Matteo Mancinelli 
email: matteo.mancinelli@univ-poitiers.fr
  
Eduardo Martini 
  
Vincent Jaunet 
  
Peter Jordan 
  
  
  
  
Including acoustic modes in the

come   L'archive ouverte pluridisciplinaire

I. INTRODUCTION

The Vortex-Sheet (V-S) model is a simplified inviscid idealisation of a jet where an infinitely thin vortex sheet separates the interior flow from the outer quiescent fluid. The V-S model was first derived by Landau (1944) and has been largely used since then to: model the jet dynamics and study its stability properties [START_REF] Lessen | On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid[END_REF][START_REF] Michalke | A note on the spatial jet-lnstability of the compressible cylindrical vortex sheet[END_REF]; describe guided jet modes [START_REF] Tam | On the three families of instability waves of highspeed jets[END_REF][START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF] and the weak, forced resonance they can underpin in free, subsonic jets for jet Mach numbers 0.82 ≤ M j < 1 [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF]; model resonance generated in subsonic and supersonic impinging jets [START_REF] Bogey | Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets[END_REF][START_REF] Tam | Theoretical model of discrete tone generation by impinging jets[END_REF], in a jet-flap interaction configuration [START_REF] Jordan | Jet-flap interaction tones[END_REF] as well as in free, supersonic screeching jets (Mancinelli et al., 2019a[START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF][START_REF] Mancinelli | Reflection coefficients and screech-tone prediction in supersonic jets[END_REF]. The spatial stability properties of a supersonic vortex sheet inside a circular duct in a co-flow configuration were studied as a function of flow and geometric parameters by [START_REF] Chang | Instability of a supersonic vortex sheet inside a circular duct[END_REF]. A double vortex-sheet model was used by [START_REF] Martini | Acoustic modes in jet and wake stability[END_REF] to further explore the dynamics of guided modes in jets/wakes and the role they play in the onset of absolute instability and their relation to supersonic unstable modes [START_REF] Tam | On the three families of instability waves of highspeed jets[END_REF]. The double V-S model was also used to study the effect of confinement on the spatio-temporal stability properties of planar and non-swirling round jets/wakes [START_REF] Juniper | The effect of confinement on the stability of two-dimensional shear flows[END_REF][START_REF] Juniper | The effect of confinement on the stability of non-swirling round jet/wake flows[END_REF], showing that confinement, under given conditions of density and velocity ratios between the flows and shear-layer thicknesses, may lead to absolute instability of the flow.

The stability properties of confined jets reproduce those of free jets for sufficiently large wall distances for waves whose radial support do not vanish slowly in the cross-stream direction [START_REF] Juniper | The full impulse response of two-dimensional jet/wake flows and implications for confinement[END_REF].

Its wide-spread use shows that the V-S model is very useful for the analysis and modelling of a variety of shear flows. However, where the free jet is concerned, the V-S eigenspectrum does not include free-stream acoustics. Given that free-stream acoustics play an important role in jet noise, e.g., in the dynamics of the jet underpinning the flapping modes in supersonic screech [START_REF] Edgington-Mitchell | Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets-a review[END_REF][START_REF] Shen | Three-dimensional numerical simulation of the jet screech phenomenon[END_REF] or resonance in impinging jets [START_REF] Edgington-Mitchell | Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets-a review[END_REF][START_REF] Jaunet | Dynamics of round jet impingement[END_REF], this absence of free-stream acoustics in the eigenbasis of the free jet is a considerable limitation.

The absence of a subset of eigensolutions in the stability problem was already reported by [START_REF] Gustavsson | Initial-value problem for boundary layer flows[END_REF] and [START_REF] Ashpis | The vibrating ribbon problem revisited[END_REF] in the case of boundary-layer flows, showing that waves not forming eigenmodes contribute to the solutions of the associated initial-value problem in the form of a continuous spectrum. This contribution comes out of the deformation of the integration contour in the vicinity of the branch cut in the complex plane. A similar behaviour was also reported by Case (1960) for an inviscid plane Couette flow for waves not satisfying the eigenvalue problem plus boundary conditions.

