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Abstract

We apply the scale-relativity theory of turbulence to the turbulent round jet
problem. In this theory, the time derivative of the Navier-Stokes equations is in-
tegrated under the form of a macroscopic Schrödinger equation acting in velocity-
space. In this equation, the constant ~v can be identified with the energy dissipation
rate while the effect of pressure gradient manifests itself as an quantum harmonic
oscillator (QHO) v-potential. This equation is solved in terms of a wave function
whose modulus squared yields the probability density function (PDF) of velocities.
The Reynolds stresses can then be derived from this PDF, so that the closure prob-
lem is solved in this case. This allows us to obtain a theoretical prediction for
the turbulent intensity radial profile (and therefore for the pressure) which agrees
with the experimental data. We also theoretically predict various purely numer-
ical dimensionless invariants characterizing the turbulent jet. The ratio of axial
over radial velocity fluctuations can be calculated from QHO properties: we find
R = 1.35 ± 0.03, in good agreement with its experimental values 1.3 − 1.4; the jet
opening parameter is predicted to be α = 1/2R3 = 0.203±0.013, which explains its
well-known value α ≈ 1/5 observed in both laboratory and numerical experiments;
the mean ratio X =

√
µ λ, (where µ and λ are respectively the radial and axial

ratios of turbulent intensity amplitudes over axial velocity on the jet centerline), is
predicted to be X = 19/80 = 0.2375±0.0013, in good agreement with its universally
measured value ≈ 1/4; from X and R we derive µ = 0.202±0.013, which agrees with
the experimentally observed values 0.185− 0.217; finally, the correlation coefficient
of velocities is predicted to be ρ ≈ 2 α = 1/R3, thus suggesting an explanation for
the universal value ≈ 0.4 observed for the turbulent jet and for all free shear flows.

1 Introduction

Few turbulent flows have received more experimental and theoretical study than the
simple free jet [1]. This is justified by its wide occurrence in nature and in many practical
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applications, e.g., related to combustion, propulsion, mixing, and aeroacoustic. A jet is
also important from a physical point of view because it represents a prototype of free
turbulent flow. For these reasons it is frequently studied and modeled. The round jet
shares also many common features with other free shear flows, such as plane jets, wakes
and mixing layers. This both practical and fundamental importance of round jets is made
clear by the large number of publications and reviews that have appeared on it (see e.g.
[2, 3, 4] and references therein), involving either experimental, theoretical or numerical
analysis [5, 6]. However, as remarked by Hussein et al [7], “the difficulties of predicting
this flow with model constants determined from other flows has proved to be one of the
more challenging problems faced by turbulence modellers”.

Laboratory investigations of jets penetrating into a quiescent fluid of the same density
consistently reveal that the envelope containing the turbulence caused by the jet adopts a
nearly conical shape. In other words, the radius r of the jet is proportional to the distance
x downstream from the discharge location [8].

When the jet remains laminar, as described by the Landau jet [9, p.115], which is an
exact solution of the Navier-Stokes (NS) and continuity equations, [10, 11, 12], its opening
angle decreases when the Reynolds number increases according to the jet strength.

But the turbulent jet is different and manifests one of the most puzzling mysteries of
physics: laboratory observations reveal that its opening angle, although a dimensionless
number, remains almost the same regardless of the nature of the fluid, of the orifice
diameter and of the injection speed, (and therefore finally of the Reynolds number). As
written by Landau about the turbulent round jet [9, p. 213], “the region of turbulence is
a cone, the angle of which 2α is, according to experimental data, equal to about 25◦”. He
adds [9, p. 217]: “The empirical value of the opening angle of a plane jet is close to that of
the circular jet (2α = 25◦)”. The corresponding value in rd is αS = 0.218 and its tangent
ηαs = r/x = 0.222. As we shall see, this definition of α = αS from the spatial extension of
the jet (i.e. from the turbulent-laminar transition) can be completed by a complementary
definition from the edge of the axial velocity profile along the radial direction, fitted to
α ≈ 0.2 (the ratio of the two definitions being αS/α = q ≈ 1.1). The puzzle is still there
today, since there is, to our knowledge, no known analytical theoretical prediction for this
value α ≈ 0.2.

The mystery of the turbulent jet is re-inforced by the existence of other quasi-universal
structures such as the turbulent velocity radial profiles, and of dimensionless constants,
such as the ratio R ≈ 1.3 between the axial and radial turbulent intensities, the ratio
≈ 1/4 of the standard deviations of the turbulent velocity fluctuations over the axial
mean velocity on the centerline of the jet, and the correlation coefficient between the
axial and radial velocity fluctuations ρ ≈ 0.4 (a value which is common to all free shear
flows [3, 2]). It is noticeable that these structures may not be universal in the sense
of precise and unique numerical values [13], but as PDFs with well-defined peaks and
small standard deviations, and/or narrow intervals of possible values. As we shall see, the
solutions suggested in the present paper for their origin lead to just this kind of behavior.

The dimensionless character of this universal physical constant, α ≈ 1/5, makes the
understanding of its value one of the most fascinating problems in physics. Moreover,
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this question is clearly related to a more general problem in the theory of turbulence,
namely, the closure problem: when jumping to a turbulent behavior, a fluid is described
not only by its mean velocities which are solutions of the continuity and Navier-Stokes
equations, but also by the velocity fluctuations. In today’s theory there are no known first
principle equations for the covariances of these fluctuations (Reynolds stress), which yet
appear in the Reynolds-averaged Navier-Stokes (RANS) equations, so that the number of
unknowns is larger than the number of equations. The closure is therefore obtained only
using hypothetical models.

The scale-relativity approach to turbulence [14, 15, 16] is of a different nature. In
its framework, the closing equations do not come from an assumed model. They just
derive from a reformulation and an integration of the time derivative of the Navier-Stokes
equations themselves, written in v-space and accounting for the non-differentiable and
fractal nature of velocities in the turbulent regime (according to Kolmogorov K41 scaling).
The main result of this approach is that these v-space NS-derivated (NSd) equations can
be integrated under the form of a macroscopic Schrödinger equation [17, 18, 16].

Moreover, the potential entering this v-Schrödinger equation is, in an universal way,
that of an harmonic oscillator, so that we can theoretically predict that the local velocity
probability density functions (PDF) are that of quantized harmonic oscillators (QHO),
possibly damped (QDHO). This theoretical expectation is well verified by experimental
data analysis [16].

As a consequence, we can derive the PDF of the turbulent velocity fluctuations in terms
of a combination of the PDFs of ground state and excited state QHOs, the probability
distribution of their quantum numbers being given by statistical physics.

In the present paper, we first recall the various structures which are already accounted
for by the current theory (RANS equations):

- self-similar scaling in terms of the variable traditionally denoted η = r/x, where r
is the radial cylindrical coordinate and x the axial coordinate, with origin at the virtual
top of the jet conic shape;

- profiles of the average velocities U(x, η) and V (x, η);
- profile of the Reynolds shear stress σuv (approximate, in integral form);
- relation between mean pressure and radial Reynolds stress: p̄ = −σ2

v (approximate).
Then we bring improvements to some of these results, by getting exact solutions to

the RANS equations:
- more precise radial profiles U(η) and V (η) ;
- new scaling relation connecting the x and r derivatives;
- exact solution for the shear stress σuv;
- exact relation between the mean pressure p̄ and the radial Reynolds stress σ2

v ;
- theoretical prediction of the ratio q = αS/α between the spatial extent of the jet and

its velocity extent.
In a second part of the paper, we briefly recall the principles which lead to integrating

the time derivative of the NS equations into a macroscopic Schrödinger-type equation.
Then we apply this equation to the case of the turbulent round jet, for an harmonic
oscillator potential whose coefficients are given by r and x derivatives of the mean pressure.
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This allows us to suggest new theoretical explanations for:
- the ratio of axial over radial turbulent intensities R = σu/σv ≈ 1.35;
- the universal value of the jet opening parameter α = 1/2R3 ≈ 0.2;
- the radial profile of the Reynolds stresses (and therefore of the mean pressure): we

find an analytical solution given by σ2
v = −p ∝ cos(

√
3 η/α) (plus a correction that fully

agrees for the whole jet, including its boundary region);
- the constancy of the velocity correlation coefficient throughout the jet (except in its

central region, where it is known to increase from zero to this constant value);
- the relative amplitude of the turbulent fluctuations,

√
λµ = 19/80 ≈ 1/4);

- the value of the correlation coefficient, which we find equal to ρ ≈ 2α = 1/R3 ≈ 0.4,
a value that is common to all shear flows [3].

2 Hydrodynamics equations for the turbulent jet

2.1 RANS equations

Let us write the velocities in cylindrical coordinates (x, r, θ) in terms of the Reynolds
decomposition Ut = U + u, Vt = V + v and Wt = w, where U(x, r), V (x, r), W (x, r) = 0
are their average values and u, v, w their turbulent fluctuations. The fluid mechanics
equations for the turbulent jet consist of the continuity equation for the mean velocities,

∂xU +
1

r
∂r(r V ) = 0, (1)

of the continuity equation for the turbulent fluctuations,

∂xu+
1

r
∂r(r v) = 0, (2)

and of the Reynolds averaged Navier-Stokes (RANS) equations.
One defines the Reynolds stresses as the variances and covariance of the fluctuating

velocity components, 〈u2〉 = σ2
u, 〈v2〉 = σ2

v , 〈w2〉 = σ2
w and 〈u v〉 = σuv. Experimental

measurements from [19, 7] of the radial profiles of σu(η) and σv(η), where η = r/x, are
shown in Fig. 2.

For any two velocities linked by the continuity equation (in particular {U, V } and
{u, v}), one has the transformation:

U ∂xU + V ∂rU = ∂x U
2 +

1

r
∂r (rUV ), (3)

which allows to exhibit the energy and covariance terms. Neglecting the molecular vis-
cosity contribution (which is vanishingly small with respect to the other terms in the
turbulent case) and p̄ being the mean pressure, this transformation allows one to write
the RANS equations in cylindrical coordinates as [20, 21, 22]:

x− RANS : U ∂xU + V ∂rU + ∂x(σ
2
u + p̄) +

1

r
∂r(r σuv) = 0, (4)
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r − RANS : U ∂xV + V ∂rV + ∂r(σ
2
v + p̄)− 1

r
(σ2

v − σ2
w) + ∂xσuv = 0, (5)

where we have set the fluid density % = 1 for simplification owing to the incompressible
character of the flow.

2.2 Exact solutions to the RANS equations for self-similar flows

2.2.1 Scaling relation

One of the main properties of the turbulent jet is its self-similar character [9, 2, 19, 7].
For the round jet, the velocities scale as U = Uη(η)/x, V = Vη(η)/x, u = uη(η)/x,
v = vη(η)/x, and the pressure as p̄ = p̄η(η)/x2, where x is the axial variable starting from
the virtual origin of the conic shape of the jet and where the dimensionless radial variable
is η = r/x.

This scaling allows one to relate the x and r partial derivatives, i.e., for a function
F (x, r) = f(η)/x2 one obtains:

x ∂xF = −1

r
∂r(r

2 F ). (6)

This remarkable identity, since it applies for the round jet to U2, V 2, σ2
u, σ

2
v , σuv and

p̄, brings many simplifications to the equations and allows one to find explicit integral
solutions.

2.2.2 Exact solution to the axial RANS equation

As regards the x-RANS equation, it can be integrated in a universal way thanks to
this relation. Indeed, one finds that the x-RANS equation becomes proportional to the
continuity equation, namely x-RANS= −U× CONT, and one obtains a solution which
may be written in term of a general and exact expression for the shear stress:

σuv = −UV + η (U2 + σ2
u + p̄). (7)

This is a new result to our knowledge, since up to now σuv was known only in a approxi-
mate way and in integral form.

2.2.3 Exact solution to the radial RANS equation

It is possible to also obtain an exact solution to the r-RANS equation. Such an exact
solution may be useful in order to quantify more precisely the quality of this approximation
and in situations which involve the first and second derivatives of the mean pressure (see
hereafter), which may differ significantly from that of −σ2

v .
This solution can be written under the form:

p = −σ2
v − V 2 − ε. (8)
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Figure 1: Exact solution to the r-RANS equation. Analytical expression for σ2v (black curve)
in function of the reduced radial distance η = r/x to the jet centerline, compared with the exact
pressure (red curve, −p = σ2v +V 2 +ε+c), where ε is given by Eq. (12), here with the numerical
constant c = 0.002.

We define, using the self-similarity of the velocities,

W = (U2 + σ2
u)− (V 2 + σ2

v) =
Wη

x2
=

1

x2
(U2

η + σ2
uη − V 2

η − σ2
vη), (9)

where σuη and σvη are respectively the radial parts of σu and σv (without their x depen-
dance). Then we set

A(η) = η2 ∂ηWη + 3 ηWη −
V 2
η

η
. (10)

We finds that ε = εη/x
2 is given by the simple differential equation:

(1− η2) ∂ηεη − 3 η ε+ A(η) = 0. (11)

This equation can finally be integrated to yield an exact solution of the r-RANS equation
in function of the mean velocities and of the Reynolds stresses, that reads:

εη =
1

(1− η2)3/2

(
c−

∫
A(η)

√
1− η2 dη

)
, (12)

It is defined only up to a numerical integration constant, as expected from the fact that
only the pressure gradient has a physical meaning in the equations.

We show in Fig. 1 the effect of this correction to the approximate solution p = −σ2
v

(radial part, without the x dependence). We find that, while it is vanishingly small as
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regards its effect on σuv, its effect on the shape of the pressure is not totally negligible, in
particular for the derivatives of the pressure (see Sec. 4.4). However, one should remark
that this difference between −p and σ2

v remains smaller than the differences observed
between the various experimentally and numerically measured profiles (see Figs. 2 and
15).
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Figure 2: Experimentally observed standard deviations of turbulent velocity fluctuations (“tur-
bulent intensities”) in round jets, in function of the normalized radial distance to the jet center-
line, η = r/x. Magenta top curve: σu from Panchapakesan and Lumley [19]; blue curve (second
from top): σu from Hussein et al [7]; green curve (third from top): σv from [19]; brown down
curve: σv from [7]. Laboratory and numerical experiments both show that the fluctuations
become isotropic for η >≈ 0.18.

2.2.4 Boundary layer approximation

As regards the r-RANS equation, the usual approximate solution consists of neglecting
the contributions U∂xV +V ∂rV and ∂xσuv and to account for the expectation σv = σw for
obtaining an expression for the mean pressure:

p̄ = −σ2
v + p0(x), (13)

where p0 is the pressure at infinity and will be considered to vanish in what follows.
From this approximate solution, one obtains a new expression for σuv (no longer strictly

exact):
σuv = −UV + η (U2 + σ2

u − σ2
v). (14)

This relation can be simplified by accounting for the fact that σ2
u − σ2

v � U2. Indeed,
under the K41 hypothesis [23], the turbulence is expected to be locally isotropic, so that
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Figure 3: The experimentally observed ratio R = σu/σv in function of the scaled radial distance,
η = r/x. The green curve shows the mean R value (RH + RP )/2 from Hussein et al [7] and
Panchapakesan and Lumley measurements [19], the beige curve shows (σuH +σuP )/(σvH +σvP ),
while the dashed curves are the individual measurements (P: blue, H: magenta). They agree in
the center of the jet and around its boundary while they show larger variations (±0.1) in the
middle region of the jet (η = 0.06− 0.18).

σ2
u ≈ σ2

v . Experimental data on turbulent jets [19, 7, 2, 1, 24] confirm that they are of
the same order, with σu/σv = R ≈ 1.3 (only in one case [25], measurements have yielded
exactly σ2

u = σ2
v inside the jet).

Tennekes and Lumley [3] argue that one expects (σ2
u − σ2

v)/(σ
2
u + σ2

v) = K, where K
is a constant independant from position. Their argument is that the major production
term feeds energy along the axial direction, so that the energy must leak into v2 by
inertial interaction. The ratio of the supply rate to the leakage rate is expected to be
constant because these two rates are determined by the same turbulence dynamics. As
a consequence, the ratio R = σu/σv should itself be constant. Experimental data are
compatible with this result, yielding a constant of proportionality K ≈ 1/4 in the interior
of the jet (i.e. R ≈ 1.3 as previoulsy stated, see Fig. 3), which falls abruptly to K = 0
at the jet boundary, i.e. σ2

u = σ2
v for η = α ≈ 0.2: this is expected from the fact that

the turbulent fluctuations become far larger that the local mean velocities around the jet
boundary, so that the K41 full isotropy becomes manifest.

