

Un algorithme branch-and-bound pour résoudre exactement des problèmes d'optimisation parcimonieuse structurée

Gwenaël Samain, Sébastien Bourguignon, Jordan Ninin

▶ To cite this version:

Gwenaël Samain, Sébastien Bourguignon, Jordan Ninin. Un algorithme branch-and-bound pour résoudre exactement des problèmes d'optimisation parcimonieuse structurée. 24ème édition du congrès ROADEF, Recherche Opérationnelle et de l'Aide à la Décision en France, Feb 2023, Rennes, France. hal-04272523

HAL Id: hal-04272523 https://hal.science/hal-04272523v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Un algorithme branch-and-bound pour résoudre exactement des problèmes d'optimisation parcimonieuse structurée

Gwenaël Samain¹², Sébastien Bourguignon¹, Jordan Ninin²

- ¹ École Centrale de Nantes, LS2N, équipe SIMS, F-44000 Nantes, France {gwenael.samain,sebastien.bourguignon}@ls2n.fr
- ² ENSTA Bretagne, Lab-STICC, équipe MATRIX, F-29000 Brest, France jordan.ninin@ensta-bretagne.fr

1 Introduction

Les problèmes d'ajustement de modèles de faible cardinalité (dits parcimonieux) ont trouvé de nombreuses applications, notamment en statistique [2], en optimisation de portefeuille [3] ou encore en traitement du signal [2]. Nous nous intéressons en particulier au problème de parcimonie structurée (voir [1] pour des applications pratiques) :

$$\min_{x \in \mathbb{R}^Q} \frac{1}{2} \|y - Ax\|_2^2 + \mu \|P|x| \|_0 \quad \text{s.t.} \quad \|x\|_{\infty} \le M$$
(1)

où $||u||_0 := \operatorname{Card}\{i|u_i \neq 0\}$ et $P \in \{0;1\}^{R \times Q}$ est la matrice sélection nant des groupes de variables sur lesquels porte la mesure de cardinalité. Ainsi $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ dénote un problème à 2 groupes. $||P|x|||_0 = 1$ signifie alors que soit $|x_1| + |x_2| = 0$, soit $|x_1| + |x_3| = 0$.

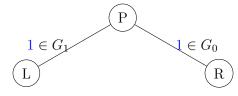
À notre connaissance, il existe des approches par relaxation convexe pour résoudre approximativement ce problème [1], mais aucune méthode de résolution exacte n'a encore été proposée. Nous proposons un algorithme de branch-and-bound dans ce but, qui généralise les travaux développés dans [2] dans le cas de modèles parcimonieux simples $(P = I_Q)$.

2 Une méthode de branch-and-bound dédiée

2.1 Structuration de l'espace de recherche

La principale utilité de l'algorithme de branch-and-bound consiste à trouver le bon support de la solution, c'est-à-dire les indices des variables x_i non nulles à l'optimum de (1). Cette information se retrouve encodée dans les groupes actifs et inactifs: en connaissant le support des groupes de la solution on en déduit le support des variables x_i . Cette recherche peut se reformuler en introduisant trois ensembles d'indices définis comme suit:

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \bar{G} = \{1, 2\}, G_1 = \emptyset, G_0 = \emptyset$$
$$\bar{S} = \{1, 2, 3\}, S_1 = \emptyset, S_0 = \emptyset$$



$$\bar{G} = \{2\}, G_1 = \{1\}, G_0 = \emptyset$$
 $\bar{G} = \{2\}, G_1 = \emptyset, G_0 = \{1\}$
 $\bar{S} = \{1, 3\}, S_1 = \{2\}, S_0 = \emptyset$ $\bar{S} = \{3\}, S_1 = \emptyset, S_0 = \{1, 2\}$

FIG. 1 – Exemple de division d'un noeud

 G_0 contient l'ensemble des indices des groupes forcés à être hors du support de la solution, G_1 les indices des groupes forcés à être dans le support de la solution, \bar{G} les indices des groupes libres. Diviser l'espace de recherche à un nœud donné revient à prendre un élément de \bar{G} et à le mettre soit dans G_0 , soit dans G_1 .