We here show that boundedness condition at infinity, typically imposed in free-jet problems, leads to the absence of free-stream acoustic waves in the eigensolutions of the unconfined V-S model. We then present a strategy that allows free-stream acoustics to be included in an eigen-description of the free jet by avoiding the bounded condition at infinity. Specifically, we propose a surrogate problem involving a distantly-confined jet. By distantly confined we mean that the boundary is located sufficiently far from the vortex sheet such that its influence on the system dynamics is negligible. We show that, besides discrete freestream acoustic eigenmodes, the discrete eigenmodes of the free jet are recovered. A model is thereby obtained in which both the usual free-jet eigenmodes are obtained along with a subspace associated with free-stream acoustics.

The paper is organised as follows. In §II we recall the vortex-sheet model usually adopted in the literature for free jets and present the derivation of the V-S dispersion relation for confined jets which includes free-stream acoustic eigenmodes. Results are presented in terms of eigenspectra, eigenfunctions and errors between the free-jet modes and their corresponding modes in the confined jet. Conclusions are finally discussed in §III.

II. VORTEX-SHEET MODEL

The jet is modelled as a cylindrical vortex sheet. All variables are normalised by the cylinder diameter D and ambient density and speed of sound, ρ ∞ and c ∞ , respectively. Assuming a parallel base flow q, the Reynolds decomposition,

q (x, r, θ, t) = q (r) + q ′ (x, r, θ, t) , (1) 
is applied to decompose the flow-state vector q into its mean and fluctuating component q and q ′ , respectively. The compressible linearised Euler equations reduce to two convected wave equations for the pressure inside and outside the jet,

∂ ∂t + M a ∂ ∂x 2 -T ∇ 2 p ′ i = 0, (2a) ∂ 2 ∂t 2 -∇ 2 p ′ o = 0, ( 2b 
)
where the subscripts i and o denote the interior and outer flows, respectively, T = T j /T ∞ is the jet-to-ambient temperature ratio and M a = U j /c ∞ the acoustic Mach number, with U j the jet velocity. The relation between the acoustic and jet Mach numbers is

M j = U j /c j = M a / √ T .
We assume the normal-mode ansatz,

q ′ (x, r, θ, t) = q (r) e i(kx+mθ-ωt) , (3) 
where k is the streamwise wavenumber, m the azimuthal mode and ω = 2πStM a a nondimensional frequency, with the Strouhal number defined as St = f D/U j based on the nozzle diameter. Equations (2a) and (2b), written in cylindrical coordinates, reduce to the modified Bessel equation,

∂ 2 ∂r 2 + 1 r ∂ ∂r -γ 2 i,o - m 2 r 2 pi,o = 0, (4) 
with

γ i = k 2 - 1 T (ω -M a k) 2 , ( 5a 
)
γ o = √ k 2 -ω 2 , ( 5b 
)
where the branch cut of the square roots in (5a) and ( 5b) is chosen such that -π/2 ≤ arg (γ i,o ) < π/2. The solutions of (4) in each domain are given by,

     pi (r) = A i I m (γ i r) + B i K m (γ i r) r ≤ 0.5, po (r) = A o I m (γ o r) + B o K m (γ o r) r > 0.5. ( 6a 
) (6b)
These solutions have to be additionally constrained using boundary and matching conditions. Next, we investigate the dispersion relations obtained for free and confined jets and show that the imposition of wave-reflection condition at the wall in the confined case allows to describe free-stream acoustic eigenmodes.