Anyway, all experiments show that U2 >≈ 30(σ2
u− σ2

v), thus supporting this approxi-
mation. One finally finds that the shear stress of the turbulent round jet can be expressed
with a reasonable precision in terms of just the mean velocities:

σuv = η U2 − UV. (15)
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Experimental data are in satisfying agreement with this relation (see Fig. 4).
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Figure 4: Comparison between experimental measurements of the Reynolds shear stress σuv =
〈uv〉 from Ref. [19] (black curve) and its theoretical expression, σuv = U (η U − V ) (Eq. (15),
red dashed curve), in function of the normalized radial variable η = r/x. This last expression is
calculated from a fit of U and V (where U was measured in the same experiment while V was
deduced from the continuity equation [19]). The brown curve is the experimental measurement
of Hussein et al [7]. The blue dashed curve is its expression for the constant turbulent viscosity
solution, which is no longer valid at the edge of the jet. The green dashed curve is an exponential
law 1

2η exp[−1
2( η
αs)

2] for α = 0.2 and s = 1/3.

2.3 Turbulent viscosity

The Boussinesq approach allows one to rely the Reynolds stress σuv = 〈u v〉 to the averaged
axial velocity U by introducing a turbulent (or eddy) viscosity νT (see, e.g. [22],

σuv = −νT ∂rU. (16)

Then the x-RANS equation takes the form:

U ∂xU + V ∂rU −
1

r
∂r(νT r ∂rU) = 0. (17)

We see that, when νT is constant, this description allows indeed the shear stress to play
a role similar to that of the molecular viscosity, since the RANS equation becomes

U ∂xU + V ∂rU − νT
1

r
∂r(r ∂rU) = 0. (18)
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Experimental data on turbulent jets fairly support such a description: the turbulent
viscosity is found to remain almost constant in a large part of the jet, up to ≈ 60% of its
radius (see Fig. 6 and Sec. 3.1).

But it can also yield more general solutions of the RANS equations by allowing a
varying turbulent viscosity. Thanks to our explicit integration of the shear stress Eq. (15),
for any couple of velocities {U, V }, we know the turbulent viscosity which solves the NS
equations:

νT =
U V − η U2

∂rU
. (19)

It depends only on η = r/x since the three functions U V , U2 and ∂rU scale as x−2.
This formula will be applied in what follows to deriving explicitly the turbulence

viscosity from analytical expressions fitting the experimental data on jet velocities.

2.4 Deriving velocities from shear stress

Reversely, one can obtain new analytical solutions to the RANS equations from any
expression fitting σuv. Let us set σuv(η) = ηF(η). The velocities U = (g/x)Uη and
V = (g/x)Vη are solutions of the continuity equation and of the above equation (15),
which read (we make g/x = 1 in the full expressions in order to simplify, keeping only
their η dependence):

(V + η ∂ηV ) = η (U + η ∂ηU), η U2 − UV = ηF(η). (20)

After some calculations these two equations can be combined in terms of a differential
equation for the function G(η) = (F/U)2:

∂yG =
2

η
(F − 2G). (21)

Solving this differential equation for a given expression of F(η), one obtains U = F/
√
G

then V = η(U −F/U), from which one can also derive νT according to Eq. (19).

2.5 Deriving velocities from variable turbulent viscosity

It is also possible to derive the velocity profiles from a variable turbulent viscosity. We
start from the expression of νT :

νT =
σuv
∂rU

=
U V − η U2

∂rU
. (22)

Using the self-similarity we omit the x dependence of the various terms. We thus obtain
a differential equation for U and V in function of the assumed known expression of νT =
νT (η):

νT (η) ∂ηU + η U2 − U V = 0. (23)
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It can be combined with the continuity equation, whose pure η form allows to connect
the U and V profiles:

V + ∂ηV = η (U + η ∂ηU). (24)

After some manipulations, we obtain a second order differential equation for U alone:

η νT (η) (UU ′′ − U ′2) + [νT (η) + η ∂ηνT (η)]UU ′ + η U3 = 0. (25)

Once its solution is known, one can derive the v profile:

V = η U + νT (η)
∂ηU

U
. (26)

A simplified form of the above differential equation can be obtained by keeping only the
dominant terms, e.g. by suppressing the small contributions νT UU

′ and η U3. Setting
G = ∂ηU/U and F (η) = (∂ηνT )/νT , it writes:

∂ηG+ ηF (η)G = 0. (27)

A general solution is then found, which reads:

G = C1 exp

∫
−ηF (η)dη, U = C2 exp

∫
G(η)dη, (28)

where C1 and C2 are integration constants.
In particular, this result can be applied around the jet edge, at the turbulent to

laminar transition. Indeed, the axial velocity U is expected to become almost constant
in the exterior laminar region [9], so that one expects ∂ηU = 0 at this transition. This
implies a divergence of νT if σuv has itself not vanished.

Let us therefore look for the profile of the axial velocity derived from a linear turbulent
velocity vanishing at the jet edge, νT (η) = b(αS − η). Such a behavior is supported by
experimental data (see Fig. 6). In this case, the above solution can be explicitly integrated
under the form:

U = A exp[−BΓ(1− αS, αS − η)], (29)

where Γ(a, x) is the incomplete Gamma function and A and B are integration constants
which can be fixed from the values of U and its derivative at a given point. We have
performed a numerical integration of the complete equation Eq. 25 and found it to be
very close from this solution of the simplified equation (red curve in Fig. 5). The difference
with a quadratic behavior remains small while the problem of divergence linked to ∂ηU = 0
is solved.
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Figure 5: Radial profile of the mean axial velocity of a round turbulent jet around its edge. The
points are experimental measurements [7, 19]. The blue curve is a quadratic solution matched
to the laminar Landau solution at η = αS = 0.235. The red curve is the axial velocity derived
from a linear turbulent viscosity vanishing at η = αS .

3 Solutions of the RANS equations for the turbulent

round jet

3.1 Solution with constant turbulent viscosity in the central re-
gion

A first analytical approximation for the turbulent jet (which is solution of the RANS
equations with constant turbulent viscosity and is valid in a large part of the inner region
of the jet, z = η/α <≈ 0.6), is given by the following expressions for the averaged
velocities [26, 2]:

U =
g

x

1

(1 + β (η/α)2)2
, V =

g

x

η (1− β (η/α)2)

2 (1 + β η/α)2)2
, (30)

where we recall that η = r/x.
A fit of experimental data by these expressions yields β = 2 with good precision at

the origin: we find β = 1.99 ± 0.02 from a fit of U(z) for z < 0.6 (which is the limit of
validity of this solution) using data from [19]. Values consistent with β = 2 are obtained
with other sets of data [24, 7]. Actually, since β and α only appear together through
their combination β/α2 in these expressions, one is led to set β = 2 and to consider these
velocity profiles as a definition of α. Recall that this parameter defines the radial extension
of the jet in velocity space, and slightly differs from the jet opening angle in space which
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can be defined as the turbulent-laminar transition, αS = q α with q ≈ 1.10 − 1.15, see
Sec. 3.2. A theoretical prediction for the value of this parameter will be obtained in what
follows.

The constant g can be related to the jet velocity U0 at the nozzle exit as

g = U0 a0 = B U0 d, (31)

where d is the nozzle diameter and a0 = Bd defines a virtual “origin” for the scaled
velocity, i.e. a virtual point where the centerline velocity would be infinite. The empirical
numerical constant B is found to be B ≈ 6 according to experimental data [2, 19].
This value can be easily derived from the other parameters describing the flow. Indeed,
another well-known approximate solution for the turbulent round jet flow is given by a
Gaussian velocity profile U(η) = exp(−η2/2σ2). A fit of the experimental data [7, 2]
yields 1/σ = 12.0± 0.2 and a fit of the above solution Eq. (30) with α = 1/5 and β = 2
yields 1/σ = 12.1± 0.1. The standard error of the axial velocity profile therefore defines
an opening angle 1/12 which applies on the nozzle radius d/2, leading to a virtual point
a0 = 6d. Recall that this point is different from the virtual origin of the jet spatial extent,
x0 = d/2α ≈ 5d/2.

One can easily verify that this velocity field is solution of the continuity equation:

∂xU +
1

r
∂r(r V ) = 0. (32)

For the turbulent round jet, the RANS equations are given with a good approximation
by their boundary layer form. The RANS axial equation writes:

U ∂xU + V ∂rU = −1

r
∂r(r〈u v〉), (33)

while the radial equation reduces to p̄+ 〈v2〉 = cst, where p̄ is the averaged pressure.
The Reynolds averaged Navier-Stokes-Boussinesq equations become :

U ∂xU + V ∂rU −
1

r
∂r(r νT ∂rU) = 0, (34)

which, when νT = constant, can be simplified to:

U ∂xU + V ∂rU − νT
1

r
∂r(r ∂rU) = 0. (35)

Writing the velocities under the form:

U =
g

x
× 1

(1 + 2 z2)2
, V =

g

x
× α z (1− 2 z2)

2(1 + 2 z2)2
, (36)

where z = η/α, and applying the averaged axial NS equation Eq. (35) to these velocity
profiles, one finds that this flow is indeed an exact solution of the RANS equations provided
the turbulent viscosity takes the value:

νT = g
α2

16
. (37)
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Figure 6: Normalized profile of the variable turbulent viscosity 16νT /gα
2, where νT =

−σuv/∂rU , in function of the reduced and scaled radial distance, z = r/(αx). The dashed
black curves are the turbulent viscosity derived from the experimental data of Panchapakesan
and Lumley [19] and Hussein et al [7], and the black continuous curve is their mean. The red
curve is its theoretical prediction from a matched solution of the RANS equations (Sec. 3.3 and
Appendix B). All curves are normalized by the theoretical expectation derived from the NS axial
equation, α2/16 = 1/400 for α = 0.2. It is close to constant in the central region of the jet, up
to z ≈ 0.6, i.e. η ≈ 0.12.

With the experimental values of the opening parameter α = 0.2, one obtains α2/16 =
1/400 = 0.0025. This value of νT is in remarkable agreement with its direct measurement
at the center of the jet [2]. As can be seen in Fig. 6, the turbulent viscosity is indeed
experimentally observed to have this almost constant value 0.0025 in the inner 60% of the
jet. Then it decreases and vanishes around the turbulent-laminar transition, as could be
expected. This is a strong argument in support of the validity of the Boussinesq model
for the central region of the turbulent round jet, and more generally for a description in
terms of a variable turbulent viscosity.

3.2 Matched precise solution of RANS equations with variable
turbulent viscosity

In what follows, we will need a precise solution for the radial profiles of the turbulent
jet average velocities, including the boundary of the jet and beyond. The above constant
viscosity solution is not enough, since it agrees with experimental data only in the central
region of the jet, η < 0.1, while it departs strongly from them when approaching its
frontier. Moreover, it relies on a simplifying assumption (model) while we need an exact
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solution of the RANS equations. Such a solution can be expressed in terms of a variable
turbulent viscosity. As we shall see, it leads to an almost constant value of νT in the
center region of the jet, thus supporting the turbulent viscosity model in this region.
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Figure 7: Radial profiles of Utot(η), Vtot(η) and σuvtot(η) in function of the scaled radial
distance η = r/x. They are precise solutions of the RANS equations constructed by matching
the velocities and their derivatives to the center solution (with constant turbulent viscosity)
and to the exact solution of NS equations for the laminar flow exterior to the jet (see text and
Appendix A).

Such a precise solution of the RANS equations can be constructed throughout the
whole jet by matching local solutions for U(η) and their derivatives to the central (constant
νT ) solution. Then V (η) is derived from the continuity equation and the Reynolds shear
stress from U and V .

We have achieved this in four steps: (1) central solution (a), νT =cst; (2) solution
exterior to the jet (d) where the flow becomes laminar and irrotational; (3) quadratic
solution (c) matched to the exterior solution; (4) linear solution (b) added between the
central and quadratic solutions in order to match not only the velocities but also their
derivatives.

In the central region of the jet, the solution is, as we have previously seen (omitting
in the following for simplification the g/x scaling contribution which is in factor to all
expressions):

Ua =
1

(1 + 2 (η/α)2)2
, Va =

η (1− 2 (η/α)2)

2 (1 + 2 (η/α)2)2
. (38)

The next law is a linear solution for U(η). It can be matched to the central solution only
at its inflexion point, which is given by ηab = α/

√
10 ≈ 0.065:

Ub = A0 + A1
η

α
, Vb =

Kb

η
+ η

(
A0

2
+

2A1

3

η

α

)
. (39)

Then the profile of U(η) can be very well fitted in the outer part of the jet by a parabolic
profile:

Uc =
α2

4
+A2

( η
α
− q
)2
, Vc =

Kc α
2

η
+

η

12

(
3α2

2
+ A2

(
6 q2 − 16 q

η

α
+ 9

η2

α2

))
. (40)
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The matching point between Ub and Uc is ηbc = −(A3/2A1)α ≈ 0.085. Finally these
profiles are matched to the velocity profiles of the exterior laminar flow. They have been
determined by Landau [9] from their irrotational character, yielding the exact result:

Ud =
α2
S

4

1 + η2/2√
1 + η2

, Vd =
α2
S

4

1

η

(
Kd + 1− 1√

1 + η2

)
, (41)

where Kd is a matching constant whose value is given in Appendix A. To order O(η2)
(which is precise enough for our purpose), it is simplified as:

Ud =
α2
S

4
, Vd =

α2
S

4η

(
Kd +

η2

2

)
. (42)

The matching point between the interior and exterior regions of the jet is given by the
turbulent-laminar transition, which we denote ηcd = αS = q α. The value of q is experi-
mentally found to be q = 1.15, i.e. the transition is observed to happen at η = 0.235 for
α = 0.205, which is the best fit for this transition in U , V and σuv from Hussein et al
[HCG] [7] and Panchapakesan and Lumley [PL] [19] experimental data. It is noticeable
that this value is also, as could be expected, just the limit experimentally found for the
turbulent jet concentration profile [27]. The question of the theoretical prediction of this
profile will be considered in a forthcoming paper [Nottale and Lehner, in preparation].
The detailed expressions for the various constants are given in Appendix A.

The resulting profiles are displayed in Fig. 7. We can see in Figs. 23, 24 and 25 of
Appendix A that they provide an excellent account of experimental measurement results,
the only fitted constants being the jet parameter α and the ratio q = αS/α. Both
parameters will be theoretically predicted in the following;

The theoretical profile of the variable turbulent viscosity can be derived from these re-
lations as νT = −σuv/∂rU , and is in satisfying agreement with the variable νT constructed
from the experimental data (Fig. 6).

3.3 Theoretical prediction of the turbulent-laminar transition
angle

The previous solution does not allow us to get a theoretical prediction for the parameter
q = αS/α, since we have constructed it by a priori matching the constant Landau velocity
US = α2

S/4 of the exterior laminar flow to the inner turbulent solution.

3.3.1 A new matched global solution for mean velocity profiles

We have therefore constructed another solution by still matching the profile of the axial
velocity U(η) and its first derivative U ′(η), but now also its second derivative U ′′(η), at
a radial distance ηk = kα betwen the constant νT solution in the inner region and a
quadratic solution in the outer region of the jet:

Ua =
1

(1 + 2 z2)2
, Ue = B0 +B1z +B2z

2, (43)
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where z = η/α. The resulting matched solution is given in more detail in Appendix B.
We show in Fig. 8 the behavior of the velocity profile around the jet edge in function of
the matching parameter k. The minimal value of U , Umin = B0 −B2

1/4B2 is given by

Umin =
6k2 − 1

1 + 2k2)(10k2 − 1)
. (44)

We recognize in the divergent point k = 1/
√

10 of this expression a limit which corresponds
to the inflexion point of the central region solution Ua. The minimal value of U is naturally
constrained by 0 < Umin < US. This yields

√
1/6 < k < 0.411, which corresponds to

1.1 < q < 1.2. We can see in Fig. 8 that the matching with the range permitted for the
laminar solution actually occurs between q ≈ 1.09 and q ≈ 1.16, in agreement with the
experimentally observed values.

More precisely, the relation between k and q, given by the matching equation U(q) =
q2α2/4 at the turbulent-laminar transition, is well approximated by the simple linear law:

q =
50

3
k − 5.703, (45)

thanks to a weak dependence in function of α. This relation correctly yields k =
(0.4082, 0.4097, 0.4112) for q = (1.10, 1.125, 1.15).
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Figure 8: Axial velocity profile around the jet edge for solutions of the RANS equations matched
at η = kα. We show the resulting profile for three values of the matching parameter k =

√
1/6 =

0.40825 (magenta curve), 0.410 (black curve), and 0.4115 (green curve). The horizontal gray
lines give the range of possible values for the Landau laminar velocity US = α2

S/4 = q2α2/4. We
find that the parameter q is therefore constrained in the range ≈ (1.10− 1.15).
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3.3.2 Comparison with experimental and numerical data

Let us compare this theoretical prediction qth = 1.125 ± 0.025 with estimates from data
of laboratory and numerical experiments.

