
HAL Id: hal-04272362
https://hal.science/hal-04272362v1

Preprint submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Welded graphs, Wirtinger groups and knotted
punctured spheres

Benjamin Audoux, Jean-Baptiste Meilhan, Akira Yasuhara

To cite this version:
Benjamin Audoux, Jean-Baptiste Meilhan, Akira Yasuhara. Welded graphs, Wirtinger groups and
knotted punctured spheres. 2023. �hal-04272362�

https://hal.science/hal-04272362v1
https://hal.archives-ouvertes.fr


WELDED GRAPHS, WIRTINGER GROUPS AND KNOTTED PUNCTURED SPHERES

BENJAMIN AUDOUX, JEAN-BAPTISTE MEILHAN, AND AKIRA YASUHARA

Abstract. We develop a general diagrammatic theory of welded graphs, and provide an extension of Satoh’s
Tube map from welded graphs to ribbon surface-links. As a topological application, we obtain a complete
link-homotopy classification of so-called knotted punctured spheres in 4–space, by means of the 4–dimensional
Milnor invariants introduced by the authors in [7]. On the algebraic side, we show that the theory of welded
graphs can be reinterpreted as a theory of Wirtinger group presentations, up to a natural set of transformations;
these groups arise as the fundamental group of the exterior of the surface-link obtained from the given welded
graph by the extended Tube map. Finally, we address the injectivity question for the Tube map, identifying a new
family of local moves on welded links, called Υ moves, under which the (non extended) Tube map is invariant.

Introduction

A surface-link in 4–space is the image of an embedding of a compact oriented surface inR4 up to ambient
isotopy. The first examples of non trivial surface-links were spun links, described in the mid-twenties by
Artin [1]; these are obtained as the trace of the 2π–rotation of a tangle in a half 3–dimensional (3D) subspace
ofR4 around the boundary of this subspace. Such links happen to be ribbon surface-links, meaning that they
bound immersed 3D handlebodies in R4 with only ribbon singularities, locally shaped as the 3D thickening
of an arc passing transversally through a 3–ball. Not all surface-links are ribbon, but they form an important
subclass which has been extensively studied in the late sixties [30, 31, 32, 33], when the systematic study
of surface-links began. In several ways, ribbon surface-links are easier to handle than general surface-
links. Indeed, they admit simple projections, which are projections in R3 with only double points — while
a generic projection of a surface-link contains in general triple and branch points; for embedded spheres,
being ribbon is actually equivalent to having a simple projection [30]. Ribbon surface-links also admit 3D
ribbon presentations, see e.g. [20], which are certain ribbon-immersed disks in 3–space. But despite their
simplicity, ribbon surface-links can have a central role in the study of surface-links, such as in [6] where
2–dimensional string links are classified up to link-homotopy using the fact that any such surface-link is
link-homotopic to a ribbon one (a result which is generalized by Proposition 3.3, see below).

In 2000, ribbon surface-links received renewed interest when Satoh extended Yajima’s Tube map [29]
— a construction which ‘inflates’ classical knot diagrams into ribbon surface-link diagrams — to welded
knotted objects, and showed that this yields a surjective map from welded knots and knotoids to ribbon tori
and spheres [26]; he also showed that the Tube map coincides with Artin’s spun map on classical knots.
Welded knotted objects were first introduced by Fenn–Rimanyi–Rourke [14] for the 4–dimensional study
of motions of unknotted circles in R3, and can be seen as a quotient of the virtual (or, equivalently, Gauss)
diagram theory. Via Satoh’s Tube map, welded knotted objects provide a 2–dimensional description of
ribbon surface-links, which has been used effectively in several recents works [4, 6, 22, 23].

However, welded links and string links cannot describe all type of ribbon surface-links, as it restricts to
surfaces with connected components of genus 0 or 1, with 0 or 2 boundary components. To overcome this
issue, the present paper develops a theory of welded graphs which generalize welded knots, links and string
links. We observe that the Tube map extends naturally to welded graphs (Proposition 1.14), thus allowing
for the study of the whole class of ribbon surface-links, of any topological type. As a concrete topological
application, we obtain the following classification result.

Theorem (Theorem 3.4). Knotted punctured spheres are classified, up to link-homotopy, by non repeated
4–dimensional Milnor invariants.

In this statement, knotted punctured spheres are properly and smoothly embedded unions of punctured
spheres whose boundary is a fixed unlink (or slice link, see Remark 3.6), forming a vast class of surface-
links which contains Le Dimet’s linked disks [19] and 2–string links studied in [4, 6]. Link-homotopy is
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Milnor’s classical notion of continuous deformation leaving distinct components disjoint at all time [24],
and the classification is given using the 4–dimensional Milnor invariants of surface-links developed in [7],
where this result was first announced; see Section 3 for details.

In a different direction, we use welded graphs to address the injectivity problem for the Tube map on
welded knotted objects. An important open problem is indeed to determine the kernel of this map. The Tube
map is known to be injective for welded braids [11] and to have a non-trivial kernel in the link case [28, 16],
but the general case remains widely open. As developed in this paper, one advantage of the notion of welded
graphs is that it naturally encompasses all the known moves on welded objects for which the Tube map is
invariant. Actually, using this setting, we identify a large family of local moves on welded (string) links, the
Υ moves (Definition 1.7), under which the Tube map is invariant:

Proposition (Proposition 1.16). The Tube map is invariant under Υ moves.

These Υ moves do not seem to be induced by usual welded moves, which leads us to conjecture that they
provide general obstructions for the injectivity of the Tube map on welded (string) links.

Welded graphs already appeared in the literature [18, 9], in closely related forms. Our approach is in
comparison deliberately more combinatorial, in terms of oriented graphs with edges labelled by elements
in the free group generated by the vertices. This highlights a striking relationship between welded objects
and Wirtinger presentations, which are finite presentations where each relation identifies a generator with a
conjugate of another one. A celebrated result of Wirtinger provides such a presentation for the fundamental
group of the complement of a (srring-)link described by a diagram, and it is well-known that this procedure
extends to welded knots and (string) links. One of the main claim of the present paper is that the theory
of welded graphs can actually be recasted as a theory of Wirtinger presentations up to some natural trans-
formations which preserve the associated group; see Theorem 2.2 for a precise statement. Moreover, this
correspondence is naturally compatible with the extended Tube map, providing a nice connection between
combinatorial, algebraic and topological objects, illustrated by the following result:

Proposition (Proposition 2.3). For any welded graph Γ, the associated Wirtinger group G(Γ) is isomorphic
to the fundamental group π1

(
X4 \ Tube(Γ)

)
of the exterior of the surface-link Tube(Γ).

More generally, these Wirtinger presentations associated with welded graphs, yield a whole peripheral
system, which also corresponds to a topological peripheral system for the associated ribbon surface-links.
As a matter of fact, the above-mentioned 4–dimensional Milnor invariants are extracted from this peripheral
system, and the link-homotopy classification of knotted punctured spheres actually follows from a more
general diagrammatic result. Specifically, we introduce a notion of self-virtualization equivalence (sv) for
welded graphs, which is the welded counterpart of link-homotopy for ribbon surface-links, and we prove the
following, where reduced refers to a quotient of the peripheral system (see Section 2.3):

Theorem (Theorem 2.22). Two welded graphs are sv–equivalent if and only if they have equivalent reduced
peripheral systems.

The paper is organized as follows. In Section 1, welded graphs are introduced and the relationship
with welded links and string links is clarified; the connection with ribbon surface-links via an extension of
Satoh’s Tube map is also presented. In Section 2, we introduce Wirtinger presentations and their associated
peripheral systems, and the relation to welded graphs is discussed. We also introduce the notion of self-
virtualization, and prove our classification result for welded graphs up to self-virtualization. Finally, in
Section 3 we return to topology; we prove that every knotted punctured spheres is link-homotopic to a
ribbon one, which leads to the classification of these objects up to link-homotopy.

Notation. For every element a of a group G, the inverse of a can be denoted by a or a−1; and for every
a, b ∈ G, we set ab = bab and [a, b] = baba. We denote by F(a1, . . . , ar) the free group on the generators
a1, . . . , ar.

Acknowledgments. The first, resp. second, author is partially supported by the project SyTriQ (ANR-20-
CE40-0004), resp. the project AlMaRe (ANR-19-CE40-0001-01), of the ANR. The third author is supported
by the JSPS KAKENHI grant 21K03237.
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Figure 1. Some Gauss diagrams
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Figure 2. Exchanging arrow endpoints

1. Welded graphs

1.1. Welded knotted objects. Let us start with a quick review of the “usual” welded theory. This theory
was initially given in terms of virtual diagrams [17], but we will consider here the Gauss diagram point of
view; see for instance [4] for a correspondance between the two approaches.

Gauss diagrams were first introduced as a pictural form for the Gauss code representation of knots. They
are abstract and signed arrows whose endpoints are embedded in a compact oriented 1–dimensional manifold
that shall be denoted by M hereinafter; see Figure 1 for examples.

Welded knotted objects are defined as equivalence classes of Gauss diagrams up to the following welded
moves (here, and in subsequent figures, ε and η are two arbitrary signs):

ε Reid1
←→

−ε

η
ε

Reid3
←→

−ε

η
ε

−ε

ε Reid2
←→

ε
η

TC
←→

η
ε

.

We stress that a TC move allows one to freely exchange1 the relative position of two adjacent arrow tails
on M. Figure 2 represents the exchange moves, which are consequences of Reid2 and Reid3 moves (see [4,
Fig. 4.1], and which similarly allow to exchange the relative positions of two adjacent arrow endpoints, up
to the addition of a pair of oppositely-signed arrows.

Depending on the topological nature of the 1–dimensional manifold M, one can define various types of
welded knotted objects:

• welded knots correspond to the case where M is a single copy of S 1, and welded links to the case
where M is a finite union of (ordered) disjoint copies of S 1;

• welded string links correspond to the case where M is a finite union of (ordered) disjoint intervals;
• welded knotoids are the quotient of 1–component welded string links, by the move which deletes or

creates an arrow whose tail is adjacent to an endpoint of the interval [0, 1].

1TC actually stands for Tails Commute.



