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Keywords: und elektronischen Komponenten auf einer gemeinsamen Plattform ermöglicht den Entwurf von leistungsstarken elektronischphotonischen Schaltkreisen. Ihre Anwendung in optischen Kommunikationssystemen trifft eine essenzielle Herausforderung -die optische Ankopplung zu den Übertragungslinks basierend auf Standard-Einmodenfaser. Auf einer Seite existiert eine große Modenfehlanpassung zwischen dem kleinen, chip-integrierten Siliziumwellenleiter mit einer Querschnittsfläche von 0.1 µm 2 Während die externe Einmodenfaser eine Mode mit zwei orthogonalen, entarteten Polarisationszuständen unterstützt, sind die integrierten Siliziumkomponenten stark polarisationsabhängig, sodass der Siliziumwellenleiter nur die fundamentale transversal-elektrische (TE) Polarisation führt Lage sein, die Polarisation einer Eingangswelle zu manipulieren. Eine bevorzugte Ausführung solch einer Schnittstelle ist der Gitterkoppler, aber nicht den Umgang mit deren Diese Struktur kombiniert zwei eindimensionale lichen, wird die Faser dieses wältigen, ist ein gutes Verständnis der grundlegenden physikalischen Effekte in solchen Strukturen notwendig. Die vorliegende Arbeit ist vollkommen gewidmet, die physikalischen -nebensprechen und -Nichtorthogonalität werden analysiert Strukturverhalten identifiziert. Nach dieser Erkenntnis werden verschiedene Methoden zur Unterdrückung der ungewünschten Streuung untersucht. Die Umsetzbarkeit der vorgeschlagenen Optimiertechniken wird durch numerische Simulationen und Experimente auf Wafer-Ebene analysiert. Am Ende der Arbeit

Silicon (Si) photonics has proven its importance in the recent years for enabling the integration of photonic components, using available complementary metal oxide semiconductor (CMOS) fabrication flows. The simultaneous realization of electronics and photonics in the same manufacturing platform allows for the accomplishment of high-performance electronic-photonic integrated circuits (EPICs). Their adoption in optical communication systems meets one essential challenge -the optical interfacing to the transmission links, based on single-mode fibers (SMFs). On the one hand, there is a large mode-field mismatch between the tiny on-chip Si waveguide with an area of about 0.1 µm 2 and the external SMF with a core diameter of around 10 µm. In addition, there is a severe discrepancy between the polarization natures of both optical modes. While the external SMF supports a mode with two orthogonal, degenerated polarization states, the integrated Si waveguides and remaining components are mostly designed for the fundamental transverse electric (TE) polarization. A Si photonic coupling interface is thus required to deliver polarization handling capabilities as well. A favored component for a simple interfacing is the diffraction grating coupler (GC). In its most basic, one-dimensional implementation, a silicon waveguide mode is laterally enlarged by a taper structure, feeding a periodically etched grating. The latter deflects the light under a small angle with respect to the chip surface's normal. The external SMF is tilted under the same angle and placed at a small distance above the grating. The coupling device in this form allows for mode matching, but not for polarization manipulation. For that reason, its modified form -the two-dimensional grating coupler (2D GC) -is necessary. The latter combines two one-dimensional GCs in such a manner, that both orthogonal SMF polarizations are coupled into two separate Si waveguides, supporting the fundamental TE polarization, and vice versa. This time, the SMF is not only tilted with respect to the vertical, but also oriented towards the grating's symmetry axis between the feeding waveguides. Accordingly, the grating should be able not only to diffract both Si modes in a nearly vertical direction, but also to direct them along the symmetry plane.

Although 2D GCs have been known for many years, their efficient and polarization independent design remained very challenging. To overcome this problem, a good basic understanding of the fundamental physical effects in such structures is necessary. This work is entirely dedicated to the investigation and systematization of the physical properties of 2D GCs. The gained theoretical base is used for the 2D GCs' optimization in different aspects. Starting with the theoretical description of the diffraction mechanisms in two dimensions, the interplay between the grating's geometry and coupling angles is demonstrated. Furthermore, an in-depth characterization of the polarization behavior
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Institut für Hochfrequenz-und Halbleiter-Systemtechnologien, Fachgebiet Hochfrequenztechnik-Photonik of 2D GCs is presented. New aspects, such as the polarizations' conversion, crosstalk and non-orthogonality are analyzed, tracking their origins back to the in-plane scattering, resulting from the finite size of the grating's perturbing elements with respect to the Si mode. The importance of this physical process in 2D GCs has been underrated until now, and is revealed here as the most determining limitation for the optimal performance of 2D GCs. After this conclusion, several methods for the in-plane scattering's suppression are considered. The feasibility of the proposed approaches is investigated by both numerical simulations and wafer-level experiments. In the end, a novel optimization technique is demonstrated, which allows for the design of efficient 2D GCs with a low polarization crosstalk, low non-orthogonality and low polarization-dependent loss. 
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List of Definitions

Here, frequently used definitions within the thesis are listed.

• Coupling efficiency: is defined always as the product of two parameters -1) the power, which is diffracted by a grating coupler towards a coupling fiber and 2) the mode field overlap between the radiated grating mode and the fiber mode. (Details in 2.1.4.2, p. 53.)

• Cross-polarization: indicates the power of a given input polarization, which is converted to another polarization state after passing through a grating coupler. Hereby, the cross-polarization is orthogonal to the input polarization (and may have any modal composition). For example, if we have a y-polarized input polarization and an output polarization with both x-and y-polarized components, the x-polarized component is referred as a cross-polarization. (Details in 2.1.4.3, p. 60.)

• Even-polarization: a polarization, which is split by a two-dimensional grating coupler with an even symmetry with respect to the symmetry axis between both feeding arms. (Details in 4.2.2.3, p. 115.)

• Focusing grating couplers: grating couplers with perturbing elements having positions, which are placed along curved lines. Focusing grating couplers have shorter feeding tapers. (An illustration in Fig. 2.10 in 2.1.3.1, p. 44.)

• Linear grating couplers: grating couplers with perturbing elements having positions, which are placed along straight lines. Linear grating couplers require long adiabatic feeding tapers. (An illustration in Fig. 2.10 in 2.1.3.1, p. 44.)

• Normalized out-coupled power: is the power, which is diffracted by a grating coupler towards a coupling fiber. The power is normalized to the input power of the Si waveguide mode, which is fed into the grating. (Details in 2.1.4.2, p. 53.)

• Mode field overlap: describes the degree of similarity of two modal distributions.

Particularly for grating couplers, the mode field overlap is given by and overlap integral between the grating' radiated field distribution and the coupling fiber's fundamental mode. (Details in 2.1.4.2, p. 53.)

• Odd-polarization: a polarization, which is split by a two-dimensional grating coupler with an odd symmetry with respect to the symmetry axis between both feeding arms.

(Details in 4.2.2.3, p. 115.)

• Polarization crosstalk: is the crosstalk between non-orthogonal polarization states in terms of power. (Details in 2.1.4.3, p. 60.)

• Polarization-dependent loss: is the power difference in dB between the polarizations, coupled with a maximal and minimal coupling efficiency by the grating coupler.

(Details in 4.2.2.3, p. 115.)

• (Polarizations') non-orthogonality: assigns a relationship between two polarization states on the Poincaré sphere, in which the two polarizations are not orthogonal to each other. Orthogonal polarizations have zenith angles with the same magnitude and a different sign. In addition, their azimuth angles differ by 180 • . Polarization pairs, which do not fulfill this condition are non-orthogonal. For a 2D grating coupler, the (non-)orthogonality is evaluated for the signals, originating from both 2D grating coupler arms. (Details in 2.1.4.3, p. 60.)

• (Polarization) split ratio: we assume an output 2D grating coupler and a waveguide with a given input polarization. The grating coupler diffracts this polarization towards a coupling fiber. If the input polarization is preserved, it is assigned as a targetpolarization. If it is converted to its orthogonal counterpart, it is assigned as a crosspolarization. The ratio of target-vs. cross-polarization gives the polarization split ratio. The definition considers a single-polarization, i.e. a single-waveguide excitation.

(Details in 2.1.4.3, p. 60.)

• Segmented grating coupler: a grating coupler that comprises perturbing elements, which have different sizes and periodicity. Elements with the same size and periodicity are locally grouped, forming different segments. (Details in 5.2.1, p. 131.)

• Target-polarization: assigns the power of a given input polarization, which is preserved after passing through the grating coupler and is not converted into another polarization state. For example, if we have a y-polarized input polarization and an output polarization with both x-and y-polarized components, the preserved y-polarized component is referred as a target-polarization. (Details in 2.1.4.3, p. 60.)

• Uniform grating coupler: a grating coupler that comprises perturbing elements, which have the same size and periodicity. (A comparison between uniform and segmented 2D grating couplers is given in 5.2.1, p. 131.)

Introduction

The rapid exchange of information between locations anywhere on the world is nowadays taken for granted. In fact, it is not even a complete generation in humans' life since the birth of the world wide web. There are two crucial cohesive factors, which hide behind its fast evolution. The first of them is the great progress of the electronic circuits, which was driven by the introduction of the complementary metal oxide semiconductor (CMOS) technology in the 60s [1]. This enabled the realization of compact integrated circuits (ICs), allowing for an extremely efficient computational and signal processing performance with a remarkably low power consumption. Moreover, the phenomenal ICs' scalability, known as the Moore's law, enabled the attainment of high-complexity systems on only few square millimeters area -a factor that made high-volume, low-cost production possible. With the development of even more powerful, advanced computational devices, the quest to facilitate the communication between these devices arose in parallel. With the strive to exchange more information even faster, the communication channels had to support considerably higher bandwidths, especially when data rates exceeded 1 Gbit/s. This led to the development of the second important element: the optical communication interconnects as the most effective solution to realize a fast communication medium. Their success was predestined by the invention of the low-loss optical single-mode fiber (SMF) [2], combined with the decisive role of the erbium doped fiber amplifier (EDFA) invention [3]. The latter allowed for an optical signal transmission over thousands of kilometers. With increasing data rates also in small-scale networks, optical links have been penetrating down to even shorter distances, superseding the electric ones [4][5][6][7][8][9]. Valuable literature sources, covering various theoretical and practical key aspects related to optical fiber communication components and systems, are given in Refs. [4,[14][15][16][17][18][19][20][21][22][23][24].

Apparently, the electrical domain offers the most efficient resources for signal computation, while the optical domain delivers the best means for a high-bandwidth signal transmission over large distances. For that reason, present communication systems are a symbiosis of high-performance microelectronics and high-speed, low-loss optics. The basic parts of such systems are presented schematically in the block diagram in Fig. 1.1 [5], where different color code is used to assign electrical, optical and electro-optical parts. In a typical system, a light source such as a semiconductor laser is electrically pumped to generate a narrow-

linewidth optical beam. In the next step, the beam is encoded by an optical modulator. The latter may be controlled electrically by a digital-analog-converter (DAC), which transforms a given bit code to an analog signal. Afterwards, the coded optical signal is transmitted via a communication channel, comprising a single or multiple SMF spans. In each span, loss or dispersion compensation may be applied. Finally, the optical signal is detected at the receiver and decoded. A special part of this process is the opto-electrical conversion, which allows for a more complex data handling, e.g. by a digital signal processing (DSP). With electronics and optics being inseparable in communication systems, the ICs' paradigm inspired many researchers to seek for mechanisms to apply the same principle for optical components as well [25]. The ambition was to realize optical devices in a planar technology and accomplish them in photonic integrated circuits (PICs) with a greatly reduced footprint and cost. In spite of the presence of different material platforms suitable for that purpose, silicon (Si) was considered as an especially attractive one, being the fundamental of CMOS electronics as well. This gave rise to the research topic of silicon photonics -a technology intended for the realization of optical components, by using standard CMOS or bipolar complementary metal oxide semiconductor (BiCMOS) fabrication routines. Particularly attractive was the idea of the potential monolithic co-integration of photonic and electronic components on the same chip, which could allow for the shortest interconnects and lowest parasitic effects between PICs and electronic integrated circuits (EICs). Presently, the Si photonics fundamentals are summarized in many books, e.g. Refs. [5][6][7][8][9][10][11][12][13]. The following sections within this chapter are mostly based on the books [9,11,13] and the review papers [START_REF] Marchetti | Coupling Strategies for Silicon Photonics Integrated Chips[END_REF][START_REF] Cheng | Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues[END_REF].

Optical Interfacing in Silicon Photonics

Considering again the schematic in Fig. 1.1, in the ideal case all electrical and electro-optical components would be co-integrated on a single transmitter, receiver or transceiver chip. At this stage, we meet the first constraint in Si photonics: since Si is an indirect semiconductor, no laser sources can be realized monolithically on a purely Si-based platform. To address this issue, hybrid III-V on Si integration keeps being a popular research topic over decades, see Refs. [26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43]. At the present moment, a standard approach is still not fully established, despite some promising developments of Intel [44] and the recent press release by Tower

Semiconductor, announcing a demonstration of a silicon photonics platform with InPbased integrated lasers [45]. For now, the generation of an optical signal on a Si chip is enabled by an external light coupling, mostly using a SMF. Even when the laser integration would eliminate that necessity in the near future, the interfacing between a Si chip and an external SMF remains still inevitable, because the integrated transmitter and receiver need to be connected with the fiber optical transmission link. This leads us to one of the essential challenges in Si photonics: the optical coupling problem.

Figure 1.2: (Not to scale.) (a) A schematic comparison between a single-mode-fiber (SMF) mode, comprising two degenerated polarizations with the same field distribution, and a Si nanowire mode, comprising two polarizations with different spatial distributions and propagation constants. The plots show the electric field strength with an assigned polarization direction. A significant mode size mismatch is given, which can be addressed by two coupling schemes. (b) Horizontal coupling with a spot size converter (SSC): amplitude and phase matching take place in the propagation direction of the Si waveguide mode. (SSC schematic by K. Voigt.) (c) Nearly vertical coupling with a diffraction grating coupler (GC): modefield diameter (MFD) matching still takes place in horizontal direction, while phase matching is realized in nearly vertical direction. One-or two-dimensional (1D, 2D) implementation is possible. Representation after Ref. [9], Chap. 3.

The most characteristic feature of Si photonics is the high index contrast Δn: Si photonic waveguides are based on a silicon on insulator (SOI) technology with Si as a core material and SiO 2 as a cladding (Δn ≈ 2, e.g. [46]). This allows for the realization of waveguides with a very small cross section: a typical waveguide height × width is 220 nm × 500 nm.

Moreover, the high index contrast is related to small waveguide bend radii, allowing for a higher integration density. However, the advantages of the high index contrast have

their price. The standard SMF, based on a low-index contrast technology (Δn < 0.01), has a typical mode field diameter (MFD) of around 10 µm. There is a significant obstacle for the simple interfacing between Si waveguides and SMFs, caused by their large size-and MFD-mismatch. A schematic comparison between the sizes of a SMF and a Si nanowire (slab waveguide) mode is shown in Fig. 1.2 (a). In addition to that, there is another significant characteristic of high-index contrast structures, which is the strong birefringence. The fundamental transverse electric (TE) and transverse magnetic (TM) polarizations TE 00 and TM 00 have a quite different mode field distribution, which is related to a large difference in their effective refractive indices and propagation constants (see Fig. 1.2 (a)). Therefore, all Si photonic components are strongly polarization dependent and mostly designed for the fundamental TE 00 mode. On the other hand, the SMF supports two degenerated linearly polarized (LP) modes: LP 01,x and LP 01,y . This adds another difficulty to the optical coupling, since both LP 01,x and LP 01,y should be converted to the Si fundamental TE 00 . In summary, two crucial issues have to be overcome for an efficient fiber-to-chip interfacing:

1. Mode matching: the Si fundamental mode with a small MFD has to be adapted to the dimensions of the fiber mode and vice versa.

2. Polarization handling: both fiber polarizations LP 01,x and LP 01,y have to be transformed to the fundamental TE 00 on Si.

Different design strategies have been developed to reach these goals. We distinguish between two basic paradigms, with the main properties summarized in the following.

Horizontal Coupling

Horizontal optical interfaces may be based on direct edge coupling or supported by optical interposers, guiding evanescent fields. A lateral or edge coupling can be enabled by spot size converters (SSCs). A SSC may be realized in different ways, using one or more taper sections. An example with an inverted taper is shown schematically in Fig. 1.2 (b). The significant characteristic of such interfaces is that the amplitude and phase adaption of the Si mode takes place in the mode's propagation direction. The most important advantages of the horizontal coupling method are:

• High coupling efficiency.

• Large optical bandwidth of the coupled signal.

• Polarization independence: the fiber's LP 01,x and LP 01,y polarizations are coupled to the Si waveguide's TE 00 and TM 00 polarizations with a very low polarization-dependent loss (PDL). Additional on-chip polarization rotator splitter (PRS) is necessary to separate both polarizations and enable the conversion from TM 00 into TE 00 .

Unfortunately, these advantages come in combination with significant physical, technological and economical constraints. To the most considerable disadvantages belong:

• Complex fabrication and high sensitivity to fabrication deviations: mostly, an SSC requires a tiny tip at the position, where the fiber coupling takes place. Moreover, fabrication post-processing steps such as dicing and polishing are necessary to obtain a flat coupling surface. The higher fabrication effort inevitably increases the total costs.

• Small spot-size: typically, coupling to a fiber with a small MFD can be guaranteed.

Often, lensed fibers are used for that purpose with a MFD of only few micrometers.

This requires a very precise alignment between fiber and chip, which is a critical obstacle for the device packaging. To overcome this issue, different design strategies have been considered, many of them related to an enhanced (post-)fabrication effort.

Moreover, index matching gel has been frequently applied. Lower complexity has been often achievable at the price of excess loss (cf. Refs. [47][48][49][50][51][START_REF] Barwicz | Integrated Metamaterial Interfaces for Self-Aligned Fiber-to-Chip Coupling in Volume Manufacturing[END_REF][START_REF] Barwicz | Advances in Interfacing Optical Fibers to Nanophotonic Waveguides Via Mechanically Compliant Polymer Waveguides[END_REF]). The most notable SSC design has been patented by the firm Teraxion [START_REF] Painchaud | Spot-Size Converter for Optical Mode Conversion and Coupling Between Two Waveguides[END_REF], which proposed the usage of multiple optical strips in the backend of line (BEOL). Efficient coupling to both fiber with a MFD of 6.6 µm and a standard SMF with a MFD of 10.4 µm/ 9.2 µm in C-/ O-band has been demonstrated with results reported in [START_REF] Picard | Novel Spot-Size Converter for Optical Fiber to Sub-µm Silicon Waveguide Coupling With Low Loss, Low Wavelength Dependence and High Tolerance to Alignment[END_REF][START_REF] Picard | CMOS-Compatible Spot-Size Converter for Optical Fiber to Sub-µm Silicon Waveguide Coupling With Low-Loss Low-Wavelength Dependence and High Tolerance to Misalignment[END_REF]. Nevertheless, horizontal coupling to cleaved SMF with a large MFD is still not widely spread.

• No automated wafer-scale measurement available: reliable automated wafer testing capability is crucial during fabrication and sub-systems assembly in large scale manufacturing processes [START_REF] Pinguet | High-Volume Manufacturing Platform for Silicon Photonics[END_REF][START_REF] Doerr | Silicon Photonics in Optical Coherent Systems[END_REF]. Up to now, few manual wafer testing approaches have been proposed. In Ref. [START_REF] Trappen | 3D-Printed Optics for Wafer-Scale Probing[END_REF] 3D printed elements have been used. Recently, edge coupled wafer-scale measurements with reflecting optical fiber probes have been reported [START_REF] Jabon | Edge-Coupled Active and Passive Wafer-Scale Measurements on 300mm Silicon Photonics Wafers[END_REF].

• Non-trivial PRS design: the most crucial problem for the horizontal coupling method is the limited polarization separation of the PRS, leading to a deteriorated polarization extinction ratio and large polarization crosstalk. For their minimization, the cascading of multiple PRSs or the utilization of optical filters or other supporting devices is necessary. Depending on the particular design, either increased conversion loss, or reduced bandwidth or both may result. The overall device footprint (SSC + PRS) may become very large as well (cf. Refs. [START_REF] Chen | Compact Polarization Rotator on Silicon for Polarization-Diversified Circuits[END_REF][START_REF] Sacher | Polarization Rotator-Splitters in Standard Active Silicon Photonics Platforms[END_REF][START_REF] El-Fiky | A High Extinction Ratio, Broadband, and Compact Polarization Beam Splitter Enabled by Cascaded MMIs on Silicon-on-Insulator[END_REF][START_REF] Chen | Highly Efficient Silicon Optical Polarization Rotators Based on Mode Order Conversions[END_REF][START_REF] Melikyan | Adiabatic Mode Converters for Silicon Photonics: Power and Polarization Broadband Manipulators[END_REF][START_REF] Su | Silicon Photonic Platform for Passive Waveguide Devices: Materials, Fabrication, and Applications[END_REF][START_REF] Chen | C+L Band Polarization Rotator-Splitter Based on a Compact S-Bend Waveguide Mode Demultiplexer[END_REF]).

In spite of the convincing benefits of horizontal coupling structures, their present drawbacks are not negligible with regard to the practical implementation in large-scale PICs. Further development is necessary for a complete domination over other coupling alternatives, such as the nearly vertical coupling by diffraction gratings, which will be introduced in the following.

Nearly Vertical Coupling

The major competitor to the lateral coupling method is the nearly vertical coupling technique, realized by the adoption of diffraction gratings. As a most basic form of such structures, the one-dimensional (1D) grating couplers (GCs) will be first presented (Fig.

(c))

. A conclusive analysis of the 1D GCs' properties is provided in the doctoral thesis of Taillaert [START_REF] Taillaert | Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides[END_REF]. In 1D GCs, the mode matching is achieved by the combination of two measures: 1) MFD matching -the Si waveguide is gradually widened to match the size of the coupling fiber. Until this point, the conversion still remains horizontal; 2) phase matchingthe phase of the waveguide mode is manipulated via diffraction grating, thus achieving a mode deflection in an off-chip propagation direction. The phase matching mechanism is the fundamental difference between both coupling strategies. Using diffraction gratings, a perfectly vertical out-coupling is the most desired variant. However, it is related to a second-order Bragg reflection, inevitably leading to a high power loss. For that reason, the diffraction grating is designed in such a way that the waveguide mode is directed under a small angle θ with respect to the vertical axis.

The nearly vertical coupling scheme comes with several advantages, such as:

• Large spot size: the coupling to a cleaved SMF with an MFD of around 10 µm is possible. The coupling tolerances are significantly larger than for conventional SSC.

This promises for a more relaxed and inexpensive packaging.

• Automated wafer-level testing: the nearly vertical optical coupling is very similar to the electrical probing on a wafer. This allows for the simple automated wafer level testing, which is mandatory for large-scale manufacturing platforms.

• Easier fabrication without the necessity for post-processing steps. Also compared to SSCs with PRS, smaller on-chip footprint is achievable.

These practical benefits are combined with inherent drawbacks, which are a direct consequence of the physical background of the diffraction gratings. Following fundamental limitations are present:

• Lower coupling efficiency: because a GC diffracts light not only under a given angle in upper direction, but also under the same angle downwards into the substrate, we are generally not able to reach a maximal power directivity without the adoption of a back-reflector or the modal manipulation by thickened (enhanced) gratings. The fabrication of efficient back-reflectors is mostly not CMOS compatible and requires post-fabrication bonding steps. The reliable and repeatable Si growth to form enhanced gratings is also not trivial. In addition to the power directivity limitations, there is a modal mismatch between the distributions of the grating field and the coupling fiber field. This requires also more specific grating designs, which may not be easily implementable under given technological constraints.

• Optical bandwidth limitation: according to the diffraction condition of gratings, each wavelength is diffracted under a different angle. On the other hand, the coupling fiber is tilted under a fixed angle. A Gaussian-like coupling spectrum is typical for GCs. The maximal coupling is at the wavelength with the diffraction angle, matching the fiber tilt angle.

Fundamental Issues of Two-Dimensional Grating Couplers

• Polarization dependence: 1D GCs are able to couple only the SMFs polarization, which is aligned with the grating axis. Without an active polarization control, large PDL results.

Many scientific works have been dedicated to address the first two issues. To improve the out-coupled power efficiency, metal [START_REF] Van Laere | Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides[END_REF][START_REF] Kopp | Enhanced Fiber Grating Coupler Integrated by Wafer-to-Wafer Bonding[END_REF][START_REF] Zaoui | Cost-Effective CMOS-Compatible Grating Couplers With Backside Metal Mirror and 69 % Coupling Efficiency[END_REF] and distributed Bragg reflector (DBR)

[69] back-reflectors have been considered. Alternatively, gratings with an enhanced Si thickness and multi-layer gratings have been examined [START_REF] Roelkens | High Efficiency Diffractive Grating Couplers for Interfacing a Single Mode Optical Fiber With a Nanophotonic Silicon-on-Insulator Waveguide Circuit[END_REF][START_REF] Vermeulen | High-Efficiency Fiber-to-Chip Grating Couplers Realized Using an Advanced CMOS-Compatible Silicon-On-Insulator Platform[END_REF][START_REF] Wade | 75 % Efficient Wide Bandwidth Grating Couplers in a 45 nm Microelectronics CMOS Process[END_REF]. Blazed gratings with a subwavelength index-matching structure have been investigated as well [START_REF] Benedikovic | High-Directionality Fiber-Chip Grating Coupler With Interleaved Trenches and Subwavelength Index-Matching Structure[END_REF] -the results have been obtained at the cost of an increased fabrication complexity. Furthermore, footprint optimization via the introduction of focusing grating couplers (FGCs) has been proposed [START_REF] Van Laere | Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits[END_REF][START_REF] Ushida | Optical Loss Analysis and Parameter Optimization for Fan-Shaped Single-Polarization Grating Coupler at Wavelength of 1.3 µm Band[END_REF][START_REF] Wang | Apodized Focusing Fully Etched Subwavelength Grating Couplers[END_REF]. In parallel to the work on the present thesis, FGCs for the TM 00 polarization have been investigated [START_REF] Georgieva | Design and Performance Analysis of Integrated Focusing Grating Couplers for the Transverse-Magnetic TM 00 Mode in a Photonic BiCMOS Technology[END_REF]. For the optimization of the mode field overlap, apodized/chirped gratings have been reported [START_REF] Wang | Apodized Focusing Fully Etched Subwavelength Grating Couplers[END_REF][START_REF] Chen | Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers[END_REF][START_REF] Sacher | Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices[END_REF]. Often, the 1D GCs are designed by combining some of the mentioned methods. This is the case for the record low-loss 1D GC from

Ref. [START_REF] Ding | Fully Etched Apodized Grating Coupler on the SOI Platform With -0.58 dB Coupling Efficiency[END_REF]. To improve the optical bandwidth, silicon nitride (Si 3 N 4 ) or Si 3 N 4 -assisted GCs have been reported as a successful option [START_REF] Wade | 75 % Efficient Wide Bandwidth Grating Couplers in a 45 nm Microelectronics CMOS Process[END_REF][START_REF] Sacher | Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices[END_REF][START_REF] Doerr | Wide Bandwidth Silicon Nitride Grating Coupler[END_REF]. The present list of references is by far not exhaustive due to the variety of designs and target application fields. For a more comprehensive overview over coupling design strategies, the reader may refer to the review papers [START_REF] Nambiar | Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits[END_REF][START_REF] Marchetti | Coupling Strategies for Silicon Photonics Integrated Chips[END_REF][START_REF] Cheng | Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues[END_REF].

To address the problem with the polarization dependence, the 1D GC needs to be modified.

One possibility is the counter-directional coupling of TE and TM with a 1D GC designed in such a way that TE 00 has a coupling angle θ and TM 00 has a coupling angle -θ (see e.g. Ref. [START_REF] Song | Polarization-Independent Nonuniform Grating Couplers on Silicon-on-Insulator[END_REF]). This method has the disadvantage that a PRS is still required to convert the TM 00 polarization into TE 00 . This leads us to the main subject of the present thesis:

the two-dimensional (2D) GC. Although 2D GCs are based on a natural idea -to simply combine orthogonally two 1D GCs and obtain thus polarization diversity (Fig. 1.2 (c)) -their practical implementation presented unexpected issues.

Fundamental Issues of Two-Dimensional Grating Couplers

In this section, the main 2D GC's issues will be summarized. Each of these aspects has been addressed in the scope of this work.

Inherent Issues

The limitations, known from the properties of 1D GCs, can be naturally transferred to their 2D counterparts. Some 2D GC specific factors have an additional contribution to the performance's deterioration.

Insertion Loss

The insertion loss, caused by a limited power directivity to a SMF and by the non-optimal modal matching with the SMF's fundamental mode, is even more distinctive in 2D GCs. There are several reasons for that. In early publications, no adaption

1 Introduction
of the diffraction condition of 2D GCs was considered, which could ensure that an input mode from any Si waveguide will be radiated at the grating's symmetry plane. For that reason, the reported 2D GC designs showed a very low coupling efficiency in the range from -8 dB to -6.5 dB [START_REF] Taillaert | A Compact Two-Dimensional Grating Coupler Used as a Polarization Splitter[END_REF][START_REF] Streshinsky | A Compact Bi-Wavelength Polarization Splitting Grating Coupler Fabricated in a 220 nm SOI Platform[END_REF][START_REF] Zhou | All-in-One Silicon Photonic Polarization Processor[END_REF]. It has been found that the adoption of a non-zero angle between Si waveguide and grating (here called a shear angle) is necessary for a reduced insertion loss [START_REF] Taillaert | Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides[END_REF][START_REF] Bogaerts | A Polarization-Diversity Wavelength Duplexer Circuit in Silicon-on-Insulator Photonic Wires[END_REF][START_REF] Van Laere | Focusing Polarization Diversity Grating Couplers in Silicon-on-Insulator[END_REF][START_REF] Zou | Single Step Etched Two Dimensional Grating Coupler Based on the SOI Platform[END_REF]. Along with the shear angle, an improved etch depth larger than the standard 70 nm for 1D GCs has been considered. Current 2D GCs on standard 220 nm SOI reach a coupling efficiency between -5 dB and -3.5 dB without the application of other optimization methods [START_REF] Wu | CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler Near 1310nm[END_REF][START_REF] Lacava | Design and Characterization of Low-Loss 2D Grating Couplers for Silicon Photonics Integrated Circuits[END_REF][START_REF] Seiler | Toward Coherent O-band Data Center Interconnects[END_REF]. Coupling structures to higher-order fiber modes show similarly an efficiency of around -5 dB [START_REF] Wohlfeil | Integrated Optical Fiber Grating Coupler on SOI for the Excitation of Several Higher Order Fiber Modes[END_REF][START_REF] Wohlfeil | A Two-Dimensional Fiber Grating Coupler on SOI for Mode Division Multiplexing[END_REF][START_REF] Tong | Efficient Mode Multiplexer for Few-Mode Fibers Using Integrated Silicon-on-Insulator Waveguide Grating Coupler[END_REF]. The firm Luxtera in collaboration with STMicroelectronics demonstrated 2D GCs with around -3 dB coupling efficiency, by using a customized buried oxide (BOX) thickness below the grating [START_REF] Boeuf | A Multi-Wavelength 3D-Compatible Silicon Photonics Platform on 300mm SOI Wafers for 25Gb/s Applications[END_REF]. For an enhanced coupling efficiency, the adoption of backside reflectors has been reported, which is based either on metal mirrors [START_REF] Luo | Low-Loss Two-Dimensional Silicon Photonic Grating Coupler With a Backside Metal Mirror[END_REF][START_REF] Chen | Two-Dimensional Grating Coupler on Silicon With a High Coupling Efficiency and a Low Polarization-Dependent Loss[END_REF] or on Bragg mirrors on double-SOI substrate [START_REF] Verslegers | Design of Low-Loss Polarization Splitting Grating Couplers[END_REF][START_REF] Baudot | Low Cost 300mm Double-SOI Substrate for Low Insertion Loss 1D & 2D Grating Couplers[END_REF].

Furthermore, dual-etch [START_REF] Doerr | Packaged Monolithic Silicon 112-Gb/s Coherent Receiver[END_REF], chirped/apodized 2D GCs [START_REF] Chen | Two dimensional Silicon Waveguide Chirped Grating Couplers for Vertical Optical Fibers[END_REF][START_REF] Rosa | Novel Design of Two-Dimensional Grating Couplers With Backside Metal Mirror in 250 nm Silicon-on-Insulator[END_REF][START_REF] Zhang | High-Efficiency Two-Dimensional Perfectly Vertical Grating Coupler With Ultra-Low Polarization Dependent Loss and Large Fibre Misalignment Tolerance[END_REF][START_REF] Cheng | Three-Port Dual-Wavelength-Band Grating Coupler for WDM-PON Applications[END_REF][START_REF] Watanabe | 2-D Grating Couplers for Vertical Fiber Coupling in Two Polarizations[END_REF][START_REF] Tu | Optimizing Two-Dimensional Polarization-Diversity Metagrating Couplers for Silicon Photonics[END_REF] Spectrum The grating's spectrum shape indicates a bandwidth limitation due to the different optimal coupling angles for different wavelengths. In 2D GCs, the spectrum shape is determined by the wavelength-dependence of both the nearly vertical angle θ and the in-plane angle φ (cf. the angles' definitions in Fig. 1.2 (c)). Potentially, the widening of the 2D GCs' bandwidth may be addressed in the same way as in 1D GCs, i.e. by a dual-layer principle. So far, no designs addressing this aspect have been reported, most possibly because the available 2D GCs' bandwidth is sufficient for the target applications.

Another aspect is the spectrum wavelength adaption by the coupling angle θ. In 1D GCs, the maximum transmission wavelength can be adjusted by the choice of an appropriate coupling angle. In 2D GCs, there is another specific, which may be a problem for the optimal coupling. There is only one coupling angle θ that is related to diffraction in the symmetry plane φ = 45 • . The 2D GC's design must be sufficiently precise, so that the coupling angle θ at the symmetry plane matches to the required wavelength. Spectrum shift via θ-adaption leads to a departure from the symmetry plane (φ ̸ = 45 • ), which could increase the coupling loss to a fiber placed there. The deviation is tolerable to some extend, without a significant excess loss, but no large θ-range may be covered.

Polarization-Related Issues

Problems, related to the polarization of light, are present in 2D GCs as well. However, the nature of these processes is quite different from the polarization-dependence of 1D GCs, which is simply caused by the absence of a diffraction mechanism to manipulate the direction of one of the basic SMF polarizations. In fact, undesired polarization-related effects in 2D GCs result from the desire for the simultaneous interaction with both SMF polarizations. The presence of these effects has consequences for all functional properties of 2D GCs.

Polarization-Dependent Loss (PDL)

The PDL is expressed in coupling spectrum shape or coupling spectrum maximum, depending on the incident SMF polarization [START_REF] Van Laere | Focusing Polarization Diversity Grating Couplers in Silicon-on-Insulator[END_REF][START_REF] Van Laere | Efficient Polarization Diversity Grating Couplers in Bonded InP-Membrane[END_REF][START_REF] Van Laere | Nanophotonic Polarization Diversity Demultiplexer Chip[END_REF][START_REF] Halir | Reducing Polarization-Dependent Loss of Siliconon-Insulator Fiber to Chip Grating Couplers[END_REF].

The issue became noticeable after the introduction of the non-zero waveguide-to-grating angle and is among the most extensively investigated problems in 2D GCs . As a possible solution, the application of a phase shifter has been proposed [START_REF] Halir | Reducing Polarization-Dependent Loss of Siliconon-Insulator Fiber to Chip Grating Couplers[END_REF]. A more popular alternative was the adoption of a special shape of the 2D GC's perturbing elements, proposed initially by the firm Luxtera [START_REF] Boeuf | A Multi-Wavelength 3D-Compatible Silicon Photonics Platform on 300mm SOI Wafers for 25Gb/s Applications[END_REF][START_REF] Verslegers | Design of Low-Loss Polarization Splitting Grating Couplers[END_REF][START_REF] Mekis | A Grating-Coupler-Enabled CMOS Photonics Platform[END_REF]. Many research groups re-confirmed the success of this method [START_REF] Chen | Two-Dimensional Grating Coupler on Silicon With a High Coupling Efficiency and a Low Polarization-Dependent Loss[END_REF][START_REF] Zou | Two-Dimensional Grating Coupler With a Low Polarization Dependent loss of 0.25 dB Covering the C-band[END_REF][START_REF] Plantier | Impact of Scattering Element Shape on Polarisation Dependent Loss in Two Dimensional Grating Couplers[END_REF][START_REF] Sobu | 300-mm ArF-Immersion Lithography Technology Based Si-Wire Grating Couplers With High Coupling Efficiency and Low Crosstalk[END_REF][START_REF] Sobu | Si-Wire Two-Dimensional Grating Coupler With Polarization-Dependent Loss of Lower Than 0.3 dB Over a 60-nm-Wide Spectral Range[END_REF]. As an alternative, stretched perturbing elements have been reported, achieving, however, a lower coupling efficiency [START_REF] Xue | Two-Dimensional Silicon Photonic Grating Coupler With Low Polarization-Dependent Loss and High Tolerance[END_REF]. In 2021, an apodized 2D GC was reported [START_REF] Zhang | High-Efficiency Two-Dimensional Perfectly Vertical Grating Coupler With Ultra-Low Polarization Dependent Loss and Large Fibre Misalignment Tolerance[END_REF], relying on the variation of the perturbation strength. Most recently, an apodized meta-grating, comprising perturbing elements with different stretching direction, have been reported [START_REF] Tu | Optimizing Two-Dimensional Polarization-Diversity Metagrating Couplers for Silicon Photonics[END_REF]. No experimental data on the producibility of this method is available at the present moment.

Polarization Splitting

The polarization splitting indicates the capability of the 2D GC to split or combine two polarization states properly. This aspect has not been addressed often so far, partially due to its practical relevance for polarization-multiplexed systems, which started gaining in importance only a few years ago. In early publications, the polarization crosstalk or extinction ratio have been measured [START_REF] Taillaert | A Compact Two-Dimensional Grating Coupler Used as a Polarization Splitter[END_REF][START_REF] Bogaerts | A Polarization-Diversity Wavelength Duplexer Circuit in Silicon-on-Insulator Photonic Wires[END_REF], but no subsequent analyses on its physical background have been carried out. In Ref. [START_REF] Sobu | 300-mm ArF-Immersion Lithography Technology Based Si-Wire Grating Couplers With High Coupling Efficiency and Low Crosstalk[END_REF], it has been shown that the special perturbing elements' shape may be advantageous for the improved polarization splitting. In-depth investigations of the polarization related aspects have been performed

in the scope of this work, which will be summarized in the next section.