A first estimate of the ratio q is given by the Gaussian fits of the velocity, U/U0 =
exp(−KU η

2) and concentration, C/C0 = exp(−KC η
2), profiles. Indeed, these expressions

can be put under the standard form exp[−0.5(η/η0)
2], defining a characteristic extent

η0 ∝ 1/
√
K, so that q =

√
KU/KC . The spatial extent of the jet is well established to be

larger than its velocity extent. One finds values of KU around 75 [3] while KC ≈ 60 [27],
yielding q =

√
KU/KC = 1.12. DNS and LES yield similar values [5, 6, 28]. We have

fitted various combinations of experimental and numerical data and have confirmed these
estimates: KU = 77.2 ± 0.8 (PL data); KU = 72.8 ± 1.2 (HCG data); KU = 75.9 ± 0.7
(joined HCG and PL data); KU = 76.1 (DNS [5]); KU = 74.0± 0.5 (LES [28]).
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Figure 9: Axial mean velocity in a turbulent round jet. The black points are experimental
data from PL [19], the blue points from HCG [7]; the red points are LES data from Aiyer and
Meneveau [28]; the green dashed curve is the DNS from Boersma et al. [5]. The black curve is a
fit of these data by the matched solution of the RANS equations of Sec. 3.2 with α = 0.21 and
q = 1.12, yielding αS = 0.235.

Another approach consists of comparing directly the experimental data with the theo-
retical expectation on the edge of the jet. It has been shown by Landau [9] that the value
of U at the transition η = αS between the turbulent and laminar regions is US = α2

S/4
and that it practically keeps this value in the laminar region. The mean value of U for
η ≥ 0.22 in PL data is US = 0.014 ± 0.002, yielding a reasonable although imprecise
estimate αS = 0.235± 0.030.

Therefore, a far better way to obtain αS and q consists of fitting the parabolic shape
of the axial velocity in the outer part of the jet, η >≈ 0.085. We have performed such a
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fit with various limits and found a stable and now precise result: αS = 0.232±0.004 from
joined HCG and PL data.

On the other side, the value of α can be determined by fitting the center solution Ua
(which actually yields its definition) in the inner part of the jet. The resulting values are
rather stable in function of the chosen limit η = 0.05 to 0.12. One finds values ranging
from (0.204 ± 0.005) in the very center, to (0.211 ± 0.002) up to η = 0.12, leading to
a common final estimate α = 0.207 ± 0.004. With the previous value of αS, we obtain
q = 0.121± 0.029, which agrees very well with our theoretical expectation.

We have finally directly performed a least-square fit of experimental and numerical
data by the matched RANS solution of Sec. 3.2 and found a similar result: (α = 0.211,
q = 1.12, implying αS = 0.236) from HCG and PL data, and (α = 0.211, q = 1.15)
from LES data. We show in Fig. 9 that Laboratory and numerical experimental results
compare remarkably well with our matched theoretical solution of the RANS equations
for α = 0.21 (for which we shall obtain a purely theoretical prediction in what follows)
and the above theoretical prediction q = 1.12 of the ratio αS/α.

4 Scale-relativity theory of turbulence: a short re-

minder

4.1 Principle of relativity of scales

The theory of scale-relativity and fractal space-time was initially constructed in order to
obtain a geometric foundation of quantum mechanics (QM) from first principles [17, 29,
18]. This has been achieved by deriving all the QM postulates from the only principle
of relativity, provided it is applied to position, orientation and motion (as in Galileo,
Poincaré and Einstein theories of relativity), but also to scales, i.e. including resolution
transformations of the coordinate system [29].

The theory is based on the relaxation of the hypothesis of space-time differentiability.
One can prove that a continuous but non-differentiable space (more generally space-time)
is fractal, under a general meaning going beyond mere self-similarity: namely, lengths
become explicitly dependent on the resolution scale and divergent when the resolution
interval tends to zero [17, 18].

This theorem is the basis for the scale-relativity method of dealing with non-differentiability:
the various physical functions become fractal functions, i.e. explicitly scale-dependent
functions f = f(t, τ), so that one can define a derivative at any given scale τ , f ′(t, τ) =
∂tf(t, τ), even though it no longer exists at the limit t → 0. In other words, while the
standard differentiation method keeps only the limit lim[f(t)]dt→0 and thus fails when
this limit does not exist, the scale-relativity method keeps all the history of what happens
when dt → 0. We lose nothing in this way, since when the limit exists it is included
in the description, while when it does not exist we still keep a description tool which
is physically effective, i.e. which works at any finite resolution scale, as experimentally
needed (while the null resolution interval is a mathematical concept which has actually
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no physical meaning).
As we shall briefly recall in what follows, by constructing a scale-covariant derivative

d̂/dt which accounts for the geometric effects of a fractal space, we have written the
equation of motion in such a space as a geodesics equation, i.e. under the form of Galilean
free inertial motion, d̂V/dt = 0. This equation can be generalized to the Newtonian

form d̂V/dt = −∇φ in the presence of an exterior potential (which can itself be the
manifestation of an inner geometric property [30, 31, 32]) and then integrated under the
form of a Schrödinger-type equation [17, 18].

4.2 Geodesics equations

The non-differentiability and fractality of coordinates implies at least three consequences
[17, 18]:
(1) The number of geodesics is infinite. Their description naturally becomes non-deterministic
and probabilistic. The ensemble of these paths therefore constitutes a (virtual) fluid,
which is characterized by its velocity field.
(2) Each geodesic is itself fractal with fractal dimension DF = 2 [33], corresponding to
the Markovian nature of motion in a fractal space.
(3) The non-differentiability also implies a two-valuedness of the (scale-dependent) deriva-
tive of the coordinates, (V+, V−),. Indeed, one needs one point to define a position, but
two points to define a velocity, so that two definitions now exist (the second point be-
ing before or after the position point), which are no longer invariant under the reflexion
transformation |dt| → −|dt| in the non-differentiable case [17].

These three properties of motion in a fractal space lead to describing the velocity field
of geodesics in terms of a complex fractal function Ṽ = (V+ + V−)/2− i(V+− V−)/2. The
(+) and (−) velocity fields can themselves be decomposed in terms of a differentiable part
v± and of a fractal (divergent) fluctuation of zero mean w±, i.e., V± = v±+w±. Therefore

the same is true for the full complex velocity field, Ṽ = V(x, y, z, t) +W(x, y, z, t, dt).
The elementary displacements along these geodesics can be described in a stochastic

way, dX± = d±x+ dξ±, with

d±x = v± dt, dξ± = ζ±
√

2D |dt|1/2. (46)

Here ζ± represents a dimensionless stochastic variable such that <ζ±>= 0 and <ζ2±>= 1.
The parameter D characterizes the amplitude of fractal fluctuations.

These various effects can be combined in terms of a total (“scale-covariant”) derivative
operator [17] which generalizes to a fractal space the Euler derivative ∂t + V.∇, adding
two imaginary terms to it:

d̂

dt
=

∂

∂t
+ V .∇− iD∆, (47)

where V = V − i U . Newton’s fundamental equation of dynamics becomes, when it is
written in terms of this operator

m
d̂

dt
V = −∇φ. (48)
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In the absence of an exterior field φ, this is a geodesic equation (i.e., a free inertial
Galilean-type equation),

d̂

dt
V =

(
∂

∂t
+ V .∇− iD∆

)
V = 0. (49)

4.3 Macroscopic Schrödinger equation

The final step consists of making a change of variable in which one connects the velocity
field V = V − i U to a complex function ψ = eiS/S0 (where S is the action, now complex
because the velocity field is itself complex), according to the relation

mV = −i S0∇ lnψ. (50)

This equation is but the standard relation between momentum and action P = ∇S, that
provides a new expression (now exact) for the principle of correspondance. The parameter
S0 is a constant for the system considered (S0 = ~ in standard quantum mechanics). This
relation plays a fundamental role in the scale-relativity theory, since it translate the
geometric description (left hand side, in terms of velocity field of geodesics of the fractal
space-time) into the standard QM algebraic description (right hand side, wave function).

Thanks to this change of variables, the equation of motion can be integrated under
the form of a Schrödinger equation [17, 18], generalized to a constant S0 which may be
different from ~,

D2∆ψ + iD ∂

∂t
ψ − φ

2m
ψ = 0, (51)

where D is another expression for S0 according to the relation:

S0 = 2mD, (52)

which is just another form for the Compton relation λc = ~/mc in standard QM.
By setting finally ψ =

√
P × eiθ, with V = 2D∇θ, one can show [29, 18] that P = |ψ|2

gives the number density of virtual geodesics. This function becomes naturally a density of
probability when the geodesics are manifested in terms of effective particles. The function
ψ, being solution of the Schrödinger equation and subjected to the Born postulate and to
the Compton relation, owns therefore all the properties of a wave function.

4.4 Application to turbulence in velocity-space

4.4.1 Conditions for Schrödinger equation

The transformation and integration of the fundamental equation of dynamics into a
Schrödinger equation in nondifferentiable and continuous (therefore fractal) geometry is
a general mathematical result which does not depend on the nature of the variables. It
just relies on the properties of the derivative of a fractal variable (in the new sense defined
hereabove) and on its dynamics described by its second order derivative.
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In the case of turbulence, the position coordinates are, a priori, not fractal inside
the relevant scale range, i.e. between the Kolmogorov dissipative scale and the integral
scale. However, the velocity of fluid particles becomes fractal according to Komogorov
K41 scaling law. This has led de Montera [14] to suggest applying the scale-relativity
theory to turbulence in v-space, i.e. to the velocity v as coordinate and the acceleration
a as its derivative.

This application relies on the fact that the various conditions on which the derivation
of a Schrödinger equation is based are satisfied in the inertial range of a turbulent fluid
[16]:
(1) The number of possible trajectories of a fluid particle (or of a reliable Lagrangian
tracer) is infinite, due to the highly chaotic nature of turbulence.
(2) The Kolmogorov K41 scaling δv ∼ δt1/2 [23] in the inertial range means that the
trajectories in v-space are fractal of dimension 2. There is no strict non-differentiability,
since this range is lowerly limited by the Kolmogorov time-scale τη. But its effects are
manifest through the recognized scale-dependence and divergence of accelerations toward
small scales, a ∼ τ−1/2 down to τ = τη.
(3) The non-differentiability also implies a two-valuedness of the (scale-dependent) deriva-
tive of the v-coordinates, i.e. of accelerations (A+, A−), from which one constructs the
complex variable A = (A+ + A−)/2 − i (A+ − A−)/2. We have shown that this behav-
ior is manifest in turbulence data [16], in which one finds that the accelerations a and
their increments da are of the same order of size, contrarily to the basic assumption of
differential calculus, da� a.
(4) The motion is Newtonian, i.e., the acceleration is proportional to the force applied
(even though there are also non-Newtonian contributions like viscosity).
(5) The range of scales on which the effective fractal dimension is DF = 2 should be large
enough: this condition is fulfilled for large enough Reynolds numbers, since this range is
simply given by TL/τη = Rλ/2C0, where Rλ =

√
15Re and C0 ≈ 4− 7.

4.4.2 Scale-covariant derivative in velocity-space

The various effects of fractality and non-differentiability can therefore be combined in
terms of a total derivative operator acting in v-space [14, 15, 16]:

d̂

dt
=

∂

∂t
+A.∇v − iDv∆v. (53)

The Navier-Stokes equation (reduced to the Euler equation in the inertial range by
neglecting for the moment the viscous term) writes in Lagrangian form dv/dt = F =
−∇p/%. In the incompressible case considered here, its derivative with respect to time
reads (making % = 1 for simplification of the writing):

da

dt
= −∇ṗ. (54)

In order to account for the various geometric effects of non-differentiability and frac-
tality, one replaces d/dt by the new total derivative operator d̂/dt. One therefore obtains
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a new form of the equation of dynamics in v-space:

d̂

dt
A =

(
∂

∂t
+A.∇v − iDv∆v

)
A = Ḟ , (55)

where F contains the pressure gradient term and possibly any applied external force.
When the force is the v-gradient of a potential φv, we get the equation:

d̂

dt
A = −∇vφv. (56)

Then we introduce a wave function ψv as a re-expression of the action Sv which is
now complex (since the dynamical variables are complex), ψv = eiSv/~v , that can be
decomposed in terms of a modulus and a phase, ψv =

√
Pv × eiθv/~v .

The main point here is that the PDF of velocities is given by the square of the modulus
of the wave function, Pv(v) = |ψv|2, while its phase is linked to the real part of the complex
acceleration through the relation AR = ∇vθv. The constant ~v = 2Dv is therefore the
macroscopic equivalent in v-space of the constant ~ of standard quantum mechanics (more
generally, when m 6= 1, one gets ~v = 2mDv).

This new constant has the same dimensionality, [~v] = [L2T−3], as ε = σ3
v/L. We have

suggested [16] that it can be identified with what is also the most fundamental constant
of the classical description of turbulence [23], namely, the rate ε of transfered energy that
is dissipated at the Kologorov scale (η, τη):

~v = ε. (57)

4.4.3 Schrödinger equation in velocity-space

Finally, the time derivative of the Navier-Stokes equations of fluid dynamics takes, after
integration on v, the form of a macroscopic Schrödinger equation in v-space [17, 31, 14,
15, 16]:

D2
v ∆ψv + iDv

∂

∂t
ψv −

1

2
φv ψv = 0, (58)

with Dv = ~v/2 = ε/2 and with the PDF of velocities given by Pv = |ψv|2.

4.4.4 New acceleration / force component

The complex acceleration field writes, in terms of the wave function,

A = −2iDv ∇v lnψv, (59)

so that we are now able to establish the expressions of A+ and A−:

A+ = +Dv
∂vPv
Pv

+ ∂vθv, A− = −Dv
∂vPv
Pv

+ ∂vθv. (60)
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In many situations which may be relevant to the turbulence case (in particuler in an
harmonic oscillator potential), the solutions of the Schrödinger equation are real [34],
i.e. θv ≈ cst and then ∂vθv ≈ 0. Under this approximation (which is supported by the
experimental data [16]), the new acceleration Aq = (A+ − A−)/2 reduces to:

Aq = ±Dv ∂v lnPv(v), (61)

and it is therefore divergent for the velocities vi which defines the zeros of the local
velocity PDF, Pv = |ψv|2. As we have shown in [16], this acceleration/force component
is responsible for the very large non-Gaussian tails of the acceleration PDF and for the
various manifestations of intermittency in a turbulent fluid.

Let us indeed recall how one can derive in an universal way the turbulent acceleration
PDF from the mere existence of these predicted null minima in the local velocity PDF [15].
In the present framework where velocity is the basic coordinate, the acceleration is some
function a = A(v) of the velocity. Then we can define the inverse of this function, V (a) =
A−1(a). This inverse function may have multiple parts, defined on the various monotonic
parts of A(v). Let us call Vk(a) these parts. The resulting probability distribution of
acceleration is given by the inversion formula:

Pa(a) =
∑
k

1

|A′[Vk(a)]|
Pv[Vk(a)], (62)

where the sum is done on each of the monotonic parts of the inverse function V = A−1.
In the simple case when there is only one part, this formula becomes:

Pa(a) =
Pv[V (a)]

|A′[V (a)]|
. (63)

In the macroquantum-type approach advocated here, the velocity PDF is the square of
the modulus of a wave function, Pv(v) = |ψv(v)|2. This wave function may in general be
positive or negative, and when it crosses ψv = 0 at some value of the velocity vi, it will
usually behave locally as ψv(vi) = k(v − vi). Therefore the velocity PDF will generally
behave in the minima as

Pv(v) ∝ (v − vi)2. (64)

We take vi = 0 to simplify the argument, knowing that the final acceleration PDF does
not depend on their values, but only on the parabolic shape of the local velocity PDF.
From Pv(v) = (v/v0)

2 and Eq. 61, one obtains A(v) = ±2Dv/v, then V (a) = ±2Dv/a.
Therefore, applying Eq. 63 one derives the following asymptotic acceleration PDF [15]:

Pa(a) =
(2Dv)3

v20

1

a4
. (65)

We emphasize that this theoretical prediction of the basic form of the acceleration PDF
is not the result of a model or of an hypothesis concerning the underlying statistics, but
it is directly derived from the equations of fluid mechanics in which one has taken into
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account the fundamental effects of turbulence. We have shown in Ref. [16] that this basic
law can be improved by including the effects of the dissipative Kolmogorov scale and of
parameter correlations leading to the emergence of an exponential cut-off in the tails,
yielding a perfect fit to the experimental data.

4.4.5 Harmonic oscillator potential in velocity-space

The new formulation involving the derivative of the Navier-Stokes equations has intro-
duced the time derivative of a force. It is therefore important to study in more details
the nature of such a derivated force. We shall now prove that when the force in x-space
derives from an x-potential, the force in v-space also derives, now, from a v-potential.

