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Abstract Long read assemblers struggle to distinguish closely related strains of the same
species and collapse them into a single sequence. This is very limiting when analysing a
metagenome, as different strains can have important functional differences. We present
the first version of a new software called HairSplitter, which recovers the strains from a
strain-oblivious assembly and long reads. The originality of the method lies in a custom
variant calling step that allows HairSplitter to work with erroneous reads and to separate
an unknown number of haplotypes. On simulated datasets, we show that HairSplitter
significantly outperforms the state of the art when dealing with metagenomes containing
many strains of the same species.
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1 Introduction

A powerful tool for understanding complex microbial communities is de novo metagenome assem-
bly. Current methods can reconstruct the genomes of sufficiently abundant species, but struggle to
differentiate strains within a species, even if they are abundant. While strains of the same species
are very similar at the genomic level, the small differences can lead to very significant phenotypic and
functional changes. The most famous example of such intra-specific diversity is probably FEscherichia
coli 1], some strains of which can be highly pathogenic while sharing an average nucleotide identity
of more than 98.5% with commensal strains [2].

Assemblers are designed to correct for sequencing errors by ignoring bases that occur at low
frequencies. As a side effect, they generally discard haplotype differences and collapse the different
haplotypes into a single sequence. An additional difficulty in the metagenomic context is that the
number of haplotypes is a priori unknown and that haplotypes generally have different frequencies in
a sample.

Specific software has been developed to overcome these difficulties. For example, two such software
based on short reads are STRONG [3] and strainXpress [!|. However, more and more samples are
sequenced using only long reads, as their cost has dropped recently and they allow for more contiguous
assemblies.

Using error-prone long reads, assemblers such as metaFlye [5] or Canu [0] attempt to assemble
strains separately. However, the authors of [7] showed that these assemblers still struggle to recover
multiple strains and proposed a new pipeline, called Strainberry, which takes an assembly and the
long reads as input and recovers the collapsed strains. Strainberry improves significantly the assembly
of samples containing 2 or 3 strains of the same species, but is limited when the number of species
increases.

We present HairSplitter, a new pipeline for recovering the strains lost when assembling exclusively
from (error-prone) long reads. HairSplitter does not make any assumption on the number of strains
that should be found in the metagenome. It contains an original procedure that combines a custom
variant calling method with a new phasing algorithm. We have extensively tested HairSplitter on
simulated Nanopore data, replicating the protocol proposed in [7], and show that HairSplitter signifi-
cantly improves the completeness of assemblies of metagenomes composed of many strains compared

to the state of the art. HairSplitter still needs to be tested on real datasets.
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2 Description of the pipeline

The HairSplitter pipeline is composed of four main steps: 1) alignment of the reads on the contigs,
2) separation of the reads in their haplotype of origin, 3) generation of the new contigs and 4) strain-
aware contig scaffolding. Steps 2 is done by an original software, while step 1 is performed by minimap2
(%], step 3 by Racon [J] and step 4 by GraphUnzip [10]. The pipeline is illustrated Figure 2

Step 1: Aligning the reads on the contigs

HairSplitter starts by generating base-to-base alignments of the sequencing reads on the assembly
with minimap2. For each contig, a multiple sequence alignment is generated using the alignment of
the reads to the reference. This is the simplest way to build a multiple sequence alignment, but it
creates alignment artifacts, especially at positions where the contig contains errors.

Step 2: Splitting a group of reads in one or more haplotypes

The originality of HairSplitter lies in the second and most crucial step, where reads that align on
a contig are separated by haplotype of origin.