A. Dispersion relation for free jets

We here recall the derivation of the dispersion relation for free jets. To enforce solution amplitudes to be bounded B i = 0 and A o = 0 are typically set. This is motivated by the fact that for γ i,o ∈ C K m and I m tend to infinity when r → 0 and r → ∞, respectively. The solutions in (6) become,

     pi (r) = A i I m (γ i r) r ≤ 0.5, po (r) = B o K m (γ o r) r > 0.5. ( 7a 
) (7b)
Note that γ i and γ o play the role of radial wavenumbers in the inner and outer flows, respectively, and the functions I m and K m represent incoming and outgoing waves, respectively.

At the vortex sheet, continuity of pressure and vortex-sheet displacement,

         pi 1 2 = po 1 2 , ∂ pi ∂r 1 2 = (ω -kM a ) 2 T ω 2 ∂ po ∂r 1 2 , ( 8a 
) (8b) leads to the dispersion relation D f (k, ω; M a , T, m) = 0: 1 1 -kMa ω 2 + 1 T I m γ i 2 γo 2 K m-1 γo 2 + mK m γo 2 K m γo 2 γ i 2 I m-1 γ i 2 -mI m γ i 2 = 0. ( 9 
)
Frequency/wavenumber pairs k and ω define vortex-sheet eigenmodes for given values of azimuthal mode m and flow conditions M a and T . To find these modes, we specify either a real or complex frequency ω and compute the associated eigenvalue k which solves (9). The sign of the group velocity of each mode, which reveals whether a mode travels upstream or downstream, is obtained using the Briggs-Bers criterion [START_REF] Bers | Space-time evolution of plasma instabilities-absolute and convective[END_REF][START_REF] Briggs | Electron-stream interaction with plasmas[END_REF] and looking at the asymptotic behaviour of k (ω) for ω i → ∞ [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF]. The wave is downstream-travelling if lim

ω i →∞ k i = +∞ (10)
and upstream-travelling if lim

ω i →∞ k i = -∞. (11) 
Downstream-and upstream-travelling modes are hereafter indicated by a superscript + and -, respectively. To calculate the eigenvalues, we first do a coarse grid search for local minima of D f (k, ω; M a , T, m) in the k r -k i plane, that is later refined using a rootfinder algorithm based on the Levenberg-Marquardt method [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] to find zeros of

D f (k, ω; M a , T, m).
In what follows we consider the following flow parameters: jet Mach number M j = 1.1, azimuthal mode m = 0, Strouhal number St = 0.68 and jet-to-ambient temperature ratio T ≈ 0.81. We show in appendices A and B that the trends and conclusions presented herein are independent of the jet Mach number and frequency considered, respectively. The absolute value of 1 for the flow conditions mentioned above.

D f (k, ω; M a , T, m) in the k r -k i plane for ω ∈ R is shown in figure

Free-jet eigensolutions

Figure 2 shows the eigenspectrum in the k r -k i plane for the flow parameters listed above.

Lines with phase speed equal to ±c ∞ are shown to identify modes that are supersonic with respect to the free stream. Eigenvalues are calculated for both real and complex values of ω. Distinct families of modes can be identified. The V-S model supports one convectively unstable mode, that is the Kelvin-Helmholtz (K-H) mode, which is hereafter denoted k + KH , and its complex conjugate. The vortex sheet also supports guided modes, which are hereafter denoted k p . These modes belong to a hierarchical family of modes identified by the azimuthal and radial orders m and n, respectively, and are propagative only in a well-defined St-number range which is delimited by a branch point and a saddle point [START_REF] Tam | On the three families of instability waves of highspeed jets[END_REF]. Following [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], these modes can be completely trapped inside the jet, experiencing it as a soft-walled duct, depending on the St and radial order n considered. [START_REF] Martini | Acoustic modes in jet and wake stability[END_REF] showed that this behaviour can be explained by the effective impedance of the VS, which for these conditions is close to zero, thus emulating a pressure-release condition. For the flow conditions we consider, we note: the propagative k - p with n = 2, which is characterised by a subsonic phase speed and lies immediately next to the sonic line; the evanescent k ± p for n = 1, which have supersonic phase speed (mode with |k i | > 0 is downstream-travelling, whereas the mode with |k i | < 0 is upstream-travelling); and the propagative k + p with n = 2, which lies on the real axis and has a subsonic phase speed. As outlined in §I, free-stream acoustic modes are not found in the eigenspectrum. We remind the reader that this does not imply that free-stream acoustic waves are not solutions of the unconfined vortex sheet. Blue ⋄ refer to k + KH and its complex conjugate, black △ to evanescent k ± p for n = 1, red • to propagative k - p for n = 2, green 2 to k + p for n = 2.