Objectives of the Thesis

With all designed 2D GCs, available in the literature already more than 10 years ago, a large part of the research community considered the topic of 2D GCs as exhausted. However, there were several aspects that motivated the present work in the beginning. On the one hand, most of the known facts about 2D GCs remained to a large extend unexplained in the literature. First of all, no verification of a diffraction mechanism in a two dimensional direction was available. In spite of the introduction of a non-zero waveguide-to-grating angle, its exact contribution to the 2D GCs's behavior was not evident. Furthermore, no investigation has been carried out, which clearly shows, why a given perturbing element's shape should be more advantageous with regard to the PDL. In spite of the numerous papers on that topic, the analysis on a physical level was missing. For these reasons, the first goal of this work was to prepare a conclusive systematic description of the 2D GCs' physical properties.

Introduction

The second impulse for this work was given by the emerging topic of the coherent communications for data center interconnects. In the recent years, the increasing data rates in this domain established a competition between the classically used intensity modulated direct detection (IM-DD) and the coherent technology. While it is predicted that IM-DD will predominate in the next few years, there is an extensive work ongoing towards the optimization of the coherent technology in two directions -the minimization of the power consumption and the reduction of the total transceiver cost. While Si photonics is the best scalable technology to address the second point, it is almost evident that 2D GCs are the most mature option for optical interfacing in this practical context. Their decisive properties are the automated wafer-level testing capability, which is essential for such systems, and the relaxed packaging requirements, which are the most critical economic factor. The 2D GCs' suitability even for more challenging form factors is approved by Sicoya's product portfolio (e.g. a grating coupler based QSFP28 transceiver [START_REF] Vitalli | Market Focus: Optics in Cloud Computing[END_REF]). Naturally, having a polarization-diversity coupling interface, polarization-multiplexed modulation formats come into question. Therefore, the investigation of 2D GCs with respect to their polarization handling characteristics became necessary. In this work, polarization-related aspects, which have not been considered previously, have been studied. Particularly, the polarization splitting/combining behavior of 2D GCs has been analyzed for the first time in detail, exploring the significant issue of a strong polarization conversion -the so called cross-polarization. The latter assigns the power conversion of a given input polarization state into its orthogonal counterpart. As a result, a limited polarization split ratio and polarization crosstalk occur. Moreover, the cross-polarization is related to excess loss and higher-order mode excitation in 2D GCs. In this work, the impact of the design geometric parameters has been first investigated, showing that the cross-polarization scales with the grating perturbation strength. Moreover, it has been shown that a deviation from the initial polarization state can be related to the loss of signals' orthogonality. Looking for the physical origins of cross-polarization in 2D GCs, in-plane scattering has been identified as a dominant process that had been overlooked until that moment. With in-plane scattering designated as the most decisive issue in 2D GCs, design strategies for its minimization have been proposed and developed, using the systematically acquired basic knowledge about 2D GCs. In the end, it has been shown that the PDL is directly related to the polarization-associated issues and it could be shown that reduced in-plane scattering and cross-polarization are imperative to reach a low PDL. As a final study, the potential footprint reduction of 2D GCs by their modification towards FGCs has been carried out.

In spite of the initially narrow target application domain, the extensive occupation with polarization-related aspects has contributed to the development of a clearly structured theory of 2D GCs, which has filled the gap of unexplained observations in older publications.

A conclusive description of the 2D GCs' physical fundamentals and their practical manipulation for different purposes has been obtained. In the following, the most significant contributions of the present thesis are summarized.

• Explanation of the diffraction mechanism in two dimensions -the basic dependences between the 2D GCs' geometric parameters and the electromagnetic fields' deflection in two angular directions have been derived. The role of the non-zero waveguide-tograting angle, assigned here as a shear angle, has been outlined. The mathematical formulation gives the possibility to develop designs for different coupling angles at the grating's symmetry plane, by properly combining the grating's periodicity with a given shear angle. Designs with a different practical realization of the shear angle and for different target coupling angles have been compared.

• Investigation of issues, induced by non-ideal polarization handling:

-Cross-polarization and the resulting limited polarizations' split ratio, non-orthogonality and crosstalk have been analyzed on device and system level. Several predictions based on simulations have been confirmed experimentally.

-The importance of in-plane scattering processes has been explored. Although scattering losses in photonic crystals are a well-known issue [START_REF] Yablonovitch | Photonic Crystals: Semiconductors of Light[END_REF][START_REF] Bogaerts | Nanophotonic Waveguides and Photonic Crystals in Silicon-on-Insulator[END_REF][START_REF] Joannopoulos | Photonic Crystals: Molding the Flow of Light[END_REF], scattering effects have been underestimated in 2D GCs. This work shows that in-plane scattering is the fundamental limitation of 2D GCs.

-The dependence between in-plane scattering, cross-polarization and PDL has been demonstrated. The latter is able to explain the secret behind the success of the special perturbing elements' shape.

• Proposal of design modifications and optimization variants based on the understanding of the physical processes in 2D GCs. The developed designs ensure simultaneously a large polarizations' split ratio, a corresponding low polarizations' crosstalk and a broadband nearly perfect polarization's orthogonality, a low PDL and an improved coupling efficiency. Thus, their adoption in wavelength-division multiplexing (WDM) systems becomes possible as well. Furthermore, the optimized designs distinguish themselves by their simplicity, which allows for their fabrication with a low-resolution lithography and without optical proximity corrections. Overall, the new 2D GCs are capable to reduce the total fabrication cost, when applied in Si photonic coherent systems. It is the author's wish that the acquired knowledge on the proper designing of 2D GCs will contribute to the efforts towards the cost-optimization of coherent transceivers.

• O-band vs. C-band: with regard to the discussion on the potential of O-band coherent data center interconnects (DCIs), the present work shows that O-band 2D GCs are beneficial, when applied in similar technologies. Along with the better polarizationrelated parameters, a satisfying coupling efficiency is reachable with less effort.

The remaining chapters of the present thesis are organized as follows. In Chap. 2, a description of the numerical and experimental methods for the analysis of 2D GC are given.

A significant part of the chapter is dedicated to the proper numerical handling: starting from the general description of the simulation problem, several numerical techniques are evaluated as potential candidates for its proper solution. After the motivation for the chosen method is given, the concrete simulation procedure and the post-processing calculations are described in more detail. In the second part of the chapter, the measurement methodology for 2D GCs's characterization is outlined. Along with different measurement procedures for the determination of a given parameter, several sources of measurement uncertainty are discussed. In Chap. 3, the specifics of the fabrication platform, used for the 2D GCs' fabrication, are summarized. Particularly, the differences between CMOS and BiCMOS are briefly reviewed and the basic characteristics of the monolithic photonic BiCMOS platform are given. Its possible extension in a 3D concept is also discussed due to its potential for more optimization flexibility of certain Si photonics devices, including 2D

GCs. Using the presented techniques for the 2D GCs' examination, fundamental physical effects related to their operational specifics and limitations are thoroughly studied in Chap. 4. Diffraction and in-plane scattering are indicated as the most important processes.

Regarding the former, a suitable condition for 2D GCs is formulated, which allows for the designs with different target coupling angles. The derived formulas are verified numerically.

Second, the importance of in-plane scattering effects in 2D GCs are shown. Starting with a simple analytical proof for its existence, cross-polarization is investigated as the most important consequence of scattering. Critical performance limitations are studied, such as excess loss, polarization split ratio, polarizations' non-orthogonality and PDL. In the end, the excitation of higher-order modes due to scattering is shown as well. In Chap. 5, several possibilities for the improvement of 2D GCs are proposed. First, a 3D integration approach is investigated for the enhancement of the grating's out-coupled power. Furthermore, the optimization of polarization-related issues is addressed, considering in-plane scattering as their physical background. For scattering manipulation, segmented 2D GCs are first analyzed, showing a satisfying performance in some aspects. 

Methods for Analysis of Two-Dimensional Grating Couplers

This chapter is dedicated to the description of all methods used for the analysis and characterization of 2D GCs. The first section outlines the main challenges for the accurate numerical investigation of 2D GCs, which determine the choice of an appropriate simulation approach. Numerical methods, which are currently established in the optical domain, are reviewed and the most appropriate of them are explained in further detail. Special attention is paid to the discussion on possible sources of numerical errors and their minimization. Afterwards, a detailed description of all simulation steps is presented. Finally, the procedures for the determination of coupling angles, efficiency and polarization state in the post-processing steps are explained mathematically.

The second section within this chapter is focused on the measurement methodology, used for the experimental determination of various 2D GC parameters. Setup specifics, error sources and the possibilities to achieve maximal accuracy of the measurement results are discussed in detail.

Numerical Simulation and Evaluation

This section is focused on the specifics of the simulation and post-processing problems and on the most important aspects for the achievement of accurate results.

General Problem Description

Structures operating in the optical (visible or infra-red) domain are well-known for their challenging simulation. The reason is that in this spectral range we need to cope with short wavelengths -typically between 0.5 µm and 2 µm. Thus, even small structures have dimensions, extending over many wavelengths. In addition, for the appropriate wavelength resolution, a very fine simulation grid is needed. These two factors lead to large models requiring substantial computational resources and long simulation times to obtain accurate numerical results. To illustrate the complexity of electronic-photonic integrated circuits (EPICs), a photograph of a fabricated dual-polarization coherent receiver is shown in Fig. As depicted, the receiver comprises photonic and electronic integrated circuits (PIC and EIC), monolithically integrated in parallel (details in Chap. 3). The photonic segment includes a large variety of components; the photonic circuit extends over several millimeter, making its complete numerical simulation impossible without advanced hardware. Typically, each single component is characterized in separate simulations, whereat different requirements with regard to the choice of the most optimal numerical method are given.

While structures such as optical waveguides, tapers, multi-mode interferometers (MMIs) etc. can be characterized with comparatively small computational resources, monolithically integrated 2D GCs are significantly more challenging to simulate for three reasons. First, since the structure has a 2D radiation pattern, full 3D simulation models are required (Fig.

(a)

). This distinguishes 2D GCs also from their 1D counterparts, which can be described reasonably by 2D simulations. Second, in a monolithic configuration, the coupling device is covered by a BEOL stack, which is typically ∼ 15 µm in height (Fig. 2.2 (b)). Its co-simulation is necessary, in order to obtain correct coupling angles and insertion loss. Layers in the vicinity of the grating have an impact on its effective refractive index and power directivity.

In addition, the total stack thickness determines the minimal achievable distance between the 2D GC and the fiber. The BEOL stack consideration makes the modeling procedure more time-consuming and increases substantially the model's volume, adding further to the required number of grid cells. Third, to allow for the results' evaluation at a tilted plane, according to the design radiation angles, several micrometers in space above the BEOL stack is necessary. Because of the large space, which is required above the grating and because of the typically long feeding tapers (several hundred micrometers), the simulation domain need to be restricted (Fig. 2.2 (c)). Only small part of the tapers' end and the grating can be considered, including the BEOL stack and a free space for the fields' evaluation. Even with a strongly reduced computational volume, the simulation of a 2D GC remains challenging. As an illustration, we compare the numerical problems of a 1D and 2D GC shown in Fig. 2.3. For the simulation of the 1D GC, a simplified 2D model is sufficient. The exemplary models are framed by their computational boxes, which are equivalent to Fig.

(c).

In both cases, the GCs are defined in the (x, y, z)-plane. The tilted plane (u, v, w) gives the coordinates of the external SMF, which would be placed at w = const. In all simulations, such a plane is used for the post-processing evaluation of the radiated fields.

In this example, the GCs are defined on 220 nm SOI with a BOX thickness of 2 µm and the same BEOL stack height. In addition, 15 µm empty space is left above the 1D GC and only 5 µm above the 2D GC. For simulations covering C-band (1530-1565 nm), a typical minimal computation free-space wavelength is 1500 nm (the simulation window is usually 100 nm, i.e. in the range 1500-1600 nm). If we assume the simple case of a hexahedral grid and a resolution of 15 cells per wavelength, the computational domain of a 1D GC will consist of nearly 500 000 grid cells and the 2D GC's model would result in almost 75 000 000 grid cells. The 2D GC's model is 150 times larger than the 1D GC's one in this example. Naturally, the exact difference in the number of grid cells is dependent on the particular specifications, i.e. which optical band, what grid size etc. In the most cases, 2D and 3D models differ by at least two orders of magnitude in computational size. A careful evaluation of the numerical methods, which are typically used in the optical domain, is crucial to avoid time and resource extensive simulations of 2D GCs. Due to the geometrical specifics of integrated 2D GCs, their numerical simulation combines two problems: 1) the diffraction of a periodic 2D array, 2) the field propagation of a Gaussianlike beam along several tens of wavelengths distance from the grating. In some cases, the light propagation in the complete feeding tapers needs to be simulated and combined with the 2D GC simulation as well (e.g. for FGCs). Thus, numerical methods, which are dedicated to periodic structures alone, are not sufficient for the full structure analysis. Moreover, because the coupling distance is not sufficiently large, no far-field approximations can be assumed. Therefore, a suitable numerical technique should be able to address both diffraction and propagation problems and to be able to cope with a large-volume problem at the same time.

Numerical Techniques

The development of numerical methods and their software implementation was an important step towards the solution of complex practical problems in many scientific fields, including electrodynamics. Currently, there are numerous contributions in the literature, covering a variety of numerical methods and electromagnetic applications, e.g. Refs. [2][3][4].

Here, several general characteristics of such methods will be outlined.

General Features of Numerical Approaches

Zhou [2] distinguishes in general between two basic approaches to solve a field problem: by using differential equations or integral equations. The first possibility is assigned as a field approach, while the second one is given as a source distribution/boundary method.

All numerical algorithms can be divided into these two categories.

Independent of the particular implementation, each numerical technique follows the same basic steps, summarized below from [2]:

1) An unknown function u(r), which is contained in an operator equation, needs to be expressed by the summation of a set of linear independent basic functions u n (r) weighted by the undetermined parameters c n .

u(r) ≈ û = N n=1 c n • u n (r) (2.1)
The latter expression is called a trial function and is equivalent to an approximate solution.

This step can be compared e.g. to the Taylor polynomial approximation of a given function. If the number of polynomials tends to infinity, we obtain the exact function.

Similarly, the trial function tends to the real solution, when N → ∞.

The choice of basic functions u n (r) and the determination of their unknown parameters c n must be done in such a way that the operator equation together with all boundary and initial value conditions are well satisfied. The particular numerical methods differ in the way how they fulfill these requirements [5].

2) The solution domain needs to be discretized, resulting in a finite number of elements and nodes. With this, the unknown continuous function u(r) with infinite degrees of freedom is approximated by a spatially discrete function with finite degrees of freedom.

3) A principle for error minimization needs to be chosen, out of which the unknown parameters c n of the basic functions can be found. The initial operator equation results in a matrix equation. Among the most commonly used principles for error minimization are the variational principle and the principle of the weighted residuals.

4) The solution of the matrix equation resulting in the previous step gives the approximate solution of the initial problem.

In the following, the emphasized terms will be explained shortly, in accordance with Chap.

2 in Ref. [2]. The reader may refer to [2] for a more detailed explanation of the theoretical concepts summarized here.

Operator Equation The general assignment of an operator equation has the form:

L u = f (2.2)
The operator L maps a given element to another one, each of both belonging to a different domain. For example, the exponential operator exp(.) in the equation y = exp(x) maps the variable x into the variable y. Thus, x belonging to the interval [-∞, +∞] is transformed to y in the range from [0, +∞].

An example for different operators are the derivation, integral, gradient, divergence, curl, Laplacian and matrix transformations. One or more properties may be associated with a given operator, e.g. whether it is linear, symmetric, positive-definite, self-adjoint, continuous, etc. The properties of a given operator are determining for the choice of the approximation approach for the formulation of a matrix equation (step 3)) and for the solution of this equation (step 4)).

Principles for Error Minimization

The most important principles for error minimization used predominantly in numerical methods are the principle of the weighted residuals and the variational principle. The former targets at the operator equation directly, while the latter operates with the equivalent functional of the governing equation. 

L u = f in the domain Ω u≈û (2.1) -------→ R 0 = L û -f u| Γ 1 = u 0 at the boundary Γ 1 u≈û (2.1) -------→ R 1 = û| Γ 1 -u 0 ∂u ∂n | Γ 2 = g 0 at the boundary Γ 2 u≈û (2.1) -------→ R 2 = ĝ| Γ 1 -g 0 (2.3)
For the calculation of a weighted residual average, the residuals are multiplied by weighting functions W i=0,1,2 . The exact choice of these functions varies for the different numerical methods. The average of the weighted residuals is forced to zero either at the boundaries (for the domain methods) or in the equation domain (for the boundary methods). A combination of both approaches is also possible.

Domain methods

Boundary methods

ˆΓ1 R 1 • W 1 • dΓ 1 + ˆΓ2 R 2 • W 2 • dΓ 2 = 0 ˆΩ R 0 • W 0 • dΩ = 0 (2.4)
• The variational principle is equivalent to the principle of minimum energy. A certain problem is expressed by an equivalent functional. A function, which minimizes this functional, is the solution of the original equation. For example, a potential distribution that satisfies the Laplace's equation is in the same time a potential distribution that minimizes the electric field energy. The solution of a given problem is again expanded in terms of trial functions as in (2.1). The unknown constants are determined this time by forcing the equivalent functional to be stationary or minimized or maximized with respect to these constants.

Specific Numerical Methods for Photonic Applications

After some basic concepts for the numerical approaches have been summarized, we will move here towards the discussion of particular techniques. Several simulation approaches are used by current open-source and commercial software packages. Some of them are more specialized and target at a limited number of applications. For example, the beam propagation method (BPM) and the eigenmode expansion method (EME) are particularly suitable for the efficient simulation of long bounded structures instead of radiating devices. BPM is an approximation method, which is based on the slowly varying envelope approximation [10,11]. The method removes the fast varying term exp(∓jβz) (β a propagation constant along the ±z-direction) and delivers a solution for the slowly varying fields. Due to this approximation, the method is not suitable for the solution of fast varying or discrete structures, including periodic gratings. It works well for waveguides, tapers, y-junctions under the condition that the refractive index contrast is not too large. With this, the method is rather suitable for other material platforms than SOI [11]. By contrast, EME is a rigorous solution of the Maxwell's equations, which is one of its advantages over BPM [12]. It implements the concept of eigenmodes, i.e. the representation of electromagnetic fields as a decomposition of modes, which have a certain distribution at the waveguide cross-section's plane (e.g. in the (x, y)-plane) and a harmonic dependence in the propagation z-direction. The modes can be both guided and radiation modes, which form together a basis set. The accuracy of EME is limited by the number of considered modes. An advantage of the method compared to BPM is its bi-directionality, which makes it possible to take all reflections into account [12]. Among the disadvantages of EME is its complexity for structures with a large cross-section. This makes it applicable rather for problems such as very long waveguides. Exemplary solutions of other practical problems with EME can be found in Ref. [12].

Another family of methods is dedicated to the simulation of multi-layer or periodic structures. For a 1D periodicity, the transfer matrix method (TMM) can be applied. In a two-port multi-layer system, the forwards-and backwards propagating waves of a given mode in the beginning and the end are coupled by a 2 × 2 matrix. The elements of this matrix result from the Fresnel coefficients for reflection and transmission at each layer interface.

The method can be applied for the simulation of 1D photonic crystals, Bragg mirrors, anti-reflection coatings, waveplates, and polarization converters [6,7]. To account for 2D-periodic problems, the Fourier Modal Method (FMM), known also as the Rigorous Coupled Wave Analysis (RCWA) can be considered [7]. Here, the electromagnetic field in each layer is expanded into a number of eigenmodes with a characteristic propagation constant. For each eigenmode, a forwards-and backwards propagating component can be assigned. The relationship between eigenmodes in different layers is expressed by the Floquet-Bloch theorem, stating that in a periodic array, the field function in a given layer differs from the function after one period by a fixed phase shift. A complete field function can be thus given by the sum of the phase-shifted functions over all periods. Characteristic for FMM is that the Floquet-expansion is truncated at the same number of elements as the eigenmode expansion, determining with this the accuracy of the field approximation [8].

Obviously, the classical method definition assumes an infinite or sufficiently large number of periods. The particular problem must be such that it can be reasonably approximated by these assumptions. In 2D GC simulations, the number of periods is determined by the mode spot size, to which the radiated grating field must be matched. It is questionable, whether the fixed number of eigenmodes is sufficient to describe a high index contrast 2D

GC with a good accuracy. In Ref. [9], adapted FMMs are proposed, which have, however, even in the best case a rather high computational cost.

Due to the limitations of the methods referred until here, the latter have not been considered for the solution of a full 2D GC problem. For the simulation of radiating structures, including their near-fields' propagation, more generalized methods are necessary. In the following, several of the most universal simulation techniques will be reviewed. We shall focus particularly on the numerical method used within the scope of this thesis.

Generalized Numerical Methods in the Frequency Domain

We begin with the discussion of generalized approaches, which are more suitable for an implementation in the frequency domain.

Boundary Element Method (BEM) As the name suggests, it belongs to the boundary type of numerical methods and has its roots back to the 1960s [2]. It is an alternative to the wellknown domain methods -the finite elements method (FEM) and finite differences method (FDM). Due to the similarities in terms of discretization, BEM has been often compared to FEM [2,13]. In the following, a short description of the main method's properties are summarized from Ref. [2]. The reader may refer to Chap. 9 in Ref. [2] for an exhaustive explanation of BEM.

Generally, BEM is based on the boundary integral equation and the fundamental solution of the governing equation of the problem. The boundary integral equation is derived from the governing equation e.g. through the principle of the weighted residuals. The fundamental solution is chosen as a weighting function there to form a matrix equation.

The values of the function and its normal derivative along the boundary are unknown.

For the discretization of the equation, the boundary is divided into a number of elements and nodes. The unknown function is interpolated by shape functions, which can be linear, quadratic, cubic, etc.

A typical discretized equation of BEM has the form:

[H]U = [G]Q (2.5)
with U -a vector with the nodal values of the unknown function on the boundary and Q -a vector with the nodal values of the normal derivative of the unknown function. The square matrices H and G result from the fundamental solution of the governing solution and the shape function of the discretization.

The main advantage of BEM is that it reduces the dimensions of a given problem by one.

For a 3D problem, only the domain's surface needs to be discretized. This reduces the matrices' dimension and the corresponding number of equations to be solved. The method is also useful for the solution of open boundary problems as well and requires no artificial absorbing boundary conditions [13]. However, BEM has some significant drawbacks. The matrices H and G are fully populated and in general not symmetric [2]. Depending on the particular problem, this can lead to a significant computational effort and memory requirements [13]. Another issue is the fundamental solution of the governing equationsuch a solution is not trivial for certain problems. In BEM, the calculation of the coefficient matrix in each element requires more time, e.g. compared to FEM [2]. The concerns regarding computational complexity and time are the main reason to consider BEM not suitable for the solution of a 2D GC problem.

Finite Elements Method (FEM) FEM is among the oldest numerical methods, which is used nowadays for the simulation of problems in a large number of scientific fields.

The method dates back to the 1930s and was originally developed to solve problems in structural mechanics. In the 1970s, its utilization for electromagnetic problems was proposed. The progress towards computationally powerful hardware allowed for the commercialization of many FEM-based tools, which were already well-known in the 1990s [2].

In the following, the basic features of FEM will be summarized, based on Chap. 4 in Ref. [2].

Interested readers may refer to Chaps. 4, 5 and 6 in Ref. [2], in which a comprehensive revision of FEM is provided.

The workflow of FEM includes the subdivision of the computational domain into a number of small interconnected subregions -"elements" -which may have generally an arbitrary shape. Currently, triangles or tetrahedrons are most commonly used. Because of the variable size and extension of the elements, a given geometry can be discretized very accurately. Therefore, objects with complicated shapes and material composition can be handled. The density of the elements may vary, depending on the particular problem.

Areas with strong field gradients will be discretized more precisely, which can be applied e.g. to calculate the field strength at sharp metal edges with a good precision.

Similarly to BEM, the unknown function within the element is approximated by an interpolation function. The weighted residuals or the variational principle can be used for the composition of a matrix equation. In contrast to BEM, the resulting system matrix is symmetric.The basic steps in FEM are:

1) Discretization of the solution domain by elements. Within each element, the unknown function included in the governing equation u is approximated by ûe (cf. (2.1)), where e assigns the particular element. If we assume a triangular element with the vertices i, j, m, the unknown function u will be approximated by the nodal values u i , u j , u m and the shape functions N e i , N e j , N e m :

u ≈ ûe = k N e k u k (k = i, j, m) (2.6)
2) The element matrix equation is derived by the weighted residuals principle or by the variational principle.

3) The matrix equation at every node of the domain is assembled to form a system matrix equation, which has the form:

Ku = B (2.7)
with u a column vector with the size N, where N is the total number of nodes. The global matrix K is called assembled matrix, system matrix or stiffness matrix. It is a sparse, symmetric and positive definite matrix with the order N × N. The column matrix B includes the known boundary conditions.

4) The solution of (2.7) delivers the values of the discretized function on every node.

Regarding the given 2D GC problem, FEM would be capable to model with excellent accuracy the material composition given by the complex BEOL stack. However, due to the simultaneous presence of very thin and very thick layers, the mesh quality may suffer.

Furthermore, due to the high index contrast and the geometrical extension of the problem, a large number of mesh cells and nodes N could be expected. This leads to further practical issues, including:

• time consuming meshing of the large computational volume,

• large equation matrices, requiring large random access memory (RAM) and large disk space for storing of the results.

In frequency-domain based methods, the latter issue becomes very critical when analyzing large problems such as 2D GCs. For a given spectrum, the solution of the matrix equation must be carried out for a discrete number of wavelengths N λ until a certain error minimization criterion is fulfilled. This means that N λ simulations will be necessary. By contrast, time-domain methods solve the problem for the full spectrum range simultaneously. One could argue that in time-domain methods we need many discrete time steps. However, the solution of an equation within a given time-step is significantly faster and less RAM demanding compared to the solution within a fixed frequency-domain step with FEM. To reach the same speed of simulation, the FEM requires more powerful hardware than its time-domain alternatives, which is a practical limitation, when such resources are not given.

Naturally, the implementation of FEM in the frequency-domain is not mandatory. However, a time-domain implementation of FEM is very challenging. The reason is that it is difficult to realize an explicit time integration scheme, because the latter requires the inversion of a non-diagonal material matrix. This process is computationally costly. There are strategies to eliminate the off-diagonal elements, which, however, work well only in a hexahedral (Cartesian) mesh. In tetrahedral meshes, indefinite matrices may result, raising stability concerns [14]. For these reasons, the most commercial FEM solvers for transient electromagnetic problems are implemented in the frequency domain. Due to the practical limitations of FEM in the frequency domain, requiring large computational resources, this method was not considered as suitable for the solution of the 2D GC problem.

In this work, the 2D GCs are completely analyzed by a finite integration technique (FIT) time-domain solver. In the following, the latter will be explained in more detail. Due to its similarity to the well-known finite differences time domain (FDTD) technique, parallels between both methods will be made.

Generalized Numerical Methods in the Time Domain

In the following paragraphs, the FDM and FIT methods in time domain will be discussed.

Both numerical approaches are closely related to each other and are available in many commercial and open-source software packages for a large variety of applications. The mathematical basis of FDM is among the oldest ones -it is suggested that even Gauss and Boltzmann were familiar with it. Nevertheless, the practical application of FDM to engineering problems started no earlier than in the 1940s. Its simple application made the method a valuable means for the solution of a large variety of practical problems [2].

The FDM adapted for the solution of transient electromagnetic fields, known as the FDTD method, was first proposed by Yee in 1966 [15]. Later on, FIT was developed by Weiland in 1977 [16], which is considered as the more generalized version of FDTD, being able to handle electrostatic, low-and high-frequency problems (cf. e.g. [17,18]). Some of the most significant common characteristics of FDTD and FIT in the time-domain are:

• The usage of a dual grid, i.e a secondary computational grid, where the magnetic field components are half-step width shifted from the electric field components.

• The usage of the leapfrog scheme as an update approach for the calculation of the field components at the next time step.

Both concepts will be explained in more detail in the following. The basic difference between FDTD and FIT is the starting point of these approaches. In FDTD, the Maxwell's equations in differential form are replaced by a set of finite difference equations, by using the FDM approximation of the first derivative, which is contained in the operators for rotation or divergence [15]. In FIT, the Maxwell's equations in integral form are transformed to a set of algebraic equations without an approximation at that stage. An approximation error results from the material matrices [17].

Discretization with FDTD As the name suggests, the basic approximation step in FDM is the so called finite differences approximation, i.e. the definition of the first derivative of a function f at the point x = x 0 is substituted by a subtraction within a discrete element in the range x 0 ± Δ:

f ′ (x 0 ) = lim h→0 f (x 0 + h 2 ) -f (x 0 -h 2 ) h ≈ f (x 0 + Δ) -f (x 0 -Δ) 2Δ (2.8)
Instead of using the limes of an infinitely small variation h around the variable x, we take a finite segment on the x-axis. Geometrically, we substitute the slope of the tangent at x 0 by the slope of a line passing through x 0 ± Δ. It is intuitive that the approximation approaches the definition for smaller segments Δ → 0 [19].

In the following, an exemplary discretization of a Maxwell's equation will be given from

Ref. [15]. Assume e.g. the Maxwell-Faraday's equation:

- ∂ ⃗ B ∂t = ∇ × ⃗ E (2.9)
In a Cartesian coordinate system, the equation can be decomposed as:

-

∂B x ∂t = ∂E z ∂y - ∂E y ∂z (2.10) - ∂B y ∂t = ∂E x ∂z - ∂E z ∂x (2.11) ∂B z ∂t = ∂E x ∂y - ∂E y ∂x (2.12)
With the finite differences approximation in (2.8), a set of scalar equations result. Define a spatial grid point as (i, j, k) = (iΔx, jΔy, kΔz) and a function of the space and the time with index n (i.e. t = n • Δt): F(iΔx, jΔy, kΔz) = F n (i, j, k). (2.10) can be then written as:

B n+ 1 2 x (i, j + 1 2 , k + 1 2 ) -B n-1 2 x (i, j + 1 2 , k + 1 2 ) Δt = E n y (i, j + 1 2 , k + 1) -E n y (i, j + 1 2 , k) Δz - E n z (i, j + 1, k + 1 2 ) -E n z (i, j, k + 1 2 ) Δy (2.13)
From (2.13), it is evident that the x-component of the magnetic flux is half-cell shifted from the position of E y on the z-axis and from the position of E z on the y-axis. The reason is that both the differences ΔE y Δz and ΔE z Δy should correspond simultaneously to a single clearly defined point B x in the space coordinates [14,15]. This leads us to the concept of the Yee's staggered grid, which contains a primary grid for the electric field components, which are placed in the middle of the edges, and a half-cell shifted (in all directions) dual grid for the magnetic field components. With this, the magnetic field components can be found at the centers of the faces of the primary grid and in opposite -the electric field components are placed at the centers of the faces of the dual grid. In the primary grid, electric field strength ⃗ E and flux ⃗ D components are placed in the middle of the edges. A dual grid, shifted by a half grid cell in all directions, contains the magnetic field strength ⃗ H and flux ⃗ B components. With respect to the primary grid, the magnetic field strength and flux are defined in the center of the faces. (Representation after Refs. [15,20]).

An illustration of the Yee's grid can be seen in Fig. 2.4 [15,20]. Another novelty within the FDTD method was the introduction of a staggered grid also in time, i.e. the electric and magnetic field components are shifted by a half time step as well [20]. This arrangement is nowadays known as the leapfrog scheme. A schematic representation of the leapfrog principle is shown in Fig. 2.5. Basically, all electric components are computed in the space domain and stored for a particular time point, by using previously stored magnetic field data. After this, all magnetic field computations in the space are carried out by using the just computed electric field data. The process continues until the time stepping is completed.

The leapfrog method has the following properties [20]:

• It is fully explicit, so that problems related to simultaneous equations and matrix inversion are avoided.

• The time derivatives are calculated with the same finite differences approach as the spatial derivatives and have the same accuracy order (second order).

• The algorithm is non-dissipative, i.e. the wave that propagates in the mesh does not decay due to non-physical artifacts of the time-stepping algorithm.

Explicit time update schemes are conditionally stable and put a limitation on the maximal time step, which can be chosen. As a stability criterion, the Courant condition is imperative: [17] Δt ≤ c 1

Δx 2 + 1 Δy 2 + 1 Δz 2 -1 (2.14)
with c = 1 / √ εμ the light velocity in a material with a the permittivity ε and the permeability μ. Especially for simulations in the optical domain, this criterion puts serious constraints on the time, which is necessary for a simulation. The short wavelengths in the optical range require a very fine spatial grid and a resolution in the nm-range is typical. This leads to a time step Δt ∼ 10 -17 s. During the past years, a huge effort was put to develop algorithms that overcome this limitation and in Ref. [21] an explicit method using Faber polynomials was proposed. Unfortunately, no commercial realization of timely-efficient algorithms is currently available, so that in the scope of this work the simulation's duration was a limiting factor for the structure's development. grid for the electric and magnetic field strength ⃗ E and ⃗ H is used both in space and time. Central differences are used for the space derivatives and leapfrog for the time derivatives. (Representation after Ref. [20]).

The last important characteristic of FDTD, which will be addressed in this paragraph is the effect of the numerical (grid) dispersion. The latter results from the spatial discretization of the FDTD grid, leading to a frequency-(resp. wavelength-) dependent phase velocity.

The numerical dispersion is especially critical for electrically large problems, where accumulated delay or phase error can result. This may lead to non-physical effects such as broadening of pulsed waveforms, anisotropy and pseudo-refraction. An extensive analysis on the numerical dispersion is given in Chap. 4 in Ref. [20]. A number of contributions in the literature have been dedicated to the analysis of grid dispersion in FDTD and its minimization. Generally, this can be achieved either by choosing a finer discretization step or by employing a higher-order approximation of the derivatives [22]. In Ref. [22] the derivative's expansion in terms of Chebyshev and Butterworth polynomials is discussed.

The implementation of an artificial anisotropy has been proposed as well [23]. Modern commercial FDTD software packages (e.g. Lumerical FDTD [24]) use a non-uniform, graded mesh with a finer discretization of regions with high refractive index, in order to reduce the numerical dispersion.

Discretization with FIT The FIT shares the special features of the staggered spatial and time grid, introduced in the FDTD method. In this paragraph, only the main differences in terms of discretization will be outlined, based on Refs. [14,16,17].

The FIT will be introduced, again using the Maxwell-Faraday's equation, but this time in integral form:

-¨A ∂ ⃗ B ∂t d ⃗ A = ˛∂A ⃗ Ed⃗ s (2.15)
Now, the Yee's grid will be modified -instead of electric and magnetic components in the middle of the primary or the dual grid, grid voltages e and magnetic fluxes b are introduced (Fig. 2.6 ). Their bold notation assigns a full-grid vector. The Maxwell's equation in a single rectangular grid cell n with edges L i , i = 1, 2, 3, 4 and a facet A n can be written as:

e 1 + e 2 -e 3 -e 4 = -ḃn with e i := ˆLi ⃗ E(⃗ r, t)d⃗ s, i = 1, 2, 3, 4 b n := ¨An ⃗ B(⃗ r, t)d ⃗ A (2.16)
where the dot denotes a time derivative. The grid voltages e i are defined in Fig. 2.6. It should be noted that within the discrete cell, no approximation took place so far, in contrast to FDTD, where the derivative is approximated by a difference. Next, the coefficients of the algebraic equations of all grid cells can be grouped into a matrix C:

      1 1 -1 -1 • • • • • • • • • • • • • • • • • • • • • • • •                e 1 e 2
e 3 e 4 . . .

         = -          ḃn • • • . . .          ⇒ Ce = -ḃ (2.17)
Due to the similarity to the Maxwell's equation in differential form, the matrix C in (2.17) is called curl matrix. Similarly, all Maxwell's equations can be discretized and represented in a compact matrix form. In an analogous way, the magnetic grid voltage h, the electric grid flux d, the electric grid current j and the grid charge q in the dual grid cell ñ with edges Li , i = 1, 2, 3, 4 and a facet

Ãn can be introduced:

h i := ˆL i ⃗ H(⃗ r, t)d⃗ s, i = 1, 2, 3, 4 (2.18 
)

d n := ¨Ã n ⃗ D(⃗ r, t)d ⃗ A (2.19
)

j n := ¨Ã n ⃗ J(⃗ r, t)d ⃗ A (2.20
)

q n := ˚Ṽ n ρ(⃗ r, t)dV (2.21) (2.22)
The Maxwell's equations in matrix form can be summarized as:

˛∂A ⃗ Ed⃗ s = -¨A ∂ ⃗ B ∂t d ⃗ A ⇒ Ce = -ḃ (2.23) ˛∂A ⃗ Hd⃗ s = ¨A ∂ ⃗ D ∂t + ⃗ Jd ⃗ A ⇒ Ch = ḋ + j (2.24) ‹ ∂V ⃗ Bd ⃗ A = 0 ⇒ Sb = 0 (2.25) ‹ ∂V ⃗ Dd ⃗ A = Q ⇒ Sd = q (2.26)
Here, the tilde assigns a discretized equation on the dual grid, the matrices C, C are called curl matrices and S, S -source matrices. The matrices are sparse, which makes their storage less memory demanding. It is worth mentioning that the matrices fulfill basic identities:

SC = SC = 0 ⇔ div rot = 0 (2.27) C ST = CS T = 0 ⇔ rot grad = 0 (2.28)
with T assigning the transpose of a matrix.

The last aspect to discuss are the material relations. Since e and d, resp. h and b are defined independently, their quotient corresponding to the permittivity or the permeability introduces a discretization error. The same applies to the conductivity as well. Assume the relation f within the cell n with the edges L i , i = 1, 2, 3, 4 and the face A n :

f ( ⃗ B, ⃗ H) = ˆAn ⃗ Bd ⃗ A ˛L i ⃗ Hd⃗ s ≈ D μ,n . (2.29)
As an approximation of f , the permeability matrix D μ,n can be defined. Analogously, we obtain the permittivity and conductivity matrices:

d = D ε e j = D κ e (2.

30)

The material matrices are diagonal in the case, when linear materials or diagonal tensor materials are present.