Let φ be the potential in x-space, with Fi = −∂iφ for xi = (x, y, z). The force in
v-space is therefore

Ḟi = − d

dt
(∂iφ) = −∂i

d

dt
φ[x(t), y(t), z(t)], (66)

Since vi = dxi/dt, we obtain for the first component of the force Ḟ = Fv:

(Fv)x = − ∂2φ

∂x ∂t
− ∂2φ

∂x2
vx −

∂2φ

∂x ∂y
vy −

∂2φ

∂x ∂z
vz, (67)

and similar expressions for the two other components.
Therefore we find that this v-force derives in a universal way from a v-potential, which

reads (adopting Einstein’s notation about indices summation)

φv = (∂t∂iφ) vi +
1

2
(∂i∂jφ) vi vj. (68)

In a more explicit way, it writes in dimension 2:

φv(vx, vy) =

(
∂2φ

∂x ∂t
vx +

∂2φ

∂y ∂t
vy

)
+

1

2

(
∂2φ

∂x2
v2x + 2

∂2φ

∂x ∂y
vx vy +

∂2φ

∂y2
v2y

)
, (69)

with similar terms involving the third coordinate in dimension 3.
This is in particular true for the pressure gradient in the NS equation, in which the

pressure itself plays the role of a potential energy in the incompressible case (while this
role is played by the enthalpy when the fluid is compressible). The pressure can be decom-
posed, under the Reynolds method, in terms of a mean pressure p̄, which is differentiable
and of a turbulent fluctuation δp which is non-differentiable and of zero mean. In the
derivated Navier-Stokes equations, we obtain a force −∇vpv in terms of v-potential pv
coming from the mean pressure p̄, which writes in 2D:

φv(vx, vy) =

(
∂2p̄

∂x ∂t
vx +

∂2p̄

∂y ∂t
vy

)
+

1

2

(
∂2p̄

∂x2
v2x + 2

∂2p̄

∂x ∂y
vx vy +

∂2p̄

∂y2
v2y

)
, (70)

with similar z terms in 3D.
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In the stationary case the mean pressure is independant of time, and the potential
energy reduces to its pure harmonic oscillator form.

Another approch consists in taking solutions which are only local. As concerns the
specific question considered here, namely, the shape of the potential which will appear in
the macroscopic Schrödinger equation, the main point is that the Schrödinger equation
Eq. (58) is written and holds at the integral scale and beyond, since its very construction
relies on the cascade of eddies of the K41 inertial regime which plays the role of a mi-
croscopic theory for these (relatively) large scales. The potential φv which appears in it
is therefore defined at this scale, which means that its coefficients are averaged over the
scale ∼ TL for the time coordinate and ∼ L for the space coordinates and can therefore
be considered as constant over these space and time scales.

A final question to be discussed is the fact that the force expression from which we
started, F = −∇p/% is valid in Eulerian coordinates, while its expression in Lagrangian
coordinates has a more complicated form involving a Jacobian transform. However, our
final result in v-space can be expressed in terms of the velocity components Vi alone, which
now play the role of primary coordinates. Such a force depending just on the coordinates
therefore applies both to the Eulerian and Lagrangian form of the Navier-Stokes equations
(and their derivative).

4.5 Solution in principle of the closure problem

The completion in the scale-relativity theory framework of the classical fluid mechanics
equations by a macroscopic Schrödinger equation (which is just a prime integral of the
derivated NS equations under turbulent conditions) solves in principle the closure problem.

Indeed, there are six unknown functions in the RANS equations, U , V , p̄, σuv, σu
and σv. Three of them can be derived from the two RANS equations and the continuity
equation, e.g. U , V and p̄. The v-Schrödinger equation is solved in terms of a wave
function ψv, whose squared modulus yields the PDF of turbulent velocity fluctuations,
|ψv|2 = P (u, v). From this PDF, the Reynolds stresses can then be calculated as integrals
〈u2〉, 〈u v〉 and 〈v2〉.

In practice, the situation is somewhat more complicated for the turbulent round jet.
Thanks to its self-similar character, the RANS and continuity equations yield solutions
for U , V and σuv and imply the relation p̄ = −σ2

v (up to small correction terms that we
have calculated hereabove). But, despite this relation, the pressure remains unknown in
itself, while it is the main ingredient entering in the v-Schrödinger equation (since the
potential energy is given by second order derivatives of pressure). As a consequence, the
Reynolds stresses cannot be directly calculated.

The problem can nevertheless be solved thanks to the relation p̄ = −σ2
v . Owing to

this identification, the Reynolds stress σ2
v enters in the left-hand-side of the v-Schrödinger

equation as an unknown whose derivatives define the potential energy. Then it can also
be derived from the solutions of this Schrödinger equation. Namely, the wave functions
of the various (ground and excited) states, ψvs(u, v), yield the probability density of
velocity fluctuations for each state, Pvs(u, v) = |ψvs(u, v)|2, from which the corresponding
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variances σ2
vs can be calculated as:

σ2
vs =

∫ +∞

−∞

∫ +∞

−∞
u2 Pvs(u, v) du dv, (71)

σuvs =

∫ +∞

−∞

∫ +∞

−∞
u v Pvs(u, v) du dv, (72)

σ2
us =

∫ +∞

−∞

∫ +∞

−∞
v2 Pvs(u, v) du dv, (73)

where Pvs(u, v) is normalized to one.
Then the final variance is the sum of these variances, e.g, σ2

v = Σs ps σ
2
vs, weighted by

the probability rate ps of each state (s) as given by statistical physics (possibly corrected
for the existence of offsets, i.e. of a fluctuating non null mean velocity). In practice
we shall simply use in the present paper the fact that the potential is of the harmonic
oscillator type for relating the final variance to the ground state variance. This is rendered
possible by the fact that the QHO solutions are given by products of Hermite polynomials
by the ground state Gaussian wave function. This allows us to write differental equations
of which the Reynolds stress is solution (and therefore also the pressure).

Finally, thanks to this method, we shall actually obtain a solution of the closure
problem for the turbulent round jet, at least in its central region. Some problems remain
in its edge region, which we aim to study in more detail in a forthcoming work.

5 Scale-relativity theory of the turbulent jet in velocity-

space

5.1 Method

Let us now apply the scale-relativity theory to the turbulent jet. The total velocity (mean
plus fluctuations) is given by Ut = U + u, Vt = V + v and Wt = w. The mean velocities
U and V are fixed at a given spatial point (x, r) and W = 0, in the same way as the
covariances 〈uw〉 = 〈vw〉 = 0. In a plane x = cst, there is full isotropy of the motion so
that one expects 〈w2〉 = 〈v2〉, which is fairly supported by experimental measurements
[2, 7, 19]. We can therefore write an equation for the only variables u and v, from which
the full covariance matrix can be derived.

The time-derivated Navier-Stokes equations are transformed into a Schrödinger-type
equation which reads in its stationary form (in Cartesian coordinates):

∂u∂u ψv + ∂v∂v ψv +
2

~2V
(Ev − φv)ψv = 0, (74)

where ~V = ε is the macroscopic equivalent of the Planck constant in v-space. As we have
previously seen, it can be identified with the turbulent K41 energy dissipation rate [16].
The plane and the round jet share the same equation under this description mode, where

27



v is here a 2D radial velocity in the round turbulent jet while in the case of the plane jet,
v is the 1D velocity fluctuation perpendicular to the slit.

In order to obtain solutions of this v-Schrödinger equation for the turbulent jet, we
need to know the v-potential φv. It is given, as we have proved hereabove, by second
order derivatives of the mean pressure, namely,

φv =
1

2
(kuu

2 + 2kuvu v + kvv
2), (75)

where
ku = ∂x∂xp̄, kuv = ∂x∂rp̄, kv = ∂r∂rp̄, (76)

since p̄ is time-independent. We assume in what follows that the flow is incompressible,
which allows us to simplify the writing by taking a density % = 1.

The three coefficients are functions of x and r, i.e., of x and the variable η = r/x
which accounts for the scaling properties of the jet. For a given position (x, η) inside
the jet, they are constant and the Schrödinger equation yields the PDF Pv = |ψv|2 of the
velocity fluctuations (u, v) at that point.

The mean pressure of the turbulent jet is given by the solution of the r-RANS equation,
which reduces to ∂r(p̄+ σ2

v) = 0, i.e.:

p̄ = p̄0(x)− σ2
v . (77)

From the general scaling laws of the jet we know that p0 and σ2
v vary in terms of the axial

coordinate x (defined from the virtual origin of the conic shape of the jet) as 1/x2, so
that we can write the mean pressure under the form:

p̄(x, η) =
g2

x2
(p̄0 + pη(η)) =

g2

x2
(p0 µ

2 − σvη(η)2), (78)

where p0 is a purely numerical constant, σvη is the scaling part of the radial Reynolds
stress (without its x dependence) which depends only on η = r/x, and µ is its amplitude
on the centerline of the jet η = 0. From now on we shall consider only the η-dependent
parts of the various quantities (velocities, Reynolds stresses, pressure,..), which amounts
to make g/x = 1 in their expressions.

The potential in the v-Schrödinger equation is that of two correlated quantum har-
monic oscillators. The excited solutions of these QHOs are given by the product of a
Gaussian function and of Hermite polynomials. They are characterized by the existence
of velocity values vi where the probability density is null, Pv(vi) = |ψv|2(vi) = 0. These
zeros create a divergent acceleration Aq = ±Dv ∂v lnPv which, as we have recalled here-
above, yields an explanation for intermittency and for the very large non-Gaussian tails
∼ a−4 observed in the acceleration PDF of turbulent fluids [16]. The ground state is given
by the same Gaussian function that is involved in the excited state solutions (multiplied
by Hermite polynomials).

Owing to the QHO nature of the potential, the ground state solution is given by a
normal distribution (in the case when it is attractive for both v and u), which can be
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written under the form:

ψv = exp

(
−1

4

u2

s2u
+
ρ

2

u

su

v

sv
− 1

4

v2

s2v

)
, (79)

times a normalization factor. From the probability density Pv = |ψv|2 we can calculate
the velocity variances and covariance:

σ2
u =

s2u
1− ρ2

, σ2
v =

s2v
1− ρ2

, ρ =
σuv
σuσv

. (80)

Expressing the coefficients {ku, kuv, kv} in terms of the η part pη(η) of the mean
pressure [p̄ = (g/x)2pη], and adding the subscript F in order to specify that we deal here
with the fundamental level (ground state) solution, we find :

kv = ∂η∂ηpη =
1

4σ2
vF (1− ρ2F )2

(
~2v
σ2
vF

+ ρ2F
~2u
σ2
uF

)
, (81)

kuv = −(3 ∂ηpη + η ∂η∂ηpη) = − ρF
4σuF σvF (1− ρ2F )2

(
~2u
σ2
uF

+
~2v
σ2
vF

)
, (82)

ku = 6(p̄0 + pη) + 6 η ∂ηpη + η2 ∂η∂ηpη =
1

4σ2
uF (1− ρ2F )2

(
~2u
σ2
uF

+ ρ2F
~2v
σ2
vF

)
, (83)

where ρF is the correlation coefficient of the ground, and where we have temporarily
introduced two constants ~u and ~v for generality. As we shall see in the following, the
unicity of this macroscopic Planck-type constant, ~V = ~v = ~u, plays a leading role in
our demonstration, since it allows us to relate the space and velocity anisotropies of the
jet.

One can recombine these equations and simplify them under the form:

∂η∂ησ
2
v = −kv, ∂ησ

2
v =

1

3
(kuv + η kv), σ2

v = p̄0 −
1

6
(ku + 2 η kuv + η2kv). (84)

5.2 Theoretical prediction of the ratio between axial and radial
Reynolds stresses

We know that the macroscopic Planck-type constant in v-space is ~V ∝ ε, where ε is the
kinetic energy dissipation rate and we have moreover suggested that they are actually
identical. Two different forms can be given to this constant along the axial and radial
directions, according to the standard K41 relation between the standard deviation of
velocity fluctuations and length scales:

~u =
σ3
u

Lu
, ~v =

σ3
v

Lv
, (85)

where Lu and Lv are characteristic length-scales respectively along the x and r directions.
If ~V = ε, they are just the integral correlation lengths. However this identification is not
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necessary in what follows since only their ratio will be used. It is therefore sufficient to
know that they are proportional to the integral length-scales. Let us set:

R = σu/σv, f = Lu/Lv. (86)

We have recalled in Sec. 2.2.4 that the ratio R between the axial and radial turbulent
velocity dispersions is expected to be almost constant according to Tennekes and Lumley
[3] (see Fig. 3). Experimental data supports this expectation, yielding R ≈ 1.3− 1.4.

The Schrödinger equation has been obtained under the K41 scaling, corresponding to
universal fractal dimension DF = 2 in v-space, so that we expect the v-Planck macroscopic
constant to be unique, i.e., ~V = ~u = ~v. Therefore the anisotropy ratio f = Lu/Lv is
related to the turbulent intensity ratio R = σu/σv as:

f =
Lu
Lv

=

(
σu
σv

)3

= R3. (87)

We know that the jet is fundamentally anisotropic: its full extension along the radial
r coordinate is 2α times its length along the axial x coordinate, and we therefore expect
the constant f to manifest this anisotropy, i.e.,

f =
1

2α
≈ 2.5. (88)

This expectation is very well verified by experimental data, according to the measurements
of Wygnanski and Fieldler [24] (see Fig. 10).

This allows us to derive a theoretical estimate for the velocity dispersion ratio:

R = (2α)−1/3, (89)

which yields R = {1.31, 1.38} for the observed range of opening angles α = {0.19, 0.22}, in
excellent agreement with the experimental data (see Fig. 3). Therefore the small difference
between the axial and radial turbulent velocities with respect to the K41 prediction of
full isotropy can be attributed to the strong anisotropy of the turbulent round jet.

Reversely, when we shall obtain a theoretical prediction for the R ratio (see next
section 5.4), the expected value of α will be derived as:

α =
1

2R3
. (90)

5.3 Relation between the radial Reynolds stress and the velocity
variance of the normal state

In the scale-relativity picture, the local velocity PDF of a turbulent fluid is expected to
be given by Pv = |ψv|2, where the ψv’s are solutions of the QHO Schrödinger equation
written in v-space. We have given experimental proofs of such a theoretical prediction
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Figure 10: Measurement of the ratio of integral scales along the axial and radial directions
according to Wygnanski and Fieldler [24]. This ratio is remarkably constant over the entire jet
section and equal to 1/2α = 2.5 as expected.

in Ref. [16] from analysis of data acquired in contra-rotating von Karman flows at high
Reynolds numbers [35].

It is actually possible to decompose any trajectory into sub-trajectories identifiable to
QHOs with well-defined quantum numbers and parameters, and jumping from one set of
parameters to another set. We give in Figs 11 and 12 two examples of trajectories from
Mordant et al. data [35, 36, 37, 38]. We can clearly identify both quantum-like behav-
ior and mean corresponding classical behavior in these trajectories, as can be expected
from Ehrenfest theorem. The velocity averaged over time-scales τ >≈ TL (at which the
acceleration PDF itself becomes Gaussian [35]) is given by a classical harmonic oscilla-
tor (CHO), while its full PDF (for |a| < σa) including fluctuations is clearly given by
a quantum harmonic oscillator PDF (QHO), respectively with quantum numbers n = 2
and n = 3 (with also damping in the second example). This coexistence of the classical
and quantum HO’s allows one to identify the various constants (in particular ~v) and
parameters (ωv, the offset v0 etc.) describing locally the trajectory. We complete the
proof by another example, now of 2D trajectory (Fig. 13) compared to a simulation of
trajectory in a 2D QHO with quantum numbers (nx, ny) = (1, 1).

The probability to have a given excited state is given, according to the principles
of statistical physics, by a Gibbs distribution. In the QHO case, this leads to a global
Gaussian velocity PDF given by the Bloch formula [40]:

dw = exp

[
−ωv
~v

tanh

(
~vωv
2Tv

)
v2
]
dv (91)
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Figure 11: Example of both classical and macroquantum motion of a seed particle in a turbulent
flow (Mordant’s experiment man290501, part of segment Seg3398 [35, 38]). Top figure: velocity
in function of time. The red dashed curve is the fit of the mean velocity (averaged over time-scales
δT = 2TL) by a classical damped harmonic oscillator (CDHO). Down figure: observed PDF of
velocities (blue histogram), for a < σa. It is compared to the expected PDF for a quantum
damped harmonic oscillator (QDHO) with n = 3 (red curve); the PDF of the corresponding
quantum undamped HO (black dashed curve); and the PDF of the underlying (mean) CDHO
(thin black curve).

(times a normalization factor). Here Tv is the equivalent of a temperature, but now
defined in v-space, so that we expect it to be proportional to the acceleration variance,
Tv = kB σ

2
a.

This result yields an explanation for the known Gaussian global distribution of tur-
bulent velocities [39, 38], which strongly contrasts with its highly non-Gaussian character
at the local level [16].