4 B. AUDOUX, J.B. MEILHAN, AND A. YASUHARA

We next give some notation and observations that will be useful in Section 1.3, and that shall also
smoothly drag the above definitions towards the notion of welded graphs.

Observe that, up to ambient isotopy and TC moves, the relevant information for an arrow tail is not its
precise position, but rather the sub-arc of M, bounded by two arrow heads, where this tail is located. This
means that the information carried by an arrow can be summarized by the position of its head, together
with a label indicating the sub-arc of M where the tail is located; the arrow sign can in turn be given by an
overlining, or a ”−1” exponent, on this label if the sign is negative. More generally, a bunch of arrows with
adjacent heads can be described by a word obtained by concatenating the corresponding labels. Moreover,
observe that, thanks to the TC move, bunches of adjacent arrow tails can be thought of as gathered in a single
point. Such a point corresponds to the sub-arc of M containing only these tails and comprised between two
arrow heads. This allows to think of Gauss diagrams as a collection of such “tails localization” points,
connected by oriented arcs decorated with words describing the sequence of arrow heads met on this portion
of the Gauss diagram.
These rough observations shall be formalized in the next subsection, through the notion of welded graph.

Finally, given an arrow A of a Gauss diagram G, and assigning a letter to every sub-arc of M comprised
between two heads and containing no head in its interior, we define the head (resp. tail) conjugation of A by
a word w, as the insertion of the bunch of arrow heads associated to w on one side of the head (resp. tail) of
A, and of the bunch of arrow heads associated to w on the other side. Notice that inserting such extra arrows
splits some of the sub-arcs of M, hence changes the alphabet. For example, Figure 2 can be summarized by
saying that an endpoint of some arrow A1 can be pushed through the adjacent head of an arrow A2, at the
cost of conjugating the other endpoint of A1 by the one-letter word corresponding to A2.

1.2. Definition of welded graphs.

Definition 1.1. A w–graph is an oriented graph Γ with edges decorated by elements of the free group
generated by the vertices of Γ, and with a subset of marked vertices. In other words, a w–graph is the data of

• a set VΓ of vertices,
• a set EΓ of edges, made of triplets (a, b,w) where a, b ∈ VΓ, and w ∈ F(VΓ) is the edge decoration,
• a (possibly empty) subset V◦Γ ⊂ VΓ of marked vertices.

The connected components of the graph are ordered, and so are the marked vertices on each connected
component. An edge decorated by the unit element 1 of F(VΓ) shall be called an empty edge.

In figures, we always represent marked vertices by white dots ◦, while unmarked vertices are represented
by black dots •.

We say that a w–graph is of type
(
(m1, b1), . . . , (m`, b`)

)
if the underlying graph Γ has ` (ordered) con-

nected components, and the i–th component has exactly mi marked vertices and first Betti number bi; we
simply say that it has type (m, b) if m1 = m2 = · · · = m` = m and b1 = b2 = · · · = b` = b.

We define the following moves on w–graphs, illustrated in Figure 3:
• contraction (C), which removes an empty edge (a, b, 1) from EΓ and replaces VΓ by VΓ

/
a ∼ b, where

a and b are identified, under the assumption that b < V◦Γ ;
• orientation reversal (OR), which replaces an edge (a, b,w) by (b, a,w);
• stabilization (S), which adds a common prefix a to all the edges connected to a given vertex b, under

the assumption that all the edges are oriented outwards b, that b < V◦Γ and that all edge decorations
of Γ are in F

(
V \ {b}

)
;

• Reidemeister I (R1), which replaces an edge (a, b,w) by (a, b, aεw) for some ε ∈ {±1};
• Reidemeister III (R3), which replaces by wb the decoration aw of an edge e ∈ EΓ, under the as-

sumption that (a, b,w) ∈ EΓ \ {e}.

Remark 1.2. The contraction move induces its inverse move, the expansion move (E), which duplicates a
vertex v into v1 and v2, and creates a new empty edge between them. All the edges which were adjacent to
v, have to be distributed between v1 and v2, and any occurence of v in edge decorations can be freely chosen
be replaced by v1 or v2.

Note that the number of marked vertices, as well as the first Betti number, are preserved by all the above
moves.
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C
−→ w

OR
←→ w

contraction orientation reversal

w3

w1

w2 S
←→ aw1

aw3

aw2

stabilization

a
w

R1
←→

a
aεw

ba

aw

w
R3
←→

ba

wb

w

Reidemeister 1 Reidemeister 3

Figure 3. Moves on w-graphs
Here, and in the next figure, all depicted trivalent vertices represent vertices of any valency

w2

w3

w0w1
P
←→ w0

w1w3

w1w2

w
P
←→

push move push move (univalent case)

w1w2
Split
−−−→ w2w1 w1w2

R3
←→ w1w awbw2

split move rephrased R3

b

b

w1 w2

b

b

w3

S
←→

b
aba

aw2

aw3

aba

aba

aw1

generalized stabilization

Figure 4. Extra moves on w-graphs

Definition 1.3. A welded graph is an element of the set

wGraph :=
{

w–graphs
}/

C,OR,S,R1,R3,

and its type is defined as the type of any of its representatives.

More admissible moves can be obtained by combining moves C, OR, S, R1 and R3. We gather below
some of these extra moves, illustrated in Figure 4:
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Figure 5. From Gauss diagrams to w–graphs

• push move (P), which pushes, according to the edges orientations, a word through an unmarked
vertex that does not appear in any edge decoration; note that, in the case where the involved vertex
is univalent, the push move simply erases the word on the incident edge;

• split move (Split), which splits an edge in two and separates the decoration between them. Note
that it induces its inverse move, which deletes a bivalent vertex that does not appear in any edge
decoration, merges the two adjacent edges and concatenates their edge decorations.

Also:

• the Reidemeister III move can be rephrased as follows: given an edge (a, b,w), insert the word
w awb (or any cyclic permutation of it, or of its inverse) within the decoration of any other edge;

• in a stabilization move, the condition that the central vertex b does not appear in any edge decoration
can also be relaxed, at the cost of conjugating by the prefix a every occurence of b in the edge
decorations.

We postpone to Appendix A the proof that each of these extra moves are indeed consequences of moves C,
OR, S and R3.

1.3. Relation to welded links and string links. As mentioned earlier, welded graphs are closely related to
welded links and string links. This is made explicit in Theorem 1.8 below, which is the main result of this
subsection.

1.3.1. Statement. We define two maps

ψL :
{

welded links
}
→
{

welded graphs of type (0, 1)
}

ψS L :
{

welded string links
}
→
{

welded graphs of type (2, 0)
}

as follows. To a Gauss diagram D for a welded link, we associate a w–graph ΓD. The vertices of ΓD are
all unmarked, and are in bijection with the arrow tails of D. The edges correspond to the oriented pieces of
circle bounded by two ‘adjacent’ arrow tails, which are such that they contain no arrow tail in their interior.
When running according to its orientation, each such piece of circle contains an ordered (possibly empty)
sequence h1 · · · hk of arrow heads; the decoration of the corresponding edge of ΓD is obtained by replacing
each hi by tεi

i , where ti and εi are respectively the tail and the sign of the arrow which contains hi. Finally,
in order to reduce the number of vertices, empty edges can be contracted. See the left-hand side of Figure 5
for an example.

For a Gauss diagram D of welded string link, we define ΓD in a similar way; each component of the
w–graph ΓD now contains two marked vertices, which are in bijection with the endpoints of the intervals,
and the edges correspond to the oriented pieces of interval between every pair of adjacent arrow tails and/or
interval endpoints. See the right-hand side of Figure 5.

It is a straightforward exercise to check that this assignment D 7→ ΓD is well-defined on welded links and
string links, hence induces the requested maps ψL and ψS L.

Moreover, as Figure 5 illustrates, the w–graphs obtained from the above procedure, have a very specific
shape. This motivates the following definitions.
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Definition 1.4. A w–graph of type (0, 1) is called cyclic if each component is isomorphic to a circle, de-
composed into bivalent unmarked vertices and oriented edges, such that each vertex has one inward and one
outward oriented incident edges; see the left-hand side of Figure 5.

A w–graph of type (2, 0) is called linear if each component is isomorphic to an interval, decomposed
into two univalent marked vertices, bivalent unmarked vertices and oriented edges, such that each unmarked
vertex has one inward and one outward oriented incident edge; see the right-hand side of Figure 5.

Lemma 1.5. The maps ψL and ψS L are surjective.

Proof. Since the link case is strictly similar, we only give the argument in the string link case. We first
observe that, up to push and contraction moves, any w–graph of type (2, 0) is equivalent to a linear w–graph.
Indeed, each component of a w–graph of type (2, 0) is a tree with two marked vertices; we consider the
shortest path of edges between these two marked vertices. Next we pick some edge e which is not in this
path, but which has an endpoint a on it (and a tree T attached to its other endpoint). If a is not used in any
edge decoration, we can simply apply a push move to turn e into an empty edge, and then a contraction
move to delete it; otherwise, we need to first push a inside the shortest path using an expansion move, which
creates an empty edge, so that we can remove e as in the former case:2

T

w
a

E
−−→

T

a
w P

−−→

T

w w

w

a
C
−−→ T

w w

w

a .

Applying this procedure recursively, we can delete all edges which are not in the shortest path. Then it only
remains to apply OR moves to orient all edges coherently. Now, it remains to note that a linear w–graph Γ,
admits a preimage for the map ψS L. The process is summarized in the figure below:

xε1
1 . . . xεk

k

S
−→

...

xε1
1 xεk

k { ε1

x1 xk

εk
.

First, using S moves, we split each word label on a linear w–graph into letter labels so that each edge is
decorated by the, possibly overlined, name of a vertex. Next, we replace each (non empty) edge decoration
by the head of an arrow, whose tail is attached in a neighborhood of the vertex corresponding to the letter
decoration; the sign of this arrow being − if the letter is overlined, and + otherwise. Note that the relative
position of the tails corresponding to a same letter label, is irrelevant thanks to the TC move. �

Remark 1.6. As roughly outlined at the end of Section 1.1, and formalized by the map ψS L, word labelings
on the edges of a welded graph can locally be thought of as some Gauss diagram arrows. In subsequent fig-
ures, we shall use implicitly this correspondence. Concretely, this means that we shall sometimes represent
bunches of adjacent arrow heads in Gauss diagrams by some edge decoration words, whose signed letters
correspond to the arrows signs and tails. A typical example follows in the next definition.

