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Abstract15

Accurate phylogenies are fundamental to our understanding of the pattern16

and process of evolution. Yet, phylogenies at deep evolutionary timescales,17

with correspondingly long branches, have been fraught with controversy re-18

sulting from conflicting estimates from models with varying complexity and19

goodness of fit. Analyses of historical as well as current empirical datasets,20

such as alignments including Microsporidia, Nematoda or Platyhelminthes,21

have demonstrated that inadequate modeling of across-site compositional het-22

erogeneity, which is the result of biochemical constraints that lead to varying23

patterns of accepted amino acid along sequences, can lead to erroneous topolo-24

gies that are strongly supported. Unfortunately, models that adequately25

account for across-site compositional heterogeneity remain computationally26

challenging or intractable for an increasing fraction of contemporary datasets.27

Here, we introduce “compositional constraint analysis”, a method to investi-28
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gate the effect of site-specific amino acid diversity on phylogenetic inference,29

and show that more constrained sites with lower diversity and less constrained30

sites with higher diversity exhibit ostensibly conflicting signal for models ig-31

noring across-site compositional heterogeneity. We demonstrate that more32

complex models accounting for across-site compositional heterogeneity can33

ameliorate this bias. We present CAT-PMSF, a pipeline for diagnosing and34

resolving phylogenetic bias resulting from inadequate modeling of across-site35

compositional heterogeneity based on the CAT model. Our analyses indicate36

that CAT-PMSF is unbiased. We suggest using CAT-PMSF when conver-37

gence of the CAT model cannot be assured. We find evidence that compo-38

sitional constrained sites are driving long branch attraction in two metazoan39

datasets and recover evidence for Porifera as the sister group to all other40

animals.41

1 Introduction42

Understanding the biological foundations of contemporary life on Earth requires43

detailed knowledge of evolutionary history. The history of speciation events informs44

us about the appearance of advantageous innovations and the loss of dispensable45

traits in a continuously changing environment. Consequently, development of phy-46

logenetic models inferring the history of speciation events has continued at an47

impressive pace during the past decades.48

Phylogenetic models do not reflect the full complexity of evolution but in-49

evitably present a simplified picture of the generating processes underlying sequence50

evolution. Unfortunately, overly-simplistic models can lead to model misspecifica-51

tion and long branch attraction (LBA; e.g., Felsenstein, 1978; Hendy and Penny,52

1989; Zharkikh and Li, 1993; Tateno et al., 1994; Bergsten, 2005; Brinkmann et al.,53

2005; Philippe et al., 2011b). LBA is a bias in the inferred topology, as a result of54

which long branches are more likely to branch together than with short ones, inde-55

pendent of the true evolutionary history. Substitution models (Jukes and Cantor,56

1969) account for the possibility of multiple substitutions per site, and reduce LBA57

(Felsenstein, 1973; but see Farris, 1999) compared to models based on maximum58

parsimony. Probabilistic substitution models describe the evolution of a site as a59

series of transitions between states. Every possible transition occurs at a specific60
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rate which is the expected number of transitions from one state to another per unit61

time. Standard substitution models perform well on most datasets (Ripplinger and62

Sullivan, 2010).63

However, LBA can be an issue even when using probabilistic substitution mod-64

els. For example, if variation of evolutionary rate between sites (across-site rate65

heterogeneity) is ignored. Models accounting for across-site rate heterogeneity have66

been proposed early on (Yang, 1993), and have been shown to ameliorate LBA in67

some cases (Kuhner and Felsenstein, 1994; Philippe et al., 2011b). However, across68

site variation is not restricted to rates. Also, the relative abundance of nucleotide69

or amino acid characters is variable. For example, sites buried deeply in folded pro-70

teins tend to be more constrained than sites that end up on the surface (Koshi and71

Goldstein, 1995; Yeh et al., 2014; Jimenez et al., 2018), and depending on the pro-72

tein structure may exhibit stronger preferences in hydrophobicity than other sites.73

Models ignoring across-site compositional heterogeneity are prone to LBA because74

they underestimate the probability of convergent substitutions at compositionally75

constrained sites. In particular, the probability of independent substitutions to76

the same state depends on the number of acceptable amino-acids, which differs77

across sites. Models ignoring across-site compositional heterogeneity pool all sites,78

and ignore the variation of the evolutionary process across sites. Indeed, analyses79

of a series of datasets exhibiting previously contentious evolutionary relationships80

provide evidence that ignoring across-site compositional heterogeneity can lead to81

LBA (Phillips et al., 2004; Brinkmann et al., 2005; Philippe et al., 2005b,a; Delsuc82

et al., 2006; Lartillot et al., 2007; Philippe et al., 2009, 2011a; Brown et al., 2013;83