Open Boundary Conditions

All discussed "element methods", including FEM, FDTD and FIT require a computational volume with a restricted size. This is particularly inconvenient, when radiating structures need to be investigated. This motivated the research and development of an absorbing boundary condition (ABC), which is able to truncate the computational space with an absorbing material. Ideally, such a medium has a low thickness, no reflection for any type of incident wave and is also able to handle the near-field of a given source [20]. The most successful work towards the realization of a good ABC was the development of the novel technique of the perfectly matched layers (PML), which was able to substitute open problems with boundless space by an artificial boundary condition. This approach was first proposed by Berenger [25]. In the following, some important specifics of the PML technique will be summarized from references [20,25].

The significant contribution of PML is the fact that the technique allows for the absorption of electromagnetic fields independent of the angle of incidence, the frequency or the polarization. Moreover, field distributions other than plane waves can be handled. This is enabled by the introduction of a PML layer made of an artificial material with an electric conductivity σ E and magnetic conductivity σ H . The PML is reflectionless, provided that the electric and magnetic conductivity are related by:

σ E ε = σ H μ (2.31)
where ε is the permittivity and μ the permeability of a given medium [25]. Furthermore, Berenger proposed a split-field formulation of the Maxwell's equations, in which each vector field component is split into a subset of two orthogonal components. With this, 12 components result, which are coupled by partial differential equations. The loss parameters within these equations are chosen according to (2.31) to ensure a perfect matching condition for any type of an incident field. One of the weaknesses of the Berenger's method is the fact that the matching condition (2.31) is perfectly fulfilled only in the continuous space. In the discrete FDTD (or FIT) lattice, the material properties are represented in a discrete form as well, with spatially staggered electric and magnetic parameters. Berenger investigated possibilities to reduce the numerical reflection. Aside from enhancing the PML thickness, another possibility is to gradually increase the PML loss in the direction defined by the interface's normal [20,25].

The original Berenger's method was limited to a free-space or homogeneous lossless medium [26]. Moreover, it has been shown that the split-field PML is not able to absorb evanescent fields [26,27]. Many of the subsequent works attempted to address these issues. With a stretched-coordinate PML formulation from [28], in Ref. [29], a generalized PML was proposed. The latter accounts for the absorption of both propagating and evanescent fields in lossless and lossy media. An alternative approach to handle lossy and dispersive media was proposed by Gedney, referred as the uniaxial anisotropic PML method [30]. Another ABC handling dispersive materials was given by Uno [26] with an approach, basing on the original Berenger's PML. Fully anisotropic [31] and nonlinear PML [32] methods have been reported as well.

For the transfer of PML methods to commercial software, their computational requirements are decisive. The convolutional PML [33] and the complex-frequency shifted PML from [34] are implemented in some of the modern software packages. In this work, the commercial software Simulia CST was used for all simulations. The latter uses the FIT in time domain with a convolutional PML. The method is reported to be able to handle any type of materials, incl. lossy, inhomogeneous, dispersive or nonlinear materials in an efficient manner, without changing the original formulation and with a comparatively low global error [33]. In this work, a PML reflection level of 0.1 ‰ was found to be sufficient.

The consideration of a material dispersion, however, was found to be time consuming and was omitted at a later stage. Potential errors with regard to this and other aspects will be discussed in the next subsection.

Summary of Numerical Errors

In this section, the potential sources of numerical errors will be summarized, basing on the software that has been used to obtain the numerical results in this work. As already noted, all simulations have been performed with the commercial FIT time-domain solver of Simulia CST Studio Suite (previously known as CST Microwave Studio). The list of errors is derived from the documentation of CST [35] and of the very similar software Lumerical FDTD [24]. The following basic sources of numerical errors can be indicated: Spatial grid discretization The spatial grid discretization has a direct impact on the time increment and the grid dispersion. Obviously, the spatial grid must be sufficiently fine to guarantee for results with an acceptable accuracy. The recommended resolution by CST is 15 grid cells per minimal wavelength. Whether this value delivers satisfying results

for a given problem can be proven by a convergence analysis. In the case of a full 2D

GC model, such an analysis becomes very difficult. On the one hand, the simulations become very time consuming with increasing spatial resolution. In addition, models with a large number of grid cells require a hardware with a sufficient RAM. A convergence analysis can be thus limited by the available computational resources. For these reasons, a convergence analysis is performed in a simplified model, containing even in the worst-case a reasonable number of grid cells . To study the convergence the balance parameter B is used as a figure-of-merit. With two ports, B is calculated from the port S-parameters as:

B = |S 1,1 | 2 + |S 2,1 | 2 B[dB] = 20 lg B. (2.32)
Because we have a radiating structure, |B| 2 will be < 1. The number of grid cells per minimal wavelength N cells is varied as N cells = 10, 15, 20, 25, 30. The minimal free-space wavelength is 1500 nm in simulations covering C-band and 1260 nm in O-band simulations. On the other hand, the simulation in C-band shows a larger difference, especially at the minimal wavelength of 1500 nm. In this case, the choice of N cells = 25 could be more reliable.

However, in a full 2D GC model, this resolution results in too large number of grid cells, for which no sufficient RAM resources were available. Since the difference between N cells = 15

and N cells = 25 at 1500 nm is about 0.1 dB (a relative error of < 2 %) -a value, which is below the accuracy limit of measurement results -the discretization error is considered as acceptable. Thus, a resolution of N cells = 15 is chosen in C-band as well.

Staggered grid errors The staggered grid errors are related to the independent definitions of different field or flux parameters and to the half-space shift of the magnetic and electric fields/fluxes. An example for such a grid-related inaccuracy is the discretization error of the material relation, shown in the previous subsection. Similar error will occur also in the power flux calculation, because electric and magnetic field components are not defined at the same spatial point.

Geometry approximation error

The circular diffracting elements of the 2D GC cannot be approximated perfectly by a hexahedral mesh. Another difficulty is the good BEOL stack modeling, since the latter comprises of both very thick and very thin layers. Again, a fine enough spatial grid can minimize this kind of error.

Wavelength-dependent refractive index in the time domain Typically, fitting models are used for the transformation of a wavelength-dependent refractive index into the timedomain, which inevitably cause a fit error. In this work, the wavelength dependence is omitted, especially in order to accelerate the simulation. For the same reason, no mode tracking is used to calculate the waveguide's effective refractive index for different wavelengths. Generally, this leads to an error of the 2D GC's phase condition for wavelengths, different from the central wavelength. Therefore, the simulation bandwidth window has always been centered at the 2D GC's design wavelength. A parameter that remains affected is the 2D GC's bandwidth. Its exact simulation is not a trivial problem. The present work is not focused on the bandwidth optimization -the indicated constraints should be taken into account, in case that future works would address this aspect.

Non-uniform meshing Generally, this kind of mesh improves the geometric approximation and can be used to reduce the grid dispersion. However, it may cause some issues, such as grid scattering or enhanced PML reflection. These effects could again have an impact on the calculated 2D GC bandwidth. Nevertheless, the efficiency of the non-uniform mesh is more decisive, so that its usage is now well-established in commercial software packages.

Waveguide ports and external field sources Since the ports have their own boundary conditions, it must be ensured that they have no interaction with the excited fields.

The ports need to be large enough, in order to calculate a waveguide mode accurately, considering properly its evanescent component. The port boundaries should not touch PML boundaries. Because the waveguide width at the 2D GC is very large and supports theoretically many modes, it should be ensured that higher-order modes will be absorbed by the port. External field sources should also be preserved from grating's back-reflected or scattered fields. Modeled structures with a large perturbation strength will be more affected by such interactions.

Field monitors The electric, magnetic or power flux distribution is spatially interpolated by the monitors and thus contains an interpolation error. In the case of 2D GCs, the monitor field results are projected on a tilted plane, which has also an impact on that kind of error.

Furthermore, field sources from a source simulation may be used in a full 2D GC simulation to account for tilted waveguide excitation. A discretization mismatch may be introduced in that case. Typically, the field monitors'/sources' interpolation is good enough to keep errors from such deviations small. 

PML reflections

Simulation Procedure

The complete procedure for the design of a 2D GC follows some basic steps, which will be summarized here. 

Modeling

Each simulation procedure starts with the modeling of a structure, which has to be optimized numerically. In a basic configuration, a Si waveguide as in Fig. 2.10 (a) is widened by a taper structure (Fig. 2.10 (b)) to obtain a sufficiently large spot size. The enlarged Si mode at the taper's end is then fed into the grating to be phase-matched with the mode of a SMF. In a 2D GC, we have two feeding sides respectively (only one depicted). The 2D GCs in this work are mostly designed for Si rib waveguides with a Si thickness of 220 nm, slabs, defined with the same etch depth as the grating's etch depth, and core width between 400 nm and 500 nm, depending on the optical band (Fig. 2.10 (a)). The underlying BOX layer is 2 µm thick, the cladding is formed by a complex BEOL stack (not shown). Depending on the particular GC design, the tapers can be designed in two ways (cf. Fig. 2.10 (b)).

1) Linear 2D GCs comprise perturbing elements, which are placed along straight lines.

In this case, an adiabatic linear taper is necessary. The latter is typically simulated externally, so that the simulation of the 2D GC itself starts at the taper's end. Additional simulations to obtain the proper taper length have been executed. The taper simulations have been kindly performed by the colleague Karsten Voigt using the commercial software Fimmwave/PhotonDesign. The results show that a taper length of about 250 µm is sufficient for both C-and O-band devices.

2) Focusing 2D GCs comprise perturbing elements, which are placed along curved lines.

In such a case, the feeding taper is significantly shorter (mostly between 20 µm and 40 µm), changing abruptly the mode size. The Si mode' wave front becomes curved.

Because of the specific wave type, the taper has to be simulated together with the 2D GC. The exact modeling procedure will be given later in this section.

Regarding the waveguides' and tapers' geometry, it should be noted that in practice their side-walls are angled and not perfectly vertical. The side-wall angles are not considered here, because they have no direct impact on the 2D GCs' performance. In addition, the waveguides have no sharp edges, in contrast to the numerical model. For that reason, interested researchers, who would like to reproduce the simulations in CST, need to disable the option "consider for snapping" within the mesh properties. The latter enforces a strongly inhomogeneous mesh for the precise geometric representation of edges, which is not necessary in our case. The omission of this option greatly reduces the total number of mesh cells of a numerical model, leading to relaxed RAM and disk space requirements and shorter simulation duration. Another important point is the geometric representation of etched diffracting elements, which is also not exact. In the reality, the diffracting elements have a conical shape, which depends on the etch depth. In CST, the diffracting elements are generally modeled as cylinders and have therefore a larger volume as the fabricated ones.

This affects the exact representation of the grating's perturbation strength. This fact must be kept in mind, when numerical and experimental results are compared. No attempts towards higher geometric accuracy have been undertaken, since it is very hard to determine the exact shape after etching and to consider all factors that have a simultaneous impact In the following, the modeling procedure of the linear and focusing 2D GC will be outlined.

Linear 2D GCs For linear 2D GCs, the modeling is straightforward -the 2D GC with all BEOL layers and their specific pattern can be modeled with the basic shape objects and the boolean operations provided in CST. The periodicity can be simply carried out by copying the diffracting element's object. CST allows for the definition of local coordinate systems, which are angled with respect to the global Cartesian coordinates. With this, periodicity under a certain angle with respect to the Cartesian axes is also possible. All geometric dimensions are defined parametrically and can be easily updated.

Focusing 2D GCs By contrast, the modeling of 2D focusing grating couplers (2D FGCs) is more complex. The main challenge hides in the proper positioning of the diffracting elements, which is not just given by the periodicity in a certain direction. In 2D FGCs, these positions result from the crossing of two arc arrays, which are defined by a curve equations.

The latter result from the focusing condition of 2D FGCs, which will be described in more detail in Chap. 5. Figure 2.11 shows schematically the calculation of the diffracting elements' positions from the crossing of two arrays of arcs. The mathematical determination of these positions is not easy to implement in CST. For that reason, it is performed externally within a MATLAB code. Since these positions are dependent on the periodicity, they must be re-calculated every time, when the periodicity is updated. No simple update within CST is possible. The second difficulty hides in the definition of the diffracting elements themselves.

Each calculated position is the center of an object, which describes such an element. In CST, there is again the problem that there is no directly implemented command, which can be used to assign an object to a certain central position. For that reason, the objects' generation is also performed externally, by using a Python code. The objects' array is thus generated in Python, considering the pre-calculated objects' positions. The objects are then exported as a GDS-file (GDS: graphic design system) and imported into CST. The GDS file should not contain too many points, otherwise the import procedure fails or takes too long time. For that reason, curved or circular objects are constructed with a small number of points, which makes their shape less accurate. After the import procedure is completed, the 2D objects can be extended to the 3D diffracting elements with an extension given by the grating's etch depth. Thus, etch depth can be updated parametrically, but the size of the objects -not. For their adaption, the Python code must be used each time to generate the array of objects with changed sizes. Of course, the new array must be re-imported each time into the CST model. This makes the whole modeling procedure rather cumbersome.

Since 2D FGCs were investigated at the last stage of this work, the modeling procedure is open for optimization in future works. 

Definition of Excitation Sources

Generally, a transient solver uses a signal in the time domain as stimulating excitation. The signal refers to a globally defined frequency (resp. wavelength) range. In CST, different kind of signals are available. For simulations, in which the user is not interested in the analysis in the low-frequency range, it is recommended to use the Gaussian-sine pre-defined signal.

The latter contains no DC component (DC: direct current). Figure 2.12 shows an exemplary Gaussian-sine signal defined in O-band (1260-1360 nm). The stimulation is performed in Δt time steps, with Δt determined by the Courant condition (2.14) (typically Δt ∼ 10 -17 s).

The simulation is terminated after the signal's energy decays to a sufficiently low level (a default value is -40 dB). Aside from a single-port excitation with a given signal, there is the possibility to excite two ports simultaneously, whereat time-or phase-shift between the excitation signals can be defined [35].

Depending on the particular kind of 2D GC, different types of field sources are applicable.

Generally, a waveguide port is used for the excitation of the fundamental TE 00 mode directly in the vicinity of the grating, i.e. at the taper's wide end. The taper itself is not included. The port is chosen wide enough to represent the waveguide mode accurately. It is ensured that the port does not touch the open boundaries and that the higher-order modes are absorbed. To account for the wavelength dependence of the waveguide refractive index, the option broadband mode tracking may be activated. Particularly challenging is the simulation of 2D GCs with angled waveguides, where angled excitation ports are necessary. The latter are not supported by the hexahedral grid in CST.

To overcome this problem, a separate simulation in a source project of a small waveguide piece with a standard port excitation is carried out and a field source monitor is defined. The waveguide segment corresponds to the feeding taper's end width. The field source bounds the excitation port and the simulated waveguide. The field source data is saved after the simulation of the waveguide piece. In the next step, the field source can be imported into the 2D GC's imprint project and used as an excitation source, which can be tilted with respect to the grating. The field source replaces fields in its interior by equivalent sources, radiating outside. The procedure is based on the Huygens' equivalence principle and is used typically for antenna simulations. The equivalence principle is exact only, when the environment in the imprint project remains the same as in the source project [35]. In 2D GCs, this is obviously not the case for two reasons. First, since the field source is tilted to account for the excitation from tilted waveguides, an additional interpolation error occurs. With a small tilt angle (typically ≤ 4 • ) and a sufficiently fine mesh in the source and imprint projects, the error is small. The second violation of the equivalence principle is the existence of the grating itself, because the latter can reflect or back-scatter light and thus affect the field source. Errors from such interactions may be responsible for differences between numerical and experimental results. In spite of these drawbacks, presently, the external field source excitation is the only option to account for tilted waveguides in CST.

In 2D FGC simulations, the field source must replace the complete focusing taper in front of the grating. The reason is that otherwise the excitation port cannot be included and consequently the field source does not "radiate" fields. This makes the computational domain of 2D FGCs significantly larger. However, the space occupied by field sources does not contain any field values in its inner domain and does not increase significantly the RAM and disk space requirements. The decomposition of a full model into a source project and an imprint project is shown schematically in Fig. 2.13 for the case of a 2D FGC. The feeding taper is simulated in the source project and the equivalent source is imported into the imprint project, which takes only the grating area into account.

Simulation Initialization

The basic setup parameters are the same for any kind of simulation. After the appropriate material constants are chosen and the simulation wavelength range and basic units are defined, the geometric model can be prepared. Afterwards, open boundary conditions in all directions are chosen and a free space above the grating is defined for further field evaluation. An excitation source and type of time domain signal are specified afterwards.

The pulse width of the time signal is directly related to the simulation wavelength range.

If a non-default signal excitation is used, one should be aware to activate the results' normalization during the solver setup. Finally, field monitors for the electric and magnetic fields can be defined at the wavelengths of interest -typically covering the complete simulation bandwidth in 10 nm increment. The fields will be determined after the time domain excitation is finished by a Fourier transform [35]. The number of field monitors given by the 10 nm increment is limited by the required hard disk space, as the field monitors cover the complete simulation domain and contain a large number of complex electric and magnetic field values. 

Field Export

Among the significant strengths of CST is the possibility to export fields at arbitrarily tilted planes. This is especially valuable for the determination of the 2D GC's efficiency at a plane, corresponding to the fixed angled position of a SMF. The advantage of this technique is that at this plane, the SMF's field distribution can be directly defined and no projection of a Gaussian beam on the Cartesian coordinates is necessary. In the following, the fixed tilt angles of the SMF will be assigned as φ F , θ F (with a subscript F for fiber).

The determination of the coordinates of a tilted evaluation plane (cf. The last step is necessary, in order to adjust the same angle between the x-and u-axes and the y-and v-axes. With φ F = φ 1 = -φ 2 , the final transform matrix is:

   u v w    =    cos 2 φ F cos θ F + sin 2 φ F -cos φ F sin φ F (1 -cos θ F ) -cos φ F sin θ F -cos φ F sin φ F (1 -cos θ F ) sin 2 φ F cos θ F + cos 2 φ F -sin φ F sin θ F cos φ F sin θ F sin φ F sin θ F cos θ F    =:A T •    x y z    . (2.33)
It should be noted that CST always expects points in the global (x, y, z) coordinates for export. This means that for a desired SMF position (u, v, w = const.), we need to go through the opposite way of the transformation above. With the inverse transform matrix of A T :

   x y z    =    sin 2 φ F + cos 2 φ F cos θ F -sin φ F cos φ F (1 -cos θ F ) cos φ F sin θ F -sin φ F cos φ F (1 -cos θ F ) cos 2 φ F + sin 2 φ F cos θ F sin φ F sin θ F -cos φ F sin θ F -sin φ F sin θ F cos θ F    =A -1 T •    u v w    . (2.34)
Once the results are exported and are available in the (x, y, z), the transform matrix A T is used to bring them in (u, v, w) coordinates for further post-processing in MATLAB. In this coordinate system, all evaluation steps such as power normalization, mode overlap and coupling efficiency calculation are carried out. Due to interpolation errors, the initially defined (u, v, w = const.) points are not exactly the same as the exported ones. The deviation can be corrected by adding a constant offset prior to export.

Initial Geometry

Before explaining the basic simulation initialization and workflow, some of the basic 2D GC's properties and dependences need to be depicted. For a full explanation of the physical effects and relationships, the reader may refer to Chap. 4. All designs consider coupling to or from a Si rib waveguide with a typical height of 220 nm and a rib etch depth equal to the 2D GC's etch depth. With this, grating and waveguide are defined at the same lithographic etch step and the grating is placed at an equal distance from each of the 2D GC's arms.

Otherwise, non-symmetry may result due to a 2D GC imbalanced position with respect to the waveguides. All 2D GCs in this work have the so called shear angle -a non-zero angle α between the Si waveguide and the grating area (Fig. 2.15). A shear angle can be defined either by making the grating area rhombus-shaped or by keeping it rectangular and tilt the Si waveguide instead. The two types of grating are assigned as Type I and Type II respectively. A non-zero shear angle means that an incident wave will be deflected under a certain angle into the grating area. The reason is the refraction between the waveguide and grating half-spaces, having different effective refractive indices. For the Type I 2D GC, the non-perpendicular propagation direction is caused by the angled interface between both half-spaces. For the Type II 2D GC, we have the classical oblique field incidence between two half-spaces, caused by the tilted waveguides. Thus, an electromagnetic wave propagates within the grating with a propagation vector ⃗ k in having two components k GC,x and k GC,y .

These two components can be related to the grating's effective refractive index n eff,GC and an angle of propagation φ in (details in Sect With other words, there is the dependence chain:

(w Λ , d) ⇒ (n eff,GC , φ in ) ⇒ (α, Λ) ⇒ (φ out , θ out ). (2.35)
When a simulation has to be started for the first time, the question of the initial GC's geometry (w Λ , d) occurs. The designer may choose values, which appear meaningful, e.g. w Λ such that no pre-defined design rules regarding permitted dimensions are violated, and etch depth d around half of the total waveguide height (an empirical value). Next, desired coupling angles need to be specified, typically φ out = 45 • and θ out in the range 4 • -16 • . To determine the shear angle and the period, which are necessary to obtain these angles, the effective refractive index n eff,GC and the input angle φ in need to be estimated. In the first iteration, this is a difficult task, since no averaging techniques are applicable. The reason are the complex BEOL filling layers and their specific patterns. Thus, in the first step, a simple approximation is used, which averages the waveguide effective refractive index at full Si height and at Si height, reduced by the initial etch depth (e.g. Ref. [36]). Hereby, only SiO 2 is considered as a cladding. For example, if we assume a waveguide height of h WG = 220 nm, an etch depth of 120 nm (remaining Si thickness 100 nm) and a duty cycle of 0.5, the GC's effective refractive index n eff,GC is approximated as:

n eff,GC ≈ 0.5 • [n eff,WG (h WG = 220 nm) + n eff,WG (h WG = 100 nm)].
(2.36)

The input angle φ in can be initially estimated using the Snell's law. A corresponding grating effective refractive index and input angle (n eff,GC , φ in ) are estimated. With the assumed (n eff,GC , φ in ) and for desired coupling angles (φ out , θ out ), the required shear angle and grating period (α, Λ) can be calculated. After a simulation with a duration in the range 5-15 hours, the actual (φ out , θ out ) and the corresponding (n eff,GC , φ in ) can be determined by a spatial fast Fourier transform (FFT). If (φ out , θ out ) are not as desired, (α, Λ) are adapted and the simulation is repeated. If (w Λ , d) need to be changed for an efficiency optimization, the whole procedure starts all over again.

After the first simulation and after any optimization of the etch depth or the diffracting elements' size, the actual effective refractive index of the grating and the input angle can be determined with the help of a spatial fast Fourier transform (FFT). A spatial FFT transforms a spatial field distribution into the wave vector k-space (or the "spatial frequency" domain).

In the k-space, the propagation angles giving the propagation direction (φ out , θ out ) can be determined. Out of the known relationship between (φ out , θ out ) and n eff,GC , φ in (for a fixed grating shear angle and period), the latter two parameters can be calculated. If the angles (φ out , θ out ) are not as desired, the shear angle and period can be adapted, using the just determined n eff,GC , φ in . If (w Λ , d) need to be changed for an efficiency optimization, the whole procedure starts from the beginning. Since simulations require typically 5-15 hours (depending on the material and geometric properties, the simulation band, etc.), the complete optimization procedure may take up to several days. Note that the given simulation duration does not consider acceleration techniques, e.g. using graphic processing units (GPUs). Figure 2.16 shows schematically the adaption procedure. The exact calculations behind the spatial FFT will be given in more detail in the next subsection.

Methods for Parameter Evaluation

In this subsection, methods for the numerical results' post-processing are explained.

Coupling Angles Determination from a 2D Radiation Pattern

Here, the determination of the grating's angles φ out , θ out via FFT from Fig. 2.16 will be described. Assume a general electric field, propagating in an arbitrary direction with a freespace wavelength λ 0 in a material with a refractive index n 1 . Such a general propagation with a propagation vector ⃗ k out can be given by the angles in spherical coordinates φ out , θ out , defined as in Fig. 2.15. At a constant plane z = const., the electric field has the form:

⃗ E(⃗ r) = ⃗ E 0 exp( ⃗ k out •⃗ r) = ⃗ E 0 exp(k x x + k y y) = ⃗ E 0 exp k 0 n 1 (cos φ out sin θ out x + sin φ out sin θ out y) , (2.37) 
with the free-space wave number k 0 = 2π λ 0 . A FFT of a given electric field distribution at z = const. delivers the vectors k x , k y . With the equivalence:

k x = k 0 n 1 cos φ out sin θ out k y = k 0 n 1 sin φ out sin θ out k 2 x + k 2 y = k 2 0 n 2 1 sin 2 θ out , (2.38) 
it is obvious that with known k x , k y , the propagation angles can be determined as:

φ out = arctan k y k x θ out = arcsin k 2 x + k 2 y k 0 n 1 .
(2.39)

In our case, we assume a free-space coupling and n 1 = 1 (no index-matching gel considered).

Coupling Efficiency

The 2D GC's efficiency results from two components: 1) the out-coupled power efficiency, i.e. the part of the feed-in power, which is coupled towards the position of a SMF; 2) the mode field overlap between the grating's radiated mode and the SMF's mode.

Normalized Out-Coupled Power There are several limitations for a 2D GC, which do not allow that the full power propagating in a given waveguide will be coupled out towards the SMF. Consider the illustration in Fig. 2.17 (a) assuming a transmitter-side 2D GC. The input power, which is used as a reference for the normalization of the out-coupled power, is assigned as P WG . In general, the power is split into several components:

• P up -the part of the power, diffracted upwards. If a high diffraction efficiency is achieved, the whole power P up will be well directed under an angle θ out . The angle will be the same as the SMF's tilt angle θ F for the desired central wavelength. Typically, θ out ̸ = 0 • is chosen, otherwise the grating behaves as a second order Bragg grating with a strong back-reflection. In addition, with increasing diffraction angle θ out , the diffraction efficiency decreases as well, i.e. other angular components result, which have no contribution to the coupling efficiency. At a fixed fiber facet position, the out-coupled power efficiency is defined by the quotient of P up and the input power P WG .

• P down -a part of the power, which is diffracted down towards the substrate.

• P thru -a part of the power, which propagates further within the grating and is not diffracted.

• P refl -a reflected part of the power, which can be caused by the Fresnel reflection at the waveguide-grating interface or by back-scattering at the grating diffracting elements. The ratio between P up , P down and P thru is not only given by the grating parameters themselves, such as the perturbing elements' size and etch depth (see Fig. 2.17 (b)). A significant factor is the thickness of the BOX layer below the 2D GC, separating the waveguide from the Si substrate. The maximum value for P up in a certain wavelength range can be reached, depending on the combination of a BOX thickness, a waveguide thickness, refractive indices of the waveguide and the BOX and the angle of diffraction [37]. Similarly, the thickness of the layers above the 2D GC have also an impact. The latter is, however, smaller, because the reflection at the Si substrate is much stronger than the reflection at SiO 2 -, Si 3 N 4 -layers or air. Mostly, the layers' thicknesses and material properties are pre-defined by the particular fabrication platform, which can limit the maximally reachable coupling efficiency in a given wavelength range. It is also not guaranteed that 2D GCs designed for different bands reach the same performance, because the periodicity of their maxima is wavelength dependent. 

Overlap Integral

The second important factor for the coupling efficiency is the mode field overlap between the radiated 2D GC fields and the fundamental SMF mode. A theoretical upper limit of around 80 % for non-optimized gratings has been determined [37]. The obtained value corresponds to the overlap between a Gaussian function with an expo-nentially decaying function, the later used as an approximation of the field diffracted by a uniform grating.

The mode field overlap is characterized by an overlap integral. The latter will be derived here, by considering the orthogonality relations for the SMF's eigenmodes. Assume the 2D GC's radiated fields as incident fields at the fiber facet with an effective area A F and the position (u, v, w = const.) (Fig. 2.19 ). In the following, all given fields are complex.

Definitions

• Tangential incident fields:

⃗ E i , ⃗ H i
• Fiber eigenmodes:

⃗ E F = l,m (a l,m + b l,m ) ⃗ E l,m , l, m ∈ Z ⃗ H F = k,n (a k,n -b k,n ) ⃗ H k,n , k, n ∈ Z (2.40)
Here, the coefficients a represent forwards-propagating waves and determine the transmission through the fiber facet with an effective area A F . The coefficients b account for backwards-propagating waves. Particularly, we are interested in the calculation of the coefficients a. An orthogonality relation between the fiber's eigenmodes is given as:

ˆAF ⃗ E l,m × ⃗ H * k,n d ⃗ A = - ˆAF ⃗ H l,m × ⃗ E * k,n d ⃗ A = δ lk δ mn =    1, if l = k and m = n 0, otherwise (2.41)
where δ represents the Kronecker's delta.

Continuity Condition at w = const.
The unknown coefficients a and b can be determined by using the continuity of the tangential fields at the fiber facet w = const.

(i.

)

⃗ E i = ⃗ E F ⃗ E i = l,m (a l,m + b l,m ) ⃗ E l,m (2.42)
To make use of the orthogonality relations, we make on both sides of the equation the cross product with ⃗ H * k,n and integrate over the area

A F . ˆAF ⃗ E i × ⃗ H * k,n d ⃗ A = l,m ˆAF (a l,m + b l,m ) ⃗ E l,m × ⃗ H * k,n d ⃗ A = ↓ l=k,m=n ˆAF (a l,m + b l,m ) ⃗ E l,m × ⃗ H * l,m d ⃗ A ⇒ a l,m + b l,m = ˆAF ⃗ E i × ⃗ H * l,m d ⃗ A ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A (2.43) Analogously, (ii.) ⃗ H i = ⃗ H F ⃗ H i = k,n (a k,n -b k,n ) ⃗ H k,n . (2.44) 
This time, we make on both sides of the equation the cross product with -⃗ E * l,m and again integrate over the area A F .

-

ˆAF ⃗ H i × ⃗ E * l,m d ⃗ A = - k,n ˆAF (a k,n -b k,n ) ⃗ H k,n × ⃗ E * l,m d ⃗ A = ↓ l=k,m=n - ˆAF (a l,m -b l,m ) ⃗ H l,m × ⃗ E * l,m d ⃗ A ⇒ a l,m -b l,m = ˆAF ⃗ E * l,m × ⃗ H i d ⃗ A ˆAF ⃗ E * l,m × ⃗ H l,m d ⃗ A = ˆAF ⃗ E * l,m × ⃗ H i d ⃗ A ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A (2.45)
Finally, the unknown coefficients a can be obtained.

(i.) + (ii.)

a l,m = 1 2 ˆAF ⃗ E i × ⃗ H * l,m d ⃗ A + ˆAF ⃗ E * l,m × ⃗ H i d ⃗ A 1 ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A (2.46)
The coefficients b can be calculated analogously ((i.) -(ii.)). Since we have no coupling to back-propagating waves, we obtain in any case b l,m = 0. The estimation of b can be done as a verification of the intermediate steps and as a proof for the transparent boundaries.

Overlap

The overlap can be defined as the quotient of the power transmitted into the fiber P + l,m and the incident grating field power. With P up ≡ P i at the fiber facet:

η F = P + l,m P i η F = ℜ ˆAF a l,m ⃗ E l,m × a * l,m ⃗ H * l,m d ⃗ A ℜ ˆAF ⃗ E i × ⃗ H * i d ⃗ A = |a l,m | 2 ℜ ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A ℜ ˆAF ⃗ E i × ⃗ H * i d ⃗ A (2.47)
Now, we substitute a l,m from (2.46) and assume

ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗
A to be real. We obtain:

η F = 1 4 ˆAF ⃗ E i × ⃗ H * l,m d ⃗ A + ˆAF ⃗ E * l,m × ⃗ H i d ⃗ A 2 1 ℜ ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A • ℜ ˆAF ⃗ E i × ⃗ H * i d ⃗ A (2.48)
Coupling Efficiency The overlap integral (2.48) still does not take into account the limited out-coupled power efficiency, defined as the portion of the input waveguide power P WG that is directed by the grating into the proper direction P up ≡ P i . We can assign this parameter as an input-output grating efficiency:

η io = P i P WG = ℜ ˆAF ⃗ E i × ⃗ H * i d ⃗ A ℜ ˆAWG ⃗ E WG × ⃗ H * WG d ⃗ A (2.49)
with A F the fiber effective area, A WG the waveguide effective ares, ⃗ E WG , ⃗ H WG the Si waveguide fields.

The final expression for the coupling efficiency is:

η = η F • η i,o η = 1 4 ˆAF ⃗ E i × ⃗ H * l,m d ⃗ A + ˆAF ⃗ E * l,m × ⃗ H i d ⃗ A 2 1 ℜ ˆAWG ⃗ E WG × ⃗ H * WG d ⃗ A • ℜ ˆAF ⃗ E l,m × ⃗ H * l,m d ⃗ A . (2.50)
SMF Reference Mode In (2.50), the SMF's LP 01,u -mode can be substituted as the mode of interest defined at (u, v, w = const.). The field distribution is commonly approximated as a Gaussian beam:

E u (u, v) = E 0 exp (u -u 0 ) 2 w 2 0 exp (v -v 0 ) 2 w 2 0 H v (u, v) = E 0 Z F exp (u -u 0 ) 2 w 2 0 exp (v -v 0 ) 2 w 2 0 Z F = Z 0 n SMF = 376.73 n SMF Ω
with n SMF ≈ 1.447 [39] and the mode field diameter 2w 0 = 10.4 µm at 1550 nm or 2w 0 = 9.2 µm at 1310 nm, according to the Corning's SMF-28 data sheet [40]. The central position of the Gaussian beam is given by (u 0 , v 0 ) and its field amplitudes are normalized, so that:

¨AF E u H * v dudv = 1.
The LP 01,v -mode can be defined in an analogous way. In this work, the Gaussian beam's position is always set in such a way that the fiber-grating mode field overlap is maximized.

The position is also balanced between both arms of the 2D GC. 

Polarizations' Splitting and Orthogonality

Along with the coupling performance, another important task for a 2D GC is to act as a polarization splitter/combiner. Particularly, it is of large importance, whether the 2D GC is able to split/combine polarizations orthogonally. In the following, two parameters used for the characterization of the polarization splitting/combining behavior of 2D GCs will be distinguished. The content in the following paragraphs has been partially published in our previous work in Ref. [38].

Assume the configuration in Fig. 2.20 (a), where the 2D GC is placed in the Cartesian (x, y, z)plane. The input fields from either waveguide 1 or 2 are radiated towards a tilted plane, which is rotated by (φ F = 45 • , θ F ) with respect to the grating's coordinates and corresponds to the position where a SMF would be placed (u, v, w = const.). First, waveguide 1 is excited with the fundamental TE mode of a silicon waveguide. The radiated field evaluated at the tilted reference plane can be evaluated in terms of coupling efficiency. In addition a set of Stokes parameters (S 0 , S 1 , S 2 , S 3 ) I and angles (2ψ 1 , 2χ 1 ) on the Poincaré sphere (Fig. 2.20 (b)) can be determined (polarization state P 1 ). The bold font used here denotes a Stokes vector. Next, the procedure is repeated after the excitation of waveguide 2, resulting in a polarization P 2 . Exemplary polarization states P 1 and P 2 are marked in Fig. 2.20 (b).

According to the waveguides' definition, we could expect that excitation of waveguide 1 will result in an x-polarized field in the SMF and waveguide 2 will deliver a y-polarized field. For the corresponding waveguides, these polarizations are assigned as target-polarizations.

Any power conversion, which leads to the excitation of the orthogonal counterpart of the target-polarization is assigned as a cross-polarization. With other words:

• waveguide 1x: target-polarization, y: cross-polarization;

• waveguide 2y: target-polarization, x: cross-polarization.

From the perspective of a single waveguide, we can define the polarization split ratio SR as the ratio between the power coupling efficiencies CE of the target-and cross-polarization:

SR = CE target-polarization CE cross-polarization ⇒ SR 1 = CE x CE y SR 2 = CE y CE x . (2.51)
Due to symmetry, the split ratios are equal SR 1 = SR 2 . This parameter gives us a good intuitive impression about the polarization splitting quality of a 2D GC. In the ideal case, when each waveguide excites only the target-polarization, the split ratio is infinite and perfect polarization separation is guaranteed. Otherwise, signals coded in different polarizations will be erroneously superposed, e.g. the target x-polarization from waveguide 1 and the cross-x-polarization originating from waveguide 2 (and in opposite). To estimate how critical this superposition is, another parameter needs to be introduced. The latter accounts for waveguides 1 and 2 not alone, as in the definition of split ratio, but characterizes the interaction between the fields of both waveguides with their x-and y-components. In the following, the determination of the polarization crosstalk will be explained in more detail. All given fields below are complex. The orthogonality relation of two polarizations can be determined from the Stokes vectors P 1 and P 2 with their corresponding angles on the Poincaré sphere (2ψ 1 , 2χ 1 ) and (2ψ 2 , 2χ 2 ) (Fig. 2.20 (a), (b)). The orthogonality condition is:

|ψ 1 -ψ 2 | = 90 • χ 1 = -χ 2 . (2.52)
First, the calculation of the Stokes parameters will be shown. The latter is based on the procedure used for their practical measurement [41]. We use the definitions:

S 0 = I(0 • ) + I(90 • ) S 1 = I(0 • ) -I(90 • ) S 2 = I(45 • ) -I(135 • ) S 3 = I RHC -I LHC , (2.53) 
where I is the field intensity of the polarization states, given in the parentheses. The latter are linear (0 • , 90 • , 45 • , 135 • ) and right-handed or left-handed circular (RHC, LHC). In our case, the intensity is calculated as the square of the magnitude of a given electric field distribution, integrated over the evaluation plane. Since the fields are normalized, the parameter S 0 , giving to the total field intensity, is equal to 1. A normalized Stokes vector can be represented in such a case as a set of (S 1 , S 2 , S 3 ). The transformation through polarization plates is described mathematically with the help of their Jones matrices [42].