We now show that these maps are not injective. More precisely, we prove that the injectivity defect is
controlled by the following moves.

Definition 1.7.

2Another issue would be that the vertex we are willing to push through is a marked vertex, but this can be safely avoided by pulling
first the initial and final vertices away by using C moves.
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• On welded links and string links, we define the Υ move as the following local move:

η

w

ε

w

−η
−ε Υ

←→

ε

−ε

w

w

−η

η

,

where the three open arrows represent any number of tails whose associated heads are located out-
side of the picture.3

• On welded links, we define the global reversal (GR) move, as the move which reverses the orienta-
tion of a component, and reverses the sign of all arrows whose head is attached to this component.

The following is the main result of this section. As we shall see in Subsection 1.4, it is also relevant from
the topological point of view.

Theorem 1.8.
• The map ψL induces a bijection between welded graphs of type (0, 1) and welded links up to Υ and

global reversal moves.
• The map ψS L induces a bijection between welded graphs of type (2, 0) and welded string links up to

Υ moves.
In particular, the set of welded links and string links, up to Υ and global reversal moves, embed into the set
of welded graphs.

The proof of Theorem 1.8 occupies the rest of Section 1.3.

1.3.2. Three technical lemmas. We prepare below three technical lemmas that will be used in the proof of
Theorem 1.8.

Lemma 1.9. Two Gauss diagrams which differ only locally as

w2w1 wk

and
w2w1 wk

,

where each triad of open arrows stands for any bunch of tails, are equivalent up to welded moves, if the
concatenated word w1 · · ·wk is trivial as a free group element.

Proof. The leftmost tail in the left-hand diagram, can be pushed to the right at the cost of conjugating its
head by the word w1 · · ·wk by the exchange moves of Figure 2. But since this word is trivial as a free group
element, all the conjugating arrows can be removed pairwise using Reid2 moves. �

Lemma 1.10. Up to welded moves, two Gauss diagrams which differ only locally as

w1

w1

w2

w2

−ε
ε

and
w1

w1

w2

w2

ε
−ε

,

where none of the right-pointing tails are connected to w1, are equivalent.

3Since the two diagrams are identical outside the represented portion, this means that the two bunches are “identical” for both
diagrams; it also means that they are not connected to any of the arrows associated to w.
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Proof. We start from the left-hand diagram. We denote by aε and a−ε the depicted ε and (−ε)–signed arrows,
and by xt and xb the depicted vertical top and bottom sub-arcs of the diagram. Then w1 can be pushed through
the head of a−ε, so that a−ε can be removed with a Reid1 move. Pushing w1 through a−ε in this way, has
the effect of conjugating all tails of arrows in w1 by xt, and we denote this by replacing the label w1 by wxt

1 .
Next, w1 can be pushed through the head of aε, at the cost of conjugating w1 by xt.4 We thus obtain the local
diagram

w2

w2wxt
1

wxt
1

ε

.

Now, observe that each letter in w1 corresponds to two arrows, one from w1 and one from w1, which can be
assumed to have adjacent tails by move TC. When conjugated by xt, these tails are now separated by two
xt–tailed arrows with opposite signs which can be removed using a Reid2 move. By this observation, we
have that wxt

1 and wxt
1 indeed represent inverse elements in the free group: we are therefore in the situation

of Lemma 1.9. We apply hence Lemma 1.9, not only to the tail of aε, but also to all xt–tailed arrows
conjugating wxt

1 and wxt
1 : all these tails are pulled in this way down to the bottom interval xb. After this

deformation, the arrow aε can be deleted thanks to a Reid1 move, while all conjugating xt–tailed arrows are
turned into conjugating xb–tailed arrows, since their tails now sit on xb. As a result, we the following local
diagram:

w2

w2w
xb
1

w
xb
1

.

We now turn to the right-hand diagram in the statement. We can perform a similar sequence of moves
as above, except that, at the final step, we only apply Lemma 1.9 to the arrow a−ε (that is, we leave all
conjugating xb–tailed arrows on xb). This yields the very same diagram as above, which concludes the
proof. �

Lemma 1.11. Up to Υ and welded moves, two Gauss diagrams which differ only locally as:

η
w2

w1

w1

w2 w3

w3

−ε
ε

−η

and

ε
w2

w1

w1

w2 w3

w3

−ε

−η

η

,

where none of the right-pointing tails are connected to w1, w2 or w3, are equivalent.

Proof. We denote by aα the depicted α–signed arrow (for α ∈ {±ε,±η}), and by xt and xb the depicted
vertical sub-arcs of the Gauss diagram. We also denote by xr the rightmost sub-arc of the diagram, which
contains the tails of arrows aη and a−η.

We first note that in the case where w2 = w3 = ∅, the local deformation of the statement is nothing but
the Υ move; hence the case w2 = w3 = ∅ is immediate.

Now let us show how the case where w3 = ∅, reduces to this w2 = w3 = ∅ case. This is done by pushing,
in the left-hand side diagram, w2 and w2 across the head of aη and a−η, respectively. As in the proof of
Lemma 1.10, this deformation is achieved at the cost of conjugating these words w2 and w2 by xr. We can
then apply the w2 = w3 = ∅ case, and then push back the xr–conjugated word w2, resp. w2, across the head

4Conjugation is also by xt since aε and a−ε have opposite signs and we are pushing w1 and w1 in opposite directions according to
the diagram orientation.
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of aη, resp. a−η. Being the reverse process of the initial deformation, this simply unconjugates these words,
and yields the right-hand-side diagram.

Finally, we observe that the general case similarly reduces to the w3 = ∅ case. The argument is the same
as above, except for one additional subtlety. Starting with the left-hand diagram, we push w3 and w3 across
the head of aε and a−ε, respectively. We can then apply the w3 = ∅ case of the statement. The point is that
the initial deformation was achieved at the cost of conjugating the words w3 and w3 by xt (and not xr as
above). Hence we cannot immediately push back these conjugated words to obtain the desired move. But
each of the xt–conjugating arrows introduced at this initial stage, has its tail on the top vertical sub-arc xt,
and, by assumption, its head is located away from the depicted part of the diagram. Hence Lemma 1.9 can
be applied to each of these arrows, whose tail can be moved down to the bottom vertical part xb. Indeed, the
concatenation of the words separating xt and xb is equivalent to the empty word, so that the lemma applies.
After applying Lemma 1.9 in this way, w3 and w3 can be unconjugated by pushing them back in place, and
the proof is complete. �

1.3.3. Proof of Theorem 1.8. Before proceeding with the proof of Theorem 1.8, we introduce some termi-
nology.

Each connected component of a w–graph of type (2, 0) has two marked vertices, which are ordered ac-
cording to the orientation: the first one is called initial vertex and the second one is called final vertex. There
is also a unique shortest path from the initial to the final vertex: every edge which is not on this path is called
an extra edge. Note that the w–graph is linear if it has no extra edge.
Every vertex v of a w–graph of type (2, 0) which is not the final vertex, has a unique shortest path to the final
vertex: the first edge on this path is called the out edge of v. For vertices distinct from the initial vertex, the
in edge is similarly defined as the first edge on the shortest path to the initial vertex. Note that the in and
out edges of a vertex are distinct if and only if the vertex is on the shortest path from the initial to the final
vertex.

In the same way, each connected component of a w–graph of type (0, 1) has a unique shortest non con-
tractible path: edges which are not on this path are also called extra edges. Observe that the w–graph is
cyclic if it has no extra edge.

Proof of Theorem 1.8. Let us consider the string link case. First, we observe that the maps ψS L is invariant
under Υ moves. Indeed, on one hand we have by definition that

ψS L


η

w

ε

w

−η
−ε

 =

c

b

a

a−εb−ηw

wbηaε

,

and applying a sequence of expansion, contraction and push moves to the resulting w-graph, shows that

c

b

a

a−εb−ηw

wbηaε

E
−→ b

c

a

a−εb−ηw

wbηaε

P
−→ b

c

a

wbηaε
C
−→ b

c

a wbηaε
C
−→ a b

wbηaε ,

On the other hand, applying the ψS L map and a similar sequence of expansion, contraction and push moves,
gives:

ψS L

 ε

−ε

w

w

−η

η

 =

c

b

a

c−εb−ηw

wbηcε

E,P,C
−−−−→ bc wbηcε = a b

wbηaε .
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−→ w2

w3

w1

−→
w2

w3

w1w2

xε1
1 . . . xεk

k
{

ε1

x1 xk

εk

step 1 step 2 step 3

Figure 6. Definition of ξS L

Therefore ψS L induces a well-defined map

ψS L :
{

welded string links up to Υ moves
}
→
{

welded graphs of type (2, 0)
}
.

We now define an inverse map ξS L for ψS L. Let Γ be a w–graph of type (2, 0). The description of ξS L(Γ)
will be given in three steps, summarized in Figure 6. The first step provides an algorithm for turning Γ into
a linear w–graph, by a canonical sequence of push and contraction moves; the second step specifies the edge
labels on this linear w–graph, induced by those of Γ; the third step associates a welded string link to the
resulting welded graph.

Step 1. For every vertex of Γ, we fix an arbitrary ordering on the adjacent edges such that the out edge is
last and, if it exists, the in edge is penultimate. The first edge of a vertex is called the leading edge of the
vertex, and the second one is called the co-leading edge. Using these orderings clock-wisely, we obtain a
planar way of embedding Γ in R2; we can then ‘contour’ these planar trees (see step 1 in Figure 6) to get
a union I of intervals, connecting initial vertices to final ones. We orient these intervals from the initial to
the final vertex. Each vertex of Γ corresponds to at least one, possibly more, points on I: we keep only the
point which is closest to the final vertex. This turns I into a linear graph, whose vertices are in one-to-one
correspondence with those of Γ, and whose edges are unions of edges of Γ.