Ryan et al., 2013; Cannon et al., 2016; Simion et al., 2017).84

Thus, there is accumulating evidence that accounting for across-site hetero-85

geneities is key to an accurate reconstruction of deep evolutionary relationships.86

The classic approach to modeling such heterogeneities in the phylogenetic inference87

process are mixture models that combine substitution models specifically tailored88

to the evolutionary processes observed in the data. In order to model across-site89

rate heterogeneity, we use a mixture of substitution models with the same relative90

but different absolute substitution rates (e.g., Yang, 1993; Kalyaanamoorthy et al.,91

2017).92

Modeling across-site compositional heterogeneity, however, requires construct-93
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ing a model describing the evolution of sites subject to different compositional94

constraints. To do so, for time-reversible substitution models, we can leverage the95

separation of substitution rates into the product of (1) symmetric exchangeabilities96

describing differences in rates of exchange between pairs of states and (2) station-97

ary frequencies of the target states, or figuratively, the probability of sampling the98

target states after waiting for a long time. Any time-reversible substitution model99

is fully specified by a set of symmetric exchangeabilities and the set of stationary100

frequencies (sometimes also referred to as a profile or a stationary distribution).101

Assuming that biochemical constraints primarily affect site-specific amino acid pref-102

erences in the long term, across-site compositional heterogeneity can be accounted103

for by composing a number of substitution models sharing a single set of exchange-104

abilities but differing in their stationary distributions (distribution mixture models;105

Quang et al., 2008; Schrempf et al., 2020)106

We distinguish between general distribution mixture models estimated from cu-107

rated training databases, and distribution mixture models directly estimated from108

the datasets at hand. For example, Wang et al. (2008) directly estimate mixture109

model components using principal component analysis. Susko et al. (2018) use a110

composite likelihood approach and additional methods such as taxon weighing. In111

contrast, the rationale behind providing and using general mixture models is the112

assumption that the underlying evolutionary processes share universal features.113

Quang et al. (2008) use the expectation maximization algorithm to infer general114

mixture models consisting of 10, 20, . . . , 60 components (C10, C20, . . . , C60, col-115

lectively CXX models). Schrempf et al. (2020) used a clustering approach together116

with different compositional transformations to provide a set of general mixture117

models, termed universal distribution mixtures (UDM), with the number of com-118

ponents ranging from four up to several thousand. They also provide the clustering119

method EDCluster to infer dataset specific distribution mixture models.120

Finite mixtures can be used in the context of maximum likelihood (ML) phy-121

logenetic inference. However, statistical analyses of model fit and investigation of122

known cases of LBA indicate that a large number of components are necessary for123

robustness against LBA (Schrempf et al., 2020), which is computationally intensive124

and memory intense.125

Bayesian approaches can more easily accommodate richer mixtures. In partic-126
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ular, nonparametric Bayesian methods do not require explicit specification of the127

number of mixture components nor their stationary distributions. In particular, the128

CAT model (Lartillot and Philippe, 2004) uses a Dirichlet process prior to approxi-129

mate an arbitrary mixture of stationary distributions across sites. The CAT model130

was shown to be better fitting and less prone to LBA than site-homogeneous models131

for a series of classic datasets including Nematoda and Platyhelminthes (Lartillot132

et al., 2007) as well as in phylogenomic analyses of the tree of life (Williams et al.,133

2020). The impediment of nonparametric Bayesian methods and specifically, the134

CAT model, is that it compounds two computationally challenging, but separately135

tractable problems, the non-parametric inference of the underlying distribution136

across sites and the exploration of tree space. The composition of these two prob-137

lems is challenging and can lead to convergence problems.138

In all cases, however, mixture modeling approaches accounting for across-site139

compositional heterogeneity are complex and require considerable computational140

resources (e.g., Whelan and Halanych, 2016). In order to reduce computational141

cost, Wang et al. (2018) proposed a two-step approximation. First, site-specific142

stationary distributions are estimated using a reference mixture model and a fixed143

guide tree. Second, the tree is reconstructed using the fixed stationary distributions144

obtained in the first step. Thereby, run time is reduced while robustness against145

LBA is improved compared to using the reference mixture model alone. In par-146

ticular, the site-specific stationary distributions are set to the posterior mean site147

frequencies (PMSF) of the reference mixture model. As a result, the phylogenetic148

accuracy of the PMSF approach is inherently limited by how well the reference149

mixture model captures across-site compositional heterogeneity. There is no rea-150

son to restrict the use of the PMSF approach to empirical mixture models: any151

random-effect model meant to account for pattern heterogeneity could in principle152

be used here as a reference mixture model for computing the posterior means of153

the site-specific stationary distributions.154

In this work we follow a multistep procedure similar to the PMSF model and155

address two points: First, on the computational side, we extend the PMSF ap-156

proach by using the CAT model instead of an empirical profile mixture model as157

the reference model for computing the profiles. Importantly, the CAT model is used158