S 0 = I(0 • ) + I(90 • ) = ¨|E u | 2 + |E v | 2 dudv = 1 normalization (2.54) S 1 = I(0 • ) -I(90 • ) = ¨|E u | 2 -|E v | 2 dudv. (2.55)
Transformations representing polarizing plates:

linear polarization ± 45 • : Êu Êv = 1 2 1 ±1 ±1 1 • E u E v (2.56)
right/left hand circular polarization : 

  Êu Êv   = 1 2 1 ±j ∓j 1 • Êu Êv . ( 2 
S 2 = I(45 • ) -I(135 • ) = ¨|Ê u,pol45 | 2 + | Êv,pol45 | 2 dudv -¨|Ê u,pol135 | 2 + | Êv,pol135 | 2 dudv (2.58) S 3 = I RHC -I LHC = ¨|Ê u,pol45,RHC | 2 + | Êv,pol45,RHC | 2 dudv- - ¨|Ê u,pol135,RHC | 2 + | Êv,pol135,RHC | 2 dudv. (2.59) 
The degree of polarization (DoP) p and angles on the Poincaré sphere can be calculated from the Stokes parameters as given in Ref. [43], whereat the DoP here is p = 1:

p = S 2 1 + S 2 2 + S 2 3 S 0 = 1 S 1 = p cos 2χ cos 2ψ = cos 2χ cos 2ψ
S 2 = p cos 2χ sin 2ψ = cos 2χ sin 2ψ

S 3 = p sin 2χ = sin 2χ ⇒ 2ψ = arctan S 2 S 1 , 2χ = arcsin S 3 . (2.60)
After the determination of the angular relation between the signals from the two GC arms, the corresponding polarization crosstalk can be calculated in the next step. For a simplicity, we set 2χ = 0. In Fig. 2.21 (a), a 2D cross-section of the Poincaré sphere is shown.

Here, the exemplary polarization vectors P 1 and P 2 are such, that the angular difference is 2Δψ < 180 • . For orientation, the normalized Stokes vectors of a x-polarization (1, 0, 0) and a y-polarization (-1, 0, 0) are given. For a system with two orthogonal Stokes vectors,

we should be able to cancel one of the two polarizations by rotating it by 180 • . If the assumption of orthogonality is wrong, an error occurs. To determine this error, we rotate e.g. the Stokes vector P 1 by 180 • , obtaining P1 .

The polarization states P1 and P 2 are not identical and differ by the angle:

2Δ ψ = 180 • -(2ψ 2 -2ψ 1 ) = 180 • -2Δψ. (2.61)
Now, we consider the Thales right-angled triangle in gray, spanned by P1 , P 2 , P2 , where P2 is the orthogonal counterpart of P 2 (Fig. 2.21 (b)). In the case of orthogonality, the polarizations P1 and P 2 would be coincident and the depicted triangle would not exist. The latter indicates otherwise different paths between the points P 2 , P2 and P1 , P2 . To account for this deviation, the line segment 2 • m can be used, where m is a fraction of the total line length 2 (with p = 1) between the points P 2 and P2 . The parameter m is defined in the interval m ∈ [0, 1] and its value gives the polarization crosstalk in terms of power. To calculate m as a function of the polarization angles' difference Δψ, we apply the geometric mean theorem for the hypotenuse and the altitude h:

h 2 = 1 + (1 -2m) • 2m. (2.62)
Out of the smaller highlighted triangle, we obtain: 

h = sin(2Δ ψ) ⇒ h 2 = sin 2 (2Δ ψ). ( 2 
m = 1 2 1 -cos(2Δ ψ) = sin 2 (Δ ψ). (2.64) 
The polarization crosstalk in dB can be calculated as m[dB] = 10 lg m.

Measurement Methodology

Although the experimental characterization of 2D GCs requires a relatively simple means, several important objectives should be considered to reach confidence in the measurement results. This includes:

• Proper power normalization in loss measurements. Any loss contributions off-and onchip must be determined as precisely as possible. Any overestimation of the additional loss terms may lead to rather optimistic coupling efficiency results. It is mandatory to describe carefully the means for power normalization, when measurement results are presented.

• Reliable approach for relative measurements. Here, the focus is on the accurate determination of the polarization split ratio. An appropriate test structure is required for a coupling-efficiency-independent measurement. Robustness against mechanical instability is desirable as well.

• Wafer statistics. When we develop a component such as an integrated 2D GC, which is intended for a large-scale fabrication, the repeatability of its performance is crucial.

It is not correct to give the best chip on a wafer as a benchmark. A given GC's parameter should be characterized by a mean value and a standard deviation. A full, automated wafer-scale measurement is best suited for that purpose. If this should not be attainable, at least 9 chips at fixed wafer positions should be measured. This number of chips is typical for process control measurements.

In the following subsections, these points will be discussed in further detail. 

Basic Setup

In the beginning of our discussion, a basic measurement setup will be shown schematically (Fig. 2.22). With small modifications, each passive device measurement involves these components. A tunable laser source is used for a signal generation in the C-or O-band.

A polarization controller is placed prior to chip-coupling, either to ensure the proper polarization state on chip, or to generate different polarization states or arbitrarily polarized light via scrambling. In the first case, a manual polarization controller is sufficient. In the second one, programmable polarization controllers come into question, which have typically a higher insertion loss. The in-and out-coupling is reached via cleaved standard SMFs, which are adjusted by mechanical positioners with three axes (six axes also possible).

The signal is finally received by a photodetector and programming tools can be used for the depiction of a measurement on a computer. The devices under test (DUT) include in the simplest case 2D (or 1D) GCs at both ends, connected by tapers and waveguides.

Depending on the investigated problem, the basic configuration can be extended by other components. Aside from mechanical positioners, an external light source and a microscope camera are used as helping tools for coupling. Although these components have no direct impact on the measurement, their placement may introduce restrictions regarding the adjustable coupling angles and the positioning range of the SMFs. These factors need to be taken into account, when laying out a test structure.

Power Normalization in Loss Measurements

The power normalization in coupling loss measurements needs to take into account offand on-chip losses. Off-chip losses are mostly caused by fiber attenuation, connector losses and losses from other components, e.g. a programmable polarization controller.

Furthermore, the cleaved fiber facet may suffer from impurity or mechanical damages, due to erroneous cleaving or undesired fiber contacts with the chip surface. The best way to take all off-chip losses into account and to eliminate some of them is the calibration with a photodetector directly in front of the facets of the in-and out-coupling fibers. The calibration takes place at both sides, so that for the receiver path, the fiber at the photodetector must be switched over to the laser source. Apparently, it must be ensured that all connectors and fiber facets are sufficiently clean, so that no loss and a corresponding error in the calibration occur, when the fibers are switched back. In this work, a calibrated photodiode Thorlabs SM05PD5A has been used to determine the off-chip loss in most of the measurements. The measured photocurrent at the in-or the out-coupling fiber facet, is transferred to an optical power, by using the provided responsivity data. Ideally, calibrations at several wavelengths are made to cover a certain band, due to the responsivity's wavelength dependence. Alternatively, only the band central wavelength can be used. This causes a wavelength-dependent error of the determined input power of maximally ±0.1 dB, according to the photodiode data sheet for C-and O-band. In some measurements, a slim photodiode S132Ce is used for calibration purposes, combined with a power meter PM100D by Thorlabs. In this case, the optical power instead of the photocurrent is directly measured.

The second aspect is the determination of the on-chip loss. Typically, short deeply-etched rib waveguides and bends with sufficiently large radii are used to minimize the impact of their loss on the measurement. For longer waveguides, the cut-back [44] or the optical frequency domain reflectometry [45] methods are most commonly used for their loss determination. These techniques distinguish themselves for their simplicity, reliability and robustness, which make them suitable for automated wafer-scale measurements [46].

In the photonic BiCMOS platform relevant for this work, the loss for deeply-etched rib waveguides is typically 3 dB/cm. Another important component on the chip is the taper, which scales a waveguide from the grating width of about 12 µm down to a single-mode waveguide with a 400-500 nm width. Typically, simulations predict a nearly lossless behavior for a sufficiently long taper. However, the specific of our sheared 2D GCs with a non-zero waveguide-to-grating angle, makes it possible that a mode, coupled by the grating, enters the taper under an angle different from expected. The deviation can result from both material/geometric variations or from fiber misalignment. The angled mode coupling could generally cause higher-order modes. In addition, in rib waveguides, modes in the slab may also occur, leading to spectrum oscillations. The latter could make the determination of the maximum coupling value difficult. The uncertainty due to such artifacts may reach ±0.5 dB. Finally, Fabry-Perot oscillations in the measured spectrum should be mentioned. The latter result in back-to-back configurations, due to back-reflections at the grating and also due to reflections at the SMF's facet. Typical spectrum variation of ±0.1 dB is given.

In summary, there are different power loss and oscillation sources, which need to be quantified for an exact determination of the 2D GC's coupling loss. The accumulated uncertainty makes it difficult to guarantee for a loss accuracy better than ±0.5 dB. 

A Measurement Technique for the Polarization Split Ratio

An approach for the reliable characterization of the 2D GC's polarization splitting performance has been initially reported in our work, Ref. [47]. Here, the description of the test structure design follows Ref. [47]. The characterization of the polarization split ratio is enabled by the integrated device, schematically depicted in Fig. 2.23 (a). It comprises a 2D GC under study, connected with two Si waveguides via tapers. For linear 2D GCs, adiabatic tapers with a length ≥ 250 µm can be used. The Si waveguides are typically rib waveguides with the same etch depth as the 2D GC (deeply etched rib waveguides). The core width is 500 nm and the slab width 2 µm in C-band. The tapers and the waveguides are not depicted in the schematic, but can be seen in the camera picture of an exemplary fabricated device in Fig. 2.23 (d) . Furthermore, the test structure comprises a low-loss delay line of 200 µm length on the lower arm, a MMI and two 1D FGCs as outputs. The MMI's split ratio is wavelength dependent, but the variation is small.

The device has the following working principle -the 2D GC splits an incident wave of an arbitrary polarization into the two waveguide arms. If we denote these complex amplitudes as a 1 and b 1 , the ratio of their absolute squares corresponds to the 2D GC's split ratio SR,

i.e. to the power ratio between the polarizations in the two waveguides (Fig. 2.23 (a)). The amplitudes are normalized to the 2D GC's input power

SR = |a 1 | 2 |b 1 | 2 , |a 1 | 2 + |b 1 | 2 = 1. (2.65)
After the delay line and the MMI, the two signal paths interfere constructively or destructively at the outputs, depending on the wavelength and the corresponding phase delay Δφ in the delay line. The ratio between the maximal and minimal signal transmission is known as an extinction ratio (ER) and can be measured after out-coupling with a 1D FGC.

From the ER we are able to estimate the 2D GC's split ratio by using a simple matrix model [48]. The relation between the complex input waves a 1 and b 1 and output waves a 2 and b 2 can be mathematically written as a multiplication of a matrix T MMI describing the MMI transfer properties and a matrix T Δφ describing the delay line:

a 2 b 2 = T MMI • T Δφ a 1 b 1 with (2.66) 
T MMI = 1 √ 2 1 j j 1 , T Δφ = e jΔφ 0 0 1 . ( 2 

.67)

If we take e.g. the first output, the power measured there is proportional to the absolute square of the wave amplitude a 2

P out ∼ |a 2 | 2 = 1 2 |a 1 | 2 + |b 1 | 2 + 2|a 1 ||b 1 | sin Δφ . (2.68)
The maximum and the minimum of P out can be obtained by maximizing or minimizing sin Δφ. The maximum-to-minimum ratio is the ER. If we further replace a 1 and b 1 through their split ratio SR, we obtain

ER = 1 + √ SR 1 - √ SR 2 .
(2.69)

Measured ERs can be easily translated into split ratios. The working principle is further illustrated by two examples, which do not consider the GC's filter spectrum. In Fig. 2.23 (b), the incident polarization is such that the signal is equally split between the two waveguides.

The split ratio is therefore 1 and from (2.69) we obtain an ER of infinity. If we consider another case in Fig. 2.23 (c), where the incident polarization is such that all the power is coupled in one of the waveguides , the split ratio is this time SR → ∞ and the ER is 1, which means that minimal and maximal levels are the same and no resonances result. In our experiment, the situation in Fig. 2.23 (c) is pursued: we look for a polarization, which will be coupled into one of the 2D GC arms. Ideally, smooth transmission without resonances should result in this case. Out of the minimal measured ER, we can estimate the best achievable split ratio of the considered structure, according to (2.69).

To be able to measure the split ratio according to the given definition, we attempt to reproduce the scenarios depicted in Fig. 2.23 (b), (c) during all measurements. In the first case, the incident polarization is split equally between both 2D GC arms. Such a polarization state can be found by using an auxiliary structure, comprising two 1D FGCs connected to each other in a back-to-back configuration. The 1D FGCs can be aligned on the chip in such a way that maximal coupling efficiency results for a polarization state oriented as in Fig.

(b)

. After the desired polarization state is found, a measurement on the 2D GC with a delay line MMI can be done. Due to the equal splitting, very large ERs will be observed. In the next step, this polarization state can be rotated by 2ψ = 90 • on the Poincarè sphere, using a programmable polarization controller. This corresponds to the scenario in Fig. 2.23 (c). The corresponding ER can be then measured as well and used for the determination of the split ratio SR according to the definition used here. Although this method may have a limited precision, it still gives us the opportunity to observe trends, which is the main purpose of this investigation.

The principle of our measurement using a delay line interferometer may first look rather complicated, but in manual measurements, it has two obvious advantages. First, the signals at the two MMI outputs are only phase shifted. Thus, it is sufficient to measure only one of the outputs, which reduces the time for the measurement and/or the setup complexity.

Second, if we measure on two outputs, we need to guarantee that they are equally well coupled, which is practically very difficult in manual measurements. In this experiment, the in-and out-coupling efficiency has no impact on the determined split ratios. The mechanical coupling stability during the long wavelength sweep is also less crucial.

Wafer Statistics

Objectives Among the largest strengths of 2D GCs compared to lateral spot-size converters is the possibility for an automated wafer-scale characterization. This is especially important for a high-yield production, which makes 2D GCs currently a more mature solution for EPICs. Simultaneously, higher standards for the performance of 2D GCs are given: it is not important that a single device reaches a good behavior, even when it is a record-high one. Rather, it is decisive that most of the devices show a similarly good operation.

Several 2D GC's design parameters can vary on a wafer. Here, they will be categorized, depending on their particular impact:

1. Parameters with an impact on the grating's effective refractive index and the maximum transmission wavelength. Such parameters include:

-The waveguide height;

-The size and the etch depth of the 2D GC's diffracting elements;
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-The thickness of BEOL layers, covering the waveguide and the grating.

2. Parameters with an impact on the 2D GC's out-coupled power such as:

-The BOX thickness;

-The thickness of BEOL layers, independent on their distance to the grating.

Typically, we target at a fixed wavelength for a given application. The quality of any 2D GC's parameter can be characterized in terms of a mean value and a 3σ-interval (σ the standard deviation). Often, a standard Gaussian statistical wafer distribution can be assumed for the majority of optical parameters. The 3σ-interval defines a span, where 99 % of the values of a certain parameter are expected. The robustness of GCs against variations is often given by their high-index contrast nature and cannot be influenced significantly. Mostly, the choice of an appropriate oxide thickness below the grating or the choice of an appropriate target wavelength can be helpful, provided that such flexibility is given. Otherwise, an optimization of the fabrication process itself is the only way towards improved performance stability. A weighting between complexity and reachable best operation is necessary at this point.

In this work, all fabricated 2D GCs have been characterized statistically. At TU Berlin, a manual wafer-probe system has been mostly used for that purpose, which is the main limiting factor for the number of chips, which could be measured on a wafer. The minimal number of chips is 9 (typical for process control measurements), which can be placed as illustrated in Fig. 2.24. The exact positions depend on the total number of chips on the wafer.

Figure 2.24: An exemplary representation of 9 chips on a wafer, at which 2D grating couplers (2D GCs) can be characterized.

Fully-Automated Wafer-Scale Measurements Although automated wafer-scale measurements are well-established in electronics, there are only very few vendors that are specialized in automated optical measurement equipment. The reason is that optical measurements are significantly more sensitive to alignment, coupling distance adjustment, environmental changes etc. Thus, the fiber alignment and positioning system is among the most challenging components in a fully automated wafer test system. In contrast to electronic tests, where contact pads are available, the photonics coupling takes place at a certain distance and under a non-zero coupling angle. The nearly vertical coupling requires a precise control over the height and an appropriate calibration. In addition, precise alignment and mechanical stability are required. Verification and calibration are not trivial and are connected with certain variations [49,50]. Exemplary automated wafer probe systems are provided by Formfactor [49] and Keysight [50]. Both vendors invested effort in high-precision software kits to fulfill the requirement of equal coupling conditions over the whole wafer. Dedicated calibration tools are necessary to satisfy the stringent requirements of optical wafer-scale characterization. In addition, it is of large importance for volume production that high throughput is ensured. Thus, it is desirable that all electric, optic and electro-optic test are performed in one step [49,50].

Furthermore, short-and long-term repeatability of the measured results is another issue. A short-term interval covers several hours, while long-term periods may extend over several months. It has been shown that coupling loss variation in short-term test remains below 0.1 dB [51]. By contrast, long-term reproducibility is affected by more factors such as contamination of the fiber facets, mechanical instability, temperature changes, polarization shift due to fiber movement or other mechanical defects in connectors and other connecting fiber patches. In the same work, the long term repeatability of measured coupling loss of less than 0.8 dB has been determined [51]. Automated wafer characterization at IHP Microelectronics is enabled by a fully-automated system by Formfactor. Similar measurement principles and performance in terms of repeatability apply for this test station. Some of the experimental results in the present work are obtained on this setup.

Summary Every measurement, even performed with the best state-of the-art equipment, contains inevitably a level of uncertainty. For any reported experimental results, a careful description of all setup specifics is mandatory, including the aspects of calibration, stability and repeatability. The range of possible deviations needs to be determined.

Fabrication Platform

In early years, Si photonics was a niche research field and the experimental work did not consider constraints given by a certain foundry process. Presently, several Si photonics platforms with a variable device portfolio are available, e.g. Refs. [1][2][3][4]. The 2D GCs designed and presented in this thesis consider the boundary conditions for an integration in a 0.25 µm photonic BiCMOS technology. In this chapter, the basic differences between a pure CMOS and a BiCMOS process will be explained. The advantages and specifics of the SiGe:C heterojunction bipolar transistor (HBT) will be highlighted. Afterwards, the combination of SOI photonics with the electronic process in bulk Si for the realization of a photonic BiCMOS platform will be briefly reviewed. An alternative approach for the integration of photonics and electronics both on bulk Si wafers, in a 3D integration manner, will be outlined in the end of this chapter.

Bipolar CMOS

This section gives a brief introduction to the idea of the bipolar CMOS technology and discusses in further detail the realization of high-speed SiGe:C HBTs, which is the most distinctive electronic component in the technology platform relevant for this work.

CMOS vs. Bipolar Technology

The following paragraphs are based on Refs. [5,6]. The information here is intended to give a brief overview, but not to go into technological details on the BiCMOS integration.

For a more detailed information, the reader may refer to the publications given in the bibliography.

The motivation for a bipolar CMOS technology is to combine the advantages of metal oxide semiconductor (MOS) and bipolar transistors on a single platform. The MOS transistors are known for their low power consumption and ease of design, however, they have limitations in drive capability and speed. By contrast, bipolar transistors allow a larger current drive and a better high-frequency performance [5]. Among the most critical trade-offs is the n-well formation, which is necessary for both the p-MOS and the npn-BJT. For the p-MOS, the n-well optimization is performed with respect to the threshold voltage, punchthrough voltage, source and drain capacitance and body effect. On the other hand, for the BJT's collector formation, the n-well doping and thickness are related to a compromise between high transit frequency and large breakdown voltage.

Bipolar CMOS

The choice of an appropriate well profile is also technology dependent (n-well, p-well or twin-well) [6].

The efforts to combine properly CMOS with bipolar technology with a minimal number of additional processing steps have been shifted with the time towards the pursuit to reduce the total fabrication time. Current BiCMOS processes attempt rather to add bipolar transistor modules with a minimal disturbance of the standard CMOS process. Additional optimization steps can be added depending on the target application [5].

Often, a comparison between CMOS and BiCMOS has been made. In the first place, it should be noted that CMOS scales significantly faster than BiCMOS. The integration of bipolar modules gets even more challenging with decreasing CMOS nodes. However, there are certain advantages of BiCMOS, which still makes the technology competitive [7]:

• Reliable high-speed performance. The bipolar transistors come with a higher break-down voltage at the same speed than most of the CMOS transistors.

• Large transconductance and low frequency noise.

• Better BiCMOS passive devices, due to the optimized BEOL, usually not available in CMOS.

With these characteristics, the BiCMOS technologies target at applications for even increasing frequencies and very demanding requirements with respect to power and reliability.

Exemplary application fields are the high-speed, high-data-rate communication systems or smart mobility systems [7].

SiGe:C Heterojunction Bipolar Transistor

The IHP Microelectronics' fabrication platform related to this work offers high-speed electronics enabled by SiGe:C HBTs based on a 200 mm technology. As a most decisive figureof-merit, the product of transit frequency and collector-emitter breakdown voltage is used:

f T × BV CEO .
Reaching simultaneously a high f T and a high BV CEO is a challenging task. The HBTs available in this platform are a result from a long development process and designs for different target applications are available. The choice of a SiGe doped base instead of a pure Si base has several advantages. First, the base bandgap in SiGe is reduced, compared to Si. Thus, the barrier height for the emitter-to-base electron flow is smaller, leading to a larger collector current. With this, larger current gain can be reached with SiGe HBTs compared to Si BJTs. Moreover, the SiGe base offers more design flexibility. When a moderate current gain is chosen, the base doping can be optimized for reaching higher f T and/or higher maximal oscillation frequency f max . To maximize both parameters, the boron profile in the base must be as thin and highly doped as possible [5]. For the realization of such a base, the boron diffusion during layer growth and high-temperature anneals must be minimized. A possibility of the reduction of the boron diffusion is the additional carbon doping of the base. This approach is used for the HBTs in this technology as well [8]. Another important aspect is the collector design, responsible for the combination of f T × BV CEO . The IHP's collectors are formed without subcollectors and deep trenches. The low collector resistance is achieved by high-dose ion implantation after shallow trench formation [9,10].

The best in class f T / f max performance has been consistently demonstrated in 0.13 µm CMOS environment (f T / f max of 505 GHz / 720 GHz) [11]. The latest generation of 0.25 µm HBTs at IHP show f T / f max values of up to 220 GHz / 290 GHz [12]. [13]. The question whether comparable 2D GCs may be realized with a 248 nm DUV is addressed by this thesis.

Monolithic Photonic BiCMOS

As discussed in the previous section, the co-integration of CMOS and bipolar technology is not a trivial task. Even more demanding is the ambition to go for monolithic EPICs. Along with the strict conditions for the realization of fast and reliable electronics, additional requirements for the highly sensitive photonic circuits result. Currently, there are only few EPIC platforms worldwide. On the other hand, monolithic EPIC platforms have several clear advantages. Among the most important ones is the possible realization of the shortest interconnects between photonic and electronic devices.

By contrast, hybrid platforms require wire-bonding or flip chip techniques for interfacing between PICs and EICs, which is inevitably related to additional parasitic resistances, capacitances and inductances with an impact on the whole device performance [12,[14][15][16].

In addition, a technology with a common BEOL stack for photonics and electronics is favorable compared to dual backend approaches with expensive photonic-electronic copackaging [14].

The main challenge for the monolithic photonic-electronic integration is the frontend of line (FEOL) with different substrate requirements. On the one hand, high-performance BiCMOS devices are typically realized in bulk Si, while photonic devices require SOI wafers.

The translation of BiCMOS on SOI is limited by the deep collector and the high thermal resistivity of the buried oxide, which is a significant issue for the heat dissipation of highspeed circuits [14]. To overcome these problems, a mixed-substrate technology -the local SOI approach [17] -has been introduced. First, an SOI substrate with a 2 µm thick buried oxide and a 220 nm SOI layer, intended for photonic applications, is taken. No BiCMOS requirements are considered at that point. Afterwards, the SOI layer and the buried oxide are removed locally by a sequence of plasma and wet etch steps. These locally etched areas are intended for the BiCMOS electronics and are re-filled in the next step by a selective Si epitaxy. Chemical mechanical polishing (CMP) is used for the planarization. This approach leads to the final monolithic integration of photonics and BiCMOS electronics, achieving an unaltered BiCMOS performance in comparison to the pure electronic technology [14]. It should be noted that this has no impact on the general observations and design rules, which have been derived in the scope of this thesis. Generally, the 2D GC designs would require only small modifications to be adopted to other fabrication platforms. Finally, the platform offers three thin (Metal1, Metal2, Metal3) and two thick metals (TopMetal1, TopMetal2) for the realization of the shortest interconnects between photonics and electronics.

BiCMOS With BEOL Photonic Layers

The monolithic photonic BiCMOS platform presented in the previous section shows the established fabrication routine for photonic-electronic integration. In the recent years, an alternative approach has been investigated, which is based on the principles of the 3D photonic integration. Some of our preliminary ideas and analyses on that concept have been published in Ref. [18] and will be given in this section. 3D silicon photonics is based on the idea of the extension of the number of photonic layers, thus improving the integration density and the design flexibility of photonic components [19]. Several materials come into question for that purpose: hydrogenated amorphous silicon (a-Si:H) [20], silicon nitride (Si 3 N 4 ) [21,22] or aluminum nitride (AlN) [23]. From the perspective of GC enabled devices, a high-index contrast material is preferable. Among the listed materials, a-Si:H offers the highest refractive index contrast, and has been proved suitable for inter-or intra-chip vertical grating coupling [24]. The initial disadvantage of the high absorption loss of a-Si at telecom wavelengths could be overcome by a hydrogen passivation [25]. For these reasons, a-Si:H has been considered a promising material for 3D photonic transmitters or transceivers as a part of the IHP's photonic BiCMOS platform.

The basic motivation for a 3D photonic integration is the following. After years of research in silicon photonics, it is now well-known that the silicon modulator and the modulator drivers are the bottleneck for the realization of high-speed all-silicon transmitters [26].

Due to the fundamental limitations of all-silicon phase shifters, silicon Mach-Zehnder modulators typically show opto-electrical bandwidth < 50 GHz, large modulation loss and V π and considerable power consumption [27][28][29][30]. For these reasons, many groups started considering the accomplishment of silicon hybrid transmitters, in which the modulator is made of material with distinct second-order nonlinearities (Pockels effect). Modulators based on various materials have been reported, e.g. nonlinear polymers [31], lead zirconate titanate [32], barium titanate [33] and lithium niobate [34][35][36][37]. Moreover, attempts towards the co-integration on a full-flow silicon platform have been undertaken [33,36]. On the one hand, polymers suffer from temperature and long-term stability issues. Polymers are in general not FEOL compatible. On the other hand, all inorganic Pockels materials listed here are not compatible with common CMOS processes and require a post fabrication bonding step. From the perspective of a foundry process flow, bonding of a Pockels material in the FEOL would require significant modifications of the FEOL fabrication routine, adding processing time and complexity. In comparison, bonding after the BEOL has been processed is less challenging and both IBM [33] and Sandia [36] demonstrated their modulators in the BEOL. If we consider keeping the modulator there, an extension with another photonic layer at that level is necessary. ) have a thickness of around 900 nm, which is not sufficient. For that reason, the integration of a-Si:H after processing TopMetal1 is favorable, since the interlayer dielectric stack between TopMetal1 and TopMetal2 with a thickness of around 3 µm fulfills best the requirements.

In the photonic a-Si:H layer, typical components such as waveguides, directional couplers, MMIs etc. can be realized in the same way as their SOI counterparts. Grating couplers can be used as in-and out-coupling interfaces, whereat the input interface can be substituted in future by a hybrid integrated laser source, following the principles outlined e.g. in

Refs. [38][39][40]. For polarization-multiplexed systems, 2D GCs are necessary as an output.

Regarding the efficiency of GCs, a low thickness variation of silicon dioxide (SiO 2 ) is very decisive. There are several process points in the BEOL, which cause variation in the SiO 2 cladding. Before the fabrication of each metal layer, a CMP is done to create suitable process conditions. This means that we have four CMP modules (PreMetal1, PreMetal2, PreMetal3, PreTopMetal1), which will increase the thickness variation. If we consider the whole BEOL with the planarized TopMetal1 topography, a typical thickness variation of the SiO 2 cladding of around 330 nm results. In this context, the adoption of Metal3 as a mirror below the GCs is not only to increase the coupling efficiency, but -more important -to reduce the influence of the SiO 2 thickness below the grating. For a SiO 2 thickness between a-Si:H and Metal3 of around 3 µm, a thickness variation of around 210 nm can be expected.

A deviation in that range is acceptable for the 2D GCs, which will be shown in Chap. 5.

A typical transmitter configuration requires integrated photodetectors for setting the operation point of the modulator. In the case of a BEOL integrated modulator, an interlayer coupling scheme such as in Ref. [23] will be needed to access a frontend photodiode. The interlayer coupling is not shown in Fig. 3.4, being still under development. The possibility for non-SOI photodetector has been investigated on our BiCMOS platform as well [41]. In this concept, a Si 3 N 4 photonic layer has been used in the FEOL. This outlines the potential possibility to realize complete transceivers on bulk Si wafers. As a very premature concept, an in-depth analysis is still forthcoming. Nevertheless, the analysis of 2D GCs in this context is of interest for this thesis, since reachable maximal coupling efficiency limits can be explored.

Investigation of Fundamental Physical Effects in Two-Dimensional Grating Couplers

Among the most significant objectives of this work is the systematic explanation of the physical properties of 2D GCs. This includes:

1) The description of the diffraction in two directions. This is possible by the derivation of a 2D diffraction condition, in which all material and geometric 2D GC's parameters are put into a clear relation with the two angles of diffraction φ out , θ out . The reliability of the derived formulas can be shown in simulations and experiments.

2) The demonstration of the importance of in-plane scattering effects. The latter have been underestimated in 2D GCs until now. This work demonstrates the fundamental limitations due to in-plane scattering and proposes new means to overcome in-planescattering-related issues.

In this chapter, the basic description of these effects will be summarized. Methods for the 2D GCs optimization by an appropriate diffraction and scattering management will be reviewed in Chap. 5.

Diffraction

This section is dedicated to the derivation of a 2D diffraction condition, which links the geometric and material 2D GC's properties to two angles of diffraction -an azimuth angle φ out and an off-plane angle θ out (Fig. 4.1). Out of this condition, general design rules for our sheared 2D GCs are derived. Their feasibility is verified in numerical simulations. ). An incident wave vector ⃗ k is transformed to a vector ⃗ k in due to the angled interface between waveguide and grating. The vector ⃗ k in is defined by the effective refractive index of the 2D GC n eff,GC and the angle of incidence φ in . The 2D GC's wave vector ⃗ K is defined by the period Λ and the shear angle α. The grating's wave vector ⃗ K transforms the input vector ⃗ k in into the wave vector ⃗ k out , which is related to the diffraction angles (φ out , θ out ).

Derivation of a 2D Diffraction Condition

A part of the following analyses has been previously published in Ref. [1]. The starting point is the consideration of the wave vectors of the field in the grating plane and the field radiated outside of the grating. The continuity of the tangential fields at the grating's interface leads to a phase condition, which gives an information about the grating geometry that ensures light deflection under desired radiation angles. We focus here entirely on the coupling to a given target SMF polarization. For that reason, only the target diffraction order will be considered.

For all calculations, an output 2D GC is examined. The grating area is assumed rhombusshaped as illustrated in Fig. 4.1. A Si waveguide mode propagating in the grating is referred as an input field. A field radiated by the grating is denoted as an output field. All derivations are made for the x-polarized waveguide mode. For a y-polarization all calculations may be performed analogously. Note that the equations for the x-polarization can be converted to equations for the y-polarization by taking into account, that the y-polarization is principally the same field, rotated by 90 • .

Phase Condition

We start with the formulation of the phase condition of a sheared 2D GC with a rhombusshaped area and perpendicular feeding waveguides. A phase condition for a sheared 2D GC with tilted waveguides can be found in Ref. [2].

Input Field To implement the 2D nature of a 2D GC with respect to a single input arm, the grating and the input field from this arm must be oblique to each other. A modified input field vector with two components and/or a sheared grating wave vector allows for a 2D diffraction pattern. We consider a waveguide with an effective refractive index n eff,WG .

When this waveguide is periodically perturbed to form a grating, a lower effective refractive index n eff,GC within the grating results. Thus, for a wave propagating from the waveguide into the grating (and vice versa), a Fresnel reflection and refraction can be expected (Fig. 4.1). In sheared 2D GCs, the transition from the waveguide to the grating takes place at an oblique angle. Depending on the 2D GC's type, we may have two scenarios. When the grating area is rhombus shaped, an angled interface between waveguide and grating is given. When the grating is square-shaped, but the feeding waveguide is angled, the incident field propagates in an oblique direction with respect to the interface. In any case, a purely

x-polarized waveguide mode that propagates in y-direction will change its propagation direction after a transition into the grating. Thus, the following wave vector transformation takes place:

x-pol. waveguide mode: ⃗ k WG = k 0 n eff,WG ⃗ e y grating mode:

⃗ k GC = k 0 n eff,GC cos φ in ⃗ e x + sin φ in ⃗ e y =: ⃗ k in (4.1)
with k 0 = 2π λ 0 , λ 0 the free-space wavelength, n eff,WG , n eff,GC the effective refractive indices of the waveguide and grating mode respectively, φ in the angle of transmittance from the waveguide into the grating, which can be initially estimated using the Snell's law. The mode that propagates within the grating is further referred as an input field.

Grating Wave Vector The wave vector of a rhombus-shaped grating can be defined as:

⃗ K = 2π Λ sin α • ⃗ e x + 2π Λ cos α • ⃗ e y (4.2)
with Λ the grating period and α the shear angle.

If we consider the path difference between two diffracting elements

Δ⃗ r = Λ sin α • ⃗ e x + cos α • ⃗ e y (4.3) we obtain ⃗ K • Δ⃗ r = 2π Λ • Λ sin 2 α + 2π Λ • Λ cos 2 α = 2π. (4.4)
This short calculation check confirms that the condition for constructive interference between two partial diffracted waves is fulfilled. Due to the non-zero shear angle, the grating vector ⃗ K can be used for the manipulation of the components of ⃗ k in in two angular directions.

Continuity Condition

To obtain the phase condition for a sheared 2D GC, the continuity of the tangential fields at the interface between the grating and the outer space must be considered. For the field phases it means that the wave vectors must be continuous for all x, y.

Input Wave Vector

⃗ k in = k 0 n eff,GC cos φ in ⃗ e x + sin φ in ⃗ e y = k 0 ñeff,GC ⃗ e x + ñeff,GC ⃗ e y with (4.5)

ñeff,GC = n eff,GC • sin φ in (4.6) ñeff,GC = n eff,GC • cos φ in . (4.7)

Grating Wave Vector ⃗ K = 2π Λ sin α • ⃗ e x + 2π Λ cos α • ⃗ e y . ( 4 
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Output Wave Vector ⃗ k out = k 0 n 1 sin θ out cos φ out ⃗ e x + sin φ out ⃗ e y (4.9)

where φ out is the angle in the horizontal plane z = const. and θ out is the angle with respect to the vertical. Normally, the propagation angle θ out in the free space is of interest, the outer space has a refractive index n 1 = 1 in this case. When we substitute the cladding's refractive index n cladd , we obtain the angle of propagation within the cladding θ out,cladd . At the cladding-air interface, the Snell's law holds:

n cladd sin θ out,cladd = n 1 sin θ out (4.10)

Continuity at z = 0 ⃗ k in -⃗ K = ⃗ k out (4.11)
x-component:

k 0 ñeff,GC - 2π Λ sin α = k 0 n 1 cos φ out sin θ out ñeff,GC - λ Λ sin α = n 1 cos φ out sin θ out , (4.12) 
y-component:

k 0 ñeff,GC - 2π Λ cos α = k 0 n 1 sin φ out sin θ out ñeff,GC - λ Λ cos α = n 1 sin φ out sin θ out , (4.13) 
with the definitions of ñeff,GC , ñeff,GC given in (4.6), (4.7). For the y-polarization the same equation system results, if we let φ in → 90 •φ in , φ out → 90 •φ out , α → 90 •α under the condition, that all named angles are mathematically positive.

Sheared 2D GC Design Parameters

For given 2D GC geometric parameters -a period Λ and a shear angle α -the radiation pattern may be determined from (4.12) and (4.13). Usually, we are interested in finding design parameters of a 2D GC for a given desired combination (φ out = 45 • , θ out ), which will be equivalent to the fiber position φ out = φ F , θ out = θ F . To do so, we can use again (4.12) and (4.13), this time with the shear angle α and the period Λ as unknown parameters.

To linearize the equation system, following parameters may be introduced:

cos α Λ =: A sin α Λ =: B. (4.16)
Thus, the linear system of equations that have to be solved with respect to A and B is:

λ 0 0 λ • A B = ñeff,GC -n 1 sin φ out sin θ ñeff,GC -n 1 cos φ out sin θ . ( 4.17) 
Finally, the 2D GC's design parameters α and Λ are obtained:

α = arctan B A Λ = 1 B sin α = 1 A cos α. (4.18)
It should be noted that the waveguide-to-grating shear angle, initially proposed by Taillaert [2], has been reported often in the literature, e.g. Refs. [3][4][5][6][7], however, without a detailed explanation, what the exact design procedure is and whether the latter describes well strongly perturbed 2D GCs with a shear angle. Strongly perturbed sheared gratings require a full 3D numerical analysis [2]. Therefore, the derived relationships in this work (4.12), (4.13), (4.18) will be verified numerically in the next subsection.

Numerical Verification of the 2D Diffraction Condition

From the relations (4.14)-(4.18), we can see that the combination of a shear angle α and a grating period Λ results in a combination of the coupling angles (φ out , θ out ). The dependence is used to design different 2D GCs for various coupling angles θ out , combined with a constant φ out = 45 • . Numerical simulations are carried out for exemplary cases combining different (α, Λ) and a non-sheared 2D GC is used as a reference.

As already mentioned in Chap. 2, there are basically two ways to realize a shear angle in practice. A possibility is to etch a rhombus-shaped grating array and keep the waveguides perpendicular -a design, which is assigned here as a sheared 2D GC of Type I. The second option is to keep the grating rectangular, but tilt instead the waveguides with respect to the grating -a configuration assigned as a 2D GC of Type II. With regard to the results that will be shown in the remaining part of this work, the following specifications need to be made. As noted in Chap. 2, all results obtained by simulations are evaluated at the SMF-plane with coordinates (u, v, w = const.) calculated by (2.33), which are tilted with respect to the Cartesian (x, y, z), according to the fiber angles φ F = φ out , θ F = θ out .