They are. And they come along as solutions in the impulse-response or initial-value problem in the form of a continuous spectrum. It is their presence in the eigenbasis description which appears to be missing.

Figure 3 shows an example of the pressure eigenfunctions, which are normalised in order to have unitary maximum amplitude. For the sake of brevity, we here report only the eigenfunctions of the K-H mode, the upstream-travelling guided modes of first and second radial orders and the downstream-travelling guided mode of second radial order. As expected, the K-H wave shows an eigenfunction with maximum amplitude at the vortex sheet and a fast radial decay. Concerning the guided jet modes, as outlined above, the k - p modes for n = 1 and 2 show an eigenfunction with a radial support both inside and outside the jet with a slow radial decay, whereas the k + p mode for n = 2 is almost completely trapped in the inner region for the flow conditions considered.

B. Dispersion relation for confined vortex sheet

Considering a confined jet with boundary located at r = r M AX , enforcing to the general solution in ( 6) bounded conditions at r = 0 and soft-wall boundary conditions at r = r M AX , i.e., p (r M AX ) = 0, we obtain,

B i = 0, (12a) 
A o = -B o K m (γ o r M AX ) I m (γ o r M AX ) = -B o z (r M AX ) , (12b) 
where for notational simplicity we define z (r

M AX ) = K m (γ o r M AX ) /I m (γ o r M AX ). The
Dirichlet boundary condition used at r = r M AX implies a pressure release condition, i.e., a soft-walled duct, and an in-phase wave reflection. The solution for the pressure in the inner and outer flow becomes, respectively, is found in the unconfined case. The contribution of the free acoustics to an impulse response or initial-value problem would appear in the form of a continuous spectrum due to the deformation of the contour integral around the branch cut [START_REF] Ashpis | The vibrating ribbon problem revisited[END_REF]Case, 1960;[START_REF] Gustavsson | Initial-value problem for boundary layer flows[END_REF]. On the contrary, for the confined case, the imposition of the wave-reflection condition at infinity appears to remove the discontinuities along the real and imaginary axes where zeros of the dispersion relation associated with free-stream acoustic eigenmodes are found. 

     pi (r) = A i I m (γ i r) r ≤ 0.5 po (r) = B o (-zI m (γ o r) + K m (γ o r)) r > 0.5. ( 13a 

Confined-jet eigensolutions

Figure 6 shows the eigenspectrum obtained using the dispersion relation for the confined vortex sheet ( 14). We here consider a maximum radial distance r M AX = 100, the flow may thus be considered as distantly confined. Eigenvalues for both real and complex frequencies are represented. We note that, in addition to the modes observed in figure 2 using the unconfined vortex sheet, propagative and evanescent free-stream acoustic eigenmodes, that hereafter are denoted k ± a , are also present. We note that all the modes found using the dispersion relation ( 9) in unconfined conditions are reproduced by the dispersion relation for the distantly confined vortex sheet ( 14), as shown in figure 7 (for the sake of brevity we hereafter show only results for ω ∈ R). The distantly-confined problem, thus, accurately describes the dynamics of the free vortex sheet while also exhibiting an additional subspace associated with free-stream acoustics.