Step 2. Each edge e of I is a union of edges e1, · · · , ek of Γ with the same or the reversed orientation. Let
wi be the decoration of ei in Γ. Then we decorate e by the concatenation wε1

1 · · ·w
εk
k where ei ∈ {±1} is 1 if

and only if the orientations of e and ei agree; see step 2 in Figure 6 for an illustration.
At this point, we obtain a linear w–graph Γl which is equivalent to Γ. Indeed, Γl is the result of iteratively
contracting, as outlined in the proof of Lemma 1.5, all extra edges with a univalent unmarked endpoint,
starting with the one which is closest to the final vertex of the corresponding component of I.

Step 3. We apply, on the linear w–graph Γl, the exact same procedure as in the latter half of the proof of
Lemma 1.5: we split each edge by S moves to obtain a linear w–graph labeled by letters, and we replace
each of these letter labels by an arrow as illustrated in step 3 of Figure 6. The result is the desired welded
string link ξS L(Γ); as observed in the proof of Lemma 1.5, this is indeed a preimage for Γl by the map ψS L.

We now have to prove that ξS L(Γ) is well defined, that is ξS L(Γ) is invariant under all moves on w–graphs,
and does not depend on the choice of planar embedding for Γ (that is, on the chosen orderings at each vertex).

First, it is easily checked that OR moves do not change the resulting Gauss diagram, so that we can freely
assume that all edges are oriented toward the final vertex. Invariance under S moves (hence under push
moves) is also easy to check, as they introduce pairs of arrows which can be deleted by R2 moves.

Contraction moves turn out to be the most intricate moves to check. Contraction/expansion of a leading
edge, which we shall call leading contraction/expansion below, has no impact, so that invariance is directly
checked. But contraction of a non leading edge may change drastically the position of some vertex in Γl.
First, let us observe that contraction of an arbitrary (non leading) edge e, can always be realized by a se-
quence of expansion and contractions on either leading edges, or co-leading edges at a trivalent vertex; this
is illustrated in the following figure, where T is any tree attached to the edge e:

T
e → e

T
→ e

T
→

T
→

T
→ T .
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There, the first step is a leading expansion, followed by an expansion on a co-leading edge at a trivalent
vertex; this turns edge e into a leading edge, so that contraction can be performed; it then only remains to
perform the inverse of the first two operations.
Hence we are left with proving the case of a contraction of a co-leading edge e at a trivalent vertex. Using
push moves and leading contractions, the tree attached via the leading edge can be assumed to be linear, that
is we consider a w–graph of the form:

e

a0

T

a1 a2 ak
w2w1 wk

,

where as above, T is any tree, attached to the edge e that we would like to contract. By recursively applying
push moves and leading expansions, this w–graph can be turned into the following:

a1

a2a0

T

ak

w1

wkw1w2
{ · · ·{

ak−1

ak

a2

T

a0

a1

w′
k

w′
1 w′

2 w′
k−1

{ a0

a1 a2

ak

ak−1

T

w′
1 w′

k−1

w′
k

w′
2

,

where the final step is achieved by a leading contraction. Furthermore, we may freely assume that for each
i = 1, · · · , k, the letter ai appears at most once in the word w′i . This is done by using iteratively the following
trick during the above process:

ai
vaiwaiz

→
a′i

ai

vaiwa′iz

→
a′i

ai

vaiwa′iz

vaiwa′iz .

Here, the first operation is a leading expansion (which allows for replacing each label ai by either ai or a′i),
followed by a push move.
Now, we show the invariance under the contraction of e by induction on k. For k = 1, there are two cases:

• Suppose that a1 does not appear in w1. The figure below gives the image by ξS L of the w–graph
before (left) and after (right) contraction on the edge e:

and ,

where each pair of opposed vertical arrows have adjacent tails and opposite signs. Note that the
bunch of right-pointing arrows represent all occurrences a1 in the edge labelings, so that we know
by assumption that none of these tails is connected to the vertical arrow heads of the figure. Starting
from the left-hand side figure above, we aim at moving all left-pointing arrow tails from the bottom
to the top vertical strand. This is achieved by Lemma 1.9 for any such arrow that is not connected to
the vertical arrow heads; left-pointing arrows that are connected to the vertical arrow heads, come
by pairs with opposite signs, so that Lemma 1.10 can be applied to perform the desired move.

• Suppose that a1 appears once in w1. Concretely this means that, in the above left-hand figure, a pair
of vertical arrows corresponds to two of the right-pointing arrows:

......

−ε
ε

.

This case is handled as the previous one, except that we might use Lemma 1.11 instead of Lemma
1.10.
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The inductive step is illustrated below:

a0

a1 a2

ak

ak−1

T

w′
1 w′

k−1

w′
k

w′
2

→

a1

T

a2

ak

ak−1

a0

w′
k−1

w′
k

w′
2w′

1

↓

a1

T

a0

a2

ak

ak−1

w′
k

w′
k−1w′

2w′
1

→

a1 ak−1

T

a0

a2

ak
w′

k

w′
k−1w′

2w′
1

.

The first operation is an expansion in the “k=1 case”; the second step is a leading contraction, and the final
operation is a contraction using the induction hypothesis. Finally, we undo all the previous steps to get back
to the initial configuration with the desired co-leading edge contracted.

Invariance under a change of ordering of the edges at some vertex is now easily handled using push,
expansion and contraction moves. First, we note that, up to expansion and contraction moves, the graph can
be assumed to be uni-trivalent. Then the procedure is schematically illustrated as follows:

T

↔

w

↔ w w ↔ w w ↔

w

↔

T

There, T denote a tree that we would like to ‘move down’by reversing the cyclic order at the trivalent vertex.
With contraction and push moves, we first replace T by a linear graph TL: this is schematically denoted
by a w-labeled edge in the above figure. Next we push down all the decorations of TL, so that the vertical
edges are empty and can be contracted. The reversed procedure can then be performed with the cyclic order
reversed.

We next check the invariance under an R1 move. At the level of the images by ξS L, such a move creates
two or one arrow(s), depending on whether the edge where the move is performed, is an extra edge or
not. The head h and tail t of such an arrow are separated by tails and sequences of heads such that the
concatenation of the corresponding words is trivial as a free group element. Lemma 1.9 can hence be
applied to pull t next to h. The arrow can then be removed using a Reid1 move.

For R3 moves, consider in some welded graph Γ, an edge in Γ between two vertices a and b, and decorated
by a word w, and suppose that Γ contains some other edge decorated by wb. Let Γ′ be the result of the R3
move that replaces the latter label by waw = aw. By construction, the linear welded graph Γl associated to Γ

(step 2 of the definition of ξS L(Γ)) also contains a w–labeled edge between vertices a and b. In the welded
string link ξS L(Γ), this yields bunches of tails corresponding, respectively, to all occurrences of a and b in
the edge decorations, separated by a sequence of heads which correspond to the word w. Pulling one tail
from the b–bunch through the w–sequence of heads will conjugate the associated head by w. The resulting
welded string link is precisely ξS L(Γ′).

This concludes the proof that the map ξS L is well-defined. Moreover, it clearly satisfies ξS L ◦ ψS L = Id.
This shows that ψS L is injective, hence bijective, and the proof is complete in the string link case.

The case of welded links is handled in the same way, except that extra edges are contracted in order to
get a cyclic w–graph instead of a linear one. There is however one extra issue: the resulting cyclic w–graph
has no canonical orientation. This affects the 3-step procedure defining ξL, since in step 3 we need to choose
an arbitrary orientation on each circle component; this is precisely why one needs to introduce the Global
Reversal move in the link case, which identifies two Gauss diagrams that differ by this choice of orientation.
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A more subtle point is that reversing the orientation on some component also affects step 1, as follows:

.
.
.

.
.
.

v

−→

.
.
.

.
.
.

vl
or

.
.
.

.
.
.

vl

.

As the figure illustrates, in the linearization algorithm given in step 1, the chosen orientation is used at each
vertex v of a w–graph, to define the corresponding vertex vl in the linear w–graph. This vertex vl represents,
in the resulting Gauss diagrams, a bunch of arrow tails: Lemma 1.9 ensures that the Gauss diagrams resulting
from the above two situations, are actually equivalent. This concludes the proof of Theorem 1.8 �

1.4. Relation to ribbon surface-links. One important fact about welded links and string links, is that they
are closely related to ribbon surface-links whose components are, respectively, tori and annuli, in the sense
that there exists a surjective map from the former to the latter. Welded graphs are similarly related to all kind
of ribbon surface-links, thus providing a more flexible combinatorial theory for the study of general ribbon
surface-links. In what follows, X4 denotes a given ambient 4–manifold in

{
S 4,R4, B4

}
.

Definition 1.12.
• A ribbon handlebody is an immersion in X4 of a union H of oriented solid handlebodies up to

ambient isotopy, such that
– the singular set is a finite union of ribbon disks; here a ribbon disk is a disk D of transverse

double points with one preimage Dcon, called contractible, embedded in the interior of H, and
one preimage Dess, called essential, properly embedded in H;

– if X4 = B4, H ∩ ∂B4 is a disjoint union of embedded disks.
• A ribbon surface-link is an oriented surface-link which bounds5 a ribbon handlebody; the latter is

called a ribbon filling of the ribbon surface-link.

We note that a given ribbon surface-link, may admit several different ribbon fillings.
By definition, the essential preimages of the ribbon disks of a ribbon handlebody H, cut H into 3–

dimensional pieces, that we call chambers. Each chamber has the topology of a 3–ball with a finite number of
handles attached, and a finite number of disks removed from its boundary. These removed disks correspond
to essential preimages, and each of them is shared by two chambers (possibly twice the same). Moreover,
each contractible preimage of a ribbon disk of H embeds into the interior of one of these chambers.

We say that a w–graph is reduced if all empty edges are loops, all non empty edges are decorated by
one-letter words, and all marked vertices are univalent. We can define a map

C :
{

ribbon handlebodies
}
→
{

reduced w–graphs
}/

OR

as follows. If H is a ribbon handlebody, then C(H) has:
• one unmarked vertex for each chamber and, if X4 = B4, one marked vertex for each connected

component of H ∩ ∂B4;
• as many empty loops attached to each vertex as the genus of the corresponding chamber;
• one arbitrarily-oriented edge eD for each ribbon disk D: the edge connects the two vertices corre-

sponding to the two chambers that are adjacent to Dess, and it is decorated by the letter corresponding
to the (vertex associated to the) chamber containing Dcon; this letter is overlined if and only if, for
any given x0 ∈ D, the concatenation of (the push-forward of) a positive basis of Txcon

0
H, where xcon

0
is the preimage of x0 in Dcon, with (the push-forward of) a normal vector for Dess at xess

0 , where xess
0

is the preimage of x0 in Dess, pointing into the chamber corresponding to the target vertex of eD, is
a negative basis of X4.