An on-chip input polarization E x is thus translated to the polarization E u , respectively E y to E v . To avoid confusion, the following equivalence will be set:

E x ≡ E u , E y ≡ E v .
Although the polarizations E u , E v are calculated, they will be further denoted as E x and E y . In contrast to 1D GCs, the perturbation strength of a single diffraction element in 2D GCs is lower. For that reason, 2D GCs require a larger etch depth, compared to the "standard" 70 nm. An etch depth of 120 nm is found appropriate for 2D GCs. The diameter of the diffraction elements should be sufficiently large, but its exact value is not determining.

It is important that the design rules for a 248 nm DUV lithography are not violated. The distance between two diffracting elements should not be less than 180 nm, which defines the limit for the maximal diffracting elements' size. Table 4.1 summarizes the details of the exemplary designs used here to demonstrate the principle of the 2D diffraction condition.

The angles are obtained via spatial FFT (cf. In the case of zero shear angle, it is evident that no rotation in φ-direction takes place.

The propagation angle θ out is the same for both polarizations, but the angle φ out differs by 90 • . It can be further observed that for a desired maximum transmission wavelength, the coupling angle θ out at a fixed φ out = 45 • can be increased, by increasing simultaneously the shear angle and the grating period. Although some of the designs have a slight deviation Δφ out = ±5 • , this is not critical and corresponds to a very small wavelength mismatch. More significant changes in terms of efficiency occur, when Δφ out > ±10 • , as will be shown exemplary later in this section. The results in Tab. 4.1 confirm that there is not a single "proper" shear angle, but the latter can be adapted according to the desired coupling angle θ out . The differences between gratings of Type I and II scale with an increasing shear angle and can be explained by different effective refractive indices of both types. The latter are caused by the different shape and material distribution of the grating's area.

Next, the designs in Tab. 4.1 are examined with regard to their coupling efficiency. In Fig. With certain fixed design specifications, this is not always achievable.

As could be shown, the role of the shear angle is to "shift" the desired coupling angle θ out towards the symmetry plane φ out = 45 • for both polarizations. With this, coupling angles θ out for wavelengths different from the desired one are coupled out at φ out ̸ = 45 • .

An example for the coupling-angles-wavelength combinations obtained by a spatial FFT is given for the structure with a shear angle α = 3 • of Type I in Fig. 4.6. For this design, a change of Δθ out = ±3 • is combined with Δφ out ≈ ±10 • (for the x-polarization on example).

This means that unlike for 1D GCs, there is only a limited possibility to shift the grating spectrum's maximum by adapting the SMF's tilt angle θ F . The reason is that a deviating 

In-Plane Scattering

In this section, the importance of the grating in-plane scattering is demonstrated in theory and experiment. As shown in the previous section, the out-coupled fields of 2D GCs are always associated with a constructive interference and can be described appropriately by the formulation of a 2D diffraction condition using wave vectors. By contrast, the fields deflected within the grating plane are not necessarily related to a coherent field superposition and their description using wave vectors may not be sufficiently general. For that reason, field deflection within the grating plane, assigned here as in-plane scattering, is mathematically handled in a more rigorous way, using analytical methods. The in-plane scattering's existence is proven mathematically in a simplified configuration. Although only qualitative, this analytical study is able to give us a good feeling about the origin of parasitic in-plane field components in 2D GCs. Next, the effect of the cross-polarization, i.e. the orthogonal conversion of a given polarization within the grating plane and its subsequent fiber coupling, is thoroughly investigated as the most significant consequence of in-plane scattering. It is shown that the cross-polarization is related to coupling and polarization splitting issues. For the experimental evidence of the in-plane scattering, higher-order modes excitation in different 2D GC designs is finally studied.

Analytical Investigation of In-Plane Scattering

The following analytical study of the in-plane scattering in 2D GCs has been initially published in Ref. [8]. A simple analytical method is used to describe the scattering by an array of dielectric cylinders with similar properties as the diffracting elements of a 2D GC. Only a limited number of cylinders can be taken into account. The field problem is simplified in several aspects, so that the results can be interpreted only qualitatively. The limitations of the analytical description are summarized in the end of the subsection.

Si photonic GCs are typically considered as diffractive structures, for which only the diffraction condition is of interest. In 1D GCs, the grating perturbing element is defined completely along the waveguide's cross-section and is continuous with respect to the wave front. For this reason, diffraction is the dominant process in 1D GCs. However, in 2D GCs, the perturbing elements are discrete and have a finite dimension with respect to the waveguide and its wave front. For that reason, an incident wave will not only be diffracted according to the grating's diffraction condition, but also scattered in the grating plane. The scattering being initially a random process [9] can receive a more systematic nature, when the scattering elements are periodic along the propagation direction of the incident wave. Such situation is given in 2D GCs, therefore, scattering needs to receive as much attention as diffraction.

Here, it is shown that scattering is an issue, which can be responsible for many undesired effects in 2D GCs such as polarization conversion (i.e. cross-polarization), polarization crosstalk, PDL and higher-order modes excitation in Si waveguides. These effects are not predicted by the 2D GC's diffraction condition. The latter states that the polarization of a wave will be preserved and only the propagation direction will be changed according to the chosen grating period (no cross-polarization). The diffraction condition can be applied to higher-order modes, however, their refractive index is significantly smaller and requires for the same design coupling angle a significantly larger period than the 2D GCs designed for the fundamental TE 00 have. For that reason, lateral higher-order modes coupled to 2D-GC-interfaced Si components cannot result from diffraction.

Scattering of a plane wave by a dielectric or conductive cylinder has been a well-known electromagnetic problem for many years. Currently, various solutions of special cases are present in the literature. Good summaries of classical solutions were available already in the 70s [10,11]. Simplified analyses consider the cylinder infinite in its length. In addition, the material properties include perfect metals or lossless dielectrics. In more advanced calculations, finite conductivity, dielectric losses (see e.g. Ref. [12] and the references therein), anisotropy [13] or finite length [14] are taken into account. For a certain group of problems, e.g. in the optical domain, the plane wave as an incident wave is substituted by a Gaussian beam [15]. Another interesting aspect is the scattering not only by a single cylinder, but also by a periodic array [12,15].

The grating area of a silicon photonic 2D GC combines many special conditions in its scattering nature. It consists of a dielectric cylinder array, which is periodic in two directions. The cylinders have a finite length and a size comparable to the wavelength. The material is dielectric with a wavelength-dependent refractive index. Moreover, in our case the cylinders are radially stratified, due to the BiCMOS BEOL filling layers. Obviously, the scattering taking place in 2D GCs is far more complex to describe than is the diffraction. A simple analytical formulation, which clearly states how a scattered field is distributed, in what direction it propagates, and what polarization components it has, is not available. The aim in this work is not to derive an absolutely exact analytical description of the scattering in 2D GCs, but to deliver a mathematical proof, based on a simplified configuration, that scattering can be the reason for a polarization conversion in 2D GCs. The understanding of this fact is almost intuitive, since a plane wave scattered by a circular cylinder results in a cylindrical wave. A previous analysis of the scattering properties of 2D photonic crystals [16] is used as a basis to illustrate that in 2D GCs scattering takes place in parallel to diffraction.

For the next analysis, the following simplifications are assumed. The incident wave is a plane wave instead of a Gaussian beam. The grating's perturbing elements are considered as infinitely long dielectric cylinders. These assumptions would be eligible, if a 2D GC is fully etched, the waveguide mode is very well-confined and the grating area is smaller than the incident wave front. For the scattering's description, the relations from Ref. [16] are adapted to the particular problem. A scattered field by a single cylinder and by a cylinder array is represented. Since the derivations are well-explained in Ref. [16], only the significant basic steps are outlined. For an incident P-polarized wave, the electric field is parallel to the (x, y)-plane, the magnetic field is parallel to the cylinder axis ( ⃗ H = H z ⃗ e z ) and is used for the determination of the scattered field. We consider complex fields. The assumed time-dependence in [16] is exp(-jωt). The latter is omitted in the fields' representation.

In general, a non-zero angle of incidence φ i can be assumed (Fig. 4.7), which can be related to a waveguide-grating shear angle. The propagation direction of the incident field is depicted by the vector ⃗ n i with the subscript i for "incident". Here, we are particularly interested in the case φ i = 180 • (a propagation in x-direction, according to the definitions in Fig. 4.7). Such a propagation is given in perfect vertically coupled gratings, for which no polarization conversion and orthogonal polarization separation is expected [17]. Assuming a propagation direction in ⃗ e x and a y-polarized incident field, we expect no x-polarized component of the total field.

To obtain the magnetic field in the exterior, the sum of the incident field and the scattered field at the cylinder or the cylinder array is calculated. Once the superposition is calculated for H z , the electric field components result from the Ampere-Maxwell's equation. In Fig. 4.7 the considered cases are illustrated -Fig. 4.7 (a) shows the simple case of a single cylinder, while in Fig. 4.7 (b) we have the extended case of a cylinder array. We assign the refractive indices n 1,2 in the regions 1 and 2 , and a free-space wavelength λ 0 .

All calculations presented in the following are adapted from Ref. [16]. We begin with a single cylinder (Fig. 4.7 (a)), which will be later extended to a cylinder array (Fig. 4.7 (b)). In the first half-space 1 , the incident wave and the scattered wave have a wave number k 1 and the wave impedance Z 1 , depending on the material refractive index n 1 . In our case, n 1 is the Si waveguide's refractive index. In the cylinder with a radius a (half-space 2 ), we have the refractive index n 2 , for which we assume SiO 2 , with the corresponding wave number k 2 and wave impedance Z 2 .The listed parameters are defined as:

k 1 = 2π λ 0 n 1 Z 1 = μ 0 ε 0 n 2 1 k 2 = 2π λ 0 n 2 Z 2 = μ 0 ε 0 n 2 2 . ( 4 
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The first step is to expand the incident plane wave in a sum of cylindrical waves (Jacobi-Anger identity). For both cases (single cylinder or cylinder array), the expansion in Bessel-functions J m (k 1 ρ) with the coefficients p 0 is the same and can be written in matrix form, as a vector product. Here, [.] represents a column vector with elements defined by the index m.

H z = H 0 e -jk 1 (cos φ i x+sin φ i y) = H 0 e -jk 1 ρ cos(φ-φ i ) = H 0 Ψ i (ρ, φ), (4.20) Ψ i (ρ, φ) = Φ T J • p 0 with Φ J = [J m (k 1 ρ)e jmφ ], p 0 = [(-j) m e jmφ i ], m = 0, ±1, ±2, ... (4.21)
The scattered field of a single cylinder can be expressed as a sum of Hankel functions of first kind H (1) m (k 1 ρ), weighted by unknown scattering coefficients a s 0 .

Ψ s = Φ T H • a s 0 with Φ H = [H (1) m (k 1 ρ)e jmφ ]. (4.22)
The scattering coefficients are related to the incident wave coefficients by the T-Matrix T [16,18], which results from the continuity condition at the cylinder's surface.

For a P-polarized wave the T-Matrix is given as:

T = [τ m δ mn ], with τ m = - Z 2 J m (k 1 a)J ′ m (k 2 a) -Z 1 J m (k 2 a)J ′ m (k 1 a) Z 2 J ′ m (k 2 a)H (1) m (k 1 a) -Z 1 J m (k 2 a)H (1) ′ m (k 1 a) (4.23) a s 0 = Tp 0 (4.24)
with δ mn the Kronecker's delta. The parameters J ′ m , H (1) ′ m represent the first spatial derivative of the Bessel and Hankel functions. Now, we extend the solution for a single cylinder to a h-periodic cylinder array along the y-axis (Fig. 4.7 (b)), using the Floquet principle. The scattered field is now modified as:

Ψ s (x, y) = ∞ l=-∞ e jk 1 cos φ i lh Φ T
H,l a s 0 with (4.25)

Φ H,l = [H (1) m (k 1 ρ l )e jmφ l ], ρ l = x 2 + (y -lh) 2 , sin φ l = y -lh ρ l (4.26)
The T-Matrix T will be substituted by the aggregate T-matrix T with the following steps:

L = [L mn ], L mn = ∞ l=1
H (1) n-m (k 1 lh) e -jk 1 cos φ i lh + (-1) n-m e jk 1 cos φ i lh (4.27)

T = (I -TL) -1 T (4.28) a s 0 = Tp 0 , (4. 29 
)
where I is the identity matrix. The final magnetic field in the exterior is a superposition of the incident and the scattered field components. The electric field can be obtained by the Ampere-Maxwell's equation.

Ψ(x, y) = Φ T J p 0 + ∞ l=-∞ e jk 1 cos φ i lh Φ T H,l a s 0 (4.30) ⃗ H = H 0 Ψ(x, y)⃗ e z (4.31) ⃗ E = 1 jωε 0 n 2 1 rot ⃗ H (4.32)
In summary, the following scattered fields result for each of the two cases:

H z = H 0 Ψ P-polarized wave Ψ = Ψ i + Ψ s i -incident, s -scattered Ψ i = Φ T J p 0 , with Φ J = [J m (k 1 ρ)e jmφ ], p 0 = [(-j) m e jmφ i ], m = 0, ±1, ±2, ...

Single cylinder Cylinder array

Ψ s = Φ T H • a s 0 Ψ s = ∞ l=-∞ e jk 1 cos φ i lh Φ T H,l a s 0 Φ H = [H (1) m (k 1 ρ)e jmφ ] Φ H,l = [H (1) m (k 1 ρ l )e jmφ l ]
,

ρ l = x 2 + (y -lh) 2 , sin φ l = y -lh ρ l a s 0 = Tp 0 a s 0 = Tp 0 (4.33)
Independent of the specific case, the finally resulting H z field is a sum of cylindrical waves with both x-and y-dependence. When calculating the curl of this field, we will obtain not only the initial polarization E y , but also an E x -polarized part, which is an indication for the origin of cross-polarization in the 2D GCs. The plotted fields are scaled equally, so we can clearly see that the initial E y -polarization predominates. The scattering at the cylinder array appears to spoil its modal purity, but the effect is small for this short 1D array. The cross-polarization E x looks rather stochastically distributed without a well-defined propagation direction. This can be explained by the small number of scattering elements and by the missing second periodicity in propagation direction, which could enhance the E x strength and directivity.

This example shows that an array of cylindrically shaped elements leads to the partial conversion of a given incident polarization into its orthogonal counterpart. This happens even when the incident wave propagates perpendicularly with respect to the given array.

Since 2D GCs are basically an arrangement of such cylindrical elements, the orthogonal polarization conversion there (i.e. the cross-polarization) is inevitable. The present analytical model is limited in its capability to describe cross-polarization, as its complexity grows significantly, when we go for a 2D array of scattering objects. In this case, the scattered fields of the first row should be used as a new incident fields on the next row etc. For even higher accuracy, the assumed plane wave must be substituted by a Gaussian beam. In such a case, the Gaussian beam must be expanded in plane waves and the scattering problem must be solved for each partial plane wave. Obviously, the complexity of the analytical model becomes easily comparable with the one of a numerical model and looses the manageability typical for analytical representations. Nevertheless, the simplified analytical formulation is valuable as a qualitative mathematical proof of the origin of cross-polarized fields in 2D GCs. In the following subsections, the consequences of the in-plane scattering will be presented. Their impact on chip or system level will be analyzed in simulations and experiments.

Cross-Polarization

As already indicated, the conversion of a given target-polarization into its orthogonal counterpart -an effect assigned as a cross-polarization -is a phenomenon in 2D GCs, which can be explained by scattering processes in the grating plane. There are several important consequences from the cross-polarization, particularly:

1. Limited coupling efficiency. The cross-polarization scales with the grating's perturbation strength, since larger objects enhance the scattering. This puts limitations to the 2D GC's out-coupled power.

2. Limited split ratio. Especially in polarization multiplexed systems, the 2D GCs' purpose is twofold. They act not only as a coupling interface, but also as a polarization splitter/combiner. The presence of cross-polarization inevitably limits the splitting performance of a 2D GC. The latter two issues have been discussed in detail in the scope of this work and have been initially published in Ref. [19].

3. Polarization-dependent loss (PDL). In receiver-side 2D GCs random incident polarizations are given. Depending on their orientation, the grating splits them into xand y-polarized components with a different power ratio and/or phase relation. This means that a given target-polarization will be superposed with the cross-polarization from the other signal path with a different phase and amplitude relation. This leads to a large PDL. The problem is relevant also for systems without polarization multiplexing.

An investigation of this issue has been published in Ref. [20]. 5. System-level penalties. The presence of a cross-polarized part in a given signal leads to an additional optical signal-to-noise ratio (OSNR) penalty. The latter may be compensated in the case of orthogonal signals, but becomes critical for nonorthogonal signals. The latter two issues were investigated in the previous works [19,21,22] with a focus on dual-polarization quadrature amplitude modulation (QAM) systems.

Split Ratio and Coupling Efficiency Limitations

The basic investigation of the cross-polarization and, particularly, its impact on the 2D GC's split ratio and coupling efficiency are summarized here, following the previously published work in Ref. [19]. The analysis is performed numerically and experimentally and considers the two types of sheared 2D GCs (cf. properly coupled into the y-polarization in the SMF. The portion of power coupled into the x-polarization is then referred as a cross-polarization. The difference between the calculated y-and x-polarization powers in dB at a wavelength of interest corresponds to the 2D GC's split ratio. A large split ratio indicates that the 2D GC is a good polarization beam splitter/combiner (PBS/C). Because in practical measurements it is difficult to determine exactly the maximal transmission wavelength, a mean split ratio in a wavelength range of 15 nm around the y-polarization's maximum is evaluated. In this interval, the coupling efficiency changes by no more than 0.3 dB, which is typically the accuracy limit in transmission measurements. For symmetry reasons, the obtained split ratios are the same, also when a single-port simulation of the other 2D GC arm are carried out.

The designs for the investigation of cross-polarization effects are such that maximally large The first two designs a) and b) are used to investigate the impact of the etch depth. Because all other parameters are kept unaltered, the maximum transmission wavelength is shifted to 1590 nm for the decreased etch depth of 90 nm. The designs with equal etch depth a)

and c) can be compared regarding the impact of the shear angle. For these two designs, different radiation angles θ out = 8 • , 12 • result. To ensure the same coupling conditions e.g.

in terms of vertical distance to the grating, the evaluation angle is fixed at θ F = 8 • . The fixed fiber coupling angle is more convenient for comparison of experimental results as well.

With θ F = 8 • the design with a shear angle α = 3 • has a maximum shifted near 1580 nm. A comparison between the structures with different etch depths in Tab. 4.2 shows clearly that a larger etch depth, corresponding to a stronger grating perturbation strength, leads to about 4-5 dB worse split ratio. For a good splitting functionality, shallowly etched 2D GCs should be preferred. However, unlike the shear angle, the etch depth has a strong impact on the grating out-coupled power and coupling efficiency. If the perturbation strength is too weak, a large amount of power remains guided and is not radiated by the grating. With an increasing etch depth, more cross-polarization occurs and again -further propagating (this time) cross-polarized fields remain in the grating and limit the out-coupled power efficiency.

This trade-off is illustrated by the numerical example in Experimental Measurement of the Polarizations' Split Ratio The experimental verification of the numerically predicted polarizations' split ratios is carried out by manual wafer measurements, using the test structure and method described in 2.2.3, Chap. 2.

We compare structures of Type I and II as well structures with different shear angles α = 2 • and α = 3 • on the same wafer. For the comparison of the structures with different etch depths d = 90 nm and d = 120 nm, two separate wafers are available. To account for fabrication variations on these wafers, we determine an averaged split ratio over 10 chips.

A laser source Agilent 81960 with a wavelength range from 1505 nm to 1625 nm is used, followed by a programmable polarization controller Agilent 8169A and two standard SMFs for the in-and out-coupling together with their alignment equipment. The signal is finally detected by a power sensor Agilent 81634B. Back-to-back reference structures with 1D-1D

FGCs and 2D-2D GCs are used for the determination of the proper coupling angles at both sides. They are chosen such, that the 2D GCs at the input and the 1D FGCs at the output have a maximal coupling centered at the same wavelength. The 1D-1D FGC back-to-back structure is additionally used for polarization adjustment, as described in 2.2.3, Chap. a larger distance between the SMF and the 2D GC has been chosen for the measurements of the structures with a 90 nm etch depth. Parasitic effects could be minimized at the cost of a higher insertion loss (Fig. 4.11 (b)). Since a relative measurement is carried out, the coupling loss is not critical for the ER estimation.

In Tab. 4.3 the bandwidth-and wafer-averaged split ratio SR ± σ for each of the considered cases are summarized. All structures, which are directly compared to each other, show a similar standard deviation. The differences between devices of Type I and Type II vary from one device geometry to another and we cannot generally state that one of the types has an advantageous splitting behavior. The lack of systematic difference can be caused by variations of the perturbing elements' size. In addition, SOI height deviations have also an impact, as they change the grating perturbation strength. These fabrication variations can make it difficult to observe differences between the gratings with shear angles α = 2 • , 3 • as well. Being difficult to distinguish from other fabrication variations, the contrast between the 2D GCs of different types or with different shear angles appears to be of minor importance. Compared to simulations, the difference between the split ratios for d = 120 nm and d = 90 nm is lower -between 1 dB and 3 dB and better pronounced for the 2D GCs of Type I. The deviations from the simulation can result for the following reason. In real structures, the perturbing elements are not cylindrically, but conically etched. This results in a lower perturbation strength than assumed in simulations, so that we generally obtain better split ratios than expected. Moreover, deeply etched features are more affected by that problem than shallowly etched ones. This means that the perturbation strength does not scale with the etch depth in the same way, as assumed in the simulations. Because the perturbation difference between 2D GCs with d = 90 nm and d = 120 nm is lower than assumed, their split ratios differ less from each other. In addition, effects related to non-orthogonality may have also an impact on the maximally reachable split ratio. Nevertheless, the distinction between structures with different etch depths is still observable, which shows that the grating's perturbation strength has the most pronounced impact on the 2D GC's splitting performance.

System-Level Behavior

The following paragraph is a kind contribution by Pascal M. Seiler, who performed and evaluated system-level simulations and experiments.

In these analyses, the impact of the limited split ratio is examined in a coherent system that does not take this issue into account (no dedicated DSP applied). As a criterion, the OSNR penalty at a bit error ratio (BER) of 10 -3 is used. The penalty is defined as the difference between the OSNR levels in dB, which are necessary to reach the target BER. In simulations, penalties for different dual-polarization (DP) QAM formats are determined (results originally published in Ref. [19]). Experimentally, 16-QAM single-polarization (SP)

and DP transmission are compared (results originally published in Ref. [21]).

Simulation Results for Different QAM Formats (by Pascal M. Seiler) In an integrated DP coherent detection receiver, the 2D GC's limited polarization split ratio, can be expressed as a superposition between two data streams with the same source. The system behavior in such a case is comparable to the in-band crosstalk, discussed in long haul transmission systems [23]. We perform an exemplary simulation, where the split ratio is varied and the OSNR penalty for reaching the forward error correction (FEC) limit of BER = 10 -3 is determined. The penalty results from the comparison of the same polarization in SP and DP operation. A 28 Gbaud transmission using a laser with a linewidth of 100 kHz is assumed (local oscillator effects are neglected). Polarization mode dispersion is not taken into account. Figure 4.12 shows the OSNR penalty over the 2D GC split ratio for different QAM formats.

If we permit a 1 dB penalty (corresponding to the dashed line in Fig. 4.12), we can estimate the minimal split ratio required for the desired QAM format. For quadrature phase shift keying (QPSK), 8-PSK, 16-QAM, 32-QAM and 64-QAM, the required split ratios are 16.5 dB, 21.5 dB, 23.5 dB, 26.5 dB and 29 dB, respectively. The 2D GC designs discussed in the present section reach mostly split ratios better than 16.5 dB, which make them suitable for DP QPSK without the necessity of dedicated DSP compensation methods. However, for higher order modulation formats, the limited split ratio becomes more critical. The integration of 2D GCs in such systems may be possible only with appropriate signal postprocessing. The latter may increase the receiver power consumption and complexity.

Therefore, the suppression of cross-polarization effects in 2D GCs is desirable for the realization of cost-efficient integrated higher order DP QAM systems. A 16-QAM Experiment (by Pascal M. Seiler) To verify the predicted performance deterioration, the polarization splitting/combining limitations of 2D GCs are investigated in a 16-QAM system experiment. The 2D GCs are considered at the transmitter side, but due to reciprocity, the same effects are present at the receiver as well. An exemplary 2D GC design is chosen, which has been analyzed with respect to the split ratio in this section (design c) of Type II on p. 105). To study the impact of the chosen 2D GC, a simple on-chip This is finally reflected into the polarization crosstalk, which reaches up to -3.5 dB at 1560 nm, whereas the maximum in O-band is -13.5 dB at 1330 nm (Fig. 4.15 (g), (h)). It should be noted that the overall better performance of the O-band design is rather related to the boundaries of our fabrication platform, which are more advantageous for the O-band 2D GCs (also experimentally observed, cf. [25]). Interestingly, independent of the optical band and the achieved split ratio, both 2D GCs combine the signals orthogonally at their central wavelengths. Accordingly, wavelengths other than the design wavelength show nonorthogonality and crosstalk. Although this behavior looks like a good fortune, it becomes obvious that non-optimized 2D GCs can be used in a very narrow wavelength range. This is particularly disadvantageous, when robustness e.g. against laser emission fluctuations is required. The latter is mandatory for systems using uncooled lasers, which are economically reasonable for data centers. Since 2D GCs are candidates for photonic sub-systems in DCIs, where stringent requirements in terms of power consumption and cost are given, the improvement of the 2D GCs' polarization splitting/combining performance is essential.

In this work, substantial efforts were made to optimize 2D GCs in this aspect, with results following later in Chap. 5.

Polarization-Dependent Loss

With respect to undesired effects caused by scattering and cross-polarization, we focus here particularly on receiver-side 2D GCs, which are exposed to randomly polarized light.

Here, it will be illustrated that the cross-polarization and the related polarization-splitting issues can be associated with a PDL at the receiver. This PDL is expressed in a different coupling efficiency, depending on the incident polarization. For the subsequent analysis, we shall make parallels between single-and dual-port simulations. Out of the former, we can determine the coupling efficiency of a given targetpolarization, as well as its orthogonally converted component -the cross-polarization.

Afterwards, we can continue with a dual-port excitation, i.e. the simultaneous activation of Ports 1 and 2. There, the final x-polarization, for instance, will be a superposition of distinguish between these two cases, the polarization, leading to an in-phase splitting, is called an even-polarization. Accordingly, the polarization for an anti-phase splitting is assigned as the odd-polarization. It should be noted that these polarization states can be met in the literature under different names, such as S-and P-polarization or 45 • -and 135 • -polarization [26][27][28][29]. In accordance to the assignment of the even-and odd-incident polarization, the most important circumstance for any difference in their behavior is the way, how the target-polarization and cross-polarization are superposed. In the even case, the target-and cross-polarization are in-phase, while in the odd case, they are in anti-phase.

Respectively, any other polarization orientations result in different superpositions of the target-and cross-polarization. The variable scenarios for the superposition of a target-and cross-polarization may be expressed in a PDL. The largest PDL can be expected between the even-and the odd-combination, because the cross-polarized signal is maximized in these cases. Type II. Both 2D GCs reach a relatively high levels of cross-polarization. In the same time, their even-and odd-polarization are strongly wavelength-shifted from each other, leading to a large polarization-dependent loss (PDL). It is hypothesized that the cross-polarization is responsible for the PDL.

To illustrate this behavior, we consider now two exemplary 2D GC designs of different types.

A single-port simulation is used to show the coupling spectrum of the target-and crosspolarization (scenarios in Fig. 4.16 (a) and (b) equivalent). Afterwards, the same structure is simulated in a dual-port simulation (simultaneous excitation), whereat the according phase conditions are set to reproduce the even or odd case (Fig. 4.16 (c) and (d)). The considered structures operate in C-band and differ only by their type and have a waveguide-to-grating shear angle of 2 • (Type I or II), a grating period of 622 nm and circular diffracting elements with a diameter of 440 nm and an etch depth of 120 nm (cf. the structures in 4.2.2.1).

Compared to previous simulations, the full BEOL has been omitted here, in order to save simulation time and hard disk space. Due to the evaluation at a lower distance to the grating, the coupling efficiency is better than with a full BEOL stack. Since the coupling efficiency is not a subject of investigation here, the deviation is acceptable. shows the x-component of the even-and odd-polarization, determined from the dual-port simulation. Due to symmetry, the y-component behaves in the same way and is not shown.

Large cross-polarization and large PDL can be observed simultaneously. The PDL is a result from the wavelength-shifted spectra of the even-and odd-polarizations. It is not predefined, whether the even or the odd polarization will be shifted in a given direction, as can be seen from the comparison between 2D GCs of Type I and Type II. The PDL is among the most critical problems in 2D GCs. Based on these observations, in this thesis, it is hypothesized that the large difference between the even-and odd-polarizations is entirely caused by the cross-polarization and the grating's in-plane scattering as its physical origin.

All developed optimization methods (cf. Sect. 5.2, Chap. 5) are based on this assumption.

It is worth mention that 2D GCs with a low coupling efficiency will inherently have also a poor cross-polarization out-coupling. For that reason, low-efficiency 2D GCs achieve "automatically" a low PDL as well. The challenge for the optimization methods is thus not only to reduce the scattering/cross-polarization and improve the PDL, but in the same time to deliver a reasonable coupling efficiency.

Higher-Order Modes

To find an experimental evidence for the grating's in-plane scattering, the polarization and mode coupling in 2D GC interfaced Si waveguides is investigated here. With regard to polarization splitting, it is expected that 2D GCs with a vertical fiber coupling θ F = 0 • are able to separate x-from y-polarized signals perfectly [17]. If we consider Fig. 4.18, this would mean that an incident y-polarization will propagate in waveguides (WG) 1 and 3, and the x-polarization will be coupled to WG 2 and 4. However, this assumption is correct only, when no in-plane scattering is present. In this subsection, it will be shown that even zero-angle coupled 2D GCs suffer from cross-polarization and limited polarization splitting capabilities. Furthermore, it will be shown that 2D GCs designed for different coupling angles change only the modal composition of the undesired coupled fields. Even when higher-order modes can be efficiently filtered in single-mode waveguides, their excitation may be a further limiting factor for the coupling efficiency.

For the subsequent analysis, the following notations will be made. Considering Fig. 4.18,

we assume an incident polarization, such that all power should be coupled into WG 1 (an example with θ F ̸ = 0 • ). Our target-polarization is thus the y-polarized TE 00 mode (short: TE 00,y ), which results from diffraction at the 2D GC perturbing elements matching the fiber angle θ out = θ F . In addition, we investigate, whether other higher-order y-polarized modes are coupled, particularly TE 10,y . The latter cannot result from out-of-plane diffraction, because its effective refractive index does not fulfill the 2D GC's diffraction condition for the given angle θ F . The presence of TE 10,y will be the first indication of in-plane scattering Figure 4.18: A schematic representation of a 2D grating coupler (2D GC) with a Gaussian beam excitation from top. Several field components may be excited in a Si waveguide due to grating in-plane scattering. The grating plane is defined in the Cartesian (x, y, z) coordinates, the Gaussian beam is tilted under the fiber angles (φ F = 45 • , θ F ). The arrows indicate the polarization of the excitation source (in yellow), which is chosen such that all the power should be completely coupled into the TE 00 mode of the Si waveguide WG 1 by diffraction (targetpolarization: TE 00,y ). The example illustrates the case θ F ̸ = 0 • . The excitation of higher-order modes, e.g. TE 10,y can be attributed to in-plane scattering. The power coupled in the other waveguide WG 2 (marked in blue) is assigned as a cross-polarization, which can be also composed of TE 00,x , TE 10,x etc. For the given incident field, the presence of these components is an indication for in-plane scattering as well. (Adapted from Ref. [8] under a CC BY 4.0 license.)

processes in 2D GCs. Similarly, the cross-polarization (here the x-polarization), coupled to waveguide WG 2 will be analyzed. Also in this case, two modes are considered: TE 00,x and TE 10,x . For the given incident field, the presence of the TE 00,x and TE 10,x components in the Si waveguides can be also attributed to grating in-plane scattering (cf. 4.2.1). Table 4.4

summarizes the notations used in this subsection. The excitation of undesired polarizations and modes is investigated experimentally, considering 3 different 2D GC designs in C-band. As a figure-of-merit, the ER between the target TE 00,y and the remaining polarizations/modes is used, which is determined on different wafer sites. More detailed results and discussion can be found in the original publication, Ref. [8].

Experimental Approach and Setup We begin with the description of the experimental method, used for the higher-order mode's characterization. Test Structures All test structures are fabricated in a photonic BiCMOS short flow, in which the BEOL has not been completely processed. This is eligible for the current investigation, since the BEOL has no impact on the higher-order mode excitation by the 2D GCs and its omission reduces the fabrication time. The minimum feature size is defined by the 248 nm DUV lithography we used. Measurement Setup and Procedure Manual wafer measurements are performed on 9 chips. Our setup consists of a tunable laser source Agilent 81940A, followed by a manual polarization controller. Standard SMFs are used for the in-and out-coupling. The measured signal is detected by a power meter Agilent 81634B. The measurement steps are as follows:

• Position and polarization at the 2D GC adjusted for a maximal out-coupling at O1: → measure the signal at O1, corresponding to the target TE 00,y , → measure the signal at O2, corresponding to TE 10,y .

• Position kept constant and polarization at the 2D GC adjusted for a minimal outcoupling at O1: → measure the signal at O1, corresponding to the cross-polarized TE 00,x , → measure the signal at O2, corresponding to the cross-polarized TE 10,x . By setting the polarization for a maximal or minimal transmission, we have to perform the measurement only at the upper arm of the 2D GC. For each structure, we compare the ER between the target TE 00,y and the remaining polarizations/modes near the maximum transmission wavelength of the target TE 00,y . For the statistical measurements, we intentionally choose a larger coupling distance, in order to exclude the distance variation as a factor and to move easily from one chip to another on the wafer. The insertion loss (in-and out-coupling) is between 4 dB and 5 dB higher than for the case of an optimal coupling height. Similarly to the measurements in 4.2.2.1 (see Tab. 4.3), we determine the ERs by first averaging in a 15 nm range around the wavelength of maximal transmission.

The obtained value is then averaged over the 9 chips on the wafer. In all plots in Fig. 4.20 it is evident that 2D GCs excite cross-polarized modes TE 00,x , TE 10,x , as well as higher-order TE 10,y , independent of their particular geometry. The statistical analysis helps us to examine the differences between the considered designs more precisely. The results for designs M1, M3, M4 are summarized in Tab. 4.6. The mean extinction ratio of the target TE 00,y vs. TE 10,y , TE 00,x and TE 10,x is first wavelength-averaged around the maximal transmission wavelength of each structures. The wavelength ranges are 1545-1560 nm for M1 and 1552-1567 nm for M3 and M4. Afterwards, the values are wafer averaged with the corresponding standard deviation σ. Comparing the results in Tab. 4.6, we can basically observe that designs with a non-zero coupling angle reduce the parasitic coupling to the TE 10,y mode compared to the vertically coupled structure M1. In the same time, the cross-polarized TE 00,x becomes larger in M3 and M4. The different shear angle type is responsible for the variation between both structures. With regard to TE 10,x , all 3 designs behave similarly in average. Since higher-order modes will be filtered by single-mode waveguides, the lower coupling to TE 10,y means that structures M3 and M4 with a tilted coupling angle improve their coupling efficiency, compared to the zero-angle coupled M1.

This happens at the cost of a deteriorated polarization splitting, as the TE 00,x coupling efficiency increases.

In the original publication Ref. [8] the role of the coupling position is discussed in addition.

Penalties with regard to imbalanced coupling are analyzed in terms of coupling efficiency, bandwidth and PDL. As this investigation does not change the revealed trends and conclusions here, interested reader may refer to Ref. [8] for further information on that matter.

As most important observation, and contrary to prior expectations, it becomes evident that vertically coupled devices induce cross-polarization as well (TE 00,x and TE 10,x ). Thus, out-of-plane diffraction and in-plane scattering appear to be parallel existing physical processes in all 2D GCs.

Design Optimization and Characterization

In this chapter, the 2D GC's design development with respect to coupling efficiency and polarization handling is outlined. First, possibilities to enhance the out-coupled power are investigated, regardless of polarization-related issues. Afterwards, methods to reduce in-plane scattering and cross-polarization related problems are discussed. In the end, it is shown that 2D GCs with a satisfying coupling efficiency, a low PDL and an outstanding polarization splitting performance can be realized without a complication of the standard 0.25 µm photonic BiCMOS process.

Improvement of the Out-Coupled Power Efficiency

There are two widely spread methods to enhance the out-coupled power efficiency of a GC, which have been initially developed for 1D GCs [1]:

1) Via the adoption of an enhanced Si waveguide thickness [2][3][4][5][6][7][8].

2) Via the application of a back-reflector below the grating area [9][10][11][12][13][14][15][16].

The idea behind the first concept is to improve the ratio between upwards and downwards diffracted light, that is, to reduce the power of the downwards diffracted wave in favor of the upwards diffracted one. This should be achieved by enhancing the thickness of the Si waveguide in the vicinity of the grating. The abrupt height change, is related to an increased power, diffracted in upwards direction. Typically, we start with a standard 220 nm Si waveguide height, which is locally enhanced by an epitaxial growth in the area, where the grating should be defined. Although there has been a successful demonstration of an enhanced 1D GC on our platform [6], there are issues with regard to the integration compatibility. For that reason, this optimization approach is not considered in this work.

The second way to increase the out-coupled power efficiency is to try to re-gain the downwards diffracted light. To do so, a sufficiently good metal or Bragg mirror is necessary.

However, this is not the only prerequisite. A proper phase match between the upwards diffracted wave and the back-reflected wave must be ensured. The latter is typically fulfilled for a proper oxide thickness between the grating and the mirror [1]. The main disadvantage of this optimization method is the complicated fabrication procedure. For the formation of a dielectric Bragg mirror, a dedicated wafer fabrication is required [10,11]. Alternatively, nonstandard double-SOI substrates [14] may be considered. On the other hand, the application of a metal mirror often requires non-CMOS compatible materials and bonding techniques [9,12,13,15,16]. It should be noted that in the recent years, an alternative approach for reducing the downwards diffraction has been proposed -the dual-layer grating, designed using the adjoint optimization method [17]. The proposed device combines two gratings, the second one intended for the elimination of the downwards propagating light. By additionally applying apodization as a method for an improved mode field overlap, a nearly unity coupling efficiency for 1D GCs with perfectly vertical coupling angle is predicted.