This operation is performed locally on window of the contig of size w. The phasing is performed
locally to avoid clustering reads that do not overlap. Indeed, clustering together reads that do not
overlap could lead to the HairSplitter algorithm clustering very different reads together, as shown in
Figure 1. w should thus be chosen to be significantly shorter than the reads.

read1 AACAAGATAGCGCGATAGCT read 1
read 2 GCGATAGCTAGCTAGACGTGACTATG
read 3 CGTGACTATGATCGGGCATACG read 6 read 2
read4 AACATGATAGCGCGATAGCT -
read 5 GCGATAGCTAGCTAGACGTGACTATG read 5 read 3
read 6 CGTGACTATGATCGGGCATACG

read 4

Fig. 1. A read graph is built as follows: each read is a vertex ; reads are connected to the reads they
overlaps with 100% identity. Even though readl and read4 are very different, they are transitively
linked through read3 and read6.

A difficulty of the process comes from the error rate of the reads, which can be much higher than
the divergence between the haplotypes. Another difficulty is the possibly high number of haplotypes
which can be unevenly covered by the sequencing. As this step represents the core of HairSplitter, it
is described in detail in section 3.

Step 3: Generating new contigs

The reads on a given window are separated into n groups, the contig sequence in the window is
polished n times by Racon using the different groups, yielding n different versions of the window,
which we call subcontigs. The subcontigs are laid out as an assembly graph, based on the original
assembly graph.

Step 4: Strain-aware scaffolding

Due to local homozygosity, some subcontigs will contain multiple haplotypes. These subcontigs
limit the contiguity of the graph and must be duplicated to be present once for each haplotype. To do
this, the paths of the sequencing reads on the subcontig graph are inventoried. Once all the paths are
inventoried, GraphUnzip [10] untangles the graph. From the paths of the read in the graph, it deduces
which contig to duplicate and which contig to link to improve the contiguity and completeness of the
assembly.
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Step 1: reads are aligned on contigs

|

Step 2 & 3:
read separation and polishing

—
Step 4:
reads are inventoried
— — e —

|

Step 4:
assembly is untangled

Fig. 2. The HairSplitter pipeline. The purple rectangles represent contigs or subcontigs. The red
lines are reads used to build the subcontigs. Only a very small subset of reads is shown here to keep
the visualisation readable.

3 Splitting a group of reads in one or more haplotypes
3.1 Detecting variants

To separate the set of reads that align on a contig in several haplotypes, rudimentary variant
calling is performed. In this context, we define variants as positions where the different haplotypes
are not identical. Once the variants are clearly identified, the reads can be split into the different
haplotypes based on these positions, as can be seen in Figure 3. However, due to errors in the reads
and in the reference, differences between read and reference do not systematically highlight a variant,
as can be seen in Figure 4.

ref AACAAGATAGACAGATAGACACAGATTGGCGTTTAGGAACAGTTGACAGATAGCA

" AACAAGATAGACAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATAGCA
r2 AACAAGATAGACAGATAGAACAGGATTGGCGTTTAGGAACAGATGACAGATAGCA
r3 AACAAGATAGACAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATAGCA
r4 AACCAGATAGACAGATAGACACATATTGGCGTTTAGGAACATTTGACAGATAGCA
r5 AACCAGATAGACAGATAGACACATATTGGCGTTTAGGAACAGTTGACAGATAGCA
r6 AACCAGATAGACAGATAGACACATATTGGCGTTTAGGAACAGTTGACAGATAGCA

. . Y Y.
A:{r1,r2,r3} G: {r1,r2,r3} (A {r1,r2,r3}
C: {r4,r5,r6} T: {r4,r5,r6} - T: {rd4,15,r6}

variant 1 : variant 2 i .variant3

Fig.3. In this error-free alignment, the variants clearly separate the reads in two haplotypes, one
containing rl, r2 and r3 and the other containing r4, r5 and r6.