Lemma 1.13. The map C is a bijection.

5In case X4 = B4, the boundary has to be understood as the closure of ∂H \ (H ∩ ∂B4).
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Proof. This follows from the exact same argument as in the proof of [3, Prop. 3.7], which deals with the
string link case. Roughly speaking, the proof is based on the fact that, given embedded 4–balls in S 4 with a
finite number of paired embedded 3–balls on their boundary, there is a unique way, up to ambient isotopy,
to connect these 3–balls with disjoint 1–handles. These 1–handles are indeed characterized by their 1–
dimensional framed core; and since the framing takes values in S 2, the unit sphere of the normal bundle of
the core, which is simply connected, all framing are isotopic. �

Next, consider the map

∂ :
{

ribbon handlebodies
}
→
{

ribbon surface-links
}
,

which sends a ribbon handlebody to its boundary.

Proposition 1.14. The composite ∂ ◦C−1, induces a well-defined, surjective map

Tube :
{

welded graphs
}
→
{

ribbon surface-links
}
,

sending a type
(
(m1, b1), . . . , (m`, b`)

)
welded graph to an embedded t`i=1Σi, where Σi is a genus bi surface

with mi disjoint disks removed.

We shall sometimes call this map, the generalized Tube map, since it naturally coincides with the known
Tube map for welded (string) links, see Remark 1.15 below.

Proof. Denote by T̃ the composite ∂ ◦C−1. Note that, thanks to contraction and split moves, every w–graph
is canonically equivalent to a reduced w–graph. Hence T̃ naturally extends to all w–graphs. Let us check
now that T̃ is invariant under C, S, R1 and R3 moves.

Invariance under a contraction move is clear, and since the moves are local, invariance under R1 and R3
moves follow from the same arguments as for the original Tube map; see for instance the explicit ribbon
filling changes argument given in the proof of [2, Prop. 2.5]. Let us now consider the stabilization move,
which inserts a letter x0 on the edges incident to a vertex v. Via T̃ , the letter x0 corresponds to a chamber C0,
and v corresponds locally to a punctured sphere S filled by a 3–ball C; up to ambient isotopy, C and C0 can
be assumed to stand close to each other. Now, we can create6 two oppositely-signed ribbon disks between C
and C0, such that the boundaries of the essential preimages are both parallel to a given puncture of S – see
the left-hand side of the figure below, which represents the chamber C. Then we push one of these ribbon
disks through C, until it splits into ribbon disks parallel to every other punctures of S :

−−−−−−−−−−→ .

The result is the image by T̃ , of the stabilization move. This completes the proof that T̃ is invariant under all
moves on welded graphs, so that the map T̃ induces the desired map Tube.

Surjectivity of Tube is clear, since any ribbon surface-link L admits at least one ribbon filling RL by
definition, C(RL) provides then a welded graph ΓL such that Tube(ΓL) = L. The latter part of the statement,
concerning the types of welded graphs, just follows by construction. �

Remark 1.15. As the name suggests, the definition of our generalized Tube map follows closely the original
construction, as given in [2, 3]. Specifically, by construction we have that Tube ◦ψL and Tube ◦ψS L, coincide
with the original Tube maps for welded links and string links, respectively.

As a matter of fact, the generalized Tube map can be defined directly, in terms of broken surface diagrams,
as in [26] (we shall not recall here the langage of broken surface diagrams, but refer instead the reader to

6See, for instance the local ribbon filling change given in [2, Fig. 16].
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[12]). This is illustrated by the following local pictures:

a → →
j

→

j

.

In general, for an arbitrary welded graph Γ, we obtain a diagram for Tube(Γ) by connecting the above pieces
of broken surface diagrams with arbitrary embedded annuli, as prescribed by the welded graph Γ.

The Tube map, as defined by Satoh on welded knotoids and knots [26], and extended later to welded links
and string links [4], served as a tool for studying ribbon 2–knots, tori and 2–string links. By Proposition
1.14, welded graphs now provide a general setting for studying the whole class of ribbon surface-links.

In contrast, injectivity of the Tube map has remained an intriguing question. In [11], the Tube map has
been proved to be injective on welded braids, but Global Reversal moves where proved to be in its kernel for
links [28, 16], and the question remains widely open for welded string links. In view of Theorem 1.8, we
have the following.

Corollary 1.16. The Tube map is invariant under Υ moves.

We conjecture that, except for some very specific cases (see Appendix A.3), the Υ moves are not induced
by the usual welded moves, and hence provide a new large class of non trivial moves in the kernel of the
Tube map for welded links and string links. As a matter of fact, welded graphs intrinsically contain all the
known moves under which the Tube map is invariant.

2. Wirtinger groups, peripheral systems and reduced quotient

2.1. Wirtinger groups. The fundamental group of the complement is an essential invariant in the topolog-
ical study of embedded manifolds in codimension 2. In the case of knots and links, any diagram provides
a so-called Wirtinger presentation for this group. This diagrammatical point of view on the fundamental
group generalizes to other situations, such as surface-links [12] or welded knot theory [17]. The goal of the
present section is to show that the theory of welded graphs can in fact be interpreted as a theory of Wirtinger
presentations.

Definition 2.1. A Wirtinger presentation is a group presentation〈
x1, . . . , xk

∣∣ R1, . . . ,Rs
〉

with a finite number of generators, and a finite number of relations of the form R = x jxw
i , where xi and x j are

two generators and w is an element of the free group F(x1, . . . , xk). A Wirtinger group is a group admitting
a Wirtinger presentation.

One way to describe a Wirtinger presentation is by a decorated oriented graph with one vertex per gen-
erator, and one w–decorated edge from xi to x j for each relation x jxw

i . Such a decorated graph is nothing
but a w–graph, with no marked vertex. Note that performing an R1 move on this graph does not change the
Wirtinger presentation since in F(x1, . . . , xk), we have x jx

xiw
i = x jx

xiw
i = x jxw

i . More generally, we have the
following.

Proposition 2.2. Welded graphs with no marked vertex are in one-to-one correspondence with Wirtinger
presentations up to the following operations:

•
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs, xi2 xi1

〉
↔
〈

x1, . . . , xi2−1, xi2+1, . . . , xk
∣∣ R1 |xi2→xi1

, . . . ,Rs |xi2→xi1

〉
;

•
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs, xi1 xw

i2

〉
↔
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs, xi2 xw

i1

〉
;

•
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs

〉
↔
〈

x1, . . . , xk
∣∣ R1 |xi1→xαi1

, . . . ,Rs |xi1→xαi1

〉
;

•
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs, xi2 xw

i1 , xi4 x
xi1 w
i3 ,

〉
↔
〈

x1, . . . , xk
∣∣ R1, . . . ,Rs, xi2 xw

i1 , xi4 x
wxi2
i3 ,

〉
where R|a→b denotes the word obtained from some word R by replacing all occurrences of a by b, and where
α is any generator or inverse of a generator.
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Proof. It is straightforwardly checked that the first operation corresponds to a contraction move, the second
one to an orientation reversal, the third one to a generalized stabilization, and the last one to a Reidemeister
3 move. �

Observe that the four operations in Proposition 2.2, preserve the underlying group up to isomorphism.
For any welded graph Γ, there is hence an associated Wirtinger group, which we denote by G(Γ), given by
the presentation associated to Γ, after unmarking all marked vertices. As a matter of fact, this group is the
fundamental group of the complement of the associated ribbon surface-link via the generalized Tube map:

Proposition 2.3. For every welded graph Γ, the group G(Γ) is isomorphic to π1
(
X4 \ Tube(Γ)

)
.

Proof. Let Γ be a w–graph representative of a given welded graph. As noted in the proof of Proposition 1.14,
this representative Γ can be assumed to be reduced, so that we can consider the associated ribbon handlebody
H = C(Γ). Recall that H is cut into chambers by ribbon disks, and that Tube(Γ) = ∂H. We observe that the
desired presentation for π1

(
X4 \ Tube(Γ)

)
, can be given in terms of the ribbon disks and the chambers of H.

This follows from the three following facts:
• H retracts to a 1–dimensional graph in X4, so that X4 \ H is connected and simply connected;
• since H is 3–dimensional, and since ribbon disks are 2–dimensional, a generic loop in X4 \ Tube(Γ)

avoids all ribbon disks and intersects H in a finite number of transverse points. Moreover, two
loops intersecting a same chamber once with same sign, are homotopic. Hence π1

(
X4 \ Tube(Γ)

)
is

generated by a set of loops which is in bijection with chambers, a chamber c corresponding to the
class of a loop intersecting H exactly once, in the interior of c;

• a generic homotopy of loops in X4 \ Tube(Γ) intersects the ribbon disks in a finite number of trans-
verse points. Each intersection corresponds to a Wirtinger relation between the two generators
associated to the chambers on either side of the intersected ribbon disk, one being equal to the con-
jugate of the other by the generator associated to the chamber containing the contractible preimage
of the ribbon disk.

Since ribbon disks and chambers of H are in bijection with edges and vertices of Γ, this presentation is
nothing but the Wirtinger presentation of G(Γ). �

In the rest of this section, we shall see that a Wirtinger presentation carries more information than just the
associated group.

2.2. Peripheral system. The fundamental group of a codimension 2 embedding complement can be en-
dowed with the data of so–called peripheral elements, which are given by loops staying essentially close to
the embedded manifold. In the case of links, these elements are meridians and longitudes, and they form,
together with the group, the peripheral system. Implicitly used by Dehn in 1914 to distinguish the right and
the left-handed trefoil, peripheral systems were only formally introduced by Fox [15] in the early fifties and
proved to be a complete invariant for links by Waldhausen [27] in 1968.

This notion of peripheral system has a combinatorial counterpart for welded graphs, which we introduce
now. Let Γ be a w–graph, with connected components Γ1, . . . ,Γ`. Denote by bi the first Betti number of Γi

and by mi its number of marked vertices.