However, in the case of 2D GCs, the in-plane scattering, which takes place in multiple directions, needs to be considered as a degree of freedom. This may result in an overall very complex design with a non-trivial fabrication, even when the minimum feature size for a 0.25 µm photonic BiCMOS is guaranteed. Moreover, the elimination of the downwards diffracted light is achievable in a very limited bandwidth, which could exclude e.g. the possibility to use 2D GCs in WDM systems. For that reason, such an optimization procedure is not considered in this work. Here, an alternative possibility to form a 2D GC with a back-reflector has been investigated. Some of the analyses below have been originally published in Ref. [18]. The concept, already presented in Sect. 3.3 of Chap. 3, involves the realization of 2D GCs in an a-Si:H photonic layer in the BiCMOS BEOL, whereat bulk Si substrate is considered (Fig. 3.4, p. 82). Doing so, the metals in the BEOL can be used as back-reflectors to enhance the out-coupled power of the 2D GCs. The TopMetal1 level has been chosen as an appropriate position for the definition of the a-Si:H layer. In contrast to FEOL 2D GCs, there are no specific BEOL filling layers at TopMetal1 and only around 3 µm SiO 2 covers the 2D GCs. One of the three thin metal levels below TopMetal1 (Metal1, Metal2 or Metal3) is a candidate to form a back-reflector. Among them, Metal3 allows for an appropriate SiO 2 thickness separation of 3.06 µm between grating and mirror. The exact value is given by the BEOL specific layer thicknesses in our BiCMOS platform. Moreover, the choice of Metal3 guarantees for the lowest SiO 2 thickness variation, which is determining for the wafer-scale stability of the 2D GC's performance. Table 5.1 shows sheared 2D GCs of Type II, designed for C-and maximum transmission wavelength remains unchanged in C-band (about 10 dB) and is minimally improved in the O-band (by about 1.5 dB at 1300 nm: 14.5 dB vs. 16 dB). Finally, the coupling efficiency in the C-band design with a metal mirror improves by about 1.6 dBfrom -5 dB to -3.4 dB at 1550 nm. For the O-band design, an increase of 1.1 dB is achieved -from -3.9 dB to -2.8 dB at 1300 nm. Obviously, the coupling efficiency increase is not as large as compared to reported 2D GCs with gold back-reflectors [15,16]. This is due to the lower reflectivity of Metal3 (AlCu alloy), compared to gold. Moreover, power losses, caused by the conversion into cross-polarization cannot be compensated by a back-reflector.

A final comment will be given regarding the O-band coupling efficiency, which is about 0.5-1 dB better than in C-band -a phenomenon, observed in SOI 2D GCs as well [21].

This may be given by the lower in-plane scattering strength of the perturbing elements in O-band. A different a-Si:H waveguide thickness may be potentially more appropriate for C-band 2D GC. The current 220 nm have been chosen to allow for a direct comparison between a-Si:H and SOI waveguides and GCs. The waveguide thickness may be adapted in the future, depending on the desired application. 

Optimized Polarization Handling

Apparently, the most significant problems of 2D GCs result from an undesired in-plane scattering. This section is devoted to the analysis of approaches for its minimization, which is related to an improved polarization splitting behavior and a reduced PDL. Along with moderately successful methods, a new design concept is presented, which is a simple, working solution for the elimination of scattering-related issues in 2D GCs. In the first two subsections 5.2.1 and 5.2.2, the optimization methods are presented and numerically supported. Experimental validation is given in the last subsection 5.2.3.

Segmented Two-Dimensional Grating Couplers

The strong in-plane scattering strength in 2D GCs is most likely caused by the constructive superposition of the local scattered fields of periodic objects with identical geometry. Since it has been observed that the scattering strength is lower for shallowly etched objects, the first idea for in-plane scattering reduction was to combine shallowly and deeply etched arrays, e.g. in a dual etch configuration [19]. In gratings with such a geometry, the first several periods are shallowly etched for a lower in-plane scattering, followed by deeply etched perturbing elements for an enhanced power out-coupling. However, such 2D GCs showed no improvement, because once the light reached the deeply etched region, strong scattering and cross-polarization resulted rapidly after a small number of periods.

Therefore, going away from the unitary nature of the scattering array requires another means. A possible alternative includes the design of gratings, which have objects with different sizes and a varying distance between them. This leads us to the old concept of the apodization, combined with period chirping. In apodized gratings, the diffracting elements have gradually increasing sizes from the beginning of the array. To ensure a diffraction in a single, clearly defined direction, the periodicity is adapted, depending on the objects' size and the corresponding local effective refractive index. Having a grating with objects of different sizes and with different periodicity between them, a certain reduction of the in-plane scattering could be expected. It should be noted that in this work apodization has not been investigated with regard to the improvement of the mode field overlap between the grating and the fiber mode, which is the usual motivation to apply this optimization method. In Ref. [20] an "inversely" apodized grating has been shown: the obtained results reveal the potential of apodization for an improved polarization handling. The apodization of 2D GCs can be realized in two ways: either by using diffracting elements of different sizes in every single row or by defining segments with a given number of rows, which gather objects with the same geometry. The latter special type of apodization is assigned here as a segmentation. With N objects in a given direction, we would need in the first case N different diameters for each diffracting element. The exact adjustment of a very small difference between the diameters can be very challenging for lithography techniques with a limited resolution. For example, if two neighboring diffracting elements in a grating have a diameter difference of < 10 nm, this difference may not be transferred to the fabricated structure at all. For that reason, the segmented design is the preferred method in this work.

Due to the significantly simpler modeling, the segmentation as a method to reduce inplane scattering and cross-polarization has been investigated for the case of a-Si:H BEOL integrated 2D GCs (cf. Fig. 3.4, p. 82). Particularly, the modeling is significantly easier in the absence of the BEOL grating filling layers. Nevertheless, the same observations can be translated to SOI integrated 2D GCs. To ensure similar conditions as for SOI 2D GCs, the investigated designs have a Si substrate below the grating and no metal mirrors have been modeled. Thus, the pure contribution of the segmentation can be observed. To make the designs comparable with the a-Si:H 2D GCs presented in the previous section, the SiO 2 thickness separation to the Si substrate is kept 8.37 µm. Results from simulations in the C-band will be presented first. the absolute difference between the coupling efficiency of these two polarizations (in dB).

We expect an improvement in any of these aspects, when the parasitic grating in-plane scattering is reduced. The comparison with regard to in-plane scattering suppression can be directly translated also to SOI 2D GCs, since in the SOI designs only the local periods need to be changed in accordance to the SOI refractive index. We begin with results from the single-port simulations. Also in this case the zero-crossings are indicated additionally, when they occur at points, which are not included in the simulation. The PDL results from the gap between the outcoupled powers of both polarizations (Fig. 5.7 (a)) and from the wavelength-shifted mode field overlap maximum (Fig. 5.7 (b)). With an increasing number of segments, we achieve especially a correction of the overlaps' spectral shift. Thus, for wavelengths > 1550 nm, the difference between the coupling efficiency of the even-and odd-polarization is decreased.

This corresponds to a PDL improvement in this wavelength range. If we permit a maximal PDL of 0.5 dB, the achieved correction is still insufficient. Further suppression of the in-plane scattering is necessary.

For completeness, the same comparison between a reference, uniform 2D GC and a segmented 2D GC with 4 sections will be made in the O-band as well. Compared to the device with 4 segments, a design with 6 segments shows a minor improvement, which does not justify the enhanced fabrication effort. For that reason, the results for the 6-segment device will be omitted. The geometric parameters of the segmented O-band 2D GC are given in Tab. 5.3. A larger etch depth of 120 nm than the reference design's etch depth of 100 nm is considered to compensate for the small diffraction elements in the first two segments. The etch depth of 120 nm is applied for all segments. The segmented design has a slightly shifted spectrum from the reference one, but this plays a minor role for their comparison. Also in the O-band, the same trends shown in C-band can be observed. In segmented 2D GCs, the maximal coupling efficiency is slightly enhanced by about 0.7 dB (-3.2 dB at 1310 nm vs. -3.9 dB at 1300 nm for the reference). The GCs, which could erase the necessity of a dedicated DSP, will be presented in the following.

Two-Dimensional Grating Couplers with Elongated and Individually Oriented Perturbing Elements

Undoubtedly, the out-standing work of Luxtera towards a 2D GC optimization delivered the most remarkable results. Excellent performance with a low insertion loss and a low PDL could be demonstrated, on both 200 mm and 300 mm platforms [23][24][25][26][27][28][29][30] . Luxtera's team was among the first who implemented successfully a non-zero waveguide-to-grating shear angle, improving with this the coupling efficiency. However, due to their commercial development activities, no explanation of the design with such an angle has been provided.

In fact, an explicit information about a non-perpendicular angle between the 2D GC's waveguides can be found in Luxtera's patents only, e.g. Refs. [35][36][37]. In the present work, the systematic design of our sheared 2D GCs have been described in Chap. 4.

Furthermore, to optimize the PDL Luxtera proposed the adoption of a special clover-like scatterer's shape for the 2D GCs' perturbing elements. The latter inspired many groups to make investigations on the importance of the scatterer's shape, see e.g. Refs. [31][32][33],

but also in this case, no explanation about the physical processes determining the choice of such a shape has been given. It is possible that Luxtera pursued similar purposes as we do in the present work, namely -to reduce the scattering in undesired directions and preserve the diffraction efficiency towards the SMF (Luxtera assigns the latter often as a scattering as well). Possibly, the choice of the namescatterer's shape -is a hint about the actual effect that has been manipulated, which is the in-plane scattering and not the out-of-plane diffraction.

Here, an approach for an in-plane scattering optimization is proposed, which can be used as an alternative to the scatterer's shape of Luxtera. Some of the descriptions and analyses below have been previously published in Ref. [38]. The basic idea behind the optimization method is the following. A starting point is the hypothesis from our previous work [39] that the in-plane scattering's strength is very large, when perturbing elements with identical scattering pattern are periodically arranged. The possibility to use objects with different sizes and periodicity helps reducing the in-plane scattering to some extend, but not sufficiently to reach a low PDL (cf. 5.2.1). Alternatively, we still may use perturbing elements of identical size, shape and periodicity, but in the same time we have to ensure that neighboring objects have abruptly different local scattering patterns. To reach that goal, we need first elongated elements such as ellipses or ovals, whereat the exact choice of a shape is not determining. Second, two neighboring objects may be rotated by 90 • to each other. A grating comprising such objects has been assigned as a zig-zag tilted ovals array [38]. The sudden change of the orientations of adjacent objects allows for the cancellation of a forwards-scattered local wave by a backwards-scattered one. The exact perturbing elements' size is thus determining for the degree of cancellation of the forwards-and backwards-scattered fields. Figure 5.11 illustrates an exemplary geometry of a 2D GC, which may be optimized for a low in-plane scattering in this manner. Its most distinctive property is the fact that the scattering's cancellation is not reached by elements of a complex shape, but by simple objects, differing in their abruptly changing orientations and local scattering profiles. The simple shape of the perturbing elements is the most significant advantage of this optimization approach, compared to the Luxtera's one. Thus, the 2D GCs can be realized with a low-resolution DUV lithography such as the 248 nm DUV used in our fabrication platform.

Furthermore, no optical proximity correction (OPC) is necessary, but only an appropriate shape biasing. By contrast, Luxtera's scatterers require OPC in combination with a 193 nm DUV lithography. In view of the expenses' gap between 248 nm and 193 nm DUV, the 2D GCs proposed in this work can be realized with the lowest DUV fabrication cost. At this point, other alternatives to Luxtera's design should be acknowledged. 2D GCs with a low PDL, comprising uni-directional elongated scatterers, have been reported in Ref. [40]. A post-simulation of the given geometry (performed for comparison purposes in this work)

suggests that the low PDL results partially at the cost of a low out-coupled power. Furthermore, although the feature sizes should be compatible with a 193 nm or 248 nm DUV lithography, the reported test device has been fabricated by an electron beam lithography.

It is difficult to predict, whether the given PDL values will remain the same, when a DUV lithography is used. In another recent work Ref. [20], apodized 2D GC with rectangular scatterers has been proposed for a low PDL. Since the designed geometry differs strongly from the fabricated one, it is hard to predict, whether the obtained results are in a close relation to the design method. In a most recent work Ref. [41], an optimization approach, including perturbing elements with different orientations has been proposed. However, the basic principle of the reported device differs from those presented here. A gradual orientations' change is used to achieve and improved mode field overlap -a technique, which may be rather associated with the apodization/chirping method. Due to the larger degrees of freedom used there, it can be concluded that the success of the reported design is achieved by the sufficient number of apodized segments (cf. the discussion from 5.2.1 in this chapter). Lastly, the resulting feature sizes are significantly smaller than the proposed ones in this work and experimental validation of the suggested design is missing.

efficiency drops as well. Therefore, models with a low PDL in combination with a low coupling efficiency are not of interest in this work. As a lower limit for the coupling efficiency, at least -4.5 dB for both polarizations has been set. The PDL should be < 0.5 dB within the 2D GC's 1 dB-bandwidth.

• The grating period. Each simulation run, in which new perturbing elements' shape is investigated, requires in the same time the adaption of the grating period, so that a desired angle θ out results at the 2D GC's symmetry plane.

• The etch depth. Generally, the elongated perturbing elements, designed with the restrictions of a 248 nm DUV lithography, have a lower perturbation strength than their circular counterparts. For that reason, together with an appropriate perturbing elements' dimensions, we look for a proper etch depth that guarantees for the sufficient out-coupled power.

Linear Two-Dimensional Grating Couplers

The optimization procedure is first applied to linear 2D GCs. In the following, the best performing devices are presented. An analysis of tolerances regarding deviations from the target perturbing elements' shape is carried out as well.

Designs for C-Band The investigation of the optimization technique begins in C-band, where both SOI and a-Si:H material platforms are considered.

SOI All models below are designed for the coupling angles φ out = 45 • , θ out = 8 • at a wavelength of 1550 nm. To demonstrate the success of the applied optimization approach, a reference and an optimized SOI 2D GC design are compared. The reference design is already known from 4.2.2.3, Chap. 4. We begin with sheared 2D GCs of Type II. Later, it is shown exemplary that 2D GCs of Type I cannot be optimized, using an equivalent geometry.

Generally, the sufficient scattering suppression in Type I gratings appears very challenging.

The reference and the optimal design have the following geometries:

• Reference: a shear angle α = 2 • (Type II), a grating period Λ = 622 nm, an etch depth d = 120 nm, circular perturbing elements with a diameter w Λ = 440 nm.

• Proposed optimized design: a shear angle α = 2 • (Type II), a grating period Λ = 594 nm, an etch depth d = 140 nm, elongated perturbing elements with a minor axis w s = 230 nm and a major axis w l = 320 nm (cf. Fig. 5.11).

As in previous analyses, single-port simulations are used to determine the fiber coupling efficiency of a target-and cross-polarization as well as their split ratio, when a given 2D GC arm is used as a source. The polarizations' angular relation and crosstalk, between the signals from both 2D GC arms are determined as well. A dual-port simultaneous simulation is used to evaluate the fiber coupling efficiency of an even-and odd-polarization as well as the PDL resulting from the difference between their coupling efficiencies. Figure 5.12 shows a comparison between the reference and the optimized design in terms of cross-polarization suppression (Fig. 5.12 (a)), split ratio (Fig. 5.12 (b)), polarizations' nonorthogonality (Fig. 5.12 (c)) and polarization crosstalk (Fig. 5.12 (d)). In the optimized design, the cross-polarization's maximum is reduced by 16 dB, compared to the reference. This is directly reflected in the polarizations' split ratio -while in the reference design the split ratio does not exceed 20 dB, the optimized design has a split ratio > 23 dB in the range 1500 nm-1580 nm. Finally, the polarizations' angular relation Δψ in a wavelength range covering the 1 dB-bandwidth of the optimized design shows a remarkable improvement in terms of orthogonality with a maximally 3.5 • deviation from the ideal case of 90 • . The orthogonality uniformity is significantly better. The corresponding polarization crosstalk remains below -24 dB within the considered bandwidth.

It can be expected that the improved polarization splitting performance will be directly translated to the PDL levels (even-vs. odd-polarization) in receiver-side 2D GCs. The PDL becomes thus significantly lower. The maximal coupling efficiency of the optimized design is -4.1 dB at 1550 nm with a 34 nm 1 dB-bandwidth -from 1534 nm-1568 nm. In this range, the PDL reaches maximally 0.55 dB, which is slightly higher than the target value. In structures with conically etched perturbing elements, the PDL might be lower due to the decreased perturbation strength. We obtain the following limits:

Minimal split ratio 25 dB → maximal deviation from the orthogonality state 3 • , i.e. maximal polarization crosstalk of -26 dB → maximal PDL of 0.5 dB.

Because the parameters are closely connected with each other, the analyses within the next paragraphs will be mostly focused on the PDL. Out of its behavior, we can directly conclude in what value range the other parameters are. In some cases, where the simulation duration is too long, the single-port simulations will be considered instead.

Next, it will be illustrated that sheared 2D GCs of Type I are more challenging with respect to in-plane scattering suppression. We use the design parameters of the previously designed 2D GC of Type II and change only the way of defining the shear angle, i.e. the grating area is now rhombus-shaped. Figure 5.15 shows (a) the coupling efficiency of the targetand cross-polarization, (b) the coupling efficiency of the even-and odd-polarization. It is evident that for the same perturbing elements' size and periodicity, the cross-polarization is significantly higher. For that reason, the even-and odd-polarization are still shifted to each other. Within the permitted geometric range for a compatibility with a 248 nm DUV lithography, no appropriate perturbing elements' geometry could be found for 2D GCs of Type I, which fulfills the criteria in terms of coupling efficiency and PDL. Lastly, the optimal 2D GC design is investigated, regarding its robustness against deviations of the perturbing elements' shape. Only the coupling efficiency of the even-and oddpolarization and the PDL are presented. We consider the following cases:

• Δw s = Δw l = +10 nm, i.e. both axes are 10 nm larger → w s = 240 nm, w l = 330 nm

• Δw s = Δw l = -10 nm, i.e. both axes are 10 nm smaller → w s = 220 nm, w l = 310 nm

• Δw s = const., w l = +10 nm, i.e. the minor axis is unchanged, the major axis is 10 nm larger → w s = 230 nm, w l = 330 nm

• Δw s = const., w l = -10 nm, i.e. the minor axis is unchanged, the major axis is 10 nm smaller → w s = 230 nm, w l = 310 nm

• Δw s = +10 nm, w l = const., i.e. the minor axis is 10 nm larger, the major axis is unchanged → w s = 240 nm, w l = 320 nm

• Δw s = -10 nm, w l = const., i.e. the minor axis is 10 nm smaller, the major axis is unchanged → w s = 220 nm, w l = 320 nm When the perturbing elements' size is larger, the PDL is affected, becoming maximally 0.65 dB within the 1 dB-bandwidth. The coupling efficiency remains unchanged, the spectral shift is small. When the perturbing elements' shape is smaller than expected, the PDL remains below 0.5 dB within the wavelength range of interest. In fact, there is even a small improvement at 1568 nm of around 0.15 dB. This is at the cost of a coupling efficiency decrease of about 0.3 dB. The wavelength shift is again not significant.

As can be seen in Figs. 5.17 a-Si:H The advances, which are achievable in SOI structures, can be directly translated also to the a-Si:H based structures, discussed in Sect. 5.1. Here, an improved a-Si:H design with a Metal3 back-reflector is briefly presented. Since the devices are applicable at the transmitter-side, only the relevant aspects there are discussed, that is, the coupling efficiency, the split ratio and the polarizations' angular relationship Δψ with the corresponding polarization crosstalk. An optimized design may have the following geometry: a shear angle α = 2 • (Type II), a grating period Λ = 582 nm, stretched perturbing elements with a minor axis w s = 210 nm and a major axis w l = 330 nm, an etch depth d = 140 nm. The design angles are φ out = 45 • , θ out = 9 • at 1550 nm. Figure 5.19 shows the coupling efficiency of the target-and cross-polarization and the corresponding split ratio (per single waveguide).

The polarizations' angular difference and the related polarization crosstalk between signals from both GC arms is given as well. Compared to the design with a back-reflector from Sect. 5.1 we observe a 1 dB improvement of the maximal coupling efficiency, which is here -2.4 dB at 1550 nm. A split ratio better than 23 dB is reachable in a 55 nm range from 1500 nm-1555 nm. The orthogonality deviation within the bandwidth 1530 nm-1570 nm is maximally 4 • , corresponding to a polarization crosstalk below -23.5 dB. The parameters' improvement is comparable to the SOI case. The example shows that the optimization method works well also for 2D GC with a comparatively high coupling efficiency. A Brief Outlook -Possible Modifications The proposed way to define an array of stretched perturbing elements with alternating orientations is not the only one thinkable possibility to design 2D GCs with a low in-plane scattering. More degrees of freedom may be included to achieve an even better performance. A possible extension will be shown here, using the a-Si:H design from the previous paragraph as a starting point. Although the example here considers a-Si:H as a material, the same configuration may be used in SOI as well. Because the potential modifications have been investigated at a later point, no experimental structures were available at the moment of the dissertation's preparation.

The example given in this paragraph may be considered as an outlook for the further design optimization. The design modification is illustrated in Fig. 5.20. Their diameter is calculated such, that the circle has the same area as the ellipse/oval. If we assume an ellipse:

w circ = √ w s • w l (5.1)
If we consider an oval, the surface is calculated from the two half-circles with a diameter w s plus a small connecting rectangle with sidewalls lengths w s and w lw s , that is:

w circ = w 2 s + 4 π w s • (w l -w s ) (5.2)
The calculated w circ differs little in dependence on the chosen formula. Figure 5.21 shows the target-and cross-polarization's coupling spectra, the corresponding split ratio together with the polarizations' angular difference and crosstalk. The figure compares the previously shown optimized design as a reference and the modified optimized design. The latter is slightly wavelength-shifted, the maximal coupling efficiency remains unaltered. The crosspolarization is further reduced (by 2-3 dB), compared to the initially optimized design. For wavelengths > 1540 nm a constant split ratio improvement of about 2.5 dB can be achieved.

The polarization' orthogonality is further improved with a maximal deviation of only 2.5 • .

The polarization crosstalk is below -27.5 dB. For completeness, the 2D GC's robustness against perturbing elements' size deviations is analyzed for the O-band design as well. The considered cases cover the same range as in C-band with the following length combinations:

• Δw s = Δw l = +10 nm, i.e. both axes are 10 nm larger → w s = 190 nm, w l = 270 nm

• Δw s = Δw l = -10 nm, i.e. both axes are 10 nm smaller → w s = 170 nm, w l = 250 nm

• Δw s = const., w l = +10 nm, i.e. the minor axis is unchanged, the major axis is 10 nm larger → w s = 180 nm, w l = 270 nm

• Δw s = const., w l = -10 nm, i.e. the minor axis is unchanged, the major axis is 10 nm smaller → w s = 180 nm, w l = 250 nm

• Δw s = +10 nm, w l = const., i.e. the minor axis is 10 nm larger, the major axis is unchanged → w s = 190 nm, w l = 260 nm

• Δw s = -10 nm, w l = const., i.e. the minor axis is 10 nm smaller, the major axis is unchanged → w s = 170 nm, w l = 260 nm Δw s = Δw l = +10 nm, and an upper limit of 0.6 dB in the other cases. The PDL deterioration comes with an improved coupling efficiency of -3.1 dB. Generally, independent of the given band, during fabrication it should be ensured that the perturbing elements' size does not get too large or too circular. An appropriate shape biasing may be advantageous. a-Si:H For completeness, the proposed design will be translated to an a-Si:H 2D GC with a Metal3 back-reflector. Again, the transmitter-side relevant parameters will be shown, i.e. the coupling efficiency, the split ratio, the polarizations' angular relationship Δψ and the polarization crosstalk. For a-Si:H, the only parameter that is changed is the grating period, which is now 470 nm. The complete design geometry includes: a shear angle α = 2 • , a grating period Λ = 470 nm, stretched perturbing elements with a minor axis w s = 180 nm and a major axis w l = 260 nm, an etch depth d = 140 nm. The design angles are φ out = 45 • , θ out = 8 • at 1320 nm, with a small deviation from the target wavelength of 1310 nm. An extended, optimized design with a combination of stretched and circular perturbing elements has the same geometric parameters, further including the circular elements' diameter w circ = 216 nm. Figure 5.28 shows the coupling efficiency of the target-and cross-polarization, the corresponding split ratio (per single-waveguide), the polarization angles' difference and the polarization crosstalk (between both GC waveguides) for both optimized cases. Compared to the reference design with Metal3 from Sect. 5.1, a small coupling efficiency improvement is achieved -from -2.8 dB to -2.5 dB. As expected, the most significant advance is in terms Before looking for an appropriate diffracting elements' design, the determination of their locations will be briefly explained. As a construction method, design1 in combination with tilted waveguides from Ref. [34] was chosen. To obtain the required positions, the intersections of two arc arrays I and II have to be found. The following parametrization can be used for the arc arrays I and II, defined in the angular range [-γ, γ] (Fig. 5.29):

x n,I = x offset,I + (x 0,I + (n -1)

• Λ) • cos t 1 , t I ∈ [-γ, γ] y n,I = y offset,I + (y 0,I + (n -1) • Λ) • sin t 1 , t I ∈ [-γ, γ] x n,II = x offset,II + (x 0,II + (n -1) • Λ) • cos t 2 , t II = t I + 90 • (5.3) y n,II = y offset,II + (y 0,II + (n -1) • Λ) • sin t 2 , t II = t I + 90 • n = 1, 2, • • • , N,
where Λ is the period in an arc array. The offset points (x offset,I , y offset,I ), (x offset,II , y offset,II ) are chosen in such a way that the arc arrays cross each other at their central region. The points (x 0,I , y 0,I ), (x 0,II , y 0,II ) give the position, where the first arc of a given array I and II is defined. This determines the length of the focusing taper, which transforms a waveguide with an initial width w start to the final w end directly at the grating (Fig. 5.29). Exemplary arcs (x 1,I , y 1,I ), (x 1,II , y 1,II ) and (x 2,I , y 2,I ), (x 2,II , y 2,II ) and their intersections can be seen in Fig. 5.29.

The parameters depicted for the arc array I can be defined analogously for the arc array II.

For the following analyses, we choose the values: In the following, reference and proposed optimized designs for C-and O-band will be presented. Because of the large simulation models and computational time, only the excitation from one of both 2D GC arms is considered. The evaluated parameters are: target-and cross-polarization and the polarizations' split ratio (per single waveguide). If a large split ratio is reached, a good performance in terms of orthogonality between the signals of both GC arms and a low PDL between arbitrary incident polarizations can be expected. We begin with SOI designs for C-band with the following geometries:

• Reference: a shear angle α = 2 • , a grating period Λ = 588 nm, an etch depth d = 140 nm, circular perturbing elements with a diameter w Λ = 330 nm.

• Proposed optimized design: a shear angle α = 2 • , a grating period Λ = 594 nm, an etch depth d = 140 nm, elongated perturbing elements with a minor axis w s = 210 nm and a major axis w l = 510 nm.

The coupling angle is θ out = 6 • at the symmetry plane. Similarly, a reference and an optimized design for O-band can be defined:

• Reference: a shear angle α = 3 • , a grating period Λ = 487 nm, an etch depth d = 140 nm, circular perturbing elements with a diameter w Λ = 280 nm, a coupling angle θ out = 8 • at the symmetry plane.

• Proposed optimized design: a shear angle α = 3 • , a grating period Λ = 490 nm, an etch depth d = 140 nm, elongated perturbing elements with a minor axis w s = 180 nm and a major axis w l = 440 nm, a coupling angle θ out = 10 • at the symmetry plane. There are some basic differences in comparison to the linear 2D GCs. First, the perturbing elements' shape for 2D FGCs must be further stretched. While the linear 2D GCs show a good suppression of the cross-polarization's out-coupled power in combination with a moderate mode field overlap efficiency, the 2D FGCs reach an improvement mainly by a strong deterioration of the mode field overlap. This has the disadvantage of excess loss, due to the persisting power out-coupling into the undesired polarization. Looking at the maximally reachable coupling efficiency in C-band, we observe about 1.5 dB deterioration compared to linear 2D GCs: the maximum coupling efficiency of the optimized 2D FGC design is -5.7 dB (cf. -4.1 dB for optimized linear 2D GCs). Similarly, in O-band we obtain -5.5 dB, which is more than 2 dB worse compared to its linear 2D GC alternative with a -3.3 dB efficiency. Apparently, the large gap in terms of efficiency cannot be caused only by the cross-polarized power. An inspection of both models showed that the low coupling efficiency is related to a large power in the target-polarization, which is not coupled out by the grating and keeps propagating within the structure. Typically, this issue is caused either by a too shallow etch depth or by an inappropriate BOX thickness.

Particularly, the computationally smaller C-band model is investigated regarding these two parameters. A variation of the etch depth and the BOX values shows that the present coupling efficiency is the maximally reachable one. Regarding this matter, the following explanation can be given: for a given design wavelength, there is an optimal combination of a waveguide height, an etch depth (both related to the effective refractive index), a BOX thickness and a coupling angle. Reaching a local maximum for a given set of fixed parameters does not necessarily mean that the global maximum is found. The behavior of our 2D FGCs suggests that the waveguide height is potentially not optimal for the coupling efficiency. To verify this hypothesis, a modified C-band 2D FGC is simulated with the geometric parameters: a waveguide height h Si = 300 nm, a shear angle α = 3 • , a grating period Λ = 575 nm, an etch depth d = 200 nm, elongated perturbing elements with a minor axis w s = 210 nm and a major axis w l = 510 nm. While the perturbing elements' size is kept constant, the remaining parameters are adapted for a new, exemplary waveguide height and a coupling angle of θ out = 10 • at the symmetry plane.

Figure 5.32 shows a comparison of the C-band designs for both waveguide heights. Indeed, a better power out-coupling is reached by the 300 nm 2D FGC, leading to a coupling efficiency improvement of about 0.7 dB. Apparently, a slightly modified design of the perturbing elements' shape is necessary to reduce further the cross-polarization and reach an additional coupling efficiency improvement. In O-band, an enhancement of the power out-coupling in a dedicated design could be observed as well, however, at the cost of a mode field overlap deterioration. The latter may be related to a non-optimal perturbing elements' shape and/or periodicity.

The present analysis showed that the zig-zag-tilted ovals technique can be applied successfully also to low-footprint 2D FGCs. The lower coupling efficiency of the initially developed 

Experimental Validation

In this subsection, experimental results for SOI designs, comprising elongated zig-zag tilted perturbing elements, are presented. A focus is set on the measurement of the PDL, which is expressed as the difference between the coupling efficiencies (in dB) of the polarization with a maximal transmission and the polarization with a minimal transmission.

This corresponds to the PDL definition used in simulations. Low values for this parameter are an indication that the polarizations' split ratio is sufficiently large and the polarizations' non-orthogonality and crosstalk are low.

Results in C-band

In the first fabrication iteration, the producibility of the proposed elongated perturbing elements has been investigated, starting with the linear 2D GCs for C-band. The target geometry includes a waveguide-grating shear angle of α = 2 • , a grating period Λ = 594 nm, an etch depth d = 140 nm, elongated perturbing elements with a minor axis w s = 230 nm and a major axis w l = 320 nm (as proposed in 5.2.2.1). It has been found that an appropriate shape biasing is necessary, i.e. the diffracting elements must be laid out with larger and/or stretcher dimensions. Both elliptical/oval and rectangular layout shapes may be used to obtain a desired geometry. The 2D GC shown in Fig. 5.33 is the first design that has been investigated thoroughly in experiments. Because of the back-to-back test structure in the layout, the parameter that can be best examined in such a measurement is the PDL, out of which we can get an idea of the polarization handling properties of a 2D GC. The results below have been initially reported in our work, Ref. [38]. To characterize the proposed design, back-to-back test structures, comprising two 2D GCs, connected by linear tapers and waveguides, are fabricated in our 0.25 µm photonic BiCMOS technology on 200 mm wafers with a partially processed BEOL stack. The stack height has no importance for the PDL investigation. A setup, including a tunable laser Agilent 81960A (1505 nm -1625 nm), followed by a programmable polarization controller Agilent 8169A, is employed. Cleaved SMFs support the light in-and out-coupling on a chip. The signal is detected by a power meter Agilent 81634B.

For the accurate power normalization, a slim photodiode S132Ce is placed in front of both SMF facets to measure the optical power loss in both off-chip paths, using a power meter PM100D by Thorlabs. Due to the short Si waveguides, no waveguide loss is considered. To prepare a full wafer statistic a semi-automated 300 mm wafer probe system by Formfactor is used. The measurements are performed at a fixed height. Different polarization states are scanned: for a fixed polarization state, a wavelength sweep is carried out. The first and the last wavelength sweeps during the polarization scan are done for the same polarization state, and are used to control the coupling stability in the end of the polarization sweep.

The PDL is determined in the following way. First, the wafer mean maximum transmission wavelength is found and a 20 nm bandwidth around this wavelength is chosen. In this wavelength range, the maximal PDL is determined using 9 polarizations. The number of polarizations is sufficient to find the maximal coupling efficiency difference within the given bandwidth and has been determined in preliminary experiments. Finally, the PDL is averaged over the 61 chips on the wafer. The lower mean coupling efficiency may be related to smaller perturbing elements. The 20 nm bandwidth considered for the PDL evaluation is from 1545 nm to 1565 nm. 

Results in O-band

Next, results from first experiments for linear O-band 2D GCs will be presented. Due to the limited availability of the automated wafer probe system, the present analyses have been performed on dice measurements. The chosen 9 chips originate from wafer locations, which are used for process control measurements. For that reason, statistical range can be evaluated also in this case. Another missing component at the time of the measurements was a programmable polarization controller for O-band. No polarization sweep could be performed. Thus, the PDL determination is based on the minimization or maximization of the optical power transmission.

In the following, we compare designs with circular and elongated perturbing elements.

The former design is used as a reference and has the parameters: a shear angle α = 2 • , a grating period Λ = 480 nm, an etch depth d = 140 nm, circular perturbing elements with a diameter w Λ = 280 nm. The target design with elongated diffracting elements comprises a shear angle α = 2 • , a grating period Λ = 480 nm, an etch depth d = 140 nm, elongated perturbing elements with a minor axis w s = 180 nm and a major axis w l = 260 nm (as proposed in 5.2.2.1). Several biased shapes have been tested in the layout. Here, the best performing variant will be presented.

The measurement setup includes a lightwave measurement system by Agilent (8164B) with a tunable laser Agilent 81600b (sweep range 1280-1340 nm) and an optical power meter Agilent 81634B. The laser is followed by a manual polarization controller. Cleaved single mode fibers are used for in-and out-coupling. The loss in the off-chip paths is determined using the calibrated photodiode Thorlabs SM05PD5A, which is placed in front of the facet of each fiber. Because of the lack of a programmable polarization controller, we use a 1D-1D GC back-toback test structure to find the polarization state, which corresponds to the Si TE 00 mode on the chip. Due to the test structures' orientation, this polarization state will be equally split into both 2D GC arms. The choice of this polarization state is necessary to ensure a balanced coupling to the 2D GC. With the adjusted polarization, the coupling to the 2D-2D GC configuration is optimized. After the best coupling position is found, the polarization is changed so that a maximal or minimal power transmission results. The signal is controlled at different wavelengths to make sure that the largest difference is found. The procedure is repeated for all considered test structures on 9 chips. 

Conclusions and Outlook

High-index contrast 2D GCs are fascinating devices: although simple in their composition, they tend to interact with light in an unusual way. Understanding the behavior of 2D GCs is not as trivial as it initially seems. The present thesis has the ambition to provide the reader with a systematic and comprehensive description of all important physical properties of 2D GCs. The author hopes that the summary in this work may be a helpful guideline for interested researchers, who would like to develop own designs for a particular fabrication platform.

The present dissertation was based on 3 milestones, namely: 1) The development of reliable methods for the analysis of 2D GCs.

2) The thorough investigation of the interplay between different physical effects in 2D GCs.

3) The optimization of 2D GCs considering the requirements of a 0.25 µm photonic BiCMOS technology. The progress within this work went from the bottom to the top through these three steps.

The first aspect of the methods' advancement was an essential basis to make proper conclusions in the subsequent analyses. Hereby, it was particularly important to get acquainted with the trade-offs between numerical accuracy and computational cost. Moreover, dedicated evaluation techniques and mathematical formulations were necessary to guarantee for the appropriate post-processing of simulation results. The establishment of a reliable chain of methods for the proper modeling, simulation and post-simulation analysis was the key to determine 2D GCs' design metrics reliably. On the other hand, the accurate experimental handling of the sensitive coupling devices was not less critical. The interplay between theoretical and experimental analysis was the best means to understand the complex behavior of 2D GCs as a next step.

In this second part of the work, the central objective of all analyses became the polarization.

As a first important advance, a diffraction condition for two basic orthogonal polarizations was formulated. For a given wavelength and effective refractive index, the combination of a non-zero waveguide-to-grating shear angle and a grating period were responsible for the variation of the resulting coupling angle at the symmetry plane. It was shown that a larger coupling angle at the symmetry plane requires an increasing of both the shear angle and the grating period. The mathematical formulation of these dependences made the development of coupling structures for different optical bands, material compositions, and coupling angles possible. Keeping the polarization as a central objective, the next examined aspect was the polarization splitting capability of 2D GCs. Three performance-related parameters were introduced. First, it was discovered that a 2D GC converts partially a given target-polarization state into its orthogonal counterpart, assigned as a cross-polarization.

The ratio between the target-and cross-polarization -the split ratio -was the first investigated parameter. The results showed that the cross-polarization scales with the grating perturbation strength and contributes not only to the split ratio's deterioration, but is also a limiting factor for the coupling efficiency. In addition, the excitation of a cross-polarization means that signals originating from both GC arms are no more fiber coupled to purely

x-and y-polarized fields respectively, but have a mixed polarization composition. It was shown that these modified polarizations are generally not orthogonal and can be associated with a polarization crosstalk. This was the second analyzed parameter, for which a large wavelength dependence was found. Although orthogonal signals could be observed at the 2D GC's central wavelength, all other wavelengths were affected by the polarizations' non-orthogonality and crosstalk, defining strict limitations of the usable 2D GC bandwidth.