When the v-temperature Tv � ~vωv (i.e. for a large Rλ), one recovers the classical
Gaussian law with a variance σ2

v = Tv/ω
2
v . When the temperature is small, Tv � ~vωv,
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Figure 12: Another example of turbulent trajectory (of duration 5TL, extract from segment
Seg3398 of Mordant’s experiment #3-man290501 [35, 38]) well described by a QHO. Top figure:
velocity in function of time (blue curve). The velocity averaged over τ ≈ TL is given by a
classical HO (red dashed curve). Down figure: velocity PDF for the same turbulent trajectory,
for accelerations |a| < σa (recall that one expects a macroquantum to classical transition for
accelerations larger than their standard error σa [16]). It is remarkably well fitted by a QHO
PDF with quantum number n = 2, ~v = 4.5± 0.5 and ωv = 53. This value of ~v is compatible
with ε = 21 [38] once taking account of the large particle size d = 250 µm.

the oscillator is no longer excited and it therefore remains in its Gaussian normal state.
This means that there are no zero of Pv in this case and therefore no divergence of the
acceleration Aq, no intermittency and no large tails of the acceleration PDF. This case can
be understood as the transition to turbulence. Therefore the fully developed turbulent
case corresponds to Tv = σ2

a � ~vωv and to σ2
v ≈ Tv/ω

2
v .
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Figure 13: Example of 2D trajectory in Mordant [35, 38] data (extract from Seg2D-193 in
experiment man290501-2D) (left figure), compared with a simulation of trajectory in a 2D
quantum harmonic oscillator potential with quantum numbers (nx, ny) = (1, 1) (right figure).

5.4 Theoretical prediction of the turbulent jet opening param-
eter

As reminded hereabove, Tennekes and Lumley [3] have argued that the energy in the
u component differs from that in the v component because the major production term
feeds energy into σ2

u (along the axial direction), so that the energy must leak into σ2
v

(along the radial direction) by inertial interaction. Since the two effects (axial supply
and radial leakage) are determined by the same turbulence dynamics, they conclude that
K = (σ2

u − σ2
v)/(σ

2
u + σ2

v) ≈ cst and that it should be less than unity. This implies that
R = σu/σv ≈ cst and that R > 1.

In what follows, we shall derive the theoretically expected possible values of R by only
using a self-evident property of the turbulent jet which appears clearly in this analysis
and in the governing equations, the mere fact that K ≥ 0, i.e. σu ≥ σv.

Let us now apply this inequality in the scale-relativity framework, where the derivative
of the Navier-Stokes equations take a (macroscopic) quantum form. We have decomposed
the global Gaussian turbulent velocity fluctuations variances σ2

u and σ2
v in terms of two-

dimensional quantized harrmonic oscillators (QHOs), which are known to be defined by
quantum numbers {nu, nv}.

The above inequality, applied on the various excited states of a 2D QHO, simply
becomes nu ≥ nv. As this level of the analysis we take R = cst, in agreement with
Tennekes and Lumley’s argument and with its observed relative variation < ±10% except
on its edge (see Fig. 3). This allows us to consider only the centerline of the jet, where
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Figure 14: Expected distribution of values for the ratio R = σu/σv, derived from the decom-
position of the turbulent fluctuation velocities into QHOs, for a maximum quantum number
nu = 30. The density of points increases for higher R values ∼ 1.4 but the probability of smaller
values ∼ 1.3 is larger according to Gibbs distribution, yielding an average R ≈ 1.34.

the correlation coefficient is null, so that the variances of each of these QHOs is given by

σ2
nu = (2nu + 1)σ2

uF , σ2
nv = (2nv + 1)σ2

vF , (92)

where σ2
uF = ~v/2ωu and σ2

vF = ~v/2ωv are the variances of the normal (ground) state for
the u and v coordinates (the PDFs of which are Gaussian).

Toward the centerline of the jet (η → 0), one has ρF = 2η → 0, the ground state
becomes isotropic and one obtains σuF = σvF .

The global variances will therefore be σ2
u = 〈σ2

ui〉 and σ2
vu = 〈σ2

vi〉, where the mean is
taken on all the QHOs with fluctuating quantum numbers. We find finally:

R2 =
σ2
u

σ2
v

=
〈2nu + 1〉
〈2nv + 1〉

(93)

for the PDF of nu given by the Gibbs distribution and nv = {0, 1, 2, ..., nu}. This result
corresponds to Cartesian coordinates, and it strictly applies to the plane jet. For the
round jet, one jumps to cylindrical coordinates and on gets a hardly different result,
R2 = 〈2nu + 1〉/〈2nv + 2〉. We therefore from now on obtain an explanation for the quasi
identity of the plane jet and turbulent jet opening angles [9].

When the Reynolds number is large enough, this distribution is almost flat (as a first
approximation) and we can take the direct average.

Let us first consider some selected given value of nu. From statistical physics, one
expects only small quantum numbers to play a leading role. For nu = 2, 〈nv〉 = 1 then
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R =
√

5/3 = 1.29; for nu = 3, R =
√

7/4 = 1.32; for nu = 4, R =
√

9/5 = 1.34. These
are just the typical values experimentally obtained in the central region of the jet (see
Fig. 3).

More generally, taking all the values of nu between 1 and (nu)max, we find the R
values given in Fig. 14. They are distributed between R = 1.29 and R = 1.41, which is
compatible with the experimental data (see [19, 7] and Fig. 3). Identifying this interval
with ±2 σ, we obtain Rth = 1.35± 0.03, to be compared to the mean experimental value
from Panchapakesan and Lumley [19] and Hussein et al. [7] data (for η < 0.18, since R falls
down to R = 1 at the edge of the jet where full isotropy is recovered), Rexp = 1.36± 0.04.

From this result and the previous relation R = (2α)−1/3, we derive a theoretical
prediction for the turbulent jet opening parameter α:

α =
1

2R3
= 0.203± 0.013, (94)

which agrees with the experimentally obtained value α ≈ 0.2 − 0.21. The opening angle
αS of the jet in space (defined from the concentration profile) is close to this value (which
characterizes the axial velocity radial profile). As already noticed, their ratio can be
obtained from the turbulent to laminar transition, which yields a factor αS/α = 1.15,
or from Gaussian fits of the concentration and velocity profiles C = exp(−KCη

2) and
U = exp(−KUη

2) with KC ≈ 75 [19] and KC ≈ 60 [27] yielding a compatible value
αS/α =

√
KU/KC=1.12.

Note that the “classical” prediction R =
√

2 would have given a too low value, α =
0.177, so that the quantized nature of the energy (and therefore of the local Reynolds
stresses) plays an essential role in this solution of the turbulent jet puzzle.

This result is still reinforced by accounting for the expected Gibbs distribution of the
QHOs, which favor smaller values of the quantum numbers. The probability for a QHO
to be in a given state of quantum number n can be written as [40]:

w(n) = e−
1
2
(2n+1) ~vω

Tv , (95)

where Tv = kBa
2 is the equivalent of temperature in v-space, ~v = ε = σ3

v/L, ω = 2π/T .
We have found from Mordant data that T = NTL, with N ≈ 6, so that ω ≈ 1/TL. We
can now relate all these constants to Rλ =

√
15Lσv/ν, since σv ∼ R2

λ, σ
2
a ∼ R9

λ and
TL ∼ R−2λ . One finally finds:

~vω
Tv

=

√
15 π C0

kBA0NRλ

, (96)

where C0 and A0 are the two Kolmogorov constants (having values ≈ 4 − 6), C0 =
2σ2

v/εTL and A0 = σ2
aτη/ε. Finally, we find that the constant in the Gibbs distribution in

proportional to 1/Rλ. This means, as could be expected, that higher quantum numbers
n contribute more for higher Reynolds numbers. Finally the probability can be written
under the form:

w(n) = exp

(
−Rλ0

Rλ

(
n+

1

2

))
, (97)
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where the constant Rλ0 ≈ 100 from an analysis of Mordant’s data.
We find with this value, for a fully developed turbulent jet with Rλ = 1000 and

maximum quantum numbers respectively nmax = (10, 20, 30), 〈R〉 = (1.31, 1.33, 1.335).
For larger values nmax ≤ 50 the mean value of R stabilizes at 〈R〉 = 1.34. This is
just the mean value observed in the center region of the jet. The peak value of its
probability density, combining the density of points, see Fig. 14, with the Gibbs probability
w, is Rpeak = 1.38, which is the mean value observed in the middle region of the jet,
η = 0.05−0.16, see Fig. 3. These improved values agree with the previous rough estimate
and yield α in the interval 0.19− 0.21.

The experimental value 12.5 deg quoted by Landau [9] corresponds to an angle of
0.218 rad and therefore its tangent is αS = r/x = 0.222. This corresponds to the jet
opening angle in space, which is related, as we have seen previously, to the parameter α
defined from velocities by αS = q α, with q = 1.10 − 1.15. This yields an experimental
value α = 0.193− 0.202, which is compatible with our theoretical prediction.

It is remarkable that the solution for the value of R, though remaining in the range
1.3−1.4 (and therefore α in the range 0.185−0.225), depends on many different conditions,
in particular the maximum level of quantized states attained and the effective distribution
of these states for a given experiment, the Reynolds number, the precise values of the
parameters in the Gibbs distribution, etc. We therefore do not expect precise values
to emerge for R and α, but different values for different experiments fluctuating in a
somewhat uncontrolable way. They however remain in a well defined narrow interval of
relative width <≈ 10%, a result that experimental and numerical measurements tend to
support.

5.5 Theoretical prediction of the pressure / radial stress profile

It is known that the radial Reynolds stress has zero slope at the origin [1, 19, 7, 2].
Therefore the power series expansion of σv to order η2 (in the core of the jet) may be
written as:

σv =
g

x
µ

(
1− a η

2

α2

)
, (98)

where a is a purely numerical constant and µ ≈ 0.2 is the centerline value of the radial
turbulent intensity, while we recall that g = U0a0 ≈ 6Re ν.

We find an excellent fit of Hussein et al. [7] data by this function in the inner part of
the jet (η <≈ 0.15) with a = 0.745± 0.005 (see Fig. 17). This agrees with other sources
[19, 24] which globally yield a = 0.75 ± 0.05, i.e. a = 3/4. Actually, since a and α do
not appear separately in this expression, we can set a = 3/4 and consider it as a new
definition of α, which fully agrees with that coming from U and V .

The pressure, or equivalently the radial Reynolds stress σ2
v = −p̄, is solution of the kv

equation (81), which may be written under the form:

kv = −∂η∂η σ2
v = H0 σ

2
v

(1 + ρ2F/R
2
F )

(1 + h)2 (1− ρ2F )2
, (99)
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Figure 15: Pure radial profiles of the turbulent velocity intensities in turbulent round jets, in
function of the scaled variable η = r/x. The curves show the average of experimental measure-
ments by Hussein et al [7] and Panchapakesan and Lumley [19]. The black curve gives the mean
profile of σu/λ and the red curve of σv/µ (λ and µ being respectively the σu and σv amplitudes
on the centerline of the jet – besides the g/x dependence, see text).

where ρF and RF are respectively the velocity correlation coefficient of the ground state
and the velocity dispersion ratio RF = σuF/σvF of the ground state. We have written the
η dependence of H = 1/4g4vL

2
v as H(η) = H0[1 + h(η)]−2, with H0 its value on the jet

centerline.
We know that ρF (η)→ 0, h(η)→ 0 and RF (η)→ 1 when η → 0, so that we obtain a

first approximation for the solution of this equation by neglecting the perturbative terms.
Such a solution is expected to be valid in the central region of the jet. The equation
becomes a mere harmonic oscillator differential equation:

∂η∂η σ
2
v +H0 σ

2
v = 0. (100)

The general solution of this equation is a linear combination of cosine and sine solution.
However, the constraint of zero slope at the origin implies the vanishing of the sine term.
The same conclusion can also be obtained from the second (kuv) equation. Then we
find a theoretical solution for the profile of the jet radial turbulent velocity variance,
σ2
v = µ2 cos(

√
H0 η/α), valid in the center region of the jet, i.e. for small η values. A

power series of this solution, compared with Eq. (98) with a = 3/4, yields H0 = 3/α2 and
finally (re-introducing the x scaling dependence):

σ2
v =

g2

x2
µ2 cos

(√
3
η

α

)
. (101)
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The amplitude µ remains unpredicted at this level of the analysis (we shall obtain a
theoretical prediction for it in the following), i.e., only the pure profile σvo(η) = σv(η)/µ
is theoretically predicted up to now. This theoretical solution is in very good agreement
with the shape of σ2

v known from experimental data and from DNS in the inner 3/4th
of the jet (see Fig. 17). Moreover, this solution allows one to obtain the η profile of the
velocity correlation coefficient: one finds it to be constant throughout the main part of
the jet (η = 0.05 − 0.15). The value of this constant (≈ 0.4) will be determined in the
following, once the value of the Reynolds stress amplitude is theroretically predicted.

The corresponding radial profiles across the jet of ku, kuv and kv for this cosine solution
are shown in Fig. 16.
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Figure 16: Profiles of ku (blue curve), kuv (magenta curve) and kv (brown curve) in function
of the scaled radial distance η = r/x, calculated for σ2v = µ2 cos(

√
3 (η/α) (without the x

dependence), with µ = 0.217 and α = 0.205. We have taken here p̄0 = µ2 in Eq. (83), which
allows ku to remain positive, then ensuring an attractive harmonic oscillator potential in the
axial direction.

5.6 Generalized solution for the pressure and radial Reynolds
stress profile valid up to the jet boundary

5.6.1 Corrective term in the radial stress equation equation

Let us now derive an improved solution accounting for the perturbative terms, that we
expect to be valid throughout the whole jet. Setting z = η/α, we now write the exact kv
equation as:

∂z∂z σ
2
v +H0 (1 + w(z)) σ2

v = 0, (102)
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where H0 = 3/α2. The corrective term writes:

1 + w =
(1 + ρ2F/R

2
F )

(1 + h)2(1− ρ2F )2
, (103)

where we recall that ρF (z) is the radial profile of the correlation coefficient in the ground
state, RF (z) is the ground state ratio σuF/σvF and H = 1/(4g4vL

2
v) = H0(1 + h(z))−2.

As explained in Appendix C, we find that w(z) = 1 + w2z
2 + w4z

4 with w2 = 0, so
that the full Reynolds stress differential equation writes:

∂z∂zσ
2
v + 3 σ2

v (1 + w4 z
4) = 0. (104)

The solution of this equation amounts to a stretching of the cosine solution toward the
jet edge:

σ2
v = µ2 cos

( √
3 z

1 + a4 z4

)
. (105)

where a4 = −w4/30 (see Appendix C) and where the coefficient a2 of the z2 contribution
is found to vanish.

5.6.2 Comparison with experimental data

Hussein et al [7] experimental data are well fitted on the whole jet by this stretched cosine
solution for a4 = 0.178 ± 0.003 (Fig. 17), which corresponds to a corrective term in the
kv equation given by w4 = −5.4 (with the linear relation) and w4 = −7.5 (with the non
linear correction, see Appendix C). Taking the mean data from HCG [7] and PL [19], one
finds compatible values a2 = 0.001 ± 0.017 and a4 = 0.167 ± 0.014. DNS data [5] yield
similar results .

As we shall see in the following Sec.6, the value of a4 can be theoretically predicted
from the second (kuv) differential equation obtained from the v-Schrödinger equation and
is found to be just the experimentally observed value a4 = 0.18.

6 Theoretical prediction of the turbulent fluctuation

amplitudes

6.1 Statement of the problem

Up to now we have just obtained a theoretical prediction for the turbulent intensity pure
profile σv(η)/µ and therefore of the pressure profile across the jet. But its amplitude µ
remained undefined from the only kv equation.

This amplitude should be predictable from the second differential equation involving
kuv = ∂x∂rp̄ and the Reynolds shear stress σuv, since the mean pressure p̄ depends on µ
while σuv does not.
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Figure 17: Experimental normalized profile of the radial turbulent velocity dispersion from
Hussein et al. data [7, 2] (blue points) and Panchapakesan and Lumley [19] (brown points)
compared with: (1) a fit of the inner part of the jet by the function σv = µ (1 − 3η2/4α2) (red
dotted curve, α = 0.2); (2) our analytical solution to the macroscopic Schrödinger equation

in the center region, σvo = cos
(√

3 η/α
)1/2

(blue dashed curve, α = 0.2); (3) our theoretical
full stretched cosine solution accounting for perturbative terms (Eq. 105 with α = 0.205 and
a4 = 0.18, black curve). The experimental (brown) points [19] are well fitted by a slightly
smaller value of α = 0.195.

Practically, this means that we can use our knowledge of σuv for deriving a second
expression for σ2

v = −p̄ from the second differential equation involving kuv. Then the
solution we are looking for will be obtained by identifying the two expressions.

