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Abstract.—Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, 
phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy 
resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical 
as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, 
have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of 
biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous 
topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional 
heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. 
Here, we introduce “compositional constraint analysis,” a method to investigate the effect of site-specific constraints 
on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and 
less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site 
compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models 
accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site 
frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of 
across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in 
all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. 
We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and 
recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-
branch attraction; phylogenomics.]

Understanding the biological foundations of contempo-
rary life on Earth requires detailed knowledge of evolu-
tionary history. The history of speciation events informs 
us about the appearance of advantageous innovations 
and the loss of dispensable traits in a continuously 
changing environment. Consequently, the development 
of phylogenetic models inferring the history of specia-
tion events has continued at an impressive pace during 
the past decades.

Models of sequence evolution are inevitably simplifi-
cations of the complex processes that generate real-life 
biological sequences. Unfortunately, overly simplistic 
models can lead to model misspecification and long-
branch attraction (LBA; e.g., Felsenstein 1978; Hendy 
and Penny 1989; Zharkikh and Li 1993; Tateno et al. 1994; 
Bruno and Halpern 1999; Ho and Jermiin 2004; Bergsten 
2005; Brinkmann et al. 2005; Philippe et al. 2011b). LBA 
is a systematic bias where distantly related lineages 
are incorrectly inferred to be closely related in recon-
structed phylogenies. LBA arises when two lineages 
appear similar (thus closely related) to one another 
because they have both undergone a large amount of 
change, rather than because they are closely related by 
descent. Probabilistic substitution models (e.g., Jukes 
and Cantor 1969) can account for multiple substitutions 

per site and as a result reduce LBA (Felsenstein 1973; 
but see Farris 1999) compared to methods that do not 
correct for multiple substitutions.

However, probabilistic substitution models may still 
yield biased estimates if they do not adequately describe 
the evolutionary processes. For example, the model 
violation may occur due to improper description of the 
heterogeneity of the substitution process across sites 
(Yang 1993), across branches (Tuffley and Steel 1998), or 
more fine-grained modulations through time (heterot-
achy and heteropecilly: Philippe and Lopez 2001; Roure 
and Philippe 2011), all of which have motivated a lot of 
work (e.g., Galtier 2001; Huelsenbeck 2002; Lopez et al. 
2002; Kolaczkowski and Thornton 2004; Philippe et al. 
2005b; Lockhart et al. 2006; Zhou et al. 2007; Lartillot et 
al. 2009; Jayaswal et al. 2011; Crotty et al. 2020). In the 
present work, the focus is on heterogeneity across sites.

Historically, the dichotomy between invariable and 
variable sites was the first to be considered: inference 
with models ignoring invariant sites can be severely 
biased, and conversely, just accounting for a proportion 
of invariable sites leads to substantial improvement 
(Shoemaker and Fitch 1989; Adachi and Hasegawa 
1995a; Lockhart et al. 1996). In a more quantitative 
spirit, models accounting for rate heterogeneity across 
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sites (i.e., allowing for slower or faster evolution at dif-
ferent sites) ameliorate LBA in some cases (Kuhner and 
Felsenstein 1994; Philippe et al. 2011b). The heteroge-
neity of the process is not restricted to rates, however. 
Empirically (e.g., Jayaswal et al. 2014), amino acid and 
nucleotide composition can vary both across sites (i.e., 
columns of an alignment) and across lineages or taxa 
(i.e., rows of an alignment).

The interaction between sites in a protein sequence 
is sometimes referred to as “intramolecular epistasis” 
(Noor et al. 2012). In particular, we will consider pref-
erences for specific types of nucleotides or amino acids 
at homologous positions in alignments of such data, 
reflected in compositional variation between columns 
of an alignment. Such “compositional heterogeneity 
across sites” is a result of site-specific selection con-
straints, for example, deeply buried positions in folded 
proteins tend to have more interactions and are corre-
spondingly more constrained compared to positions on 
the surface, which have fewer interactions and are less 
constrained (Koshi and Goldstein 1995; Yeh et al. 2014; 
Jimenez et al. 2018).