under a fixed tree topology. Thus, the problem of simultaneous inference of both,159
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the site-specific stationary distributions and the tree including the tree topology is160

reduced to a search of site-specific stationary distributions, and tree branch lengths161

only. We termed our approach CAT-PMSF.162

Second, we investigate the contribution of sites with different degrees of com-163

positional constraints to LBA. In particular, we test to what extent more severely164

constrained sites exhibit bias towards LBA trees under models that do not ad-165

equately account for across-site compositional heterogeneity. We employ “com-166

positional constraint” analysis, which examines phylogenetic signal for alternative167

topologies as a function of per site compositional diversity measured by the effective168

number of amino acids.169

Examining simulated alignments as well as classic empirical datasets including170

Microsporidia (Brinkmann et al., 2005), Nematoda, and Platyhelminthes (Philippe171

et al., 2005a), we find conflicting phylogenetic signal across sites with different172

degrees of compositional constraints. Based on these results we apply compositional173

constraint analysis to two recent datasets (Ryan et al., 2013; Simion et al., 2017)174

aiming to resolve the early diversification of animal lineages.175

2 Results176

In the following, we use the terms site-homogeneous and site-heterogeneous when177

referring to models ignoring and accounting for across-site compositional hetero-178

geneity, respectively. Further, we use the term tree to denote a directed acyclic179

graph with node labels and branch lengths, in which exactly one branch connects180

any two nodes. We use the term topology to denote a tree without information on181

branch length. We specify an evolutionary model with exchangeabilities EX, and182

across-site compositional heterogeneity model ASCH as EX+ASCH. All discussed183

evolutionary models used for simulations as well as inferences implicitly use dis-184

crete gamma rate heterogeneity with four components. We add a flag +PMSF to185

denote usage of the posterior mean site frequency model (Wang et al., 2018).186

In brief, CAT-PMSF comprises three steps: (1) Estimating a guide topology187

using a site-homogeneous model, (2) Estimating site-specific stationary distribu-188

tions with the CAT model in PhyloBayes (Lartillot and Philippe, 2004) using the189

guide topology, and (3) phylogenetic inference in a ML framework with a distri-190
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bution mixture model sharing one set of exchangeabilities, and using the obtained191

site-specific stationary distributions (see Methods).192

Simulation study. We assessed and compared the accuracy of CAT-PMSF with193

other site-homogeneous and site-heterogeneous models. To this end, we simulated194

amino acid sequence alignments with a length of 10 000 sites along Felsenstein-type195

quartet trees (insets of Figure 1; Felsenstein, 1978). We used uniform exchange-196

abilities (Poisson; Felsenstein, 1973) and an across-site compositional heterogeneity197

model with site-specific stationary distributions based on a UDM model (see Meth-198

ods; Schrempf et al., 2020). We set the branch length of the short branch q to 0.1,199

and varied the length of the long branch p between 0.1 and 2.0.200

The true topology (a Felsenstein-type quartet) was not recovered with site-ho-201

mogeneous models when p ≥ 0.8 (Figures S7, S8, and Tables S1, S2). Figure 1202

shows the results of the compositional constraint analysis for different values of203

p, contrasting the site-wise log-likelihood differences between the maximum like-204

lihood trees constrained to the genuine Felsenstein-type and incorrect Farris-type205

topologies prone to LBA (see Methods) for p = 0.2, 0.8 and 1.2. Figures S7,206

and S8 show results for other values of p. We binned sites according to their207

effective number of amino acids (Keff, see Methods). Lower values of Keff corre-208

spond to sites under stronger compositional constraint. “Compositional constraint209

analysis” compares per site phylogenetic signal for two alternative topologies as a210

function of compositional constraint (i.e., different values of Keff). Here, positive211

log-likelihood differences indicate support for the true (Felsenstein-type quartet)212

topology. Conversely, negative values indicate support for the LBA (Farris-type213

quartet) topology. In the absence of model misspecification we expect consistent214

phylogenetic signal across sites, and independent of the true value of Keff.215

At odds with this expectation, site-homogeneous evolutionary models exhibit216

conflicting phylogenetic signal between sites with low and high Keff values (Fig-217

ures 1, S8 and S7). For the site-homogeneous evolutionary models, more con-218

strained sites with a low value of Keff exhibit bias towards the incorrect (Farris-219

type) topology. For p ≥ 0.8, the bias outweighs the correct signal of less constrained220

sites with high values of Keff, and the incorrect (Farris-type) topology has higher221

support than the true (Felsenstein-type) topology. In contrast, the site-heteroge-222
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neous LG+C60+PMSF model as well as the CAT-PMSF method show consistent223

support for the true topology across all sites and values of p.224

To ascertain the statistical significance of the compositional constraint analy-225

sis we calculated Pearson correlation coefficients and associated p-values between226