3.2 Dealing with errors

To distinguish variants from errors, all positions of the alignment are iteratively inspected. For
each position, the program inventories the triplet of bases centered there in the reads. A base triplet
is defined as the base at the given position flanked by the nucleotide on the left and the nucleotide
on the right in the given read. At conserved regions, which make up the majority of the contig, the
reference triplet will be the most common, while some residual triplets may be due to sequencing errors
or alignment artifacts. At positions of true genomic variants, two triplets (corresponding to the two
variants) will be common, with some residual triplets due to sequencing errors or alignment artifacts.
Suspect positions are defined as positions where the second most abundant triplet is significantly (by
a factor s) more abundant than the third most abundant triplet. All variant should generate at least
one suspicious positions, therefore only suspect positions are considered for phasing. This will discard
most positions where there are only a few random errors. Some positions where there are no true
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variants will also be flagged as suspicious, typically positions with alignment artifacts. The selection
of suspicious position is illustrated Figure 4.

ref AACAAGATAGACCAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATACGCA

M AACAAGATAGA-CAGATAGACACAGATTGGCGTTTAGGAACAGATGACAGATA-GCA
r2 AACAAGATAGAC-AGATAGCACAGGATTGGCGTTTAGGAACAGATGATAGATAC——A
r3 AACAAGATAGA-CAGATAGACACAGATTGGCGTTTAGTAACAGATGACAGATAGCCA
r4 AACCAGATAGAC-AGATAGACACATATTGGCGTTTAGGAACATTTGACAGATA-GCA
r5 AACCAGATAGA-CAGATAGGCACATATTGGCGTTTAGGAACAGTTGACAGA—-—-CGCA
r6 AACCAGATAGAC-AGATAGACACATATTGGCGTTTAGGATCAGTTGACAGATA-GCA

v A\ v A\
TAG: {r1,r2,r3} | A-C:{r1,r3,r5} AGA: {r1,r2,r3} GAT: {r1,r2,r3} A-G: {rl,r4,r6}
TCG: {r4,15,r6} AC-:{r2,r4,ré} ATA: {r4,r5,r6} GTT: {r5,r6} AC-:{r2}
position 1 - position 2 position 3 TTT: {rd} AGC: {r3}
position 4 ~CG: {r5}
position 5

Fig. 4. Selection of suspicious positions. The red bases in the reference represent errors (unknown
to HairSplitter). Note that position 2 will be flagged as suspicious because of an alignment artifact.
Position 5 will not be considered suspicious because even though there are many different triplets at
this position, there is no clear alternative to the triplet ‘A-G’.

To distinguish variants from alignment artifacts, HairSplitter implements a method based on the
intuition that alignment artifacts are generally randomly distributed on the reads, while genomic
variants are not. On the one hand, reads carrying sequencing and alignment errors are not correlated
between two positions. On the other hand, reads carrying variants should be strongly correlated
between two variants.

Suspicious positions are clustered hierarchically. A cluster is represented by its consensus. Two
clusters are merged if more than 90% of each part of each consensus consists of reads from a part of
the other consensus. At the end of the process, consensuses consisting of more than p positions are
considered solid. We call them the solid bipartitions of the reads.

For each suspect position, its correlation with all solid bipartitions is computed by a one-degree-
of-freedom chi-square test of independence. If the result is greater than five (strong correlation), the
position is marked as interesting. The positions that do not correlate well with any solid bipartitions
are considered untrustworthy and are discarded. The set of interesting positions corresponds to the
set of positions that will be considered as a bi-allelic variants by the algorithm.

This variant calling procedure is quite conservative and may miss existing variants. This is not
a problem, as the goal of this step is to confidently identify a set of variants, not to call all variants
exhaustively.

3.3 Phasing the reads using the variants

Once a set of variants has been largely extracted from the noise, reads are split into different
haplotypes.

A graph is generated for each window of the contig. The reads that cover the window from end to
end are the vertices of the graph. Pairwise distances between the reads are calculated as the number
of divergent interesting positions divided by the total number of interesting positions overlapped by
both reads. Each read is connected to its k nearest neighbors, as shown Figure 5.