Figure 8 shows the eigenfunctions obtained using the pressure solution in ( 13) and the dispersion relation in ( 14) for the eigenvalue computation. For the sake of brevity, we only show eigenfunctions for the same modes considered in the unconfined case in figure 3 and additionally one of the propagative and evanescent k - a modes. We note that the eigenfunctions for the K-H and the guided jet modes are identical to those of figure 3 obtained using the unconfined vortex-sheet model. The eigenfunctions of the propagative and evanescent k - a modes show the expected shape for acoustic modes with a spatial support both inside and outside the jet and an algebraic amplitude decay for increasing r. 13) and the dispersion relation for confined jets in ( 14) to find the eigenvalues. Colour lines are the same used in figure 3 for free jets. Additionally, dash-dotted magenta line refers to propagative k - a mode, bold magenta line to evanescent k - a mode.

Asymptotic behaviour for large wall distances

We now study the effect of the domain size on the eigensolution computation in the limit of large wall distances. As outlined by [START_REF] Juniper | The effect of confinement on the stability of non-swirling round jet/wake flows[END_REF], the stability properties of a confined jet are equivalent to those of a free jet for waves whose spatial support decays rapidly in the radial direction if the boundary is located sufficiently far from the flow. In this work we explore values of r M AX → ∞ and thus the stability of the confined and unconfined systems are equivalent. Non-acoustic modes of the confined problem converge to similar solutions for the unconfined problem. We here quantify this convergence by looking at the discrepancy between eigensolutions computed in the unconfined case and eigensolutions computed in the distantly-confined case for different values of r M AX . Specifically, we select the K-H mode, k ± p modes for n = 2 and k - p mode for n = 1 and we compute the error between the eigenvalues and the eigenfunctions calculated in the free and distantly-confined cases for increasing values of r M AX . The error value for the eigenvalues and the eigenfunctions is defined as follows,

ϵ ev = |k f -k c |, (15a) 
ϵ ef = 1 - ⟨p f , pc ⟩ ⟨p f , pf ⟩⟨p c , pc ⟩ , (15b) 
where the subscripts f and c indicate solutions from the free-and confined-jet cases, respectively, and the inner product ⟨•, •⟩ represents an euclidean dot product. Figure 9 shows the trend of the eigensolution error between the confined and unconfined vortex sheet as a function of r M AX , which we let vary in the range [1,250]. For both eigenvalues and eigenfunctions the confined-jet solution matches the free-jet solution (up to machine precision) as r M AX becomes sufficiently large. We observe that the error trend is different depending on the mode considered. Specifically, the convergence trend is very fast for the K-H wave and the downstream-travelling guided mode of second radial order for which the error value reaches machine precision for r M AX = 5. We point out that the small error increase for the K-H eigenvalue observed for 40 ≤ r M AX ≤ 70 is most likely related to numerical inaccuracies in the root-finder algorithm when searching for zeros of the dispersion relation and, anyway, never exceeds the value of 10 -12 . On the contrary, the convergence speed is slower for the k - p mode with n = 1 and, above all, for the k - p mode with n = 2. For this mode the error value becomes lower than 10 -9 for r M AX ≥ 100, distance at which the confined-jet solution may be considered equal to the free-jet one. We point out that the different convergence rate with r M AX observed for the modes is consistent with their radial support shown in figure 8 and the conclusions reported by [START_REF] Juniper | The full impulse response of two-dimensional jet/wake flows and implications for confinement[END_REF]. Specifically, for modes with eigenfunctions concentrated either in the core or at the vortex sheet of the jet, such as the k + p mode with n = 2 and the k + KH wave, the confined-jet solution equals the free-jet one for low values of r M AX . On the contrary, modes with larger eigenfunction support outside the jet, such as the k - p modes with n = 1 and 2, require a larger r M AX value in order for the confined-jet solution to match the free-jet one.