the log-likelihood differences and the site-specific Keff values (Table S3). Site-ho-227

mogeneous models exhibit large and significant correlation for p ≥ 0.8, whereas228

the log-likelihood differences and Keff values of site-heterogeneous models are not229

correlated.230

Approximately unbiased (AU) tests (Shimodaira, 2002) of maximum likelihood231

trees inferred by the GTR+CAT-PMSF model constrained to the two alternative232

topologies reject the (Farris-type) LBA topology in favor of the true topology for233

p < 1.3 (Table S5). AU tests of the Poisson+CAT-PMSF, and LG+CAT-PMSF234

models show similar results (Tables S6, and S7).235

Finally, we note that site-heterogeneous models with LG exchangeabilities per-236

form well, although the genuine exchangeabilities are uniformly distributed. CAT-237

PMSF is even more accurate when using the true topology or the true site-specific238

stationary distributions (Figures S7 and S8).239

Applications to empirical data. Similar to the simulation study above, for240

empirical alignments the site-specific stationary distributions obtained in Step 2241

of the CAT-PMSF pipeline can be used to quantify the strength of compositional242

constrains (i.e., to estimate Keff values per site) and perform compositional con-243

straint analysis. Figure 2 shows results for three datasets exhibiting classic LBA244

artifacts when we use site-homogeneous models for inference: The placement of245

Platyhelminthes and Nematoda (Philippe et al., 2005a), as well as the placement246

of Microsporidia (Brinkmann et al., 2005; Lartillot et al., 2007).247

For site-homogeneous models, the site-specific log-likelihood differences between248

the maximum likelihood trees constrained to the two competing topologies (insets249

of Figure 2; top vs. bottom) show conflicting phylogenetic signal as a function of the250

strength of compositional constraint. The bias towards the topologies exhibiting251

LBA artifacts of more constrained sites outweighs the signal of less constrained252

sites in all three datasets.253

The site-heterogeneous LG+C60+PMSF model shows reduced, but still appar-254
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Figure 1: Highly constrained sites drive long branch attraction artifacts
in the Felsenstein zone. We simulated amino acid alignments with 10 000 sites
exhibiting across-site compositional heterogeneity (Schrempf et al., 2020) along
Felsenstein-type trees (insets in top row; Felsenstein, 1978) with different branch
lengths q = 0.1, and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed analyses
with CAT-PMSF, the LG (Le and Gascuel, 2008) and the GTR (Tavaré, 1986)
models constrained to the correct topology as well as the incorrect Farris-type
topology (insets in bottom row; Farris, 1999) with IQ-TREE 2 (Minh et al., 2020).
The site-wise log-likelihood differences ∆logL between the maximum likelihood
trees of the two competing topologies binned according to their effective number of
amino acids Keff are shown. A positive value (green background) indicates support
for the Felsenstein-type topology, a negative value (orange background) indicates
support for the Farris-type topology prone to long branch attraction. We do not
expect a uniform distribution across the bins, because they are of different size.
The LG, and GTR models incorrectly infer Farris-type trees if p ≥ 0.8.
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ent conflict compared to site-homogeneous models and the LG+C10+PMSF model255

(Figure S9). For Platyhelminthes, the bias is strong enough to that the total like-256

lihood across all sites is higher for the LBA topology, while for the datasets involv-257

ing Nematoda and Microsporidia, the LG+C10+PMSF model recover the correct258

topology, albeit with reduced support. In general, the results of the LG+C10+PMSF259

and LG+C60+PMSF models are consistent with the observation (Schrempf et al.,260

2020) that increasing the number of components decreases the bias introduced by261

more constrained sites. Pearson correlation coefficients are greater for site-homo-262

geneous models than for models LG+C10+PMSF and LG+C60+PMSF models,263

but significant for each of these (Table S4).264

In contrast, CAT-PMSF exhibits consistent signal towards the correct topolo-265

gies across all sites and datasets with no significant correlation between log-likelihood266

difference and site-specific Keff value (Table S4). The maximum likelihood trees267

inferred by CAT-PMSF are consistent with the accepted phylogenetic relationships268

and AU tests confirm the rejection of trees with LBA topologies (Tables S8-S10).269

The phylogenetic position of Ctenophora. Finally, we used CAT-PMSF on270

two metazoan datasets (Ryan et al., 2013; Simion et al., 2017) to investigate early271

evolutionary relationships on the animal tree of life. It is currently a matter of272

intense debate whether sponges (Porifera) or comb jellies (Ctenophora) are the273

sister group to all other animals (e.g., Kapli and Telford, 2020; Li et al., 2020).274

We refer to the competing hypotheses as Porifera-sister and Ctenophora-sister,275

respectively.276

Compositional constraint analysis under site-homogeneous models, as well as277

combinations of PMSF and site-heterogeneous mixture models with 20 and 60278

components exhibit patterns of conflicting phylogenetic signal for sites with differ-279

ent degrees of compositional constraints for both the alignments from Simion et al.280