The last contribution of the cross-polarization could be observed in receiver-side 2D GCs, where a given target signal (channel 1) can be superposed with the cross-polarized component from the other communication channel 2 with a different phase relation. Depending on the particular superposition, a large PDL results, which was the third important parameter for this analysis. In the end, a dependence chain could be defined between split ratio, polarizations' non-orthogonality and crosstalk, and PDL. A good split ratio means that polarizations from both GC arms approach the desired x-and y-polarization states after fiber coupling. Accordingly, the signals from the two GC arms become orthogonal to each other and the polarization crosstalk vanishes. Thus, any combination of orthogonal polarizations without crosstalk is coupled with the same efficiency, leading thus to a low PDL. Therefore, a 2D GC has ideally a high split ratio, a low polarization crosstalk and a low PDL.

Apparently, to obtain these parameters as desired, the cross-polarization needs to be eliminated. It became crucial to discover the physical origin of the cross-polarization. The most important contribution of this work was the identification of the grating in-plane scattering as the physical effect behind the cross-polarization and the consequential issues.

The in-plane scattering results from the finite dimensions of the perturbing elements with respect to the optical waveguide mode. In summary, the analysis of physical effects in 2D GCs showed that diffraction and in-plane scattering take place in parallel and are not necessarily interrelated. The former physical effect is the desired one, the latter has to be engineered in such a way that the 2D GC handles properly any polarizations' combination.

Only the proper in-plane scattering control is a guarantee for an efficient 2D GC with good polarization splitting capabilities in terms of a low polarizations' non-orthogonality and crosstalk, and a low PDL.

After the systematization of these fundamental dependences, the final objective in this work became the exploration of a method to reach the goals given above, namely, to realize an efficient 2D GC with excellent polarization handling properties. While it is not possible to eliminate the in-plane scattering completely, an appropriate local scattering design can be applied to reduce the total scattering strength and reach thus a low cross-polarization.

Two different approaches were proposed and analyzed, considering two optical bands -C-and O-band -and two material platforms -SOI and a-Si:H in the platform's BEOL. Both optimization approaches have the basic idea that large total in-plane scattering may be avoided, when the grating's perturbing elements have different local scattering profiles.

As a first technique, the segmented 2D GCs were developed. Different local scattering patterns were achieved by using circular perturbing elements with different sizes and periodicity, grouped into several segments. The numerical analyses showed an improvement in terms of enhanced polarizations' split ratio, reduced polarizations' non-orthogonality and crosstalk, and improved coupling efficiency. However, the achieved advancement was not sufficient to obtain a low PDL. For that reason, a second optimization approach had to be developed, which can be considered as the highlight of the present work. The method relies on a grating, comprising zig-zag tilted elongated perturbing elements. In such an array, adjacent perturbing elements have abruptly different local scattering pattern, due to their varying orientations. An appropriate design of the minor and major axis of the diffracting elements ensures the local cancellation of forwards-and backwards scattered waves of adjacent objects. In an extended variant of this method, both elongated and circular elements can be used, achieving even better scattering suppression. The most important properties of the proposed design is its simplicity -basic geometric shapes can be used with dimensions appropriate for a 248 nm DUV lithography. In addition, no optical proximity correction, but only a suitable shape biasing is necessary. The feasibility 
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Figure 1 . 1 :

 11 Figure 1.1: A block diagram of a general optical communication system with electrical (red), optical (blue) and electro-optical parts (mixed coloring). Representation after Ref. [5], Chap. 1.

  Furthermore, an improved technique to control in-plane scattering is proposed. The new grating design comprises elongated perturbing elements with individual orientations, ensuring a local scattering manipulation. The achieved overall in-plane scattering suppression results in the significant improvement of the polarizations' split ratio, polarizations' orthogonality and PDL, which is shown numerically. The robustness of the proposed designs against fabrication deviations is evaluated as well. The transformation towards low-footprint FGCs is considered. Subsequently, the feasibility of the proposed optimization techniques is shown in wafer-level experiments, demonstrating a considerable PDL reduction. The observations and results in this work are finally summarized in Chap. 6 and aspects of potential further investigations are given.

2. 1 .

 1 The realization of this receiver is a result of the collaboration between TU Berlin and IHP Microelectronics, whereat more details can be found in the doctoral thesis of Pascal M. Seiler[1].

Figure 2 . 1 :

 21 Figure 2.1: A photograph of a monolithically integrated dual-polarization coherent receiver with a photonic integrated circuit (PIC) on the left hand side and an electronic integrated circuit (EIC) on the right hand side (IQ: in-phase quadrature). 2D grating couplers (GCs) are used as coupling interfaces, while 1D GCs are included for testing purposes. The PIC comprises a variety of photonic components with different requirements regarding the choice of a numerical method and simulation procedure. Receiver design by Pascal M. Seiler [1].

Figure 2 . 2 :

 22 Figure 2.2: A description of the numerical model of a two-dimensional grating coupler (2D GC). (a) A 2D GC with feeding linear tapers. (b) The complete structure is covered by a backend of line (BEOL) stack. (c) Only a small volume is considered for simulation. The tapers are typically simulated separately to avoid long simulation times.

Figure 2 . 3 :

 23 Figure 2.3: An illustration of (a) 1D and (b) 2D grating coupler (GC) models with their computational boxes. A 2D model can be used for the 1D GC, a 3D model is required for the 2D GC. The GCs are defined in the (x, y, z)-plane. The tilted (u, v, w) coordinates give the position of the single-mode fiber, rotated according the design coupling angles. Any field evaluation takes place at w = const. in the free space above a given structure. In this example, both 1D and 2D GCs have the same minimal simulation wavelength, the same type of grid (hexahedral), the same grid size and the same stack height; the 1D GC has 10 µm extra free space above the stack. The 2D GC's model consists of 150 times more hexahedral grid cells than the 1D GC's one.

Figure 2 . 4 :

 24 Figure 2.4: An exemplary representation of the Yee's cell, consisting of two staggered grids.In the primary grid, electric field strength ⃗ E and flux ⃗ D components are placed in the middle of the edges. A dual grid, shifted by a half grid cell in all directions, contains the magnetic field strength ⃗ H and flux ⃗ B components. With respect to the primary grid, the magnetic field strength and flux are defined in the center of the faces. (Representation after Refs.[15, 20]).

Figure 2 . 5 :

 25 Figure 2.5: An exemplary space-time representation of a 1D wave propagation. A staggered grid for the electric and magnetic field strength ⃗ E and ⃗ H is used both in space and time. Central differences are used for the space derivatives and leapfrog for the time derivatives. (Representation after Ref. [20]).
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 26 Figure 2.6: An exemplary representation of the staggered grid used by the finite-integrationtechnique (FIT). In the primary grid, electric grid voltages e and fluxes d are defined. A dual grid, shifted by a half grid cell in all directions, contains the magnetic voltages h and fluxes b. (Representation after Ref. [17].)
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 27 Figure 2.7: (a) A generic schematic of a 2D grating coupler (2D GC). Only a single row of perturbing elements, indicated by the red dashed line, is considered for a convergence analysis. (b) A model in CST Studio Suite, the backend of line (BEOL) stack is not shown. The mode excitation is in x-direction from Port 1 to Port 2. (b) An electric field distribution at a 1310 nm wavelength.

Figure 2 .

 2 7 (a) shows a generic schematic of a 2D GC. For the simplified model, we consider one row of perturbing elements, indicated by the red dashed line. Typically, circular perturbing elements are used. In Fig.2.7 (b), the actual model in CST can be seen. The waveguide width corresponds to the feeding taper's end width.The waveguide height is 220 nm on a BOX of 2 µm. In this work, 2D GCs for both C-band (1530-1565 nm) and O-band (1260-1360 nm) have been investigated. For that reason, the simplified model comprises circular perturbing elements with typical dimensions for Cor O-band 2D GCs, namely 400 nm diameter with a 620 nm periodicity for C-band and 280 nm with a 480 nm periodicity in O-band. Their etch depth is intentionally chosen to be large -200 nm -to make sure that the model includes both radiated and propagating fields.The analysis is carried out in both optical bands. A symmetry plane at y = 0 is chosen withE tang = 0,reducing the total number of cells by a factor of two. Two ports are defined and the fundamental TE 00 is excited by Port 1 in x-direction, indicated by the black arrow. The structure is 5 µm long to avoid potential interactions between both ports. An exemplary electric field distribution at 1310 nm is shown in Fig. 2.7 (c).

Figure 2 . 8 :

 28 Figure 2.8: The balance parameter of a simplified model for a different number of grid cells per minimal wavelength N cells . (a) Results in C-band. (b) Results in O-band.

Figure 2 .

 2 Figure 2.8 shows the results of the convergence analysis in both optical bands. In O-band, a slightly larger deviation can be observed for N cells = 10. All other scenarios deliver almost unchanged results, making the choice of 15 cells per minimal wavelength reasonable.

  The reflections at the PML boundaries are inevitable and depend on the field's angle of incidence. The number of PML layers must be such that the reflection is sufficiently low. In CST, the parameter estimated reflection level can be chosen. The recommended value of 0.1 ‰ is sufficient for the purposes of this work. To illustrate this, the simplified models for C-and O-band are simulated for different PML reflection levels at a resolution of 15 cells per minimal wavelength. The results in Fig.2.9 confirm the low impact of PML reflections on the simulation results.

Figure 2 . 9 :

 29 Figure 2.9: The balance parameter of a simplified model for different levels of the perfectly matched layer (PML) reflection in (a) C-band, (b) O-band. The results do not vary significantly, showing that a reflection level of 10 -4 is a reasonable choice.
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 210 Figure 2.10: An illustration of the components relevant for a complete 2D grating coupler (GC) model (only one GC arm is depicted: waveguide (WG) 1). (a) 2D GCs are designed for Si rib waveguides with a slab, defined by the same etch depth d as the grating. (b) Depending on the 2D GC design -linear or focusingtapers with different properties are needed. The linear 2D GC requires a long adiabatic taper, which can be simulated separately from the grating. The focusing 2D GC requires short tapers, which have to be simulated together with the grating.

  on it. Another relevant aspect are the proper material definitions. The material properties are assumed constant within a given band (e.g. O-or C-band) -no wavelength dependence of the refractive indices is considered. The constant refractive indices for O-and C-band differ, however. For Si, the assumed refractive indices are 3.5 in O-band and 3.47 in C-band. The refractive indices and reflective properties of the remaining materials are confidential information of IHP Microelectronics.
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 211 Figure 2.11: An illustration of the calculation of the diffracting elements' positions in a 2D focusing array, resulting from the crossing of two 1D-periodic arc arrays (depicted by continuous and dashed arcs).
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 212 Figure 2.12: An exemplary Gaussian-sine excitation signal for simulations in O-band.

Figure 2 .

 2 Figure 2.13: A decomposition of a full model into a source and imprint project. A 2D focusing grating coupler (2D FGC) is shown on example -the feeding taper is simulated within the source project. The fields saved by the field source monitor are imported into the imprint project and used as a tilted excitation source.

Figure 2 . 14 :

 214 Figure 2.14: An illustration of the transformations, necessary to construct a tilted plane for results evaluation. The tilted plane accounts for the fixed position of a single mode fiber (SMF). (a) A starting point. (b) Coordinates (u ′ , v ′ , w ′ ) after a rotation of 45 • around the z-axis. (c) Coordinates (u ′′ , v ′′ , w ′′ ) after a rotation of θ F around the v ′ -axis. (c) The final coordinates (u, v, w) after a rotation of -45 • around the w ′′ -axis.

  Fig.2.3 (b)) goes through three steps: starting from the Cartesian coordinates as in Fig.2.14 (a), the first step is a rotation of φ 1 = 45 • around the z-axis (Fig.2.14 (b)). The coordinates after this first intermediate step are assigned as (u ′ , v ′ , w ′ ). Next, a rotation of the angle θ F around the v ′axis is carried out, reaching the plane in Fig.2.14 (c) with the coordinates (u ′′ , v ′′ , w ′′ ). Finally, a rotation φ 2 = -45 • around the w ′′ -axis is done, obtaining the final (u, v, w)-coordinates.

  . 4.1, Chap. 4). The latter parameters are dependent on the material distribution in the grating, and thus, on the diffracting elements' diameter w Λ and etch depth d (for a given waveguide height h WG ). The propagation angles of the fields out-coupled by the grating φ out , θ out are related to the combination of a shear angle α and a grating period Λ for a desired wavelength by a matching condition (derivation in Sect. 4.1, Chap. 4). In all cases, we require that the grating radiation angles are equivalent to the fiber tilt angles, i.e. φ out = φ F = 45 • , θ out = θ F .

Figure 2 . 15 :

 215 Figure 2.15: An illustration of the parameters of 2D grating couplers (2D GCs). A shear angle α can be defined either by making the grating area rhombus shaped (Type I) or by tilting the Si waveguides with respect to the grating (Type II). The grating effective refractive index n eff,GC depends on parameters such as waveguide height h WG , diffracting elements' diameter w Λ and etch depth d. The shear angle causes a non-zero angle of propagation φ in within the grating. The combination of n eff,GC and φ in determines the combination of α and Λ for desired coupling angles φ out = 45 • , θ out , which are equivalent to the fiber tilt angles, i.e. φ out = φ F , θ out = θ F .
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 216 Figure 2.16: An illustration of the adaption procedure for the determination of an appropriate 2D grating coupler (2D GC) geometry for desired coupling angles (φ out , θ out ). First, initial diffracting elements' size and etch depth (w Λ , d) are set.A corresponding grating effective refractive index and input angle (n eff,GC , φ in ) are estimated. With the assumed (n eff,GC , φ in ) and for desired coupling angles (φ out , θ out ), the required shear angle and grating period (α, Λ) can be calculated. After a simulation with a duration in the range 5-15 hours, the actual (φ out , θ out ) and the corresponding (n eff,GC , φ in ) can be determined by a spatial fast Fourier transform (FFT). If (φ out , θ out ) are not as desired, (α, Λ) are adapted and the simulation is repeated. If (w Λ , d) need to be changed for an efficiency optimization, the whole procedure starts all over again.

Figure 2 .

 2 Figure 2.17: A schematic of the typical power distribution in a 2D grating coupler (2D GC): (a) P up -the upwards diffracted power -is the only contribution to the coupling efficiency. Power loss is caused by power diffracted towards the substrate P down , not diffracted power, further propagating within the structure P thru and reflected or back-scattered power P refl . (b) An illustration of the reflections at layers with different refractive indices and thicknesses, including the backend of line (BEOL) stack layers above the grating and the buried oxide (BOX) and the Si substrate below the grating. These reflections are responsible for the final ratio of P up , P down and P thru . The reflection at the Si substrate and the BOX thickness have the most decisive impact.

Figure 2 .

 2 18 shows as an example the BOX dependence of 1D GC designs for C-and O-band. The dependence is similar for 2D GCs. The figure shows the out-coupled power at 1550 nm and 1310 nm, depending on the BOX thickness. The refractive index of Si is 3.47 at 1550 nm and 3.5 at 1310 nm. The refractive index of the BOX layer is around 1.45 in both bands. The exemplary devices are: 1) 1D GC for C-Band with a period of 630 nm, a diffracting element's width of 315 nm and an etch depth of 70 nm; 2) 1D GC for O-Band with a period of 500 nm, a diffracting element's width of 250 nm and an etch depth of 70 nm. It can be seen that the standard BOX thickness of 2 µm is similarly good for both wavelengths, in spite of the different maxima periodicity, which is about 550 nm in C-band and 400 nm in O-band.

Figure 2 .

 2 Figure 2.18: A buried oxide (BOX) dependence of the out-coupled power of 1D grating couplers (1D GCs), designed for C-or O-band. The dependence is similar for 2D GCs. Due to the different maxima periodicity, the performance is equally good in both bands only at certain BOX thicknesses, e.g. 2 µm.

Figure 2 .

 2 Figure 2.19: A schematic with the definitions used for the derivation of an overlap integral between the upwards diffracted grating fields ⃗ E i , ⃗ H i , related to the power P up ≡ P i and the single mode fiber (SMF) fundamental mode. The SMF is placed at the local coordinates (u, v, w = const.), which are defined by the angles φ F , θ F . The fiber's effective area is assigned as A F . Arbitrary SMF eigenmodes ⃗ E l,m , ⃗ H k,n , (l, m, k, n ∈ Z), weighted by transmission a l,m , a k,n and back-propagation coefficients b l,m , b k,n are shown.

Figure 2 .

 2 Figure 2.20: A schematic for the illustration of two parameters, related to the polarization splitting in 2D grating couplers (2D GCs). (a) Waveguides (WG) 1 and 2 are excited separately, delivering a certain field distribution at a tilted plane with coordinates (u, v, w = const.), related to the angles (φ F = 45 • , θ F ). Out of each field distribution, a set of Stokes parameters related to a polarization state P 1 or P 2 results. (b) Exemplary polarization states P 1 and P 2 on the Poincaré sphere. (c) Ideally, P 1 and P 2 are composed of one component (x-or y). The polarization split ratio SR is a ratio between the coupling efficiency CE of the desired component to its orthogonally converted counterpart. The split ratio refers to a single waveguide. The angular relationship between P 1 and P 2 on the Poincaré sphere shows, whether the signals from WG 1 and 2 are orthogonal to each other. Non-orthogonal relation results in polarization crosstalk between both waveguides. (Adapted from Ref. [38] under a CC BY 4.0 license.)

  The important statement about this characterization is whether the signals originating from waveguides 1 or 2 are orthogonal to each other or not. The investigation of this aspect is important, because orthogonal signals can be separated from each other by applying orthogonal transformations -similarly to the polarization demultiplexing of a signal rotated arbitrarily during its propagation in a SMF. By contrast, non-orthogonal signals cannot be separated perfectly from each other by this means. A polarization crosstalk will be given in such a case, which is the second important parameter of interest here. The essential difference between both used parameters is that the split ratio gives a polarization conversion considering a single waveguide, while the polarization crosstalk refers to the relationship between the signals from both waveguides (illustration in Fig.2.20 (c)).

Figure 2 . 21 :

 221 Figure 2.21: An exemplary representation of two non-orthogonal polarization states on the Poincaré sphere (in a 2D cross-section). (a) A rotation of the Stokes vector P 1 by 180 • should result in P 2 . In the non-orthogonal case, the polarization states P1 , P 2 differ by the angle 2Δ ψ. (b) A Thales triangle for the determination of a polarization crosstalk. (Adapted from Ref. [38] under a CC BY 4.0 license.)
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 57 Note the linear polarizations' equivalence -45 • ≡ 135 • . Passing the fields through the polarizing plates yields:

. 63 )

 63 By setting (2.62) and (2.63) to be equal, a quadratic equation for m results in the end. With the boundary condition that m should vanish in the orthogonal case Δψ = 90 • , i.e. Δ ψ = 0 • , the final solution is:

Figure 2 . 22 :

 222 Figure 2.22: An exemplary setup for the characterization of passive on-chip components (not to scale). A tunable laser source in the C-or O-band is used for a signal generation. A manual or programmable polarization controller is used for polarization management. Two single-mode fibers (SMFs) are used for in-and out-coupling. Their position is controlled by mechanical positioners. The signal is received by a power meter and can be further processed on a computer. A photonic chip contains a device under test (DUT), which comprises in the simplest case back-to-back structures with 1D or 2D grating couplers (GCs) at each end. The coupling is further supported by an external light source and a microscope camera, which may introduce limitations in the SMF positioning range. Such factors need to be considered, when laying out a test structure.

Figure 2 .

 2 Figure 2.23: (a) A schematic of a device for the measurement of a polarization split ratio. (b) An incident polarization for a split ratio SR = 1, leading to an extinction ratio (ER) of infinity. (c) An incident polarization for a split ratio SR → ∞, leading to an ER of 1 and vanishing resonances. (d) A camera picture of an exemplary fabricated device with assigned components. Other abbreviations: GC: grating coupler, MMI: multi-mode interferometer. (Adapted from Ref. [47], under a CC BY 4.0 license.)

  Figure 3.1 gives a schematic comparison of the cross-sections of two classical components -the n-type metal oxide semiconductor field effect transistor (MOSFET) transistor and the (planar) npn bipolar junction transistor (BJT). Apparently, in the MOSFET, the charge carrier flow and the electric current are horizontally directed. By contrast, the npn transition in the BJT is vertical, which implies a vertical charge carrier flow. This fundamental difference is related to different design concerns, which are reflected in the fabrication technology of both transistor types. The combination of these two technologies -the bipolar CMOS (BiCMOS) -is hence related to compromises in the performance of these devices.

Figure 3 . 1 :

 31 Figure 3.1: A schematic cross-section of (a) a n-MOSFET (adapted from Ref. [6], Chap. 2) and (b) a npn-BJT (adapted from Ref. [5], Chap. 1). The components differ by the direction of the charge carrier and electric current flow. The co-fabrication of both transistor types is related to performance trade-offs.

Figure 3 . 2 :

 32 Figure 3.2: An illustration of the photonic modules' integration in a 0.25 µm electronic BiCMOS flow. Abbreviations: (Bi)CMOS: (bipolar) complementary metal oxide semiconductor, HBT: heterojunction bipolar transistor, BEOL: backend of line, SOI: silicon on insulator, WG: waveguide. (Representation after Ref. [12].)

Figure 3 .

 3 Figure 3.2 illustrates the integration of photonic modules within the 0.25 µm BiCMOS according to Ref. [12].

Figure 3 . 3 :Figure 3 . 3

 3333 Figure 3.3: A schematic cross-section of a photonic BiCMOS platform. In the frontend of line (FEOL) high-speed heterojunction bipolar transistors (HBTs) in bulk Si are integrated in parallel with silicon on insulator (SOI) photonic devices, such as waveguides, coupling interfaces, multimode interferometers (MMIs), Ge photodetectors etc. Both electronics and photonics share the same backend of line (BEOL) stack, consisting of multiple SiO 2 layers with different thicknesses and material constants. The BEOL offers 5 metals for the realization of the shortest interconnects between photonics and electronics. (Adapted from Ref. [18] under a CC BY 4.0 license.)
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 3434 Figure 3.4: A schematic representation of a 3D photonic BiCMOS platform with electronic and photonic components in the frontend of line (FEOL) extended by a photonic amorphous Si:H (a-Si:H) layer at the TopMetal1 level. Grating couplers (GCs) can be used as in-and out-coupling interfaces, which may or may not use Metal3 as a back-reflector. A 2D GC is needed for a polarization-multiplexed system. A Pockels material can be bonded for the realization of high-speed modulators and transmitters in the backend of line (BEOL). The realization on both silicon-on-insulator (SOI) and bulk Si wafers is possible. (Adapted from Ref. [18] under a CC BY 4.0 license.)
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 41 Figure 4.1: An illustration of a sheared 2D grating coupler (2D GC) with a rhombus-shaped grating area, placed in the plane (x, y, z = 0). An incident wave vector ⃗ k is transformed to a vector ⃗ k in due to the angled interface between waveguide and grating. The vector ⃗ k in is defined by the effective refractive index of the 2D GC
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 4 13) : (4.12) ⇒ φ out = arctan ñeff,GC -

Figure 4 .

 4 2 illustrates both types of 2D GCs, which have been investigated in this work. In the following, several exemplary designs of sheared 2D GCs Type I and II for C-band will be analyzed.

Figure 4 . 2 :

 42 Figure 4.2: Two types of sheared 2D grating couplers (2D GCs) investigated in this work.Type I -rhombus-shaped grating area and perpendicular waveguides. Type IIsquare-shaped grating area an angled waveguides.
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 2141 after both input 2D GC's polarizations are excited simultaneously. The evaluation wavelength is 1550 nm.The geometric properties of the perturbing elements are nearly the same -the small diameter variation ensures a constant duty cycle of about 0.67-0.68 (depending on the type), where the duty cycle is defined as the ratio of the diffracting element's diameter to the period. As stated in (4.12), (4.13), (4.18), different combinations of shear angle and grating period result in different combinations of the coupling angles (φ out , θ out ).

Figure 4 . 3 :

 43 Figure 4.3: A comparison of (a) the normalized out-coupled power, (b) the mode field overlap and (c) the coupling efficiency of 2D grating couplers (2D GCs) without and with a shear angle α (a grating of Type I). The fiber position is given by the angles φ F = 45 • , θ F = 8 • .

4. 3

 3 two designs without and with a shear angle (Type I) are compared first. The evaluation plane is oriented along the symmetry axis between the 2D GC's arms φ F = 45 • . The coupling angle in both cases is θ out = θ F = 8 • .

Figure 4 .

 4 3 (a) shows the out-coupled power normalized with respect to the waveguide input power and Fig.4.3 (b) the mode field overlap of both designs. The out-coupled power differs more profound for wavelengths larger 1560 nm. More remarkably, the maximal mode field overlap is significantly deteriorated in the non-sheared case, due to the missing rotation towards the symmetry plane and the corresponding different optimal coupling positions for both polarizations. This results in about 3 dB lower coupling efficiency at 1550 nm, as can be seen in Fig.4.3 (c). The shear angle is crucial for the improvement of the 2D GC's mode field overlap and the overall coupling efficiency.

Figure 4 . 4 :

 44 Figure 4.4: A comparison of (a) the normalized out-coupled power, (b) the mode field overlap and (c) the coupling efficiency of 2D grating couplers (2D GCs) with different shear angles α = 2 • , 3 • , 4 • , corresponding to different coupling angles θ out = 8 • , 12 • , 15 • at φ out = 45 • . The 2D GCs are of Type I -with a rhombusshaped grating area and perpendicular waveguides.
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 4 Figure 4.4 shows the normalized out-coupled power, the mode field overlap and the coupling efficiency of the considered 2D GC designs of Type I. Analogously, Fig. 4.5 shows

Figure 4 . 5 :

 45 Figure 4.5: A comparison of (a) the normalized out-coupled power, (b) the mode field overlap and (c) the total coupling efficiency of a 2D GCs with different shear angles α = 2 • , 3 • , 4 • , corresponding to different coupling angles θ out = 8 • , 12 • , 16 • at φ out = 45 • . The 2D GCs are of Type II -with a square-shaped grating area and tilted waveguides.

θF

  would not be optimally coupled at φ F = 45 • , because the grating fixes the required combination of angles for each wavelength. The mismatch φ out ̸ = φ F = 45 • is responsible for a mode field overlap deterioration. Figure Fig. 4.6 shows further the mode field overlap when the fiber is tilted by the default coupling angle θ F = 12 • and by two other angles with Δθ F = ±3 • . The evaluation plane is always fixed at φ F = 45 • . The overlap penalty due to the symmetry plane deviation is about 8 %.

Figure 4 . 6 :

 46 Figure 4.6: A mode field overlap of a 2D grating coupler (2D GC) with a shear angle α = 3 • of Type I and a design coupling angle θ out = 12 • at φ out = 45 • . A comparison between the case of optimal fiber tilt angle θ F = θ out and two other coupling cases with θ F = θ out ± 3 • at φ F = 45 • is done. The table indicates the expected (φ out , θ out ) combinations for each wavelength, which are fixed by the 2D GC. The combined deviation from both (φ out , θ out ) determines the wavelength shift. The mismatch between φ out ̸ = φ F = 45 • is responsible for a mode field overlap deterioration.

Figure 4 . 7 :

 47 Figure 4.7: A schematic representation of two scattering problems: (a) scattering by a dielectric cylinder, (b) scattering by a dielectric cylinder array. (Adapted from Ref. [8] under a CC BY 4.0 license.)

Figure 4 . 8 :

 48 Figure 4.8: An analytically calculated electric field distribution for the scattering problem of a dielectric cylinder array, placed along the y-axis. The incident wave is a y-polarized plane wave, propagating in x-direction. (Adapted from Ref. [8] under a CC BY 4.0 license.)

Figure 4 .

 4 8 shows the magnitude of the calculated E x and E y field components for a case, which considers the 2D GC's material and geometric properties. The cylinders' material is SiO 2 , while the exterior's material is Si. The matrix operations are carried out in MATLAB with a Bessel/Hankel functions order m = 0, ±1, ... ± 19 and a wavelength of 1550 nm. The discrete spatial locations have a resolution of 15 points per wavelength. The calculated field distribution in Fig.4.8 results from a y-polarized incident field, which passes through the cylinder array in ⃗ e x -direction.

4 .

 4 Polarizations' non-orthogonality and crosstalk. Consider two signals coded into two different channels 1, 2, which are orthogonally polarized to each other. The presence of cross-polarization rotates the polarization states 1, 2 on the Poincarè sphere, so that the latter may become non-orthogonal to each other. A polarization crosstalk results as a consequence.

Fig. 4 .

 4 2). The impact of different shear angles and etch depths are studied in more detail.

Figure 4 . 9 :

 49 Figure 4.9: A comparison of the target-and cross-polarization of different sheared 2D grating couplers (2D GCs). Two types of gratings are considered -Type I with a rhombus-shaped grating area and Type II with angled waveguides. (a) A shear angle α = 2 • , an etch depth d = 120 nm, (b) a shear angle α = 2 • , an etch depth d = 90 nm, (c) a shear angle α = 3 • , an etch depth d = 120 nm. The evaluation plane is tilted, according to the fiber angles φ F = 45 • , θ F = 8 • . (Adapted from Ref. [19] under a CC BY 4.0 license.)

  diffracting elements are given. Their diameter and the grating period take into account the design rules of the 248 nm DUV lithography used for the fabrication. The designs are chosen on the one hand to compare structures of Type I and II with different shear angles and on the other hand -structures with different etch depths and fixed remaining geometric parameters. Following geometries and coupling angles are designed, assuming a coupling to/from a Si rib waveguide with a 220 nm height and slab etch depth equal to the grating etch depth. a) A shear angle α = 2 • of Type I or II, a grating period Λ = 622 nm, circular perturbing elements with a diameter w Λ = 440 nm, an etch depth d = 120 nm, coupling angles φ out = 45 • , θ out = 8 • at 1550 nm. b) A shear angle α = 2 • of Type I or II, a grating period Λ = 622 nm, circular perturbing elements with a diameter w Λ = 440 nm, an etch depth d = 90 nm, coupling angles φ out = 45 • , θ out = 8 • at 1590 nm. c) A shear angle α = 3 • of Type I or II, a grating period Λ = 636 nm, circular perturbing elements with a diameter w Λ = 450 nm, an etch depth d = 120 nm, coupling angles φ out = 45 • , θ out = 12 • at 1550 nm.

Figure 4 .

 4 Figure 4.9 shows the simulated out-coupling spectra for the two types of sheared gratings, comparing the three different cases. In any of them, we see that the two types of gratings Type I and Type II differ slightly from each other. Another common characteristic in all cases is that the cross-polarization (x-polarized) has a central wavelength, which is shifted to larger wavelengths compared to the y-polarization. The shift is larger in the case of the gratings of Type II.Figure 4.9 (a) and (b) compares the geometries with different etch

Figure 4 .

 4 9 (a) and (b) compares the geometries with different etch depths, the remaining parameters fixed.

  Figure 4.9 (a) and (c) compares models comprising different shear angles. For each structure, a mean split ratio in a 15 nm interval around the maximal transmission wavelength is given in Tab. 4.2. Because of the larger crosspolarization wavelength shift for the Type II gratings, their split ratios appear better than for the Type I grating. Comparing the structures with shear angles 2 • and 3 • , we see that the latter shows around 1-2 dB worse split ratio. This shear angle is combined with a different grating period, so that the worse behavior may be caused not by the shear angle alone, but by the combination of shear angle and period.

Figure 4 . 10 :

 410 Figure 4.10: An electric field distribution and a power loss in percent caused by fields, propagating further in a 2D grating coupler (2D GC). The shear angle is α = 2 • . The input mode is purely y-polarized. After propagating through the 2D GC, a portion of its power is radiated under φ out = 45 • , θ out = 8 • and coupled into a SMF. Power losses caused by fields that propagate further within the grating are shown. The propagating mode has two polarization states. For an etch depth d = 90 nm, the power remains mainly within the initial y-polarization (24 %) and 10 % are converted into the cross-polarization. For an etch depth d = 120 nm the power loss is mainly caused by the cross-polarization conversion (24 %). (Adapted from Ref. [19] under a CC BY 4.0 license.)

Fig. 4 .

 4 10 for the designs a) and b) of Type I. On the left hand side, we have an input mode, which is purely y-polarized. During the mode's propagation through the 2D GC, a portion of its power is coupled out towards a SMF. Power losses are caused by a radiation towards the substrate (not represented) and by the power further guided in the structure. In Fig.4.10, we clearly see that in both cases the further propagating mode has an y-polarized part (in the waveguide on the right hand side) and an x-polarized part (in the upper waveguide). For the etch depth d = 90 nm the power remains mainly within the initial y-polarization (24 %) and 10 % are converted into the cross-polarization. On the other hand, for an etch depth d = 120 nm the power loss is mainly caused by the cross-polarization conversion (24 %) and overall we do not increase the amount of the radiated power. The cross-polarization conversion increases with an increasing grating perturbation strength -compared to 1D GCs, this is an additional loss mechanism limiting the maximal achievable coupling efficiency.

Figure 4 . 11 :

 411 Figure 4.11: Exemplary measured interferometric curves for the characterization of different sheared 2D grating couplers (2D GCs) in terms of split ratio. Two types of gratings are considered -Type I with a rhombus-shaped grating area and Type II with angled waveguides. (a) A shear angle α = 2 • , an etch depth d = 120 nm, (b) a shear angle α = 2 • , an etch depth d = 90 nm, (c) a shear angle α = 3 • , an etch depth d = 120 nm. (Adapted from Ref. [19] under a CC BY 4.0 license.)

2 .

 2 The 1D FGCs have a period of 610 nm, a perturbing elements' width of 315 nm and and etch depth of 70 nm. The wavelength sweep is performed in 1 pm increment for the MMI-based measurement, to make the ER determination as accurate as possible. The ER is first averaged in the given 15 nm bandwidth. Its value is then converted to a split ratio SR according to (2.69) in 2.2.3, Chap. 2. The split ratios determined on different chips are finally averaged to account for the wafer deviations (a mean value SR and a standard deviation σ).

Figure 4 .

 4 Figure 4.11 shows exemplary interferometric curves for each of the considered 2D GC designs. The polarization is such, that the incident field is coupled into one of both 2D GC arms. The depicted wavelength range covers the 15 nm evaluation bandwidth around the spectral maximum. The vertical axes are scaled equally. The transmission includes the coupling losses at the input and the output. It has been observed that split ratios above 20 dB, which correspond to ERs of below 1.5 dB become difficult to measure, because other effects like Fabry-Perot resonances and noise start to predominate. For that reason,

Figure 4 . 12 :

 412 Figure 4.12: An exemplary simulation of the optical signal-to-noise ratio (OSNR) penalty for reaching the forward error correction (FEC) limit of a bit error ratio BER = 10 -3 , plotted over different 2D grating coupler (2D GC) split ratios. The considered DP QAM formats are QPSK, 8-PSK, 16-QAM, 32-QAM and 64-QAM. Further abbreviations: DP: dual-polarization, QAM: quadrature amplitude modulation, (Q)PSK: (quadrature) phase shift keying. (Adapted from Ref. [19], used under a CC BY 4.0 license. Author: Pascal M. Seiler.)

Figure 4 .

 4 Figure 4.15: A comparison of 2D grating couplers (2D GCs) for C-and O-band. (a) Targetand cross-polarization spectra in C-band. (b) Target-and cross-polarization spectra in O-band. (c) The polarization split ratio in C-band. (d) The polarization split ratio in O-band. (e) The polarization angles' difference in C-band. (f) The polarization angles' difference in O-band. (g) The polarization crosstalk in Cband. (h) The polarization crosstalk in O-band. (Adapted from Ref. [22] used under a CC BY 4.0 license.)
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 416 Figure 4.16: An illustration of different incident polarizations at a receiver-side 2D grating couplers (2D GCs). The different orientations are responsible for a different signal splitting manner between both 2D GC arms. (a) and (b) An ideal coupling of a purely y-or x-polarized incident wave. (c) An incident polarization for an in-phase signal splitting, assigned as an even-polarization. (d) An incident polarization for an anti-phase signal splitting, assigned as an odd-polarization.

  the target-polarization from Port 2 and the cross-polarization from Port 1. To account for the polarization diversity at the receiver, different amplitude/phase relations between the signals from the two ports have to be defined. Particularly, we are interested in the scenarios depicted in Fig. 4.16 (c) and (d). The polarization in Fig. 4.16 (c) is related to signals in the two GC arms, which are in-phase, e.g. +x-and +y-polarized. The incident polarization in Fig. 4.16 (d) corresponds to port signals in anti-phase, e.g. -x-and +y-polarized. To
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 417 Figure 4.17: Coupling efficiencies of a target-and cross-polarization in parallel with the x-component of an even-and odd-polarization for 2D grating couplers (2D GCs) with the same geometry and of different types. (a), (c) Type I; (b), (d) Type II. Both 2D GCs reach a relatively high levels of cross-polarization. In the same time, their even-and odd-polarization are strongly wavelength-shifted from each other, leading to a large polarization-dependent loss (PDL). It is hypothesized that the cross-polarization is responsible for the PDL.
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 417 Figure 4.17(a) and (b) shows the single-port simulation of both designs, indicating the

  Figure 4.17(a) and (b) shows the single-port simulation of both designs, indicating the coupling efficiency of the target-and cross-polarization. In parallel, Fig. 4.17 (c) and (d)

Figure 4 .

 4 Figure 4.19: (a) A camera picture of an exemplary device used for the experimental determination of the polarization state and the modal composition of fields, excited by a 2D grating coupler (2D GC) in Si components. (b) A detailed picture of a 2D GC under test, the input 2D GC varies according to the three considered designs. (c) A schematic of the components following the upper and the lower arms of a 2D GC. For the experiments, only the upper part is relevant, which contains a TE 10 → TE 00 mode converter and 1D GCs for out-coupling. Output 1 (O1) delivers the portion of power of the TE 00 mode. Output 2 (O2) delivers the portion of power of the TE 10 mode. (d) A detailed picture of the output sections. (Adapted from Ref. [8] used under a CC BY 4.0 license.)

Figure 4 .

 4 19 (a) shows an exemplary device picture, taken with a microscope camera. The relevant device parts are indicated by the dashed ellipse in yellow.

Figure 4 .

 4 19 (b) shows a more detailed picture of a 2D GC under test.

Figure 4 .