In order to proceed further, let us separate the σv pure profile (i.e. normalized to 1
on the jet centerline) from its amplitude by writing:

σv = µ σvo, (106)

where the pure profile has been found to be σvo = cos(
√

3 η/α), corrected by a stretching
term when approaching the jet boundary. In the same way, we define p̄ = µ2 po, where po
is the pure pressure profile. We obtain the equation:

µ2 (3 ∂ηpo + η ∂η∂ηpo) = H B
σuv

(1− ρ2F )2
. (107)

We express a possible variation of H across the jet by writing it as H = H0/(1 + h(η))2,
where h� 1 in the inner 3/4th of the jet and may increase around the jet boundary. We
have found that H0 = 3/α2 on the centerline of the jet.
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We also introduce the ratio RF = σuF/σvF of the velocity variances in the ground
state: we know that RF = 1 at the origin η = 0 and on the jet boundary. The parameter
B can be written as:

B =
ρF
ρ

1 +R2
F

R3
F R

. (108)

Defining kuvo = −(3 ∂ηpo + η ∂η∂ηpo) and setting X = µ
√
R =

√
λµ, where λ is the

amplitude of σu, we can therefore write the equation for the Reynolds stress amplitude
under the form:

X2 =
6 σuv
α2kuvo

× ρF
ρ (1− ρ2F )2(1 + h)2

1 +R2
F

2R3
F

. (109)

Solving this equation for X would yield the value of µ owing to the theoretical knowledge
of the turbulent intensities ratio R = σu/σv ≈ 1.35 that we have previously achieved.
However, this solution is expressed in terms of unknown functions of η, ρ(η), ρF (η),
RF (η) and possibly R(η) (which is almost constant across the jet, but is expected to fall
down to R = 1 on the jet edge where full isotropy is recovered).

Nevertheless, we know the values of these functions on the jet centerline (η = 0) and
we can infer their behavior when η tends toward the turbulent-laminar transition, in the
following way.

6.2 A characteristic function

In our scale-relativity description of turbulence, we have seen that the velocity evolution
over time is given by QHOs with quantum numbers which vary according to the energy
fluctuations in a probabilistic way determined by the laws of statistical physics. The
intermittency signature of turbulence (such as the alternation of calm behavior and strong
bursts, the large non-Gaussian tails of the acceleration PDF, etc.) is understood in this
framework as due to the zeros of the velocity PDF, Pv(vi) = 0, which exist for all excited
states and lead to the emergence of a force / acceleration Aq = ±1

2
~v(∂vPv)/Pv which is

divergent around the points v = vi [15, 16].
On the other hand, the laminar flow (which is reached beyond the turbulent-laminar

transition αS = q α, with q ≈ 1.15) corresponds to the full disappearance of all these
effects: the K41 scaling δv2 ∼ δt vanishes, so that the derivative of the NS equations
remains classical and there is no longer any macroscopic Schrödinger equation.

But, between the fully turbulent domain inner to the jet (η <≈ α) and the laminar
flow η > αS, there should exist an intermediate regime in which the Schrödinger equation
is still active while the energy is low, so that excited states do not occur and only the
Gaussian ground state manifests itself. Moreover, in this region the axial and radial
Reynolds stresses become equal, i.e. σuF = σvF (full isotropy).

Let us therefore define the function:

F (η) =

√
6σuv
α2 kuvo

= X

√
ρ

ρF
(1− ρ2F )

(
2R3

F

1 +R2
F

)1/2

(1 + h). (110)

42



Consider first the behaviour of this function in the central region of the jet. When
η → 0, RF → 1, σuv → η/2, so that ρ = σuv/(Rµ

2σ2
vo) → η/2X2, ρF → 2η so that√

ρ/ρF → 1/2X. Finally, with h→ 0, we find that when η → 0, F (η)→ 1/2.
Consider now the behavior of F (η) when η → αS = q α, the turbulent-laminar tran-

sition. We have seen that ρ → ρF with ρ → 0 and RF → 1. Therefore the function
F/(1 + h), which is identical to F (η) in the inner region of the jet, tends asymptotically
toward the numerical constant X that we are looking for.

This leads us to define the function:

G(η) =
F (η)−X

1
2
−X

, (111)

resulting from a translation and a dilation of F (η), i.e., to describe the profile of F (η) as:

F (η) =
1

α

√
6 σuv
kuvo

= X +G(η)

(
1

2
−X

)
. (112)

The function G(η) is expected to be theoretically given by some expression Gs(η) having
the following properties:

- Its value on the centerline of the jet is G(0) = 1, then it decreases. We can therefore
write its power series expansion around the origin as: G(η) = 1−η2/(2s2α2) when η → 0.

- It tends asymptotically to 0 when η approaches the turbulent-laminar transition
αS = q α.

As we shall now show, Gs(η) is very precisely a Gaussian function that yields a second
expression for the solution to the pressure profile across the jet.

6.3 Theoretical prediction of the stress amplitude in the jet cen-
tral region

Let us define a Gaussian function of variance s2 for the variable z = η/α:

Gs(z) = exp

(
−1

2

z2

s2

)
. (113)

Recall that in the central region of the jet (η ≤ α/
√

10), we have obtained from the
RANS equations and the v-Schrödinger equation the following quasi-exact solutions:

σuv =
1

2

η

(1 + 2 (η/α)2)3
, −po = σ2

vo = cos
(√

3
η

α

)
. (114)

From these solutions of the hydrodynamics equations, we can calculate the expression of
G in the central region of the jet (setting z = η/α and Q = 1

2
−X in order to simplify its

writing):

G = 1 +
1

Q

(
1

(1 + 2z2)3/2 (cos(
√

3z) +
√

3 sin(
√

3z)/z)1/2
− 1

2

)
. (115)
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Figure 18: Comparison between the function G(η) (Eq. (111), blue curve), and the Gaussian
function Gs(η) (Eq. (113), magenta curve). The function G(η) is established from σuvtot (defined
in Sec. 3.2 and Appendix A) and the stretched cosine profile solution for po. The two functions
agree remarkably well up to the ≈ 3/4th of the jet, within which they are clearly indistinguish-
able. They begin to depart one from another only for η > 0.14, as expected. The standard
deviation of their differences is only 2.3× 10−3, as illustrated in Fig. 19.

The power series expansion of G(z) to order z4 writes:

G(z) = 1− 21

16Q
z2 +

4167

1280Q
z4 +O[z6], (116)

while for a Gaussian function it writes:

G(z) = 1− z2

2 s2
+

z4

8 s4
+O[z6]. (117)

The identification of the z2 terms of the power series of G and Gs yields a first relation
Q = 21

8
s2 and therefore:

X =
1

2
− 21

8
s2. (118)

The identification of the z4 term of G with that of the Gaussian function Gs yields a
second relation:

1

8 s4
=

4167

1280Q
, (119)

from which we obtain Q = 4167/160s4 and therefore:

s2 =
140

1389
= 0.1008, X =

109

463
= 0.2354, (120)
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Figure 19: Optimized difference between the function G(η) (Eq. (111), η ≤ 0.14), calculated
from the precise solution σuvtot of the RANS equations – see Sec. 3.2 and Appendix A – and
the stretched cosine solution of the v-Schrödinger equation, and the Gaussian function Gs(η)
(Eq. 113), which are directly compared in Fig. 18. The standard deviation of the residuals is
only 0.002. The small gap corresponds to the first matching point (η = α/

√
10 ≈ 0.065α) of the

precise solution for U , V , from which we derive σuv = UV − ηU2.

very close to the inflection point s = 1/
√

10 which would yield X = 19/80 = 0.2375 ≈ 1/4.
It is noticeable that this solution is independant from α.

6.4 New pressure analytical solution of the Schrödinger equa-
tion

We can also combine the two kv and kuv equations to obtain a first order differential
equation for the pressure profile (in the central region approximation h→ 0 and ρF → 0):

α2 ∂ηpo(η) = η po(η) +M(η). (121)

where

M(η) =
2σuv(η)

(X + (1/2−X)Gs(η))2
. (122)

Setting as before z = η/α in order to simplify the writing, this equation can be analytically
solved under the form:

po(z) = ez
2/2

(
−1 +

∫
e−z

2/2M(z)dz

)
. (123)

Let us show that it indeed provides a new complementary solution for the pressure in the
central region of the jet. Its power series expansion up to order z6 writes:

− po = 1− 3

2
z2 +

3

8
z4 − 279s2 − 28

32s2
z6, (124)

45



to be compared with the power series expansion of our previous kv equation solution,
po = − cos(

√
3 z),

− po = 1− 3

2
z2 +

3

8
z4 − 3

80
z6. (125)

It is remarkable that the two solutions fully coincide up to order z4. Moreover, the
identification of the z6 coefficient provides us with a solution for the numerical value of
the constant s:

s =

√
140

1389
= 0.3175, (126)

which is just the previously obtained value. This quasi perfect identification of the two
functions in the central region of the jet (up to η ≈ 0.1, i.e. z ≈ 0.5) proves that the new
solution Eq. (123) solves both the kv and kuv equations, which fully justifies the Gaussian
character of G = Gs.

As already remarked, the resulting dispersion s ≈ 1/
√

10 is just the peak position of
σuv and the inflection point of a(η), i.e. the first matching point of our precise solution
Utot (see Sec. 3.2 and Appendix A). From this approximation s2 = 1/10, we find the
simple solution X = 19/80 ≈ 1/4.

This means that we have finally obtained a theoretical understanding, from the scale-
relativity approach, of the typical value X =

√
λµ ≈ 1/4 measured by laboratory and

numerical experiments, which was one of the main mysteries of the turbulent jet.
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Figure 20: Comparison between the theoretical function F (η)/
√
R (Eq. (112), blue thick curve,

η ≤ 0.16, R = 1.3) and the function µ̃ = µ +
(
1
2 −X

)
Gs(η)/

√
R, where Gs is the Gaussian

function Eq. (113) (red curve, which tends to µ asymptotically). The two horizontal gray lines
are the experimentally observed range for the values of the radial turbulent intensity amplitude
on the jet centerline, µ = σv(0).
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We can still improve this result by using better solutions for σuv and for the po profile
in the calculation of the function G(η). We take σuvtot, obtained from matching precise
solutions of the RANS equations (see Sec. 3.2 and Appendix A) and pos, the stretched
cosine solution to the kv QHO equation. We are then able to theoretically predict the free
parameters of these functions, X, s and a4, by finding, through least-square optimization,
a numerical solution of the equation G(η) = Gs(η). The α dependence is found to be
very small, in agreement with our previous central region solution which was indeed
independent of alpha. We get for η ≤ 0.14 (see Appendix D and Figs. 27 and 28):

X = 0.2370± 0.0003, s = 0.3225± 0.0004, a4 = 0.180± 0.003, (127)

where the residual fluctuation takes the very small value σξ = 0.0023 (compared with
functions normalized to unity).

The values of X and s found here remain very close to the analytical solution obtained
in the central region of the jet (well approximated by X = 19/80 = 0.2375 and s2 = 1/10)
and, remarkably, the predicted value of a4 is the same as that previously derived from the
stretching of the cosine solution for po.

6.5 Theoretical prediction of the turbulent intensity amplitudes
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Figure 21: The running value across the jet of the amplitude µ of the turbulent fluctuation σv
in function of the scaled radial distance η = r/x, as given by Eq. (128). It remains globally
constant over the inner 3/4th of the jet and agrees with the experimentally observed range
(dashed lines). The various curves are calculated for α = (0.20, 0.21) (small differences), s =
(1/
√

10 = 0.316, 0.326) (largest differences) and R = (1.30, 1.34, 1.38) (blue, beige and magenta
curves).

Finally, from our results X = (0.2350− 0.2375) and R = (1.30− 1.38), we can derive
the range of possible values for the turbulent intensity amplitude µ = X/

√
R (see Fig. 21),
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and therefore of λ = Rµ:

µ =
1

2
√
R

2F (η)−Gs(η)

1−Gs(η)
= 0.202± 0.013. (128)

This result is in full agreement with the measured values from laboratory and numerical
experiments, which lie in the range (0.185−0.217) [7, 19, 5]. It is in particular remarkable
that the theoretically obtained value for µ, Eq. (128), seems to be a running function of
η = r/x from its expression, but that it is found to be practically unvarying, as expected
from its nature of constant parameter, as can be seen in Fig. 21.

7 Theoretical prediction of the velocity correlation

coefficient

The correlation coefficient of velocities is universally found to be ρ ≈ 0.4 for all free shear
flows [2, 3]. This is one of the main mysteries of turbulent flows, for which we are now
able to suggest a solution, at least in the turbulent jet case.

In function of the various variables we have introduced, the correlation coefficient may
be successively written as:

ρ =
σuv
σuσv

=
σuv
Rσ2

v

=
σuv

Rµ2 σ2
vo

= − σuv
X2 po

, (129)

where we recall that X2 = Rµ2 and that po is the mean pressure profile normalized to
unit amplitude on the jet centerline.

As a first order approximation, the Reynolds shear stress writes σuv = −UV + η U2,
and it is given by the solutions U and V of the RANS equations,. Another more complete
expression involves our theoretical solutions for R and σ2

v (with σu = Rσv), σuv = −UV +
η(U2 + (R2 − 1)σ2

v).
From the known expression of σuv and the pression pure profile, we have already

reached the conclusion (Sec. 5.5) that the correlation coefficient profile is almost constant
in the middle part of the jet, but without knowing the value of this constant at this
level of the analysis. Since we have now at our disposal theoretical predictions for all
parameters (α, q, R and µ), we can construct a theoretical radial profile for ρ. It is given
as the continuous black curve in Fig. 22 and is shown to be in excellent agreement with
the profiles derived from experimental data.

We have now a theoretical prediction for the value of X and we can therefore derive
that of the correlation coefficient. From the shear stress expression obtained in the jet
central region, σuv = 1

2
η(1 + 2η/α)3 and the power series expansion of the cosine solution

of the v-Schrödinger equation, σov = 1− 3
4

(η/α)2, we obtain the following radial variation
of the correlation coefficient:

ρ(η) =
η

2X2
(

1− 3
4
η2

α2

)2 (
1 + 2 η2

α2

)3 . (130)
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Figure 22: Theoretically predicted radial profile of the velocity correlation coefficient, compared
with the experimentally observed profiles (blue curve from HCG data [7], magenta curve from
PL data [19] and their mean, beige curve). The black dashed curve is the theoretical prediction
for σuv given by the constant turbulent viscosity solution (valid in the central region of the jet).
The continuous black curve is the prediction for ρ(η) from the more complete matched solution
of Sec. 3.3 and Appendix B (with α = 0.21, k = 0.408, a4 = 0.18 and µ = 0.195), in which we
have taken the Reynolds stress profile σ2v(η) given by our stretched cosine solution and, for the
R ratio, our predicted constant value R = 1.35 up to η = 0.15, then a decreasing linear behavior
down to its expected value R = 1 on the jet edge.

The derivative of this function yields the position of its peak at ηp = α
√

(31−
√

97)/108 ≈
0.4425α and its height (which is also the constant value we are looking for, see Fig. 22):

ρp =
90699264

√
93− 3

√
97(

85−
√

97
)3 (

113 +
√

97
)2 α

X2
≈ 15

133

α

X2
≈ 0.1128

α

X2
, (131)

which is well approximated (to within 1 %) by ρ = α/(9X2).
From the theoretically predicted value X =

√
Rµ = 109/463 = 0.2354 in the jet

central region, we finally derive the value of the correlation coefficient in the middle
region of the round jet (η = 0.06→ 0.15):

ρ = 2.035α. (132)

With the optimized value X = 19/80 = 0.2375 for η ≤ 0.15, we get exactly ρ = 2.0α.
The theoretically predicted value X = 109/463 = 0.2354 is very well approximated by
X = 1/3

√
2 = 0.2357; with ρ = α/(9X2), it yields exactly the same simple result, ρ = 2α.
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From the predicted range α = (0.20−0.21), one gets α/X2 = (3.55−3.79) and finally
ρ = (0.40 − 0.43), in excellent agreement with the experimentally observed values (see
Fig. 22). A similar result is obtained with the more precise (and valid farther) solutions
we have derived for σuv and σv.

Under this form, the predicted value of ρ remains specific of the turbulent jet and
of its opening parameter α. However, we have found that this parameter is given by
2α = 1/R3 and therefore that it is itself related to the more general quantity R = σu/σv,
which describes the velocity anisotropy. These last quantities characterize all shear flows.
In their terms, the correlation coefficient reads:

ρ =
1

R3
=
σ3
v

σ3
u

≈ 0.4, (133)

which could therefore be valid for all shear flows. We shall study this conjecture in future
works.

8 Discussion

8.1 Summary of method and results

We have obtained here a solution for the various characteristics of the turbulent round
jet, but in a somewhat complicated way. This comes in a large part from the fact that
the new feature brought by the scale-relativity approach is a macroscopic Schrödinger
equation in v-space, in which the potential is given by second order derivatives of the
pressure, while the pressure is itself one of the unknowns. This situation is improved by
one of the solutions of the RANS equations for the turbulent jet, which links the mean
pressure to the radial Reynolds stress. It is however also itself one of the unknowns. We
have therefore been led to get around this difficulty by using specific methods in order to
reveal the otherwise hidden information.