The resulting graph forms clusters, grouping reads that share identical variants, corresponding
to haplotypes. Empirically, the best algorithm to cluster this graph without knowing a priori the
number of clusters seems to be the Chinese Whispers algorithm [11]. However, a limitation of this
algorithm is that it is not deterministic, especially when the number of nodes in the graph is small.
With low frequency, clusters will be merged or split. To avoid this, HairSplitter exploits the property
that if the Chinese Whispers algorithm is initialized with an approximate solution, it will converge
to the solution without splitting or merging clusters. The approximate solutions can be found at the
interesting positions: each position contains a variant that separates two groups of reads with some
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Alignment Distance matrix Read graph

Interesting r1r2 r3 rd 15 r6
positions 34 56 66 80 101 120 1 s 55 2
r 6 6 6 6 6 rz
M caa G-A CIC ATG CTA GTG 2 0 16 6 5 [ 3
. P .
r2 Ccaz G-A cIc ATG CTA GTG Bm™: 5 ¢
3 CAR GAA cTC ATG CTA GTe6 —» MB35 § [ >
r4 CCA GAA ccc AGG c—- GAG r4 g g g % % 6o 4
¥5  CCA GAR cce AGG c GAG g6 & 50 1 —"
r6 CCh GAA cce AGG CTA GAG ™% 5 6 6 3 .
6 3 5 411 s
6 6 6 6 6

Fig.5. Generating the read graph from the list of interesting positions with & = 2. Light gray
squares highlight the k closest neighbors of each read in the distance matrix, which become ones in
the adjacency matrix of the read graph.

errors. Running the Chinese whispers algorithm with one position as initialization will cluster the
graph into two parts. Each interesting positions will yield a bipartition. All the bipartitions can then
be aggregated into a single partition: two reads will be clustered together if and only if they are not
separated in any bipartition. This process is illustrated Figure 6.

“a " " .“n
« Q-‘,‘h v & Fe s v t".;.. - i"a.

' ¢ : ¢

@ B @ R ° B @ B

Fig. 6. The read graph is clustered using interesting positions as initialisation, resulting in a series of
bipartitions. All these bipartitions can then be aggregated into the final partition.

Each part of the resulting partition corresponds to a haplotype.

4 Results
4.1 Protocol
The protocol is a replica of the protocol proposed in [7].

To systematically test the performance of HairSplitter, we composed a benchmark consisting of
different strains of Escherichia coli. The reference genomes of the strains were obtained from NCBIL.
For each strain, we simulated “mediocre” Nanopore sequencing (around 7% error rate), using Badreads
[12] with default settings, from the reference genomes.

For each experiment, the sequencing of different strains was concatenated to create a simulation of
the sequencing of a metagenomic sample. The reads were then assembled using metaFlye with default
settings. Missing strains were then recovered from the assembly using Strainberry and HairSplitter
with default settings. For HairSplitter, the parameters are set to s =5, k =5, p = 5 and w = 2000,
but the few tests we ran suggest that the algorithm is not very sensitive to these settings.

4.2 Evaluation metrics

Two metrics were retained to evaluate the quality of the recovered assembly with respect to the
known solution genomes.

The first one is the proportion of the 21-mers found in the genomes that are not found in the
assembly. This measures how well the different strains are covered. A large number of missing 21-
mers indicates that some strains have not been well assembled.

The second metric is the proportion of 21-mers found in the assembly that are found in the genome.
This evaluates the accuracy of the assembly. A low number of 21-mers found in the genomes indicates
that the assembly contains many errors.
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4.3 Influence of strain coverage, divergence and number of strains on strain separation

Divergence A factor that can influence the strain reconstruction is the degree of divergence between
the strains. Seven datasets were created, composed of the simulated sequencing of the K12 strain
mixed with the simulated sequencing of seven strains having varying degree of divergence with K12.
The strains have been chosen to replicate exactly the experiment shown in [7].

Coverage Another crucial factor to reconstruct the strains is the depth at which each strain is covered.
To evaluate how this affected the HairSplitter algorithm, tests were carried out on a mixture of the
TAI1 and 12009 strains. In a first experiment, the two strains were sequenced at depths ranging from
5x to 50x. In a second experiment, the 12009 strain was sequenced systematically at 50x coverage,
while the TATI1 strain was sequenced at depths ranging from 5x to 50x.