Notation 2.4. A combinatorial path between two vertices v1 and v2 on Γ, is a finite sequence of adjacent
edges starting at v1 and ending at v2. Note that, on each edge, the orientation given by the w–graph and the
orientation given by the path may differ. To any combinatorial path p = (e1, . . . , ek), one can associate the
element wp ∈ G(Γ) defined by the concatenated word wε1

1 . . .wεk
k , where wi is the label of ei and εi ∈ {±1} is

1 if and only if the orientations of ei as an edge of Γ and as a path segment of p coincide.
A combinatorial path corresponds in particular to a continuous path between two vertices and, reciprocally,
any continuous path γ between two vertices is homotopic relative to the endpoints, to a combinatorial path
pγ. Note that two path representatives for γ differ only by some back and forth along some edges, so that
the associated element in G(Γ) is well-defined. We shall hence use simply the notation wγ for the element
wpγ ∈ G(Γ).

Remark 2.5. It follows from iterated uses of Wirtinger relations that, if γ is a path between two vertices
v1, v2 ∈ Γ, then wγv2 = v1wγ in G(Γ). This implies, in particular, that, for every i ∈ {1, . . . , `}, any two
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vertices of Γi, seen as elements of G(Γ), are conjugate, and that if γ is a loop based at some vertex v, then v
and wγ commute.

Definition 2.6. Meridians of Γ are defined as the generators of G(Γ), that is, the vertices of Γ. Vertices on
the i–th component of Γ are sometimes more precisely called i–th meridians.

A basing for Γ is the data
(
(µi)i, {li1, · · · , l

i
mi
}i, j, (ai

1, · · · , a
i
ni

)i
)

where, for every i ∈ {1, . . . , `}:
• µi is a choice of a meridian on Γi;
• li1, . . . , l

i
bi

are bi loops on Γi based at µi, that generate π1(Γi, µi);
• ai

1, . . . , a
i
mi

are mi paths that connect µi to each marked vertex of Γi.

Note that, since connected components and marked points of Γ are ordered, meridians and a j
i paths are

also ordered, whereas l j
i loops are not.

Remark 2.7. If Γ has a marked vertex on each component, then there is a canonical choice for the chosen
meridians, namely the minimal marked vertex on each component.

Definition 2.8. Let Γ be endowed with a basing
(
(µi)i, {lij}i, j, (a

i
j)i, j
)
.

For every i ∈ {1, . . . , `}, we define

• preferred i–th loop-longitudes, as the elements µ
−|λi

j |i

i wlij
∈ G(Γ), for j ∈ {1, . . . , bi};

• preferred i–th arc-longitudes, as the elements µ
−|αi

j |i

i wai
j
∈ G(Γ), for j ∈ {1, . . . ,mi};

where λi
j, resp. αi

j, denote the element wlij
, resp. wai

j
, of G(Γ) and where |w|i is the algebraic number of

letters in some w ∈ G(Γ) that correspond to vertices in Γi. A longitude is either a (preferred) loop or an
arc-longitude.

As noted above, meridians and arc-longitudes are gathered in ordered tuples, whereas loop-longitudes are
elements of unordered sets.

Proposition 2.9. Let Γ′ be a w–graph obtained from Γ by a welded move. There is a canonical isomorphism
ϕ : G(Γ)→ G(Γ′), which sends any basing of Γ to a basing for Γ′.

Proof. The statement is clear for contraction, orientation reversal, stabilization and Reidemeister 3 moves.
A Reidemeister 1 move applied on an edge e introduces some letter v±1 in the longitude word wγ associated
to any path γ passing through e, and changes |wγ|i by ±1. Using Remark 2.5, v±1 can be replaced by a µ±1

i
factor at the beginning of the longitude word wγ, so that it compensates the change of |wγ|i. �

Definition 2.10. A peripheral system for a welded graph Γ is the data(
G(Γ), (µi)i, {wlij

}i, j, (wai
j
)i, j
)
,

where
(
(µi)i, {li1, · · · , l

i
mi
}i, j, (ai

1, · · · , a
i
ni

)i
)

is a basing for Γ. Two peripheral systems for Γ are equivalent if
they are related by a finite sequence of the following operations:

• replacing
(
G, (µi)i, {λ

i
j}i, j, (α

i
j)i, j
)

by
(
G′, (µ′i)i, {λ

′
j
i
}i, j, (α′j

i)i, j
)
, when there exists an isomorphism

ϕ : G → G′, some permutations σi ∈ Sbi and some elements w1, . . . ,w` ∈ G′ such that:
– µ′i = ϕ(µi)wi for all i ∈ {1, . . . , `};
– λ′σi( j)

i = ϕ(λi
j)

wi for all i ∈ {1, . . . , `} and j ∈ {1, . . . ,mi};
– α′j

i = wiϕ(αi
j) for all i ∈ {1, . . . , `} and j ∈ {1, . . . , ni};

• replacing a loop-longitude by its inverse;
• precomposing an i–th arc or loop-longitude by some other i–th loop-longitude.

We emphasize that peripheral systems depend on a choice of a basing, which corresponds to the choice
of a vertex vi for each connected component Γi, together with a choice of a generating set for π1(Γi, vi)
and of paths from vi to each marked vertex. But, since π1(Γi, vi) is a free group, if follows from Nielsen
transformations that equivalence classes are precisely defined to encompass any change of such choices. By
Proposition 2.9, we thus have:

Corollary 2.11. Peripheral systems up to equivalence, are well-defined for welded graphs.



WELDED GRAPHS, WIRTINGER GROUPS AND KNOTTED PUNCTURED SPHERES 19

From now on, and by abuse of notation, peripheral systems shall be identified with their equivalence
classes.

Remark 2.12. For a ribbon surface-link S , given with a ribbon filling, meridians are loops that meet the
ribbon filling only once, and longitudes are defined by pushing curves on S off the surface. In light of the
proof of Proposition 2.3, longitudes can be characterized by their intersections with the ribbon filling. But
curves on S = Tube(Γ) induce curves on Γ, and the intersections of the curves push-outs with the ribbon
filling, can be read out of the curves on Γ. These precisely coincide with the longitudes of Γ. It follows that
the Tube map preserves the whole peripheral system, in the sense that the peripheral system of a welded
graph Γ is equal to the peripheral system of Tube(Γ).

Remark 2.13. Suppose that a welded graph has only simply connected components, each having at least one
marked vertex. This is for example the case for type (2, 0) welded graphs, which are intimately related to
welded string links by Theorem 1.8. In this situation, there is a preferred representative in the equivalence
class of peripheral systems, corresponding to meridians being the minimal marked vertices on each compo-
nent (see Remark 2.7). Since there are no loop-longitudes in this case, the peripheral system reduces to the
data of the associated group, together with

(∑`
i=1 mi

)
−` elements, corresponding to paths from the minimal

marked vertices to each of other marked vertices on the same component.

In light of Remarks 2.12 and 2.13, it is clear that, for a string link L, the notion of peripheral system for
L and the one for ψS L(L) coincide. Since by Waldhausen’s theorem, peripheral systems are classifying for
classical knots, links and string links; this implies the following result.

Corollary 2.14. Classical string links embed into welded graphs.

By Theorem 1.8, this means that, should Υ moves be non trivial, they would not be able change the
isotopy class of classical string links.

Remark 2.15. For links, the situation is slightly more intricate. Indeed, classical peripheral systems provide
an orientation for each circular component, whereas welded graph peripheral systems do not. For instance,
if a link L2 is obtained from another link L1 by mirror image and reversing all orientations, then ψL(L1) =

ψL(L2) even if L2 and L1 are not isotopic. Is is thus an interesting question to determine when reversing
some longitudes in the peripheral system of a classical links, corresponds to the peripheral system of a
distinct classical link.

2.3. Reduced quotients and self-virtualization. By definition, G(Γ) has as many generators as vertices in
Γ. Nevertheless, since any two meridians on a same component are conjugate, G(Γ) is normally generated
by any choice of one generator per component (as, for example, specified by choice of a basing). In this
situation, the following classical notion, due to Milnor [24], has proved useful:

Definition 2.16. Let G be a group normally generated by elements x1, · · · , xp. We denote by

RG := G
/{

[xi, x
g
i ]
∣∣ i ∈ {1, · · · p}; g ∈ G

}
,

the reduced quotient of G, which is the smallest quotient where each generator commutes with any of its
conjugates.

This leads to the following definition.

Definition 2.17. We define a reduced peripheral system for a welded graph Γ as the data(
RG(Γ),

(
[µi]
)

i,
{

[λi
j].Ni

}
i, j,
(
[αi

j].Ni
)

i, j

)
where

•
(
G(Γ), (µi)i, {λ

i
j}i, j, (α

i
j)i, j
)

is a peripheral system for Γ,
• RG(Γ) is the reduced quotient of G(Γ), and [x] denotes images in RG(Γ) of x ∈ G(Γ),
• w.Ni is the coset of w in RG(Γ) relatively to the normal subgroup Ni of RG(Γ) generated by [µi].

Two reduced peripheral systems for Γ are equivalent if they arise from equivalent peripheral systems for Γ.
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It should be noted that, since two i–th meridians are always conjugate, the reduced quotient RG(Γ) does
not depend on the choice of one meridian per component. Equivalence classes of reduced peripheral systems
are clearly invariant under welded moves.

Reduced quotients were introduced by Milnor in [24] for the study links up to link-homotopies, which are
homotopies that keep distinct components disjoint. In the welded context, the combinatorial counterpart of
link-homotopy is the notion of sv–equivalence, defined in [4] for welded string links, and that we generalize
now to welded graphs:

Definition 2.18. Two welded graphs differ by a self-virtualization (SV) if they differ by the replacement
of an empty edge e, by an edge decorated by a letter v or v, where v is a vertex that belongs to the same
component as e. Two welded graphs are sv–equivalent if they are related by a sequence of self-virtualizations
and welded moves.

Remark 2.19. In terms of Gauss diagrams, an SV move is the insertion or deletion of a self-arrow, that is,
an arrow which has both endpoints on a same component. In terms of virtual diagrams, this translates as
replacing a self-crossing by a virtual one, or vice versa.