It should however be stressed again that the SR approach to turbulence is not an
empirical model but instead a genuine fluid mechanics theory, since the SR-Schrödinger
[SRS] equation is but a reformulation of the Navier-Stokes equations (derivated in time
then integrated on velocity) under the (K41) fractal and nondifferentiable conditions
implied by turbulence [16]. The various results obtained, even if some of them are acquired
by numerical integration due to the complexity of some of the equations, are nevertheless
solutions of these purely theoretical equations, not fits of experimental data nor fitted
parameters of hypothetical closure models.

Let us trace back the origin of these results.
We use two sets of governing equations, the RANS equations for averaged quantities

(plus the continuity equation) and a v-Schrödinger equation for the PDF of turbulent fluc-
tuations. Both equations are constructed from the Navier-Stokes equations. The RANS
equations result from averaging of the NS equations. The macroscopic v-Schrödinger equa-
tion results from time-derivating the NS equations written in v-space, then v-integrating
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it in terms of an universal prime integral of motion equations (of the Hamilton-Jacobi
type), after having taken into account the scale-relativity effects on differential calculus
of the fractality (in v-space) of turbulent fluid particle trajectories. The stationarity of
the jet is accounted for by the existence of the time-independent Schrödinger equation.

(1) Our first result is the range of possible values for the parameter R = σu/σv. It
is derived from the identification of the global PDF of turbulent velocity fluctuations as
resulting from a combination of harmonic oscillator solutions to the SRS equation. This
combination includes the ground level and various excited levels according to the laws of
statistical physics. The range of values theoretically obtained, R = (1.3−1.4), results from
the mere condition σu ≥ σv and from the quantization involved by the macroquantum
nature of the scale-relativity description.

(2) The value of the jet opening angle is one of the main mysteries of the turbulent
jet. It has been remarked by Landau [9, p. 212] that not only one does not know how to
calculate the angles emerging in shear flows such as mixing layers and jets, but that “one
cannot calculate them theoretically”.

The scale-relativity solution to this puzzle relies on the existence of a unique constant
~v in the Schrödinger equation and on the fact that it has the same dimensionality as
ε, the rate of dissipated energy (also transferred along scales in the turbulent cascade).
This energy rate is also just the most fundamental constant in Kolmogorov theory of
turbulence. This means that ~V = k ε, while we actually expect k = 1 [16]. From the
well-known expression for ε in terms of velocity dispersion and integral scale, one obtains
~V = σ3

v/Lv = σ3
u/Lu, which relates the ratio of axial and radial Reynolds stresses to the

spatial anisotropy of the jet.
This results in the relation 2α = 1/R3, from which typical values of the jet opening

angle 0.2− 0.22 are obtained, in agreement with the universally observed ones.
(3) We have theoretically derived an expression for the profile σvo(η) of the radial

turbulent intensity (and therefore of the pressure). This profile is given by the square
root of a cosine function with stretching correction on the edge of the jet. It is a solution
of the SRS equation, in which the pressure has been replaced by −σ2

v according to the
RANS equation solutions.

(4) The amplitude of the radial turbulent intensity is derived from the second equation
coming from the SRS equation. It involves σuv (derived from the RANS equations) and
kuvo, deduced from the pressure profile, which is itself derived from RANS and SRS
equations. One obtains X =

√
λµ = 19/80, close to the universal value ≈ 1/4 measured

in numerical and laboratory experiments.
(5) The correlation coefficient of velocities involves σuv, derived from the RANS equa-

tions, and X =
√
λ µ, derived from the SRS equation. We theoretically obtain the relation

ρ = 2α, which yields the value ρ ≈ 0.4 universlly observed in all shear flows.
It is noticeable that all these results have been obtained without being directly related

to turbulent jet trajectory data. The various quantum-type properties predicted by the
scale-relativity theory of turbulence have been already validated from data analysis of tur-
bulent flows [16], although it was in counter-rotating von Karman type experiments [35].
This means that our claims concerning the turbulent round jet could be put to the test in

51



the future from data analysis of trajectories of valid tracers, provided these trajectories
be long enough for being able to evidence the predicted quantum-type structures.

8.2 Drawbacks and remaining problems

The theoretical predictions of all these dimensionless parameters have been obtained from
solutions of the RANS and v-Schrödinger equations valid in the inner region of the jet,
η <≈ 0.12− 0.16 and which show full self-consistency.

However, the edge region of the jet (η ≈ 0.18 − 0.235) was more badly known both
theoretically and experimentally with “classical” methods. This difficulty partly remains
even though adding the scale-relativity approach to the description of the turbulent jet.
The kv equation could be made self-consistent on the jet edge only by using a transfor-
mation from coordinates along the mean virtual conic shape of the jet toward curvilinear
coordinates describing its true shape (including fluctuations). But, even in this case, the
kuv equation remained contradictory around the jet edge. This could be due to the fact
that the basic relation p̄ = −σ2

v upon which we rely throughout our whole study be-
comes wrong around the jet edge, as clearly shown by the experimental measurements of
Miller and Comings [1] (for the plane jet). Another possibility would be that the pressure
fluctuations become non negligible around the jet edge.

We have not made use of the ku equation, which depends on an additional unknown
constant and was itself not fully consistent. Without a source axial term, it corresponds
to a repulsive harmonic oscillator potential, which seems to contradict the experimental
evidence.

These problems point out toward the fact that, while our description seems to be fully
correct along the radial direction (where σv � V ), our description of the axial direction
(x, U and u), where U > σu except at the edge, remains partly incomplete or possibly
inadequate. The Schrödinger equation in velocity space that we have written seems to be
not fully adapted to the axial direction, probably due to its time-dependant character.

Another drawback is the expected existence of offsets in the velocity PDF: namely, the
mean velocity of each QHO state is generally not null, as can be seen in Mordant’s [35]
data (see [16] and Figs. 11, 12, 13). We have given in Eq. (153) the new form taken by the
kv equation when offsets are taken into account. They do not change fundamentally the
description, just adding a new corrective terms to the previouly identified ones. Another
element which should also be accounted for in a more detailed study to come is the
existence of damping on some of the harmonic oscillators (see Fig. 11).

Some open problems remain to be solved: (i) the shape of the axial Reynolds stress
profile σu differs slightly from the radial one, showing a bump around η ≈ 0.05, i.e.
z = η/α ≈ 1/4, which is confirmed in every laboratory and numerical experimental
measurements. The origin of this bump (which would be well described by a phase term
in the cosine solution), is still unkown; (ii) this question is directly related and equivalent
to that of the R radial profile. We have taken R =cst throughout the whole paper, but it
shows clearly small variations of order ±10% which are to be understood. (iii) The border
of the jet is not an abrupt limit: there is an interface between the typical angle α ≈ 0.2 and
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the turbulent-laminar transition which is found to lie at αS = q α with q ≈ 1.15. We have
suggested a theoretical prediction for this value. Experimental measurements of the jet
extension in space [27] yield an end of the jet around this transition, although numerical
simulations [6, 28] seem to favor an unlimited Gaussian behavior. This question of the
precise concentration profile of turbulent jets in space and of its theoretical prediction
will be considered in a forthcoming paper II (Nottale and Lehner, in preparation).

9 Conclusion

We have obtained theoretical solutions of the Navier-Stokes equations for the turbulent
round jet, which agree with its experimentally observed properties. This has been achieved
in the framework of the theory of scale-relativity [17, 18], applied to turbulence in velocity
space [14, 16] .

This theory, which relies on the fact that scales are defined only through their ratios
and never in an absolute way, consists of constructing a scale-covariant derivative which
accounts for the geometric effects of the non-differentiability of trajectories (and therefore
of their explicit scale-dependance) in a fractal medium or space. The first effect is loss of
determinism: there is an infinite family of virtual trajectories instead of only one, so that
one jumps to a probabilistic description. The second effect is fractality of trajectories:
their length becomes explicitly scale-dependent and divergent when the scale-interval
tends to zero. The third effect is two-valuedness of derivatives (here of accelerations):
this leads one to jump to a theoretical description made in terms of complex numbers.

The equation of dynamics, written as a geodesics equation expressed in terms of
this scale-covariant derivative, is then spontaneously integrated under the form of a
Schrödinger equation [17, 30]. We have shown [16] that a fully developed turbulent flow
satisfies these three conditions in velocity space, as suggested by L. de Montera [14], so
that the Navier-Stokes equations can be integrated as a Schrödinger equation acting in
v-space. The solution of this v-Schrödinger equation is a wave function whose squared
amplitude yields the PDF of velocity fluctuations, from which the velocity variances, i.e.
the Reynolds stresses, can be deduced. In other words, this approach solves the closure
problem of turbulence, at least in principle.

In the present paper, we have put this new method to the test by applying it to an
effective problem, that of the turbulent round jet. The avantages of this choice are that
this flow has been widely studied since years and that it has evidenced universal struc-
tures characterized in particular by dimensionless numbers, which have been recovered in
numerical experiments but were not understood up to now.

The application of the scale-relativity approach to the round turbulent jet has given
encouraging results. A theoretical solution has been obtained for the radial Reynolds
stress profile which fairly agrees with experimetal data in the central region of the jet.
Dimensionless parameters such as the jet opening angle, the relative amplitude of turbu-
lent intensities, the ratio of axial to radial turbulent intensities and the velocity correlation
coefficient have been recovered from theory, in a way that is fully consistent with experi-
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mental results. Namely, one does not observe precise values, but rather narrow intervals
of possible values, corresponding to an approximative universallity [13]. This is exactly
what is theoretically expected, since the final result depends on the effective repartition
of the macroquantum states, which may vary according to the conditions, among which
in particular the Reynolds number.

Appendix A: precise matched solution of the RANS

equations for the turbulent jet velocities

The expressions for the U(η) and V (η) velocity normalized profiles of the matched solution
of Sec. 3.2 are:

Ua =
1

(1 + 2 (η/α)2)2
, Va =

η (1− 2 (η/α)2)

2 (1 + 2 (η/α)2)2
. (134)

Ub = A0 + A1
η

α
, Vb =

Kb

η
+ η

(
A0

2
+

2A1

3

η

α

)
. (135)

Uc =
α2

4
+A2

( η
α
− q
)2
, Vc =

Kc α
2

η
+
η

12

(
3α2

2
+ A2

(
6 q2 − 16 q

η

α
+ 9

η2

α2

))
. (136)

Ud =
α2
S

4
, Vd =

α2
S

4η

(
Kd +

η2

2

)
. (137)

The matching parameters for this matched solution are given by:

A0 =
125

108
, A1 = −25

27

√
5

2
, A2 = − A2

1

4A0 + 4A1q − q2α2
, A3 = 4A0 + 2A1q − q2α2,

(138)

yab =
α√
10
, ybc = − A3

2A1

α, ycd = αS = q α, (139)

Kc = − 1

192A4
1

(A2
1A

2
3A4 − 9A2A

4
3 + 192A4

1Kb − 32A1A2A
3
3q), (140)

where
A4 = 24A0 − 16A3 − 24A2q

2 − 6q2α2. (141)

Kb =
1

64
, Kd =

12Kc − A2q
4

3q2
. (142)

The resulting functions are compared to experimental data in Figs. 23, 24 and 25.
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Figure 23: Precise solution of the RANS equations for the mean axial velocity profile U(η)
(where η = r/x is the scaled radial distance) normalized to the centerline velocity UC (contin-
uous curve). This solution is obtained by matching the central solution and its derivative to
intermediate and boundary solutions, then to the exact solution of the NS equations for the exte-
rior laminar flow (see Sec. 3.2). The vertical dashed lines show the matching points between the
different solutions. This theoretical profile is compared with renormalized fits of experimental
data (points) from Hussein et al [7] and Panchapakesan and Lumley [19].

Appendix B: second matched solution of the RANS

equations

This new solution (Sec. 3.3) is made of the central solution with constant turbulent
viscosity already given in Sec. 3.2 and Appendix A, i.e. Ua, Va, σuva = −UaVa + αz U2

a

(where z = η/α). We give here only the pure radial profiles, normalized by the centerline
axial velocity UC , without the axial g/x dependence:

Ua =
1

(1 + 2 z2)2
, Va = α

z (1− 2 z2)

2 (1 + 2 z2)2
, νTa = α2/4. (143)

It is matched at ηk = k α with a quadratic solution:

Ue = B0 +B1z +B2z
2, Ve = α

(
Keα

z
+
B0

2
z +

2B1

3
z2 +

3B2

4
z3
)
, (144)

νTe = −α2 (B0 +B1z +B2z
2)(−12Ke + 6B0z

2 + 4B1z
3 + 3B2z

4)

12z(B1 + 2B2z)
, (145)
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Figure 24: Precise solution of the RANS equations for the mean radial velocity profile V (η)
normalized to the centerline velocity UC (continuous curve), derived from U(η) (Fig. 23) and the
continuity equation. The vertical dashed lines show the matching points between the different
solutions. This profile is compared with the mean experimental data (green curve) from Hussein
et al [7] and Panchapakesan and Lumley [19].

The matching is now performed by ensuring the continuity of U , U ′ and now also U ′′, so
that the quadratic solution is fully determined from the mere inner solution. This allows
us to obtain a theoretical prediction for the behavior of the velocity profile at the edge of
the jet and to compare it with the laminar flow exterior to the jet.

The matching parameters of this solution are:

B0 =
1 + 8k2 + 60k4

(1 + 2k2)4
, B1 = − 96k3

(1 + 2k2)4
, B2 =

4(10k2 − 1)

(1 + 2k2)4
, Ke =

2k6(1− 2k2)

(1 + 2k2)4
. (146)

The corresponding predicted radial profile of the turbulent viscosity is shown in Fig. 6
and compared with those derived from HCG and PL experimental data.

Appendix C: improved solution for pressure and Reynolds

stress

Stretched cosine solution The corrective term in the differential equation for mean
pressure p̄ and radial Reynolds stress σ2

v = −p̄ can be written in terms of a power series
w(z) = 1 + w2z

2 + w4z
4 +O[z6]. Since the cosine solution holds when z → 0, we are led
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Figure 25: Precise solution of the RANS equations for the Reynolds shear stress profile σuv(η)
normalized by the centerline velocity U2

C (continuous curve), derived from U(η) (Fig. 23) and
V (η) (Fig. 24) by the equation σuv = −U V +η (U2+σ2u−σ2v). The vertical dashed lines show the
matching points between the different solutions. This profile is compared with experimental data
from Hussein et al [7] and Panchapakesan and Lumley [19] (thin curves) and their mean (green
dashed curve). The black dashed curve shows the shear stress approximation σuv = −U V +η U2.

to look for an improved solution of the form:

σ2
v = µ2 cos

( √
3 z

1 + a2 z2 + a4z4

)
. (147)

The identification of the z2 and z4 coefficients yields:

w2 = −12 a2, w4 = −30 a4 − 6 a2 + 45 a22. (148)

We have seen that the pure cosine solution remains valid up to the 3/4th of the jet, so that
a2 = 0, yielding w2 = 0. This leads us to write the pressure / Reynolds stress equation
as:

∂z∂zσ
2
v + 3 σ2

v (1 + w4 z
4) = 0. (149)

We have constructed an analytical solution to this equation by numerically solving it,
then by showing that the corresponding order z4 expression (which is a stretching of the
cosine solution toward the jet edge) is an excellent approximation of this solution across
the whole jet:

σ2
v = µ2 cos

( √
3 z

1 + a4 z4

)
. (150)
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Figure 26: Relation between the coefficient w4 describing the z4 corrective term in the kv
equation and the coefficient a4 in its stretched cosine solution, obtained by optimization of the
difference between the numerical and analytical solutions over the whole jet (z = 0 to 1.2).
The red line is the least-square fit of this relation by a cubic polynomial (Eq. 152), which is
statistically highly significant (Student variable tSt = 140). The predicted value is a4 = 0.18
(see Sec. 6), corresponding to w4 = −7.5.

From the above relations between coefficients, we find

w4 = −30 a4. (151)

Actually this stretched cos solution remains excellent, not only in the central region, but
also for the whole jet (see Fig. 17), provided the relation between a4 and w4 includes a
non-linear contribution. We have established this relation by least-square optimization of
the difference between the analytical and numerical solution to the kv equation (Fig. 26).
We find the following fit:

a4 = −(0.0127± 0.0001) w4

(
1 +

( w4

7.86

)2)
. (152)

The standard error of the difference between the numerical and analytical solutions is less
that 0.01. The theoretical prediction a4 = 0.18 (see Sec. 6) corresponds to w4 = −7.5.

Stretching from curvilinear coordinates There is however a drawback to this result.
The function−(∂z∂zσ

2
v)/σ

2
v computed from this stretched cosine solution becomes negative

for z >≈ 0.6 while its expression from the corrective terms, (1+ρ2F/R
2
F )(1+h)−2(1−ρ2F )−2

is always positive. One can also generalize this expression by accounting for possible non
negligible offsets of the quantum harmonic oscillator PDFs, which are not always centered
on v = 0 (see [16] and Figs. 11, 12, 13). This results in a new contribution σcv additional to

the purely quantum contribution to the velocity fluctuation σQv , yielding σ2
v = σQv

2
+ σcv

2.
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Setting m = σcv/σv (which remains ≤ 1), the full corrective term in the kv equation
becomes

1 + w =
(1 + ρ2F/R

2
F )

(1 + h)2(1− ρ2F )2(1−m2)2
, (153)

and it remains positive. We conclude that the stretched cosine solution is valid only for
z <≈ 0.6, i.e. η <≈ 0.12 in the theoretical description used up to now although it fits the
experimental data down to the jet edge.