To better understand the convergence trend reported above, we here analyse the behaviour of the above-defined parameter z (r

M AX ) = K m (γ o r M AX ) /I m (γ o r M AX ) when r M AX → ∞.
For this aim, we consider the zero-order asymptotic expansion at infinity of the Bessel functions I and K, which, following [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], can be expressed as, lim

r M AX →∞ I m (γ o r M AX ) ≈ e γor M AX √ 2πγ o r M AX , ( 16a 
) lim r M AX →∞ K m (γ o r M AX ) ≈ π 2γ o r M AX e -γor M AX , (16b) 
such that z for r M AX → ∞ can be evaluated as follows,

z (r M AX → ∞) = lim r M AX →∞ K m (γ o r M AX ) I m (γ o r M AX ) ≈ πe -2γor M AX . ( 17 
)
Assuming that the exponent is not purely imaginary, equation ( 17) shows that the convergence of the confined-jet solution to the free-jet one should have an exponential trend with the wall distance r M AX . This result is confirmed by the comparison of the errors between the eigensolutions obtained in the confined and unconfined cases with the exponential fit dictated by ( 17) in figure 9. The convergence rate of all the modes is well approximated by the exponential fit until the error reaches a plateau at machine precision.

As mentioned above, the limit in ( 17), and hence the convergence rate of the errors ϵ ev and ϵ ef , depend on whether γ o (5b) is complex or purely imaginary. Specifically, when γ o ∈ C the limit in ( 17 focus on the effect of the wall distance on the acoustic modes, we here plot a zoom on the free-stream supersonic region. A different discretisation of the continuous branch of the freestream acoustic modes is obtained for each wall distance. We point out that the grid search in the complex plane used to find zeros of the dispersion relation has to be increasingly refined to capture propagative acoustic waves close to the sonic line for increasing r M AX values. Despite this refinement, near-sonic, downstream-travelling, propagative acoustic eigenmodes are found only for few r M AX values and complex frequencies ω. This behaviour is ascribed to numerical issues when searching for zeros of the dispersion relation.

III. CONCLUSIONS

In this paper we dealt with the issue of describing the free-stream acoustic eigenmodes of a jet using a vortex-sheet model. Despite the widespread use of the vortex-sheet model for describing jet dynamics, the absence of eigenmodes associated with free-stream acoustics due to the imposition of bounded solution at infinity, seems to have been overlooked. To describe free-stream acoustics we propose a distantly-confined jet as a surrogate problem for a free jet. The surrogate problem asymptotically exhibits all of the modes supported by the free jet in addition to a discrete family of free-stream acoustic eigenmodes. When the wall is taken sufficiently far from the vortex sheet, the eigensolutions of the confined jet match those of the free jet, such that free-jet stability properties are fully recovered.

Specifically, the discrepancy between the eigensolutions of the confined-and free-jet cases decays exponentially with the wall distance. We show that the convergence rate of the which is consequently less influenced by the wall, and thus a faster convergence to the free-jet eigensolution. 
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APPENDIX A:

We here show that the efficiency of the distantly-confined vortex sheet in describing freestream acoustics along with eigensolutions of the unconfined vortex sheet is independent of the jet-flow condition considered. Figure 12 shows the eigenspectra of both unconfined and distantly-confined vortex-sheet models (r M AX = 100) for the same frequency considered above, i.e., St = 0.68, but for subsonic flow conditions, that is, M j = 0.91 and T ≈ 0.85. As outlined above for supersonic flow conditions, the eigenspectrum of the unconfined vortex sheet does not include free-stream acoustic modes, which, on the contrary, do appear in the distantly-confined case. We further note that all the free-jet modes are recovered in the eigenspectrum of the distantly-confined case.

APPENDIX B:

We here show that the capability of the distantly-confined vortex sheet to describe free unconfined eigensolutions is independent of the frequency considered. For this aim, we report in figure 13 the eigenspectra in the k r -k i and k r -St planes for the same supersonic flow conditions considered above obtained from both the unconfined and distantly-confined vortexsheet models. For the sake of brevity, we only show the K-H mode and the downstream-and upstream-travelling guided modes of first and second radial orders and the Strouhal number is varied in the range [0.02, 0.8]. No differences between the eigenspectra obtained using the unconfined and the distantly-confined vortex-sheet models can be appreciated in figure 13.