À ces supports de groupe, on ajoute des supports de variables (S_0, S_1, \bar{S}) , tels que toutes les variables appartenant à un groupe de G_0 sont dans S_0 , toutes les variables qui n'appartiennent qu'à des groupes de G_1 sont dans S_1 , les autres sont dans \bar{G} (voir la Figure 1 pour un exemple). Ainsi, à un nœud donné, le sous-problème s'écrit sous la forme (2):

$$\min_{x \in \mathbb{D}Q} \frac{1}{2} \|y - A_{S_1} x_{S_1} - A_{\bar{S}} x_{\bar{S}} \|_2^2 + \mu \operatorname{Card}(G_1) + \mu \|P_{\bar{G}}[x]\|_0 \quad \text{s.t.} \quad x_{S_0} = 0, \|x\|_{\infty} \le M. \quad (2)$$

2.2 Les bornes inférieures et la stratégie de branchement

Sachant la contrainte $||x||_{\infty} \leq M$, on a $\mu ||P_{\bar{G}}|x||_{0} = \mu \sum_{i \in \bar{G}} \mathbf{1}_{\underline{P_{i}}|x| \neq 0} \geq \mu \sum_{i \in \bar{G}} \frac{\underline{P_{i}}|x|}{||P_{i}||_{0}M}$, avec $\underline{P_{i}}$ la i-ème ligne de P. On peut donc formuler le problème de borne inférieure comme la relaxation (3).

$$\min_{x} \frac{1}{2} \|y - A_{S_{1}} x_{S_{1}} - A_{\bar{S}} x_{\bar{S}} \|_{2}^{2} + \mu |G_{1}| + \frac{\mu}{M} \sum_{i \in \bar{G}} \sum_{j \in \bar{S}} \frac{P_{ij} |x_{j}|}{(\|\underline{P}_{i}\|_{0})} \quad \text{s.t.} \quad \|x\|_{\infty} \le M$$
(3)

En posant $\alpha_j = \sum_{i \in \bar{G}} \frac{P_{ij}}{\|P_i\|_0}$ et $\forall j \in \bar{S}, z_j = \alpha_j x_j$, il vient $\sum_{i \in \bar{G}} \sum_{j \in \bar{S}} \frac{P_{ij}|x_j|}{\|P_i\|_0} = \sum_{j \in \bar{S}} |x_j|\alpha_j = \sum_{j \in \bar{S}} |z_j| = \|z_{\bar{S}}\|_1$. qu'on utilise pour écrire le problème (3) en z comme dans (4):

$$\min_{z \in \mathbb{P}Q} \frac{1}{2} \|y - \mathcal{A}z\|_2^2 + \frac{\mu}{M} \|z\|_1 \quad \text{s.t.} \quad z_{S_0} = 0, \forall j \in \bar{S}, z_j \in [-\alpha_j M, \alpha_j M], \|z_{S_1 \cup S_0}\|_{\infty} \le M \quad (4)$$

où
$$\forall j \in \bar{S}, A_j = A_j/\alpha_j; \forall j \in S_0 \cup S_1, A_j = A_j \text{ et } z_j = x_j.$$

Le changement de variable de x à z permet l'utilisation de la méthode homotopique qui est très efficace quand le degrès de parcimonie recherché est faible [2].

Pour savoir sur quel groupe brancher quand on divise un nœud, on étend la stratégie du maximum des amplitudes utilisées dans [2] au cas structuré en prenant le terme de régularisation de la borne inférieure : $i = \arg\max_{i \in \bar{G}} \sum_{j \in \bar{S}} \frac{P_{ij}|x_j|}{\|\underline{P_t}\|_0}$.

3 Évaluation expérimentale

Dans cette étude, nous évaluons l'impact de l'utilisation d'une méthode exacte ℓ_0 structurée par rapport à une méthode exacte ℓ_0 non structurée. Cette évaluation porte sur la qualité des solutions obtenues ainsi que sur le temps de calcul. Pour cela, nous constituons des jeux de données synthétiques représentatifs de problèmes de sélection de variables en traitement du signal. En faisant varier le niveau de parcimonie K, le nombre d'inconnues Q, le niveau de bruit dans les données et la structure plus ou moins complexe de la matrice A, nous évaluons la robustesse de la méthode proposée et son applicabilité à des données expérimentales.

Références

- [1] F. Bach, R. Jenatton, J. Mairal et G. Obozinski. Structured sparsity through convex optimization. *Statistical Science*, 2012.
- [2] R. Ben Mhenni. Méthodes de programmation en nombres mixtes pour l'optimisation parcimonieuse en traitement du signal. Thèse de doctorat, École Centrale de Nantes, mai 2020.
- [3] X. Cui, X. Zheng, S. S. Zhu et X. Sun. Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. *Journal of Global Optimization*, 2013.