(2017) and Ryan et al. (2013). The conflicting signal is consistent with LBA driving281

the placement of Ctenophora as the first animal group to emerge (cf. Table S4).282

Under site-homogeneous models, sites with Keff values up to approximately283

10 − 12 exhibit strong preference for Ctenophora-sister (Figures 3 and S12). Sites284

with higher Keff values, however, switch their preference toward Porifera-sister. In285

contrast, under the CAT-PMSF models the Simion et al. (2017) dataset exhibits286

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482715doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482715
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fungi
Chordata
Arthropoda
Platyhelminthes

Fungi
Chordata
Arthropoda
Platyhelminthes

Fungi
Chordata
Arthropoda
Nematoda

Fungi
Chordata
Arthropoda
Nematoda

Archaea
Plantae
Amoebozoa
Animalia
Choanofl.
Fungi
Microsporidia
TSAR

Archaea
Plantae
TSAR
Amoebozoa
Animalia
Choanofl.
Fungi
Microsporidia

(a) (b) (c)

Figure 2: Highly constrained sites explain classic examples of long branch
attraction. We analyzed three empirical datasets including (a) Platyhelminthes
and (b) Nematoda (Philippe et al., 2005a), and (c) Microsporidia (Brinkmann
et al., 2005). We performed analyses with CAT-PMSF, the LG (Le and Gascuel,
2008), the GTR (Tavaré, 1986), and the LG+C60+PMSF (Quang et al., 2008;
Wang et al., 2018) models constrained to either one of two competing topologies
(insets in top versus bottom rows) with IQ-TREE 2 (Minh et al., 2020). The site-
specific log-likelihood differences ∆logL between the maximum likelihood trees of
the two competing topologies binned according to their effective number of amino
acids Keff estimated by PhyloBayes (Lartillot and Philippe, 2004) are shown. A
positive value (green background) indicates support for the now accepted topology,
a negative value (orange background) indicates support for the topology prone
to long branch attraction. We do not expect a uniform distribution across the
bins, because they are of different size. Site-homogeneous models infer the wrong
topology for all three datasets.
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consistent phylogenetic signal (Table S3) favoring a Porifera-sister topology and re-287

jecting the Ctenophora-sister hypothesis (AU test p-values between 3.1 × 10−4 and288

7.7 × 10−4; Table S11) with the closest out group, Choanoflagellatea (Figure S4a,289

Figure S10). For the Ryan et al. (2013) alignment, the total log-likelihood differ-290

ence of CAT-PMSF between the two hypotheses is marginal at only 0.8, suggesting291

a lack of resolution in this dataset. None of the models we investigated exhibit292

phylogenetic consistent signal across sites with different degrees of compositional293

constraints.294

3 Discussion295

We introduce CAT-PMSF, a method for phylogenetic inference from alignments296

exhibiting across-site compositional heterogeneity. The CAT-PMSF pipeline uses297

the site-specific amino-acid preferences estimated by a non-parametric Bayesian298

approach in the context of a downstream maximum likelihood analysis. Doing299

so combines the benefits of both approaches: a more accurate inference of the300

patterns across sites with a computationally more efficient and more reproducible301

inference of the tree topology. In addition to phylogenetic inference the CAT-PMSF302

pipeline can also be used to investigate the consistency of phylogenetic signal for303

sites under different degrees of compositional constraints. Using compositional304

constraint analysis, we elucidate inconsistent signal when using site-homogeneous305

and site-heterogeneous mixture models for phylogenetic inference from simulated306

data exhibiting across-site compositional heterogeneity as well as empirical data.307

Simulation study and empirical results In the simulation study (Figure 1),308

site-homogeneous models favored the LBA (Farris-type) topology when the length309

p of the terminal branches was long enough. By separating the contribution of sites310

as a function of compositional constraint, we demonstrated that sites under strong311

compositional constraints drive the bias leading to the LBA.312

The threshold Keff value separating sites supporting the correct topology and313

sites supporting the LBA topology depended on the length p of the terminal314

branches: The longer the terminal branches, the higher the threshold Keff value.315

We expect this observation holds more generally.316
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Choanofl.
Cnidaria
Bilateria
Placozoa
Ctenophora
Porifera