Proposition 2.20. Reduced peripheral systems are invariant under self-virtualization.

Proof. An empty edge e yields a relation v2v1 in the group, where v1 and v2 are the two endpoints of e.
Adding a decoration v on e, turns the relation into v2vv1v = v2[v1, v]v1, which is equal to v2v1 in the reduced
quotient since v and v2 belong to the same component and are hence conjugate one to another (see Remark
2.5). The reduced group is hence invariant.

Moreover, longitudes passing through e are modified from w1w2 to w1vw2 = w1w2vw2 , hence define the
same coset. �

Proposition 2.21 (Chen–Milnor presentation). Let
(
G(Γ), (µi)i, {λ

i
j}i, j, (α

i
j)i, j
)

be a peripheral system for a
welded graph Γ. There exists wi

j ∈ F(µ1, . . . , µ`) for i ∈ {1, . . . , `} and j ∈ {1, . . . , bi} such that wi
j = [λi

j] in
RG(Γ) and

RG(Γ) ' R
〈
µ1, . . . , µ`

∣∣∣ [µi,wi
j] for all i ∈ {1, . . . , `} and j ∈ {1, . . . , bi}

〉
.

Proof. The core of the proof is to show that Γ is sv–equivalent to a welded graph with a unique unmarked
vertex (and possibly several marked vertices) per component. This is done component per component.
Consider some component Γi, and pick an unmarked vertex: our goal is to eliminate all other unmarked
vertices of Γi by contraction moves. First we remove from the edge labels, all letters corresponding to i–th
meridians, using Split and self-virtualization moves. Having done so, we can successively apply generalized
stabilization moves to those edges that we wish to contract, to turn them into empty edges: since no i–th
meridian appear in the label that we are sweeping out, those generalized stabilization moves will only modify
decorations on other components; note that only the labels of other components are affected in the process,
so that previously-treated components remain of the desired form.
It remains to observe that, for the resulting welded graph with a unique unmarked vertex per component, the
associated Wirtinger presentation provides the desired presentation for RG(Γ). �

We stress that the proof of Proposition 2.21 provides not only a presentation for RG(Γ), but also a ‘normal
form’ for a welded graph Γ endowed with a basing (hence with a reduced peripheral system).

Specifically, if
(
(µi)i, {li1, · · · , l

i
bi
}i, j, (ai

1, · · · , a
i
mi

)i
)

is a basing for Γ, then the i–th component of this nor-
mal form has one unmarked vertex µi, bi loops based at µi and decorated by li1, . . . , l

i
bi

, and mi edges con-
necting µi to each marked vertex, and decorated by ai

1, . . . , a
i
mi

:

aℓmℓ

l1b1 lℓ1

aℓ1

l11

a11 a1m1

lℓbℓ

.

This yields the following classification of welded graphs up to self-equivalence by the reduced peripheral
system:
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Theorem 2.22. Two welded graphs are sv–equivalent if and only if they have equivalent reduced peripheral
systems.

Proof. The proof essentially follows the proof of [5, Thm. 2.1], which addresses the link case. Consider two
welded graphs Γ1 and Γ2 with equivalent reduced peripheral systems, and suppose that Γ1 and Γ2 are given
in normal forms as above.

The first step is to modify Γ2 into a welded graph having the ‘same’ reduced peripheral system as Γ1;
by this we means that the isomorphism ϕ of Definition 2.10, sends directly meridians to meridians and
longitudes to longitudes. As stated in this same definition, equivalence of reduced peripheral systems is
generated by three elementary operations. The first one corresponds to conjugation, by a same word w, of
a meridian and the associated loop-longitudes, and precomposition by w of the associated arc-longitudes;
at the level of w–graphs, this can be realized by generalized stabilizations. The second operation reverses
a loop-longitude; this can be realized by an orientation reversal move on w–graphs. The last operation
precomposes a longitude by a loop-longitude from the same component; this can be realized on w–graphs
by the following sequence of moves:

w1

w2
E
−→

w2

w1

P
−−→

w1w2 w2

C
−−→

w2

w1w2

'

w2

w1w2

.

Now, Γ1 and Γ2 only differ by the representative words for the longitudes. Thanks to Proposition 2.21, we
know that, for a given i–th longitude, the representative words differ by a sequence of insertion/deletion of

• conjugates of µi,
• commutators [µ j,w j] for some j ∈ {1, . . . , `}, where w j is a j–th loop-longitude,
• commutators [µ j, µ

w
j ] for some j ∈ {1, . . . , `}, where w is any word.

All these operations are handled in a local way in the proof of [5, Thm. 2.1], and the argument can be
transposed directly to the welded graph case. �

Remark 2.23. Theorem 2.22 can be seen as a generalization of the main theorem of [5], which deals with
the link case. It provides an equivalence between reduced peripheral systems and welded graphs up to
sv–equivalence. Other quotients of the peripheral system, such as q–nilpotent [13, Thm. 2] or k–reduced
[8, Thm. 4.3] quotients have also been investigated and have led to similar correspondances for welded
links up to, respectively, wq and self wk–concordance. The notion of (self) wq–concordance refers, on one
hand, to a combinatorial notion of concordance for welded objects which generalizes the classical notion of
concordance for topological objects and, on the other hand, the notion of (self) wq–equivalence based on the
arrow calculus developed by the second and third authors. This arrow calculus relies on surgery operations
on welded diagrams, along certain oriented unitrivalent trees, filtered by the size of the associated tree.
It turns out that arrow calculus can be translated in terms of welded graph. A degree q surgery corresponds
to inserting a length q iterated commutator in some edge decoration, and a degree k self-surgery likewise
corresponds to inserting an iterated commutator which involves at least k + 1 times the same component.
The diagrammatic formulation of concordance can also be extended to all welded graph in a straightforward
way. All the arguments extend to this setting, so that two welded graphs are wq–concordant (resp. self
wk–concordant) if and only if they have equivalent q–nilpotent (resp. k–reduced) peripheral systems.
Note that, all together, this implies that, up sv–equivalence, wq or self wk–concordance, the sets of welded
links and string links embed in welded graphs. As a matter of fact, and compared with Theorem 1.8, it can
indeed be directly checked by hand that Υ moves are trivial up to sv–equivalence, wq-equivalence or self
wk–equivalence.
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2.4. Milnor invariants. The peripheral system and its reduced quotient are strong invariants, but they are
also very difficult to compute and compare. In [25], Milnor introduced numerical invariant extracted from
the nilpotent peripheral system, which are algorithmically computable, and which are still powerful link
invariants. We define below similar invariants for welded graphs. A comprehensive account on Milnor
invariants can be found in [7, Sec. 4], see also the survey [21].

For simplicity of exposition, here, we will restrict ourselves to the so-called ‘non repeated’ Milnor in-
variants, that are extracted from the reduced peripheral system. Moreover, with our main topological result
in sight (see Section 3), we shall further restrict to the following class of welded graphs.

Definition 2.24. A welded forest, is a welded graph of type
(
(m1, 0), . . . , (m`, 0)

)
such that m1, . . . ,m` , 0.

In other word, each connected component is simply connected and contains at least one marked vertex.

Let Γ be a welded forest. Following Remark 2.7, Γ has a canonical set of meridians µ1, . . . , µ`, which cor-
responds to the minimal marked vertices on each component. Moreover, Γ has no non-trivial loop-longitude,
so that by Proposition 2.21, we have that RG(Γ) is isomorphic to the reduced free group RF(µ1, . . . , µ`).
Hence, following Remark 2.13, the reduced peripheral system of Γ is simply the data of

(∑`
i=1 mi

)
− `

elements of RF(µ1, . . . , µ`), representing all arc-longitudes. In what follow, we shall simply denote by
αi

j ∈ F(µ1, . . . , µ`), the element representing the arc-longitude running to the j–th marked point on the i–th
component of Γ (i ∈ {1, · · · , `}, j ∈ {2, · · · , ni}).

Next we recall the reduced Magnus Expansion

RF(µ1, . . . , µ`) → Z〈〈X1, . . . , X`〉〉
/
R

µεi 7→ 1 + εXi
,

taking values in the quotient of the ringZ〈〈X1, . . . , X`〉〉 of formal power series in ` non-commuting variables,
by the ideal R generated by monomials containing at least twice a same variable. The reduced Magnus
expansion is known to be injective, see for instance [34].

Definition 2.25. For every i ∈ {1, . . . , `}, j ∈ {2, . . . ,mi}, and for every sequence I = i1 . . . ir of distincts
integer in {1, . . . , `} \ {i}, we define µΓ(I; i, j) as the coefficient of Xi1 · · · Xir in E(αi

j). These coefficients are
called the non repeated Milnor invariants of Γ.

Remark 2.26. The well-definedness of these non repeated Milnor invariants µΓ(I; i, j) is clear. Indeed, as dis-
cussed above, the welded forest Γ has a preferred set of meridians (Remark 2.13), and the

(∑`
i=1 mi

)
−` arc-

longitudes forming its reduced peripheral system, induce well-defined elements αi
j in RG(Γ) = RF(µ1, . . . , µ`)

(see Notation 2.4). Their invariance under self-virtualization follows from Proposition 2.20.

We have the following classification result.

Proposition 2.27. Two welded forests are sv–equivalent if and only they have same non repeated Milnor
invariants.

Proof. This is a direct consequence of Theorem 2.22, combined with the injectivity of the reduced Magnus
expansion [34]. �

3. Application to knotted punctured spheres up to link-homotopy

We can now get back to 4–dimensional topology, and deal with the case of knotted punctured spheres.

Definition 3.1. Let ` be some positive integer and (m1, . . . ,m`) ∈ N. A union of ` knotted punctured
spheres is the image of a proper embedding in B4 of Σ = t`i=1S i, where S i is a 2–sphere with mi disjoints
disks removed and such that ∂Σ is sent to a fixed (oriented and ordered) unlink U in ∂B4 = S 3, up to isotopy
fixing the boundary.

As noted in the introduction, this large class of surface-links contains in particular Le Dimet’s linked
disks [19] (case mi = 1 for all i), and 2–string links [4, 6] (case mi = 2 for all i). We stress that the boundary
components of each punctured sphere are ordered, so that there is a preferred meridian for each component
of a union S of knotted punctured spheres, defined as a loop in ∂B4 \ S which is a meridian of the first
boundary component.

