be 
computed as the number of links multiplied by the number of nodes in 
the graph; to reach one million variables, the order of magnitude would 
be about 100 nodes for a complete graph and about 500 nodes for a 
planar graph. This cutoff is not firm however given that the pre-
processing step can greatly reduce the number of variables. Trying to 
run the optimal solution on a subset of the problem first might therefore 
be the most reasonable approach to more precisely estimate the cutoff 
for the case study under investigation. 

If the number of variables is slightly above one million, we suggest 
reducing the number of variables to fall within the previous case with a 
sequential approach. One can first use a decremental greedy algorithm 
under a budget constraint that is larger than the actual constraint (e.g. 
twice) to pre-select a subset of options. One can then run the optimal 
algorithm with the real budget on this subset of options (the set of so-
lutions is therefore smaller, resulting in a shorter computation time); 
thanks to the preprocessing step, reducing the number of options will in 
this case also reduce the size of the graph used to run the optimal 
algorithm. 

If the number of variables is largely above one million, we recom-
mend using the decremental greedy algorithm, that can provide 
reasonable solutions. To ensure the quality of the solution, one can also 
run both greedy algorithms and keep the solution corresponding to the 
highest ECA value. 

As a last resort, if the greedy algorithms do not run in a reasonable 
time, one could use both local algorithms and take the best solution. 
Note that these suboptimal algorithms could already be improved by 

solving exactly the knapsack instance, explained above, instead of 
selecting the options in descending order of their ECA gain/cost ratio. 

The alternative solutions we propose here (sequential approach or 
decremental/incremental combination) deserve further investigation to 
better quantify the trade-offs between solution quality and computation 
time for a variety of conservation problems. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2023.110066. 

References 

Albert, C.H., Rayfield, B., Dumitru, M., Gonzalez, A., 2017. Applying network theory to 
prioritize multispecies habitat networks that are robust to climate and land-use 
change. Conserv. Biol. 31, 1383–1396. 

An, W., Liu, Y.-H., 2016. Keyplayer: an r package for locating key players in social 
networks. R J. 8 (1). 

Awade, M., Boscolo, D., Metzger, J.P., 2012. Using binary and probabilistic habitat 
availability indices derived from graph theory to model bird occurrence in 
fragmented forests. Landsc. Ecol. 27, 185–198. 

Beier, P., Spencer, W., Baldwin, R.F., McRAE, B.H., 2011. Toward best practices for 
developing regional connectivity maps. Conserv. Biol. 25 (5), 879–892. 

Blazquez-Cabrera, S., Ciudad, C., Gastón, A., Simón, M., Saura, S., 2019. Identification of 
strategic corridors for restoring landscape connectivity: application to the Iberian 
lynx. Anim. Conserv. 22 (3), 210–219. 
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