Choanofl.
Cnidaria
Bilateria
Placozoa
Porifera
Ctenophora

Figure 3: CAT-PMSF shows consistent signal for Porifera as the
sister group to all other animals. We performed analyses with CAT-
PMSF, the LG (Le and Gascuel, 2008), the GTR (Tavaré, 1986), and the
LG+C20+PMSF (Quang et al., 2008; Wang et al., 2018) models constrained to
either one of two competing topologies (insets in top versus bottom rows) with
IQ-TREE 2 (Minh et al., 2020) on the alignment from Simion et al. (2017). The
site-specific log-likelihood differences ∆logL between the maximum likelihood trees
of the two competing topologies binned according to their effective number of amino
acids Keff estimated by PhyloBayes (Lartillot and Philippe, 2004) are shown. We
do not expect a uniform distribution across the bins, because they are of differ-
ent size. Site-homogeneous models and the site-heterogeneous LG+C20+PMSF
model show inconsistent signal between more versus less constrained sites and fa-
vor Ctenophora at the animal root. CAT-PMSF favors Porifera at the animal root,
although this result is only significant when using the closest outgroup exclusively.
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In our simulations, total support of site-homogeneous models shifted from a317

Felsenstein-type topology towards a Farris-type topology when p ≥ 0.8. In this318

case, sites with Keff values above the mentioned separating threshold failed to319

compensate for the bias introduced by sites with Keff values below the threshold.320

We observe no bias when using site-heterogeneous models such as CAT-PMSF321

(Figure 1). Although we expect such a result, it is satisfying that inferences of322

CAT-PMSF lack bias even for large values of p ≤ 1.2 (Figures S7 and S8)323

We can discover bias towards one of the topologies in simulation studies be-324

cause we know the true parameters and trees. Bias is harder to detect in analyses325

of empirical data. The compositional constraint analyses detect conflicting sig-326

nal between more and less constrained sites. Detection of such inconsistencies is327

a strong indicator for bias: Knowing the stationary distribution of a site alone328

should not provide us with information about the favored evolutionary history. In329

mathematical terms, the log-likelihood difference of a site between two hypotheses330

should be conditionally independent given the stationary distribution of that site.331

In contrast, we expect the signal obtained from more and less constrained sites be332

consistent up to random statistical error.333

In our analyses of empirical data we observed strong inconsistencies between334

more and less constrained sites for site-homogeneous models and hardly any incon-335

sistencies when using CAT-PMSF (Figure 2). Pearson correlation coefficients and336

p-values confirm this observation across a wide range of simulated and empirical337

datasets (Tables S3, and S4).338

The results are more nuanced for the alignments involving Ctenophora. In the339

case of site-homogeneous models, we observe the value of Keff correlates strongly340

with the log-likelihood difference between the two competing topologies (Figure 3).341

Moreover, for the dataset provided by Simion et al., CAT-PMSF supports Porifera-342

sister — similar to the results reported by the original authors, who applied the343

CAT model to sub-sampled alignments comprising 100 000 sites. The support of344

CAT-PMSF for Porifera-sister is significant, when we use the closest outgroups345

exclusively (Table S11). If we add more distant outgroups, the results are less346

conclusive (Table S11). Long branch attraction provides an explanation for this347

observation: more distant outgroups attract the outgroups closer related to the348

species of interest. In turn, the elongated basal branch of animals increases bias349
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due to LBA for branches leading to the metazoan root.350

We interpret these findings as a confirmation for sponges being the sister group351

to all other animals (dataset of Simion et al., 2017), and believe that the incon-352

clusive results obtained from the dataset of Ryan et al. (2013) reflect a lack of353

phylogenetic resolution. Irrespective of the final evolutionary history of Metazoa,354

our results add important evidence that ignoring across-site compositional hetero-355

geneity leads to LBA (Phillips et al., 2004).356

Further notes The results of CAT-PMSF are conservative because the CAT357

model estimates the site-specific stationary distributions using guide topologies358

prone to LBA artifacts. That is, the guide topologies are obtained with site-359

homogeneous models. Even so, CAT-PMSF correctly infers the genuine trees in the360

simulation study (Table S1), and trees that we are convinced to be free from LBA361

artifacts in the analyses comprising empirical datasets (Figures S3, S2, S1, S6, S5362

and S4). This observation justifies the usage of site-homogeneous models in Step363

1 of the CAT-PMSF pipeline.364

In the simulation study, we observe severe bias when using site-homogeneous365

models, and no bias or reduced bias when using CAT-PMSF. Further, the absolute366

values of the log-likelihood differences are greater for site-homogeneous models than367

for site-heterogeneous models. That is, site-heterogeneous models have reduced368

power in discriminating between competing hypotheses (bias-variance tradeoff).369

In general, site-homogeneous models show conflicting signal between more and370

less constrained sites, but we observe hardly any such inconsistencies when using371

CAT-PMSF. In any case, even when the signal across sites is consistent, evidence372

obtained from highly constrained sites should be examined carefully, especially373

when highly constrained sites weigh more heavily than less constrained sites. We374

are convinced that inconsistencies between more and less constrained sites are a375

strong indicator for the presence of LBA.376

Li et al. (2020) argue that only the most parameter rich models favor Porifera-377

sister, and so Porifera-sister is not a likely scenario. In contrast, Schrempf et al.378