Our purpose is to classify unions of knotted punctured spheres up to link-homotopy.
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Definition 3.2. Two unions of knotted punctured spheres are link-homotopic if they are images of embed-
dings which are homotopic through proper immersions that keep distinct components disjoint, and that send
∂Σ to U.

Our first result in this direction, is a generalization of [6, Thm. 3.5].

Proposition 3.3. Any union of knotted punctured spheres is link-homotopic to a ribbon one.

Proof. We can use the very same strategy as used in [6, Sec. 3.2] in the 2–string link case. Pick some
union S of knotted punctured spheres. The strategy goes in three steps, which can be roughly summarized
as follows. First, using the fact that ∂S is an unlink, one can shrink and stretch a neighborhood of this
boundary; this allows to regard S as a 2–link (i.e. smoothly embedded disjoint copies of the 2–sphere)
with thin, unknotted and unlinked tubes attached. Next, by a theorem of Bartels and Teichner [10, Thm. 1],
there is a link-homotopy which takes this 2–link to a disjoint union of unknotted spheres. The proof then
amounts to showing that, in the process of this link-homotopy, only ribbon-type linking will be created
among the attached tubes, so that the final union of knotted punctured spheres is indeed ribbon. This last
step uses broken surface diagrams of immersed surfaces, and consists in a systematic study of all Roseman
moves and singular Roseman moves on these diagrams, which are local moves that generate link-homotopy
of surface-links [6, Prop. 2.4]; the arguments in [6] being local, they apply verbatim to our more general
situation. �

In [7, Sec. 5.2.3], Milnor link-homotopy invariants for surface-links were defined; they come in three
flavors: Milnor maps, Milnor loop-invariants and Milnor arc-invariants. Milnor maps and Milnor loop-
invariants are extracted from the loop-longitudes; in the case of a union S of ` knotted punctured spheres, the
latter are given by curves parallel to the boundary components, which are copies of the unknot, so that Milnor
maps and Milnor loop-invariants of S are trivial. Milnor arc-invariants are defined by pushing in B4 \ S , and
closing in a canonical way, the

(∑`
i=1 mi

)
− ` boundary-to-boundary arcs given by the basing. These define

a collection of elements of the reduced fundamental group of B4 \ S , which by [6, Thm. 5.15] is isomorphic
to the reduced free group generated by ` elements m1, · · · ,m`, represented by the preferred meridians of
each component of S . Taking the coefficients in the reduced Magnus expansion of these elements, defines
non-repeated Milnor invariants of S . We refer to [7] for details.

We can now prove the classification result announced in [7, Thm. 6.10].

Theorem 3.4. Unions of knotted punctured spheres are classified, up to link-homotopy, by non repeated
Milnor invariants.

Proof. By [7, Prop. 5.23], non repeated Milnor invariants are invariant under link-homotopy. Now, let S 1
and S 2 be two unions of knotted punctured spheres with same non repeated Milnor invariants. By Proposition
3.3, we may assume that S 1 and S 2 are ribbon, so that by Proposition 1.14, they can be described as Tube(Γ1)
and Tube(Γ2) for two welded forests Γ1 and Γ2. It follows from Remark 2.12 that the non-repeated Milnor
arc-invariants of S i coincide with those of Γi (i = 1, 2). Hence Γ1 and Γ2 have same non-repeated Milnor
invariants, and Proposition 2.27 implies that Γ1 and Γ2 are therefore sv–equivalent. Now, in the same way
as it was observed in [4] in the welded string link case, an SV move on a welded graph can be realized
as a link-homotopy on its image under Tube; more precisely, the image by Tube of an SV move is a ‘self-
circle crossing change’ as illustrated in [4, Fig. 6]. Thus S 1 and S 2 are link-homotopic, and the proof is
complete. �

Note that, in particular, Theorem 3.4 implies that linked disks (that is, unions of once-punctured knotted
spheres) are all link-homotopically trivial, since linked disks admit no non-trivial longitudes. The following
consequence, using results of [23], might be well-known to the experts.

Corollary 3.5. Up to link-homotopy, a slice link bounds a unique union of slice disks.

Proof. Let L be a slice link in S 3, and let D1 and D2 be two unions of slice disks for L in the 4–ball. Pick in
S 3×[0, 1] a concordance C from L to the unlink U, and let C be the mirror image of C. By [23, lem. 1.1], the
stacking product C ·C is link-homotopic to the product L × [0, 1]. Since, for i = 1, 2, a collar neighborhood
of the boundary of Di is isotopic to L × [0, 1], we have that Di is link-homotopic to a product C · S i, where
S i is a union of slice disks for the unlink U. But as noted above, by Theorem 3.4 we have that S 1 and S 2 are
link-homotopic. It follows that D1 and D2 are link-homotopic, as desired. �
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Remark 3.6. The trick used in the proof of Corollary 3.5 above, relying on [23, Lemma 1.1], applies more
generally to all knotted punctured spheres. This allows to extend the classification of Theorem 3.4 to a larger
class of surface-links, which are images of proper embeddings in B4 of a union of punctured spheres t`i=1S i,
such that the boundary is sent to a fixed slice link in ∂B4 = S 3.

For the classification given in Theorem 3.4, we considered link-homotopies sending the boundary to the
fixed unlink U at all time. This condition can be relaxed to define weak link-homotopies, as homotopies
through proper immersions that may not preserve the image of the boundary.

Corollary 3.7. Any two unions of knotted punctured spheres are weakly link-homotopic.

Proof. Let us call unknotted punctured spheres, a union of punctured spheres which admits a ribbon filling
with no ribbon disk. It follows from the same arguments as in the proof of Lemma 1.13, that such an
unknotted punctured spheres is unique. We denote by S 0 these unknotted punctured spheres. Let us prove
that any union S of ` knotted punctured spheres is weakly link-homotopic to S 0.

The strategy is to provide a union of ` knotted punctured spheres S ′ which has, on one hand, the same
non repeated Milnor invariants as S , so that it is link-homotopic to S by Theorem 3.4, and is on the other
hand ‘nice enough’ to be unknotted by an ambient isotopy that does not fix ∂B4. For that, we consider the
arc-longitudes of S , seen as words in the reduced free group on ` generators, and build an `–component
welded string link L realizing theses words as its longitudes: see for example [23, Fig. 2.1] or [4, Rem.4.23].
The image of L by the Tube map is an

(∑`
i=1 mi

)
–component 2–string link which is ribbon. By [4, Theorem

2.30], Tube(L) is link-homotopic to a monotone ribbon 2–string link, the latter being the 4–dimensional trace
of an ambient isotopy ( ft)t∈[0,1] of an unlink in S 3. On the unlink U forming the ‘upper‘ boundary of this
monotone ribbon 2–string link, we glue a copy of S 0: this yields the desired union of knotted punctured
spheres S ′. By construction, it has the same Milnor invariants as S , and performing backward ( ft)t∈[0,1] on a
collar neigborhood of ∂B4 does provide an ambient isotopy which unknot S ′ into S 0. �

Appendix A. Extra moves on welded graphs

In this appendix, we explain how the moves of Figure 4 on welded graphs, follow from the C, OR, S and
R3 moves of Figure 3, as claimed at the end of Section 1. We also show how one version the Υ move is
implied by usual welded moves.

A.1. Push and split moves. We first observe that the extra push (P) and split (Split) moves, are conse-
quences of the C, OR and S moves. For this purpose, we first note that, up to OR moves, the S move can be
generalized to the case where some edge is oriented toward the vertex where the move is performed; in that
case, the prefix is then reversed and added at the end of the corresponding decoration:

w2

w3

w1
OR,S,OR
←−−−−−−→

aw3

aw2

w1a .

Applying this variant of the S move iteratively, provides a P move:

w2

w3

w0w1
S,. . . ,S
←−−−−→ w0

w1w3

w1w2

.

Moreover, combining this variant of the S move with a C move, allows to ‘split’ edge decorations, thus
providing a Split move:

w1w2
E
←→ w1w2

S
←→ w2w1 .
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A.2. Rephrased R3 and generalized stabilization move. Next, we show that the Split, C, S and R3 moves
on welded graphs, realize a rephrased R3 move. More precisely, we illustrate below how some edge label
w1w2 can be replaced by w1w awbw2, where (a, b,w) is some other edge in the graph:

w1w2
Split,E
←−−−−→ w2w1

S
←→ w2w1 w a aw

R3
←−→ w2w aw1 wb

Split
←−−→ w1w awbw2 .

The other versions of this move, that insert any cyclic permutation of w awb, or any cyclic permutation of it,
are proved in a similar way.

Finally, the figure below illustrates how the generalized stabilization move, is achieved by a sequence of
C,S and R3 moves:

b

b

w1 w2

b

b

w3

E,S
←−→ b′

b
a

baw2aw1

aw3

b

b

R3,. . . ,R3
←−−−−−→

b

b′ ab′a

ab′a

aw1

aw3

aw2

a

ab′a

S
←→

b

b′

ab′a

ab′a

ab′a

aw3

aw2aw1

C
←→

b
aba

aw2

aw3

aba

aba

aw1

A.3. A trivial Υ move. We finally show that, in the special case where η = −ε and involving only the
four self-arrows shown in the figure of Definition 1.7, the Υ move follows from Reid1,2,3 moves. This is
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illustrated in the following figure:

−ε
ε

ε
−ε

Reid1
−−−−→

−ε

ε

−ε

ε
ε

−ε

Reid3
−−−−→

−ε

ε

ε

−ε

ε

−ε

Reid2−−−−→

ε
−ε

−ε

ε

−ε

−ε

ε

ε
Reid1
←−−−−

ε
ε

ε
−ε−ε

−ε

Reid3
←−−−−

−ε

−ε
ε

−ε
ε

ε
Reid

2

←−
−−−

The strategy is to connect the two sides of the move to a common symmetric configuration. For both, the
deformation starts by inserting two (self) arrows with Reid1 moves, then combines two Reid3 moves with
TC moves to rearrange the relative positions of the arrow tails, and deletes a pair of arrows with a Reid2
move. To the author’s knowledge, this is the only version of the Υ move that follows from the usual welded
moves.
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