The origin of the fair agreement of experimental data with the stretched cosine solution
in the outer part of the jet must therefore be searched for, at least partly, in another
mechanism. We suggest that it is linked to the true shape of the turbulent jet boundary.
Its conic shape is only a virtual average, while the true jet shows important fluctuations
with respect to this cone. Therefore, the dimensionless variable η = r/x, in function of
which the pressure and Reynolds stress profiles are expressed, does not fully account for
the effective, more complicated shape of the jet, particularly around its edge.

The suggestion to use transformed variables for better implementing the self-similarity
of the turbulent jet has already been made by Batchelor [41]. He has defined a compen-
sated time and a compensated Lagrangian velocity which exhibits statistically stationary
Lagrangian dynamics. The idea of this stationarisation is to compensate the effect of
Eulerian inhomogeneity on the Lagrangian variables to retrieve a Lagrangian dynamics
which becomes independent of the initial position and statistically stationary [42].

Let Xa =
√
x2 + r2 be the axial coordinate in a spherical coordinate system and X̃a

the corresponding curvilinear coordinate along the true shape of the jet , which accounts

for the turbulent fluctuations. From it one can define x̃2 = X̃a
2 − r2. Strictly speaking,

X̃a fluctuates in a time dependent way, but we are interested here only in the mean
increase x̃/x ≈ X̃a/Xa, which is stationary. We suggest that the transformation η → Y =
η/(1 + a4 (η/α)4) is just the result of replacing η = r/x by Y = r/x̃ = η × (x/x̃) in order
to account for the true shape of the jet.

This suggestion is supported by the variation in function of η of the rate of axial
velocities going backward due to the turbulent fluctuations. It depends on the ratio
σu/U , which is observed to vary as σu/U ≈ λ(1 + 10z4). This rate is found to be

τ =
1

2

(
1 + erf

(
U

σu
√

2

))
(154)

and the length increase can be approximated by

x̃/x = (1 + τ)1/2. (155)

We find an excellent fit of the radial profile of this quantity by the function (1 + τ)1/2 =
1 + 0.175 z4 down to η ≈ 0.21, which clearly supports our interpretation of the stretching
origin.
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Appendix D: improved solution for the Reynolds stress

amplitude

Stress amplitude from solutions valid up to larger radial distance An improved
solution for the turbulent fluctuation amplitude can be obtained from the equation G(η) =
Gs(η), where we recall that Gs(z) = exp(−0.5z2/s2) and

G(z) =
F (z)−X
1/2−X

, (156)

with

F (z) =
1

α

√
6σuvo
kuvo

. (157)

The improved function F (z) is constructed from using σuv = σuvtot, obtained from
matching precise solutions of the RANS equations (see Sec. 3.2 and Appendix A); and
po = pos, the stretched cosine solution to the kv QHO equation, inserted in kuvo =
−(3∂zpo + z∂z∂zpo).

The free parameters of these functions, X, s and a4, are obtained as numerical solutions
of the equation G(η) = Gs(η) by a least-square optimization (while the α dependence is
found to be very small). We get for η ≤ 0.14:

X = 0.2370± 0.0003, s = 0.3225± 0.0004, a4 = 0.180± 0.003, (158)

where the residual fluctuation takes the very small value σξ = 0.0023.
From this theoretical prediction of a4 = 0.18, we deduce the value of the parameter

w4 in the z4 correction to the kv equation (see Sec. 5.6), w4 = −7.5. This result can be
used for obtaining a more complete estimate of the various corrective terms in the kv and
kuv equations (see Appendix E).

The standard deviation σξ of the residual differences between G and Gs is extremely
small, only 0.2% of their amplitude (they vary from 0 to 1), which means that the function
G(η) is indeed totally indiscernable from a Gaussian function, as can be seen in Fig. 18.
Such a remarkable agreement may be a consequence of the central limit theorem or,
equivalently, result from the laws of statistical physics.

Actually, with slightly different optimized parameters, the fully Gaussian character of
G(η) can be established beyond the 3/4th of the jet, up to η = 0.162. In this case, the
function F (η) has even entered into the experimentally observed range for µ, (0.185 −
0.217) [19, 7], as can be seen in Fig. 20.

We compare in Fig. 27 the two successive approximations to the function F (η) that
we have obtained. The two optimized Gaussian laws and the two asymptotic limits which
define X =

√
λµ ≈ 0.2375 are very close one to each other, which supports the validity

of this analysis. Beyond η = 0.16, one enters in the edge region of the jet, which is more
badly defined, both experimentally and theoretically, and in which the function F (η) is
multiplied by the unknown function 1 + h(η), where, contrarily to what happens in the
jet center case, h(η) is no longer vanishing.
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Figure 27: Successive approximations of the function F (η) =
√

6 σuv/kuvo/α (blue dashed
curves), compared to the Gaussian law optimized for each of them. The two laws are cal-
culated with σuv = σuvtot. The first function F is computed using the theoretical solution
po = − cos(

√
3 η/α) valid in the central region of the jet and yields a Gaussian law up to

η ≈ α/
√

10 (dashed vertical line to the left). The second function F is computed using the
better solution po = − cos(

√
3Y/α), with Y = η/(1 + 0.18(η/α)4) and yields a pure Gaussian

law up to η ≈ 0.14 (second vertical dashed line). These solutions yield very close values for the
final (asymptotic) values of X (green horizontal lines).

Solution for the pressure profile valid up to the jet edge One can see in Fig. 27
that beyond their domain of validity, the two approximative functions F (η) depart from
the Gaussian law with a negative then positive difference. This is typical of what happens
when comparing a function to its successive power series approximations, and suggests
that the Gaussian law may still be correct up to even larger radial distances.

In a previous section, we have obtained an analytical solution for the pressure in the
central region of the jet, using a combination of the kv and kuv equations and the centre
solution σuv = σuva (corresponding to constant turbulent viscosity). We shall now use the
full kuv second order differential equation:

3 ∂η po + η ∂η∂η po =
6σuv

α2 (X +Gs(η) (1
2
−X))2

. (159)

We have solved numerically this equation for the precise solution σuv = σuvtot and for the
previously optimized values of the parameters (Eq. 158).

The result is given in Fig. 28. It is now indistinguishable from the stretched cosine
profile (and then from the experimentally observed profile by Hussein et al [7]), up to the
full average opening angle of the jet η = α ≈ 0.2. It departs from it only in the region of
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Figure 28: Mean pressure profile in function of the scaled radial distance η = r/x, derived from
the equation F (η) = X+Gs(η)

(
1
2 −X

)
(red dashed curve), compared with the approximate so-

lution −po = cos(
√

3 η/α) (blue dashed curve), the stretched cosine solution −po = cos(
√

3Y/α)
with Y = η/(1 + 0.18(η/α)4) (magenta curve), and the experimental curve observed by Hussein
et al [7] (black curve, almost identical to the magenta curve). The theoretical and experimental
profiles now agree across almost the entire jet, up to η ≈ 0.2.

the interface between the turbulent and the laminar flow, (η = α→ η = q α ≈ 0.235, the
final turbulent-laminar transition). In this region, the experimental data is compatible
with the expected full isotropy (σu = σv) but the precise profile of −po ≈ σ2

v ≈ σ2
u is

badly known (with a relative factor of 3 between the various measurements). Recall also
that αS = q α is actually only an average opening angle for a virtual conic shape of the
jet, since the true frontier is highly variable, this meaning that there is no real stationary
solution around the jet boundary.

Appendix E: estimate of the corrective terms in the kv
equation

The full solution for the Reynolds stress profile σ2
v(η) has been obtained without account-

ing in detail for the corrective terms involving the functions ρF (η), RF (η) and h(η). One
may improve this situation and gain some knowledge about their behavior by taking the
ratio of the kV and kuv equations, in which the corrective term H/H0 = (1 + h)−2 is
cancelled. Setting K = −kuv/kv, one obtains:

ρF (1 +R2
F )

RF (R2
F + ρ2F )

= K. (160)
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Figure 29: Example of radial profiles obtained for the corrective terms h(z) (lower blue curve)
and ρF (z) (intermediate magenta curve) under the approximation RF (z) ≈ 1 and for X = 19/80.
The upper red curve is the theoretically obtained radial profile for the correlation coefficient ρ.
These expressions account for the various known constraints at the jet center and edge, in
particular ρF = ρ around the jet edge. They are constructed to yield F = X + (0.5 − X)Gs,
where Gs is Gaussian (see text).

This equation can be solved in terms of a function ρF (RF ):

ρF =
1 +R2

F −
√

1 + 2R2
F + (1− 4K2)R4

F

2KRF

. (161)

Reversely, the solution can be expressed as RF (ρF ). Setting:

A = K ρF

√
27K2 + 2(2− 9K2)ρ2F −K2ρ4F (1− 4K2), (162)

and
B = 2−1/3 (27K2ρF + (2− 9K2)ρ3F + 3

√
3A)1/3, (163)

one finds:

RF =
1

3K

(
ρF +

1− 3K2

B
+B

)
. (164)

The corrective term to the kv equation writes:

1 + w =
1 + ρ2F/R

2
F

(1 + h)2(1− ρ2F )2
. (165)

Knowing that H0 = 3/α2, the kuv equation writes (in terms of pure profiles normalized
to unity):

kuvo = 3 ∂ησ
2
vo + η ∂η∂ησ

2
vo =

3

α2
σ2
vo

(1 +R2
F ) ρF

R3
F (1 + h)2 (1− ρ2F )2

. (166)

63



Another relation derives from the solution to the kuv equation constructed from a Gaussian
function:

(1 +R2
F )

2R3
F

ρF
(1− ρ2F )2

= ρ (1 + h)2
(

1 +
21s2

4− 21s2
Gs

)−2
, (167)

with Gs = exp(−1
2
( η
sα

)2).
Since the functions ρF (η), RF (η) and h(η) are expected to vary slowly across the

jet radius, we can give them a polynomial form, valid in the center region of the jet
z = η/α� 1. We set to order z4:

ρF = 2α z (1 + aF z
2 + bF z

4), RF = 1 +AF z
2 +BF z

4, 1 + h = 1 + h2z
2 + h4z

4. (168)

The relation between RF and ρF implies the following relations between the coefficients
of their power series, (valid in the jet central region):

AF =
1

2
aF−

3

8
−2α2, BF =

1

2
bF−

261

1280
−9 a4−aF

(
9

32
+

7

2
α2

)
− 1

16
a2F−

3

8
α2−α4, (169)

while the kuv equation yields:

h2 = 6α2, h4 = 15 a4 + α2

(
3

2
+ 10 aF + 30α2

)
. (170)

Around the edge of the jet, i.e. z ≈ 1, up to the turbulent-laminar transition at
z = q ≈ 1.15, we know several constraints:

- while there is no longer any Schrödinger equation for z > q in the laminar region,
we expect the existence of an intermediate region z0 < z ≈ 1 < q in which the various
conditions underlying the emergence of a v-Schrödinger equation are fulfilled, while the
turbulent energy remains so low that only the ground state solution can manifest itself.
Therefore, in this region, ρF = ρ.

- the function h(z) is built from the parameter H = H0(1 + h)−2 which is defined as
H = 1/(4g4vL

2
v), where gv = σvF/σv and Lv is an integral length in the radial direction

(normalized according to the x self-similarity). In the intermediate region where only
the ground state solution exists, we expect σvF = σv so that gv = 1 and then H =
1/(4L2

v). The Lv profile along the radial direction has been experimentally determined by
Wygnanski and Fiedler [24] to be 0.015 in the jet central region and to reach 0.03 around
its edge. Then we find hB = −0.48 at the turbulent-laminar transition, while it increases
toward the interior of the jet, therefore reaching hB ≈ 0 around z ≈ 1.

- from isotropy around the jet edge, we expect RF = σuF/σvF = R = 1 for z ≈ q.
Experimental data support in a fair way this isotropy: one observes σu = σv within
uncertainties beyond z ≈ 0.9 (see Figs. 2 and 3).

Additional constraints across the whole jet are: 0 < ρF < 1 from its very nature of
correlation coefficient and RF ≥ 1 from the constraint σu ≥ σv specific to the jet.

We have combined these various constraints into possible solutions for ρF (z), RF (z)
and h(z) valid across the whole jet and yielding the Gaussian behavior for the function
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F (z), namely:

F = X +

(
1

2
−X

)
Gs =

√
6σuv
α2 kuvo

= X

√
ρ

ρF

(
2R3

F

1 +R2
F

)1/2

(1− ρ2F ) (1 + h). (171)

The combination of these various constraints yield aF ≈ 1 and 4.5 < bF < 13. We
find that RF remains close to 1 throughout the jet radial distance. This allows us to
take the approximation RF = 1, which yields aF = 0.91 and bF = 4.5 in the central
region. In the outer part of the jet we have written the fundamental level correlation
coefficient as ρF = ρ (1 + f4 (z − 1)4) owing to their equality around the jet edge. Using
the identification of the various forms of the solution with a Gaussian function given in
Eq. (171) and assuming it to be valid across the whole jet, we can calculate the function
h(z) in the center and edge regions, and finally match the inner and outer solutions. We
find f4 = −4.3 for a matching point at z0 = 0.45.

We give in Fig. 29 an example of the typical behavior obtained in this way for the
corrective terms, using the theoretical solutions X = 19/80, σuv = σuvtot and σ2

vo = −po =
cos[
√

3 z/(1 + a4z
4)] with a4 = 0.18 for calculating ρ(z) = −σuv/(X2po). They remain

� 1, therefore justifying the various approximations which have been initially taken (then
relaxed). However, we have not been able to obtain a fully self-consistent solution around
the jet edge, since a sign problem remains in the kuv equation in the outer region of the
jet (or, in other words, one cannot fulfill all the constraints together). This is discussed
in Sec. 8.
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[38] N. Mordant, E. Lévèque and J.-F. Pinton, “Experimental and numerical study of the
Lagrangian dynamics of high Reynolds turbulence”, New Journal of Physics 6, 116
(2004).

[39] G.A. Voth, A. La Porta, A.M. Crawford, J. Alexander and E. Bodenschatz, “Mea-
surement of Particle Accelerations in Fully Developed Turbulence”, J. Fluid Mech.
469, 121 (2002) [arXiv: physics/0110027].

67



[40] L. Landau and E. Lifchitz, Statistical Physics (Pergamon Press, Oxford, 1987).

[41] G. K. Batchelor, “Diffusion in free turbulent shear flows”, J. Fluid Mech. 3, 67 (1957).

[42] B. Viggiano et al., “Lagrangian diffusion properties of a free shear turbulent jet”, J.
Fluid Mech. 918, A25 (2021)

68


	Introduction
	Hydrodynamics equations for the turbulent jet
	RANS equations
	Exact solutions to the RANS equations for self-similar flows
	Scaling relation
	Exact solution to the axial RANS equation
	Exact solution to the radial RANS equation
	Boundary layer approximation

	Turbulent viscosity
	Deriving velocities from shear stress
	Deriving velocities from variable turbulent viscosity

	Solutions of the RANS equations for the turbulent round jet
	Solution with constant turbulent viscosity in the central region
	Matched precise solution of RANS equations with variable turbulent viscosity
	Theoretical prediction of the turbulent-laminar transition angle
	A new matched global solution for mean velocity profiles
	Comparison with experimental and numerical data


	Scale-relativity theory of turbulence: a short reminder
	Principle of relativity of scales
	Geodesics equations
	Macroscopic Schrödinger equation
	Application to turbulence in velocity-space
	Conditions for Schrödinger equation
	Scale-covariant derivative in velocity-space
	Schrödinger equation in velocity-space
	New acceleration / force component
	Harmonic oscillator potential in velocity-space

	Solution in principle of the closure problem

	Scale-relativity theory of the turbulent jet in velocity-space
	Method
	Theoretical prediction of the ratio between axial and radial Reynolds stresses
	Relation between the radial Reynolds stress and the velocity variance of the normal state
	Theoretical prediction of the turbulent jet opening parameter
	Theoretical prediction of the pressure / radial stress profile
	Generalized solution for the pressure and radial Reynolds stress profile valid up to the jet boundary
	Corrective term in the radial stress equation equation
	Comparison with experimental data


	Theoretical prediction of the turbulent fluctuation amplitudes
	Statement of the problem
	A characteristic function
	Theoretical prediction of the stress amplitude in the jet central region
	New pressure analytical solution of the Schrödinger equation
	Theoretical prediction of the turbulent intensity amplitudes

	Theoretical prediction of the velocity correlation coefficient
	Discussion
	Summary of method and results
	Drawbacks and remaining problems

	Conclusion