Number of strains The authors of Strainberry pointed to the number of strains as a limiting factor in
strain reconstruction, with the completeness of the reconstruction decreasing significantly when more
than 3 strains were sequenced [7]. Mixtures were made with different numbers of strains. The strains
used for the mixtures were 12009, IAIl, F11, S88, Sakai, SE15, Shigella flexneri, UMNO026, HS and
K12. The strains were chosen to cover a wide range of the FEscherichia coli phylogenetic tree, with
some very close strains (such as F11 and S88) and others much more distance strains (such as SE15

and K12).

The results Figure 7 show that HairSplitter and Strainberry recover a very similar amount of
k-mers on mixtures of 2 strains. More specifically, both software perform well on pairs of strains
with more than 0.3% divergence, as defined by the ANI [13] (Figures 7b), and when the coverage is
20x or more (Figures 7d, 7f). This confirms the results presented in [7]. However, while HairSplitter
recovers a similar amount of missing 21-mers compared to Strainberry, it tends to generate much fewer
erroneous 21-mers (Figure 7a, 7c and 7e).

The most spectacular result is that even when the mixture contained six or more strains, Hair-
Splitter was able to recover most of the missing 21-mers, producing assemblies with significantly fewer
missing 21-mers than metaFlye and even Strainberry assemblies (Figure 7h). For example, in the
metaFlye assembly of the mixture of 10 strains, 46% of the 21-mers of the solution were missing. This
dropped to 39% when using Strainberry and 16% when using HairSplitter.

4.4 Performance

In all these tests, HairSplitter finished in less than 30 minutes using four threads and less than 5G
of RAM. This is similar to Strainberry and small compared to the assembly time, which took at least
5 times longer.

5 Discussion

In this work, we introduced HairSplitter, a new pipeline for performing strain separation on assem-
blies using only long reads. HairSplitter shows a significant improvement over state-of-the-art methods
when the number of strains is high. One of the reasons for this is that, unlike Strainberry, HairSplitter
can separate a contig into a variable number of strains. To confirm these results, HairSplitter needs
to be benchmarked on real sequencing datasets.

The data we simulated was of low quality to test HairSplitter in the hardest possible case. We
expect HairSplitter to perform even better as the quality of the sequencing improves, but this remains
to be tested. We also want to see if HairSplitter can improve on the de novo assembly performed by
hifiasm in the case of HiFi sequencing.

Another potential application of HairSplitter that deserves investigation is the phasing of polyploid
species. Powerful software, such as WhatsHap [11], already exists when the number of haplotypes is
known a priori and can be used for polyploid assembly. However, knowing the number of haplotypes
in each contig is not necessarily an easy task and using an agnostic approach such as HairSplitter
could improve the results.
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Fig. 7. Evaluation of assemblies obtained using HairSplitter or Strainberry on the metaFlye assembly
in different mixes of strains. a and b: mix of K12 strain and another strain at 50x coverage. ¢ and d:
mix of the TAI1l and 12009 strains at varying coverage. e and f: mix of the IAI1 and 12009 strains,
with 12009 at 50x coverage and IAIl at varying coverage. g and h: mix of varying number of strains
at b0x coverage.
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Currently, HairSplitter has two shortcomings that we are trying to fix as a priority. First, it needs
at least 20x coverage to distinguish a strain. This is quite high and will undoubtedly be limiting in most
real-world applications where rare strains are common. Improving the quality of the data may solve
this problem. The second shortcoming is that the contig scaffolding step is still not fully satisfactory
and the contiguities of the assemblies obtained is lower than those obtained using Strainberry. This is
due to the fact that we are using GraphUnzip slightly outside the use case for which it was designed.
We will adapt GraphUnzip to this specific task.
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