(2020) report that statistical tests favor models using more stationary distributions.379

This point is confirmed here, where we see that CXX models, in spite of being380

generally more robust against LBA than site-homogeneous models, may still be381
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insufficient and result in conflicting signal (Figures S8, S9 and S10). In practice,382

each site is different, and we can not expect all sites to share a universal stationary383

distribution. In fact, we do not even expect stationarity. In our opinion, we should384

analyze complex models and decide about which parameters are necessary to grasp385

the complexities of evolution. With CAT-PMSF we further explored this path.386

The CAT-PMSF method uses site-specific stationary distributions and therefore is387

a parameter-rich model.388

In comparison, the site-specific posterior mean stationary distributions of the389

classical PMSF approach are a superposition of a finite set of stationary distribu-390

tions of the underlying mixture model. Consequently, the stationary distribution391

with the lowest Keff value constitutes a hard, lower limit. Further, we expect even392

the richest distribution mixture models do not offer adequate variability of compo-393

nents with stationary distributions exhibiting low Keff values. For example, there394

are twenty different stationary distributions with Keff values close to 1.0, 190 =
(

20
2

)
395

stationary distributions with Keff values close to 2.0, and so on.396

Finally, the speed benefit of CAT-PMSF originates from fixing the topology397

during the Bayesian analysis with the CAT model. Of course, estimating the site-398

specific stationary distributions is still by far the most time-consuming step. In the399

future, we aim to design improved methods estimating site-specific stationary dis-400

tributions. Specifically, we are thinking about methods based on machine learning401

such as AlphaFold (Jumper et al., 2021).402

In conclusion, our results provide evidence for a potential LBA caused by model403

misspecification, and thus, an independent qualitative argument for choosing the404

adequate model for phylogenetic inference.405

4 Methods406

Effective number of amino acids. Let π = (πA, πR, . . . , πV ) be a distribution

of amino acid frequencies, and

G(π) =
∑

i∈{A,R,...V }

π2
i . (1)
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G(π) is the probability of sampling the same amino acid twice, which is equivalent

to a random event of character homoplasy. The effective number of amino acids of

distribution π is defined as

Keff(π) = G(π)
−1
. (2)

Keff is a convenient measure because it ranges from 1.0, when one amino is used407

exclusively, to 20.0 for a uniform distribution.408

Simulations. In order to assess the accuracy of CAT-PMSF, we simulated align-409

ments of 10000 amino acids under a distribution mixture model (Schrempf et al.,410

2020). We used Poisson exchangeabilities (Felsenstein, 1973; Nei, 1987) and a411

discrete gamma rate model (Yang, 1993) with 4 categories with shape parameter412

α = 0.78. The distribution mixture model has site-specific stationary distributions.413

For each site, we sampled a random distribution from a universal set of distribu-414

tions (Schrempf et al., 2020) obtained from the HOGENOM (Dufayard et al., 2005)415

and HSSP (Schneider et al., 1997) databases.416

We used Felsenstein-type topologies with four leaves. The quartet trees had417

different branch length proportions between short (q) and long (p) branches (insets418

of Figure 1). We fixed q to 0.1, and changed p between 0.1 and 2.0. We stored419

the randomly sampled site-specific stationary distributions used for the simulation.420

For the simulations we used the ELynx suite (Schrempf, 2021). The scripts and the421

simulated data are available at https://github.com/drenal/cat-pmsf-paper.422

CAT-PMSF. Figure 4 shows an overview of the CAT-PMSF pipeline. The input423

to CAT-PMSF is an alignment. The output of the CAT-PMSF pipeline is a tree424

robust to LBA.425

Step 1: Use a site-homogeneous model to infer a ML tree with IQ-TREE 2 (Minh426

et al., 2020). Specifically, we used LG exchangeabilities (Le and Gascuel, 2008),427

the empirical stationary distribution of amino acids, and a discrete gamma rate428

model with 4 categories (LG+G4 in IQ-TREE 2 terminology).429

Step 2: Use the obtained tree, which is prone to LBA artifacts, in a subse-430

quent Bayesian analysis with the CAT model (Lartillot and Philippe, 2004) in431

PhyloBayes (Lartillot et al., 2013). Fix the topology of the tree for the second432
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step. Thereby, we reduce the computational requirements of the CAT model.433

Then, extract the posterior mean site-specific stationary distributions of amino434

acids. In our analyses, we either used Poisson, LG or GTR (Tavaré, 1986) ex-435

changeabilities, and a discrete gamma rate model with 4 categories. We ran436

two Markov chains until either the effective sample size of all parameters was437

above 100, or after visual inspection with Tracer (Rambaut et al., 2018) indi-438

cated convergence. For the GTR model, we also extracted the posterior mean ex-439

changeabilities from the results of PhyloBayes. All scripts are available at https:440