 4 Figure 4.19 (c) illustrates schematically the structures in the upper and the lower arms of the 2D GC. Only the upper arm is relevant for the experiments. There, we apply after down-tapering a TE 10 → TE 00 mode converter, which can extract a TE 10 mode propagating in the waveguide towards Output 1 (O1) and convert it to the fundamental TE 00 mode propagating into the waveguide towards Output 2 (O2). Therefore, for the polarization in question, O1 gives us information about the power coupled into the fundamental TE 00 mode, while O2 shows the share of TE 10 . At each output, identical 1D FGCs are used (a period 610 nm, perturbing elements with a width of 315 nm, an etch depth 70 nm, a design coupling angle 8 • at 1550 nm).Figure 4.19 (d) shows a detailed camera picture of the

Figure 4 .

 4 19 (d) shows a detailed camera picture of the output sections.
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 45 Abbr.Coupling angle
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 420 Figure 4.20: Exemplary measured coupling spectra of the modes TE 00,y (target-polarization), TE 10,y , TE 00,x , TE 10,x for different 2D grating couplers (2D GCs). The considered structures are (a) M1: 2D GC with a vertical coupling and without a shear angle; (b) M3: 2D GC with a 10 • coupling angle and a 2 • shear angle (Type I); (c) M4: 2D GC with a 10 • coupling angle and a 2 • shear angle (Type II). (Adapted from Ref. [8] under a CC BY 4.0 license.)
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 4 Figure 4.21: A coupling spectrum of the output 1D focusing grating coupler (1D FGC), measured at 10 • . (Adapted from Ref. [8] used under a CC BY 4.0 license.)
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 52 Figure 5.2: An a-Si:H 2D grating coupler (2D GC) for C-band at the TopMetal1 level. Two different back-reflectors are compared: bulk Si at a distance of 8.37 µm and Metal3 at a distance of 3.06 µm. The curves represent (a) the normalized outcoupled power, (b) the mode field overlap and (c) the total coupling efficiency of a 2D GC. (Adapted from Ref. [18] under a CC BY 4.0 license.)

Figure 5 . 3 :

 53 Figure 5.3: An a-Si:H 2D grating coupler (2D GC) for O-band at the TopMetal1 level. Two different back-reflectors are compared: bulk Si at a distance of 8.37 µm and Metal3 at a distance of 3.06 µm. The curves represent (a) the normalized outcoupled power, (b) the mode field overlap and (c) the coupling efficiency of a 2D GC. (Adapted from Ref. [18] under a CC BY 4.0 license.)
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 54 Figure 5.4: A segmented a-Si:H 2D grating coupler (2D GC) for C-band, comprising (a) 4 or (b) 6 segments. The i-th segment has a local a local period Λ i and a local diffracting elements' diameter w Λi .

Segment 6 :

 6 Λ 6 , w Λ6 -593 nm, 400 nm In the following, three designs are compared -the uniform C-band a-Si:H 2D GC from the previous section and two segmented designs, comprising either 4 or 6 segments. Apart from the modified gratings, all material and geometric details are as given in the previous Sect. 5.1, cf. Tab. 5.1. Figure 5.4 illustrates the geometry of the segmented gratings, in which a fixed number of sections are defined. In each of them, the diffracting elements' diameter w Λ and the periodicity Λ vary. As a general rule of thumb, a change of Δw Λ = ±20 nm or a change of the etch depth Δd = ±10 nm, results in an effective refractive index change ofΔn eff,GC = ∓0.02. Therefore, to keep the coupling angle constant and gradually increase the diffracting elements' diameter, e.g. with a Δw Λ = 20 nm increment, the local period must be adapted by ΔΛ = 4 nm. Table5.2 summarizes the geometric specifics of the segmented 2D GCs.We compare the structures regarding the following parameters:• Single-port simulations (Port 1 and 2 excited separately): the coupling efficiency of a given target-polarization, the cross-polarization and the polarizations' split ratio per single waveguide; the polarizations' angular relation Δψ (i.e. the non-orthogonality)and the polarization crosstalk between waveguides with Ports 1 and 2. The latter two parameters are evaluated in a 40 nm bandwidth around the maximal transmission wavelength.• Dual-port simulations (Port 1 and 2 excited simultaneously): the coupling efficiency of the even-and odd polarizations, defined as in Fig.4.16 (c) and (d) on p. 115; PDL, i.e.
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 55 Figure 5.5: A comparison between uniform and segmented a-Si:H 2D grating couplers (2D GCs) for C-band in a single-port simulation. The relevant parameters are the target-and cross-polarization per single waveguide port. Three designs are compared -a uniform 2D GC as a reference, a segmented 2D GC with 4 sections and a segmented 2D GC with 6 sections. The curves represent (a) the normalized out-coupled power, (b) the mode field overlap and (c) the coupling efficiency of a 2D GC.

Figure 5 .Figure 5 . 6 :

 556 Fig. 5.5 (c)). The consequences of the reduced cross-polarization can be further inspected in Fig. 5.6, which shows the polarization split ratio (per single waveguide) and the polarizations' angular relation and crosstalk between the signals from waveguide Ports 1 and 2.The zero-crossings of the crosstalk are indicated additionally, when they occur at points, which are not included in the simulation. The cross-polarization reduction is expressed in an increased polarization split ratio. The angular relation is corrected towards the orthogonal state Δψ = 90 • particularly for wavelengths larger than the central wavelength of 1550 nm. Accordingly, the polarization crosstalk becomes lower in this wavelength range.The difference between the segmented structures with 4 and 6 sections is minimal, which indicates that even more segments may be necessary. If we permit a minimal difference between the local diameters of 20 nm, the case with 6 segments represents the maximal achievable improvement using this technique. Next, we continue with a simultaneous

Figure 5 . 7 :

 57 Figure 5.7: A comparison between uniform and segmented a-Si:H 2D grating couplers (2D GCs) for C-band in a dual-port simulation. The relevant parameters are the even-and odd-polarization, resulting from in-or anti-phase superposition of the signals from both GC waveguides. Three designs are compared -a uniform 2D GC as a reference, a segmented 2D GC with 4 sections and a segmented 2D GC with 6 sections. The curves represent (a) the normalized out-coupled power, (b) the mode field overlap and (c) the total coupling efficiency and (d) the polarization-dependent loss (PDL) of a 2D GC.

Figure 5 . 8 :

 58 Figure 5.8: A comparison between uniform and segmented a-Si:H 2D grating couplers (2D GCs) for O-band in a single-port simulation. The relevant parameters are the target-and cross-polarization per single waveguide port. Two designs are compared -a uniform 2D GC as a reference and a segmented 2D GC with 4 sections. The curves represent (a) the normalized out-coupled power, (b) the mode field overlap and (c) the coupling efficiency of a 2D GC.

Figure 5 . 9 :

 59 Figure 5.9: A comparison between uniform and segmented a-Si:H 2D grating couplers (2D GCs) for O-band in a single-port simulation. The relevant parameters are the polarization split ratio per single waveguide port and the polarizations' angular relation and crosstalk between signals from both waveguides. Two designs are compared -a uniform 2D GC as a reference and a segmented 2D GC with 4 sections. The curves represent (a) the polarization split ratio, (b) the polarizations' angular relation, (c) the polarizations' crosstalk.

Figure 5 .

 5 Figure 5.8 shows the target-and cross-polarization of the uniform and the segmented design, in a similar way to C-band (single-port simulations). Accordingly, Fig.5.9 shows the polarization split ratio per single waveguide and the polarizations' angular relation and crosstalk for the signals from both GC waveguides. The even-and odd-polarizations and their PDL are presented in Fig.5.10 (dual-port simultaneous excitation).

  Figure 5.10: A comparison between uniform and segmented a-Si:H 2D grating couplers (2D GCs) for O-band in a dual-port simulation. The relevant parameters are the even-and odd-polarization, resulting from in-or anti-phase superposition of the signals from both GC waveguides. Two designs are compared -a uniform 2D GC as a reference and a segmented 2D GC with 4 sections. The curves represent (a) the normalized out-coupled power, (b) the mode field overlap and (c) the coupling efficiency and (d) the polarization-dependent loss (PDL) of a 2D GC.

Figure 5 .

 5 Figure 5.11: A schematic of an optimized 2D grating coupler (2D GC), comprising elongated perturbing elements with different orientations. The major axis of a perturbing element is denoted as w l , the minor axis is denoted as w s .

Figure 5 . 13 :

 513 Figure 5.13: Even vs. odd polarizations (x-component) of a reference sheared 2D grating coupler (2D GC) of Type II for C-Band. (a) The out-coupled power, (b) the mode field overlap, (c) the coupling efficiency and (d) the polarization-dependent loss (PDL).

Figure 5 . 13 shows

 513 (a) the out-coupled power, (b) the mode field overlap and (c) the coupling efficiency of the even-and odd-polarization (x-component) and (d) the PDL of the reference design. For comparison, Fig. 5.14 (a)-(d) shows the same parameters for the optimized design.Thanks to the cross-polarization suppression in the optimized design, the gap between the out-coupled power of the even-and odd-polarization is significantly decreased, as can be seen in Fig.5.13 (a) and Fig.5.14 (a). The mode field overlap spectra approach the same central wavelength (cf. Fig.5.13 (b) and Fig.5.14 (b)). Overall, this leads to a remarkable improvement of the coupling efficiency spectra of both polarizations, which are now centered at the same wavelength with only a minor spectrum difference (Fig.5.14 (c)).

Figure 5 . 14 :

 514 Figure 5.14: Even vs. odd polarizations (x-component) of an optimized sheared 2D grating coupler (2D GC) of Type II for C-Band. (a) The out-coupled power, (b) the mode field overlap, (c) the coupling efficiency and (d) the polarization-dependent loss (PDL).

Figure 5 . 15 :

 515 Figure 5.15: The performance of a sheared 2D grating coupler (2D GC) of Type I with the same perturbing elements' geometry and periodicity as the optimized 2D GC of Type II. (a) The coupling efficiency of the target-and cross-polarization (singleport simulation), (b) the coupling efficiency of the even-and odd-polarization (dual-port simulation).

Figure 5 .

 5 Figure 5.16: A performance variation of the optimized 2D grating coupler (2D GC) in Cband, when the perturbing elements' size varies: Δw s = Δw l = +10 nm → w s = 240 nm, w l = 330 nm or Δw s = Δw l = -10 nm → w s = 220 nm, w l = 310 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and oddpolarization, (c)-(d) the corresponding polarization-dependent loss (PDL).

Figure 5 .

 5 Figure 5.17: A performance variation of the optimized 2D grating coupler (2D GC) in C-band, when the perturbing elements' size varies: Δw s = const., Δw l = +10 nm → w s = 230 nm, w l = 330 nm or Δw s = const., Δw l = -10 nm → w s = 230 nm, w l = 310 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and odd-polarization, (c)-(d) the corresponding polarization-dependent loss (PDL).

Figure 5 .

 5 Figure 5.16 shows the trade-offs, which occur in the first two cases: Δw s = Δw l = ±10 nm.

  , 5.18, similar results can be observed for the both cases Δw s = ±10 nm or Δw l = ±10 nm. A larger axis leads to a PDL deterioration with maximal values of about 0.6-0.65 dB and is thus more critical than a deviation towards smaller dimensions, for which the PDL remains < 0.5 dB. The larger PDL is related to a slightly better maximal coupling efficiency of -4 dB, while in the opposite case, the efficiency decreases to about -4.3 dB. In summary, deviations of the perturbing elements' size within a 20 nm range are well tolerable within the 2D GC's 1 dB-bandwidth in C-band. No significant wavelength shift occurs. Basically, an increase of a given dimension leads to a PDL deterioration and a coupling efficiency improvement and vice versa. The worst-case PDL becomes 0.65 dB.Conically etched perturbing elements in real structures may have better tolerances, due to the lower perturbation strength.

Figure 5 .

 5 Figure 5.18: A performance variation of the optimized 2D grating coupler (2D GC) in C-band, when the perturbing elements' size varies: Δw s = +10 nm, Δw l = const. → w s = 240 nm, w l = 320 nm or Δw s = -10 nm, Δw l = const. → w s = 220 nm, w l = 320 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and odd-polarization, (c)-(d) the corresponding polarization-dependent loss (PDL).
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 519 Figure 5.19: An a-Si:H 2D grating coupler (2D GC) for C-band with a Metal3 back-reflectoran optimized design with individually oriented elongated perturbing elements. (a) The coupling efficiency of the target-and cross-polarizations. (b) The corresponding split ratio (per single waveguide). (c) The polarization' angular difference Δψ. (d) The corresponding polarization crosstalk (between signals from both GC arms).

Figure 5 .

 5 Figure 5.20: A schematic of an optimized 2D grating coupler (2D GC) design, comprising stretched perturbing elements, combined with circular perturbing elements.

Figure 5 .

 5 Figure 5.21: A comparison of optimized a-Si:H 2D grating couplers (2D GCs) for C-band with a Metal3 back-reflector -an optimized design with stretched perturbing elements (PE) vs. an optimized design combining stretched and circular perturbing elements (PE). (a) The coupling efficiency of the target-and cross-polarization. (b) The corresponding split ratio (per single waveguide). (c) The polarization' angular difference Δψ. (d) The corresponding polarization crosstalk (between signals from both GC arms).

Figure 5 .

 5 Figure 5.22 compares the target-and cross-polarization coupling efficiency and the corresponding split ratio of both designs (single-port simulation). The reference O-band structure has a better split ratio than its C-band counterpart. Further improvement can be achieved by the proposed new design. For wavelengths around the maximal transmission, the split ratio's enhancement is more than 10 dB. The split ratio is > 23 dB in the range 1275 nm -1330 nm. The optimized design is also responsible for the improvement of the uniformity of Δψ. In a 40 nm bandwidth around the maximum, the deviation from the orthogonal state is maximally 3.2 • , corresponding to a maximal polarization crosstalk of -25 dB.

Figure 5 .

 5 Figure 5.22: A comparison between a reference and an optimized design of a O-band 2D grating coupler (2D GC). (a) The coupling efficiency of a target-and crosspolarization per single waveguide, (b) the corresponding polarization split ratio, (c) the polarizations' angular relation Δψ between signals from both GC arms, (d) the corresponding polarization crosstalk. The optimized design shows a significant improvement in terms of polarization splitting.

Figure 5 . 23 :

 523 Figure 5.23: Even vs. odd polarizations (x-component) of a reference sheared 2D grating coupler (2D GC) of Type II for O-Band. (a) The out-coupled power, (b) the mode field overlap, (c) the coupling efficiency and (d) the polarization-dependent loss (PDL).

Figure 5 . 24 :

 524 Figure 5.24: Even vs. odd polarizations (x-component) of an optimized sheared 2D grating coupler (2D GC) of Type II for O-Band. (a) The out-coupled power, (b) the mode field overlap, (c) the coupling efficiency and (d) the polarization-dependent loss (PDL).

Figure 5 .

 5 Figure 5.25: A performance variation of the optimized 2D grating coupler (2D GC) in Oband, when the perturbing elements' size varies: Δw s = Δw l = +10 nm → w s = 190 nm, w l = 270 nm or Δw s = Δw l = -10 nm → w s = 170 nm, w l = 250 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and oddpolarization, (c)-(d) the corresponding polarization-dependent loss (PDL).

Figure 5 .

 5 Figure 5.26: A performance variation of the optimized 2D grating coupler (2D GC) in O-band, when the perturbing elements' size varies: Δw s = const., Δw l = +10 nm → w s = 180 nm, w l = 270 nm or Δw s = const., Δw l = -10 nm → w s = 180 nm, w l = 250 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and odd-polarization, (c)-(d) the corresponding polarization-dependent loss (PDL).

Figure 5 .

 5 Figure 5.27: A performance variation of the optimized 2D grating coupler (2D GC) in O-band, when the perturbing elements' size varies: Δw s = +10 nm, Δw l = const. → w s = 190 nm, w l = 260 nm or Δw s = -10 nm, Δw l = const. → w s = 170 nm, w l = 260 nm. The compared parameters are (a)-(b) the coupling efficiency of the even-and odd-polarization, (c)-(d) the corresponding polarization-dependent loss (PDL).

  First, each arc array I or II can be defined by the parametrized positions (x n,I , y n,I ) and (x n,II , y n,II ), with n = 1, 2 • • • N, N the number of arcs within an array. The positions of the grating perturbing elements result from the intersections of these two arc arrays.

Figure 5 .

 5 Figure 5.29: A description of the modeling procedure of 2D focusing grating couplers (2D FGCs). The grating perturbing elements' positions are found by the intersection of two arc arrays I, II. The arc array I consists of the parametrized arcs (x 1,I , y 1,I ), (x 2,I , y 2,I ), • • • (x n,I , y n,I ), • • • , (x N,I , y N,I ). The arc array II can be defined analogously.

x 0 ,

 0 I = y 0,II = 20 µm, γ = 24 • x offset,I = x 0,I + Λ • N 2 y offset,I = 0 x offset,II = 0 y offset,II = y 0,II + Λ • N 2 (5.4) After the discrete mathematical definition of the arc arrays, their intersections have to be found. This is enabled by the MATLAB function intersections.m, which is an open-source code, available from Ref. [42].

Figure 5 . 30 :

 530 Figure 5.30: 2D focusing grating couplers (2D FGCs) for C-band: a comparison between a reference design with circular perturbing elements and a proposed optimized design with elongated perturbing elements. The plots show a target-vs. crosspolarization (single-port simulation). (a) The normalized out-coupled power, (b) the mode field overlap, (c) the coupling efficiency, (d) the corresponding polarizations' split ratio.

Figure 5 . 31 :

 531 Figure 5.31: 2D focusing grating couplers (2D FGCs) for O-band: a comparison between a reference design with circular perturbing elements and a proposed optimized design with elongated perturbing elements. The plots show a target-vs. crosspolarization (single-port simulation). (a) The normalized out-coupled power, (b) the mode field overlap, (c) the coupling efficiency, (d) the corresponding polarizations' split ratio.

Figures 5 .

 5 Figures 5.30 and 5.31 compare the reference and the optimized design for C-band and O-band with respect to the parameters: (a) normalized out-coupled power, (b) mode field overlap, (c) coupling efficiency and (d) polarizations' split ratio in a single-port simulation.In both cases, a clear advantage of the optimized design can be observed -both the out-coupled power and the mode field overlap of the cross-polarization are significantly suppressed compared to the reference design. In C-band, this results in a split ratio better than 23 dB within the bandwidth 1535 nm -1580 nm. In O-band, the corresponding wavelength range is from 1305 nm -1345 nm. Further optimization would be advantageous for O-band, however, the current dimensions are at the limit of the design rules for the target 0.25 µm BiCMOS technology. The adoption of a modified grating, comprising both stretched and circular elements (cf. 5.2.2.1), may be a better alternative for O-band 2D FGCs.

Figure 5 .

 5 Figure 5.32: A comparison of 2D focusing grating couplers (2D FGCs) for C-band with different waveguide heights h Si : h Si = 220 nm vs. h Si = 300 nm. Both designs comprise elongated perturbing elements with the same dimensions. The plots show a target-vs. cross-polarization (single-port simulation). (a) The normalized out-coupled power, (b) the mode field overlap, (c) the coupling efficiency, (d) the corresponding polarizations' split ratio.

  designs is not related to the perturbing elements' optimization, since reference 2D FGCs with circular diffracting elements suffer from the same problem. The coupling efficiency limitation is rather a combination of the impact of several factors, including the waveguide geometry. The concerns on the 2D FGCs' optimization in terms of efficiency remain open for a potential investigation in future works. The present work suggested the transition to other waveguide thicknesses, making the 2D FGCs potentially more suitable for the integration in the BEOL of this platform, in which the used a-Si:H waveguides offer more design flexibility.

Figure 5 .

 5 33 shows a scanning electron microscope (SEM) picture after the reactive ion etch step. The determination of the exact dimensions of the gratings' elements out of the SEM photograph is not achievable with a large accuracy, because of the limited resolution. Deviations of at least ±10 nm are possible. A roughly estimated range of the dimensions is: 210-230 nm for the minor axis and 300-320 nm for the major axis. Thus, it is possible that the fabricated features are slightly smaller than desired. This can be expressed in a lower coupling efficiency compared to simulations (cf. the analysis of tolerances in 5.2.2.1).
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 533 Figure 5.33: An optimized 2D grating coupler (2D GC) for C-band comprising a zig-zag-tilted ovals array: (a) a schematic representation, (b) an exemplary array after the reactive ion etch step. (The figure is published in Ref. [38]).

Figure 5 .

 5 Figure 5.34 (a) shows exemplary measured coupling spectra of the 9 different polarizations with a zoom in the considered bandwidth: the wafer-averaged central wavelength is 1555 nm with a mean coupling efficiency of -4.7 dB (the standard deviation σ CE is 0.2 dB).

Figure 5 .

 5 34 (b), (c), (d) shows a wafer map, a histogram and a cumulative distribution function (CDF) of the maximal PDL. Because no index-matching gel can be used on this setup, there is an uncertainty in the PDL determination, caused by Fabry-Perot ripples. To reduce their impact, the measured curves are smoothed by a local regression fitting algorithm. The wafer maximal root-mean-square error, representing the measurement uncertainty, is ±0.1 dB. The wafer-averaged maximal PDL in the investigated wavelength range is 0.5 dB with a standard deviation σ PDL of 0.18 dB. Furthermore, 67 % of the wafer chips have a maximal PDL < 0.55 dB (Fig.5.34 (d)). Although further optimization of the shape biasing is desirable to obtain an even better wafer uniformity, the present results confirm the suitability of the proposed C-band design for a fabrication in a 0.25 µm photonic BiCMOS technology. Furthermore, the present work shows for the first time statistical results for the PDL of optimized 2D GCs, fabricated with a 248 nm DUV lithography.

Figure 5 . 34 :

 534 Figure 5.34: Experimental results for an optimized C-band 2D grating coupler (2D GC) comprising a zig-zag-tilted ovals array. (a) Exemplary measured coupling spectra of different polarizations on a single chip. A zoom of the evaluation bandwidth from 1545 nm to 1565 nm is shown. (b) A wafer map, (c) a histogram and (d) a cumulative distribution function (CDF) of the maximal polarization-dependent loss (PDL) within the considered bandwidth. (A similar figure is published inRef.[38]).

  Reference 1305-1325 nm -4.5 dB ± 0.4 dB @1315 nm 2 dB ± 1.2 dB Proposed 1300-1320 nm -4.8 dB ± 0.5 dB @ 1310 nm 1.1 dB ± 0.5 dBThe back-to-back test structures are fabricated analogously to their C-band equivalents and comprise two 2D GCs, connected by linear tapers and waveguides. Also in this case, the devices are fabricated in our 0.25 µm photonic BiCMOS technology on 200 mm wafers with a partially processed BEOL stack. It should be noted that the 2D GCs' etch depth is this time 130 nm, instead of the target 140 nm. For that reason, a higher coupling loss is expected.
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 535 Figure 5.35: An experimental comparison of (a) a reference O-band 2D grating coupler (2D GC) with circular perturbing elements and (b) an optimized O-band 2D GC with zig-zag-tilted ovals.

Figure 5 .

 5 Figure 5.35 shows exemplary coupling spectra of the reference design with circular diffracting elements and the investigated design with elongated diffracting elements. The curves are measured on the same chip. In addition, Tab. 5.4 compares both structures in terms of mean coupling efficiency and PDL, including their standard deviations. The PDL is again evaluated in a 20 nm bandwidth around the central wavelength of each structure. For the reference design, the bandwidth is 1305-1325 nm. For the zig-zag tilted ovals design, the bandwidth is 1300-1320 nm. While the device with elongated perturbing elements shows a slight deterioration in terms of efficiency, the average PDL and its variation are fairly improved. In spite of the achieved progress, the investigated zig-zag-tilted ovals design does not reach the performance benchmarks of its C-band equivalent.The inspection of SEM photographs shows that the desired aspect ratio is not achieved for the optimized design, i.e. the ovals are still too circular (Fig.5.36 (a)). Alternative test structures have also the problem that their ovals are either too circular or with too large dimensions. For that reason, further shape biases are investigated next. Our observations show that the smaller the desired minor axis w s , the stretcher the major axis w l must be laid out. Thus, the first-generation test ovals were laid out with a too low bias. To optimize the layout design procedure, new test structures for O-band 2D GCs are presently under development, which examine variants in a more suitable range. An SEM of an improved design is shown in Fig.5.36 (b).

Figure 5 .

 5 Figure 5.36: A comparison of SEM photographs of O-band zig-zag-tilted ovals 2D grating couplers (2D GCs). (a) A presently tested device with non-optimal shape biasing. (b) A device with an improved shape biasing for stretcher perturbing elements.
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  IHP's SiGe:C BiCMOS is a prominent but not the only example of a high-performance 200 mm technology. Most important characteristics of these technologies is the f Monolithic Photonic BiCMOS 0.25 µm CMOS and a 5-metal BEOL. The BiCMOS technologies based on a 0.13 µm CMOS have a 7-metal BEOL. Both technology families rely on a 248 nm DUV lithography. For small and intermediate fabrication volumes 200 mm technologies have proven advantageous in terms of cost. However, the 248 nm DUV lithography is not an optimum for nanowaveguide Si photonic structures. Due to the improved resolution at a 193 nm wavelength,

	finer features can be fabricated. So far, best performing 2D GCs were fabricated using
	193 nm DUV lithography

T scaling in vertical transistor structures, thus not necessarily advancing lithography beyond 248 nm DUV capabilities, corresponding to a 0.13 µm CMOS. The photonic BiCMOS platform of IHP has been developed from previous electronic BiCMOS technology families featuring a 3.2

Table 4 .

 4 Si rib waveguide with a 220 nm height and slab etch depth equal to the grating etch depth d. The buried oxide thickness is 2 µm.

	Type and shear angle α	Period Λ	perturbing elements' diameter w Λ and etch depth d	x-pol. φ out , θ out	y-pol. φ out , θ out
	0 •	615 nm	420 nm and 120 nm	90 • , 8 •	0 • , 8 •
	Type I, 2 •	620 nm	420 nm and 120 nm	45 • , 8 •	45 • , 8 •
	Type II, 2 •	612 nm	420 nm and 120 nm	50 • , 8 •	40 • , 8 •
	Type I 3 •	633 nm	425 nm and 120 nm	45 • , 12 • 45 • , 12 •
	Type II 3 • 49 Type I, 4 • 624 nm 425 nm and 120 nm 643 nm 430 nm and 120 nm 45 Type II, 4 • 637 nm 430 nm and 120 nm 50	

1: Numerically estimated coupling angles φ out , θ out at a 1550 nm wavelength for designs with varying shear angle α and grating period Λ. Both 2D grating coupler's (2D GC's) polarizations are excited simultaneously. The designs are intended for coupling to a • , 12 • 41 • , 12

• • , 15 • 45 • , 15

• • , 16 • 40 • , 16

Table 4 .

 4 2: Numerically estimated split ratios SR in a 15 nm wavelength range near the ypolarization's transmission maximum for different sheared 2D grating couplers (2D GCs). The coupling angle is 8 • at the symmetry plane.

	Shear angle α Etch depth d [nm] Wavelength [nm] 2D GC Type	Split ratio SR [dB]
	2 •	120	1530-1545	I	9.5
				II	11.5
	2 •	90	1585-1600	I	14.2
				II	16.5
	3 •	120	1570-1585	I	7.4
				II	9.8

Table 4 .

 4 3: Experimentally estimated mean split ratios SR in a 15 nm wavelength range near the maximal transmission for different sheared 2D grating couplers (2D GCs). The values are averaged over 10 chips with a standard deviation σ. The coupling angle is 8 • . Shear angle α Etch depth d [nm] Wavelength [nm] 2D GC Type SR ± σ [dB]

	2 •	120	1527-1542	I	16.4 ± 1.4
				II	17.7 ± 1.6
	2 •	90	1579-1594	I	19.7 ± 1.1
				II	19.1 ± 1.7
	3 •	120	1542-1557	I	15.3 ± 1.0
				II	17.7 ± 0.9

Table 4 .

 4 4: A summary of the notations, used to assign a desired target-polarization with a TE 00 modal component, resulting from diffraction and in-plane-scatteringrelated polarizations/modes.

	Full assignment	Short assignment Desired?	Physical process
	target-polarization y in mode TE 00	TE 00,y	yes	diffraction
	polarization y in mode TE 10	TE 10,y	no	in-plane scattering
	cross-polarization x in mode TE 00	TE 00,x	no	in-plane scattering
	cross-polarization x in mode TE 10	TE 10,x	no	in-plane scattering

Table 4 .

 4 6: Mean extinction ratios (ERs) ±σ between the target TE 00,y and the other considered polarizations/modes averaged over 9 chips. Different 2D grating coupler (2D GC) designs are compared. The analyzed structures are M1: 2D GC with a vertical coupling and without a shear angle; M3: 2D GC with a 10 • coupling angle and a 2 • shear angle (Type I); M4: 2D GC with a 10 • coupling angle and a 2 • shear angle (Type II).

	TE 00,y vs. M1: mean ER ±σ [dB] M3: mean ER ±σ [dB] M4: mean ER ±σ [dB]
	TE 10,y	10.6 ±1.7	12.7 ±2.1	11.4 ±2.2
	TE 00,x	27 ±2.1	23.8 ±2.7	25.3 ±3.7
	TE 10,x	16.8 ±0.9	16.8 ±1.1	17.0 ±1.4

Table 5 .

 5 1: Sheared a-Si:H 2D grating couplers (2D GCs) of Type II, designed for C-and O-band. The designs are intended for an a-Si:H rib waveguide with a 220 nm height and a slab etch depth equal to the grating etch depth.

	Band, refractive index	shear angle & grating period	perturbing elements' diameter & etch depth	coupling angles φ out = 45 • , θ out
	C-band, n aSi = 3.57	2 • & 593 nm	400 nm & 100 nm	9 •
	O-band, n aSi = 3.66	2 • & 458 nm	280 nm & 100 nm	9 •

Table 5 .

 5 2: Geometric parameters of sheared, segmented C-band a-Si:H 2D grating couplers (2D GCs) of Type II with a different number of segments. The designs are intended for the coupling to an a-Si:H rib waveguide with a 220 nm height and a slab etch depth equal to the grating etch depth. The i-th segment has a local period Λ i and a local diffracting elements' diameter w Λi . For both given structures, the shear angle is 2 • , the etch depth is 100 nm and the coupling angles are φ out = 45 • , θ out = 9 • .

	Number of segments	4	6
	Segment 1: Λ 1 , w Λ1	573 nm, 300 nm 573 nm, 300 nm
	Segment 2: Λ 2 , w Λ2	581 nm, 340 nm 577 nm, 320 nm
	Segment 3: Λ 3 , w Λ3	589 nm, 380 nm 581 nm, 340 nm
	Segment 4: Λ 4 , w Λ4	593 nm, 400 nm 585 nm, 360 nm
	Segment 5: Λ 5 , w Λ5	-	589 nm, 380 nm

Table 5 .

 5 3: Geometric parameters of a 2 • sheared, segmented O-band a-Si:H 2D GCs of Type II with 4 sections. The designs are intended for the coupling to an a-Si:H rib waveguide with a 220 nm height and a slab etch depth equal to the grating etch depth. The etch depth is larger than that of the reference uniform 2D GC: 120 nm vs. 100 nm. The i-th segment has a local period Λ i and a local diffracting elements' diameter w Λi . The coupling angles are φ out = 45 • , θ out = 9 • .

	Number of segments	4
	Segment 1: Λ 1 , w Λ1	453 nm, 180 nm
	Segment 2: Λ 2 , w Λ2	461 nm, 220 nm
	Segment 3: Λ 3 , w Λ3	469 nm, 260 nm
	Segment 4: Λ 4 , w Λ4	473 nm, 280 nm

Table 5 .

 5 4: An experimental comparison of a reference O-band 2D grating coupler (2D GC) with circular perturbing elements and a proposed O-band 2D GC with zig-zagtilted ovals. The considered parameters are the average coupling efficiency CE with a standard deviation σ CE and the average maximal PDL in 20 nm bandwidth with a standard deviation σ PDL .

	Design	Bandwidth	CE ±σ CE	PDL ±σ PDL

structure is designed, which comprises two 1D FGCs as inputs, combined at the two arms of a 2D GC. The 1D FGCs have a period of 610 nm, perturbing elements' width of 315 nm and an etch depth of 70 nm. An exemplary configuration is shown in Fig. 4.13 (a), the shown structures do not correspond to the measured ones. The test structure is fabricated in a standard full photonic BiCMOS flow. an EDFA (IPG EAD-1K-C) to +20 dBm, before split into the respective orthogonal polarizations (denoted as X and Y) using a PBS. The 1D GCs, used as chip interfaces, also act as polarization filters, removing the residual unwanted polarizations after the PBS. Remaining power imbalances of the modulator and PBS are compensated using variable optical attenuators (VOAs) and a calibrated photodiode at the fiber facet at the chip input. Using the VOAs, one of the polarizations can be blocked of to have either a SP, or DP signal at the 2D GC. The coupling is closely monitored using a power meter and a 20 dB splitter. The SP/DP signal is then filtered using a 1 nm filter to remove amplified spontaneous emission (ASE) noise and subsequently noise loaded using an EDFA (Fiber Labs AMP-FL8011-CB).

The input power at the coherent receiver (Finisar CPRV1222A) for the SP and DP signal are -3 dBm and -0. 

Polarizations' Non-Orthogonality

Some of the results and discussions shown in the following paragraph have been published in Ref. [22].The penalties presented in the previous paragraph are related to the splitting performance limitations of 2D GCs. It can be expected that these negative effects can be compensated by appropriate DSP routines. Since a 2D GC converts partially a x-polarization into a y-polarization and vice versa, the final effect can be compared to the polarization rotation, which takes place in an optical fiber. In coherent receivers, the compensation of this rotation is a standard procedure. However, the recovery of the original x-and y-signals assumes that they are combined/rotated orthogonally. In systems, where the orthogonality is not preserved (e.g. a fiber transmission with PDL), power and OSNR imbalance between the two polarizations can occur [24]. This motivated the investigation of the splitting/combining performance of 2D GCs in terms of orthogonality. A numerical analysis can be carried out, following the procedure in 2. 

Improvement of the Out-Coupled Power Efficiency

O-Band. A light coupling to an a-Si:H rib waveguide with a 220 nm height and a slab etch depth equal to the grating etch depth is considered.

To find an appropriate SiO 2 thickness separation between the grating and an underlying reflecting material, a parameter sweep is carried out. The refractive index of SiO 2 is about In the absence of Metal3, around 8.37 µm thick SiO 2 layer separates the grating from the underlying bulk Si substrate. The thickness results as a sum of the layer thicknesses defined in the BiCMOS BEOL and its exact value may vary, depending on the exact position of the a-Si:H layer. 2) Metal3 below the grating with a 3.06 µm thick SiO 2 separation. The conductivity of Metal3 is calculated from the measured mean value of its sheet resistance, which is 55 mΩ. Figure 5.2 shows the out-coupled power, the mode field overlap and the coupling efficiency of the C-band 2D GC. Figure 5.3 shows the corresponding parameters of the O-band 2D GC. For symmetry reasons, only one of both 2D GC waveguides is excited (single-port simulation), with a polarization assigned as the target-polarization (here, the y-polarization). The corresponding cross-polarization (here, the x-polarization) is given as well. For both C-and O-band, the mode field overlap changes only little, depending on the back-reflector below the grating. The small differences between the bulk Si and the Metal3 case are most possibly due to the different distances between the reflector and the grating.

As expected, the out-coupled power is increased by the metal mirror, however, not only for the target-polarization, but also for the cross-polarization. Overall, the split ratio at the A final remark will be made with regard to the experimentally reported PDL values. There are only few works, in which the repeatability of the determined PDL has been investigated statistically. Reference [31] provides a wafer map of the distribution of the PDL within the 1 dB bandwidth for a variety of 2D GCs. Unfortunately, the test structures were fabricated by an electron beam lithography, which is not given in large-scale manufacturing platforms.

In Refs. [20,32,33,40] very low PDL values are reported, but again without any discussion of the measurement uncertainty and the statistical range. In fact, Ref. [33] shows results from 3 chips, which is, however, not sufficient for a statistical evidence. It is a well-known problem that parameters taking very low values are challenging for a characterization with a good confidence. In this context, objective statistical studies, considering measurement uncertainties, are still not widely available. In this work, statistical results will be provided to evaluate the applicability of the proposed designs in the target 0.25 µm BiCMOS platform. In the following, the exact optimization procedure for the proposed grating is briefly outlined. As already indicated -the achievement of a sufficient suppression of in-plane scattered fields requires an exact sizing of the perturbing elements. The optimization procedure involves the simultaneous adaption of several parameters:

• The perturbing elements' minor and major axis, denoted as w s and w l . Typically, when the minor axis is too short, the overall out-coupled power decreases. This leads to a lower cross-polarization and thus a low PDL. However, in the same time the coupling of polarization splitting: the improved design with elongated elements has a split ratio 

Focusing Two-Dimensional Grating Couplers

After an approach for an improved polarization handling has been introduced and appropriate designs for linear 2D GCs in C-and O-band have been found, the last aspect that remains open for an investigation is the potential size reduction of the proposed 2D

GCs. Here, 2D FGCs are analyzed as a low-footprint alternative to linear 2D GCs. Particularly, we look for polarization-optimized designs, using the same approach with elongated perturbing elements with an individual orientation (zig-zag tilted ovals). The simulation procedure is as given in 2.1.3.1, Chap. 2. Because the present analyses have been carried out at the final stage of this work, the following paragraphs will be used as an outlook and will indicate some points that need to be addressed in future works.

coupling efficiency and polarization handling, compared to their C-band equivalents. The consideration of a metallic back-reflector promises for the achievement of a performance, comparable to the best reported devices so far, with the decisive advantage of a reduced complexity. This observation is particularly interesting with regard to the potential deployment of O-band coherent DCIs, willing to combine the best of the IM-DD and the coherent detection worlds. Because the proposed 2D GCs can be realized with a relatively low cost and effort, the optimization technique may contribute to the cost reduction of coherent transceivers, which is necessary for them to penetrate in the data center domain. The proposed design technique is presently undergoing a patent registration procedure, which could make it commercially available.

As a final remark, the present work demonstrates that the good understanding of the physical background of any optical component is crucial for its appropriate optimization.

Although the behavior of high-index contrast photonic devices is often not trivial to comprehend, it is worth investing efforts in finding an appropriate model of their physical properties, instead of relying on blind searching methods. The devoted time to understand single devices guarantees in return a more relaxed and reliable design of full systems.