//github.com/drenal/cat-pmsf-paper.441

Step 3: Use the custom site-specific stationary distributions in IQ-TREE 2.442

To this end, use capabilities of IQ-TREE 2 implemented as part of the PMSF443

method (Wang et al., 2018). The PMSF method has two steps. First, infer the site-444

specific stationary distributions. Second, use the inferred site-specific stationary445

distributions for phylogenetic inference. Here, we use the second step of the PMSF446

method together with the custom site-specific stationary distributions obtained in447

Step 2 of the CAT-PMSF pipeline.448

Preparation of figures. We calculated the site-specific likelihood differences449

between two analyses constrained to topologies A, and B, respectively (-g flag in450

IQ-TREE 2). For example, in the simulation study, topology A was of the Farris-451

type and topology B was of the Felsenstein-type. For each site i, we calculated the452

log-likelihood difference as453

∆ logLi = logLB
i − logLA

i . (3)

A positive value of ∆ logLi indicates that site i supports topology B. A negative454

value indicates support for topology A.455

We ordered and binned the sites according to their Keff values. For the simula-456

tion study, we used the genuine Keff values. For the analyses of empirical datasets,457

we used the Keff values calculated from the site-specific stationary distribution ob-458

tained in Step 2 of the CAT-PMSF pipeline. We performed binning with windows459

sizes of 1.0 Keff and summed the site-specific log-likelihood differences within each460

bin.461
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Alignment

Step 1
Site-homogeneous

ML inference

Step 2
Site-heterogeneous
Bayesian inference

Step 3
Site-heterogeneous

ML inference

Fixed topology
(LBA prone)

Site-specific profiles

Final tree
(robust to LBA)

Figure 4: The CAT-PMSF pipeline. (1) Apply a site-homogeneous maxi-
mum likelihood (ML) model (LG+G4; Le and Gascuel, 2008; Yang, 1993) with
IQ-TREE 2 (Minh et al., 2020). The obtained tree may still suffer from long
branch attraction (LBA). (2) Fix the topology of this tree in a site-heterogeneous
inference with the Bayesian CAT model (Lartillot and Philippe, 2004) and extract
the posterior mean site-specific stationary distributions of amino acids. (3) Esti-
mate a tree robust to LBA with the obtained site-specific stationary distributions
in IQ-TREE 2.
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Exemplary taxa on the inset trees are represented using Phylopic (http://462

phylopic.org/), the silhouette for Microsporidia is based on Tosoni et al. (2002,463

Figure 7).464

Dataset involving Platyhelminthes and Nematoda. Philippe et al. (2005a)465

address a well-known LBA artifact concerning the placement of Platyhelminthes466

and Nematoda on the tree of Bilateria. Lartillot et al. (2007) revisit the same467

dataset and provide two reduced, and overlapping alignments which contain 37468

species for Nematoda and 32 species for Platyhelminthes, respectively. Both align-469

ments have a length of 35371 amino acids. Figure 2 (a) and (b), S2 and S1 show470

simplified and complete species trees, respectively.471

Dataset involving Microsporidia. The dataset provided by Brinkmann et al.472

(2005) comprises 40 species with 24294 amino acids. It contains an archaean out-473

group and eukaryotic taxa. Of particular interest are the Microsporidia, a group474

of unicellular parasites which lack mitochondria and instead possess mitosomes.475

Microsporidia evolve fast, and site-homogeneous methods fail to correctly classify476

them. Application of site-heterogeneous methods confirms that Microsporidia are477

the closest sister species of Fungi (Brinkmann et al., 2005). For these reasons, the478

dataset containing Microsporidia is ideal as a proof of concept for CAT-PMSF.479

Figure 2 (c) and S3 show simplified and complete species trees, respectively.480

Metazoan Datasets. The placement of Ctenophora on the tree of Metazoa is481

still a matter of debate. We apply CAT-PMSF to two datasets. First, the alignment482

provided by Ryan et al. (2013) contains 61 species with 88384 amino acids. Sec-483

ond, the alignment provided by Simion et al. (2017) contains 97 species with 401632484

amino acids. The complete set of outgroups comprises 2 Filasterea, 5 Ichthyosporea,485

and 18 Choanoflagellatea. The Choanoflagellatea are the closest outgroup. Fig-486

ure 3 shows results obtained from a reduced alignment in which we retained only487

the Choanoflagellatea. The reduced alignment yields 90 species. Figure 3, and488

Figure S4 show simplified and complete species trees, respectively.489
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Hervé Philippe, Yan Zhou, Henner Brinkmann, Nicolas Rodrigue, and Frédéric585

Delsuc. Heterotachy and long-branch attraction in phylogenetics. BMC Evolu-586

tionary Biology, 5:1–8, 2005b. doi: 10.1186/1471-2148-5-50.587
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