Compositional constraints at a site reflect selection on 
multiple timescales. Interactions between sites induced 
by structural and functional constraints maintained 
by natural selection constrain the site-specific amino 
acid composition over long evolutionary timescales. 
Compositional constraints may also result from short-
term fluctuations in site-specific amino acid preferences 
resulting from changes at integrating sites, which are 
relaxed as compensatory substitutions occur (Pollock et 
al. 2012).

Amino acid and nucleotide composition, however, 
varies not only across sites but also across branches and 
time, reflected in compositional variation between rows 
of an alignment. Such shifts in compositional prefer-
ence are often driven by environmental changes and life 
history traits, for example, by differences in tempera-
ture driving proteome-wide amino acid composition 
across prokaryotes (Boussau et al. 2008). Accounting 
for across-branch and across-time changes in composi-
tion requires using nonstationary substitution models 
(Foster et al. 1997; Jermiin et al. 2004). In this article, we 
assume stationarity of the evolutionary process across 
the branches of the tree and focus on modeling compo-
sitional heterogeneity across sites in the alignment.

Our primary motivation is that models ignoring 
across-site compositional heterogeneity are prone to 
LBA because they underestimate the probability of con-
vergent substitutions at compositionally constrained 
sites (Lartillot and Philippe 2004). The probability of 
independent substitutions to the same state depends 
on the number of acceptable amino acids, which differs 
across sites. Models ignoring across-site compositional 
heterogeneity pool all sites, and ignore the variation of 
the evolutionary process across sites. Indeed, analyses 
of a series of datasets exhibiting previously conten-
tious evolutionary relationships provide evidence that 
ignoring across-site compositional heterogeneity can 
lead to LBA (Phillips et al. 2004; Brinkmann et al. 2005; 

Philippe et al. 2005a, 2005b, 2009, 2011a; Delsuc et al. 
2006; Lartillot et al. 2007; Philippe et al. 2009, Philippe 
et al. 2011a; Brown et al. 2013; Ryan et al. 2013; Cannon 
et al. 2016; Simion et al. 2017).

There is accumulating evidence that accounting for 
across-site heterogeneities is key to an accurate recon-
struction of deep evolutionary relationships. The classic 
approach to modeling such heterogeneities in the phy-
logenetic inference process is a mixture of models that 
combine substitution models specifically tailored to the 
evolutionary processes observed in the data. In order 
to model across-site rate heterogeneity, we use a mix-
ture of substitution models with the same relative but 
different absolute substitution rates (e.g., Yang 1993; 
Kalyaanamoorthy et al. 2017).

Modeling across-site compositional heterogeneity, 
however, requires constructing a process describing 
the evolution of sites subject to different compositional 
constraints. To do so for time-reversible substitution 
models, we can leverage the separation of substitu-
tion rates into the product of (i) symmetric exchange-
abilities, describing differences in rates of exchange 
between pairs of states, and (ii) stationary frequencies 
of the target states (e.g., Whelan and Goldman 2001). 
Figuratively, the stationary frequencies of the target 
states correspond to the probabilities of sampling the 
target states after waiting for an infinitely long time. 
Any time-reversible substitution model is fully speci-
fied by a set of symmetric exchangeabilities and the set 
of stationary frequencies (sometimes also referred to 
as a profile or a stationary distribution, e.g., Lartillot 
and Philippe 2004). Assuming biochemical constraints 
primarily affect site-specific amino acid preferences in 
the long-term, across-site compositional heterogeneity 
can be accounted for by composing a number of substi-
tution models sharing a single set of exchangeabilities 
but differing in their stationary distributions (distri-
bution mixture models, sometimes also referred to as 
profile mixture models; Quang et al. 2008; Schrempf et 
al. 2020). We note that distribution mixture models are 
usually augmented with a model accounting for across-
site rate heterogeneity (e.g., Yang 1993). Thus, distribu-
tion mixture models should be an adequate choice even 
when the evolutionary rate correlates with amino acid 
composition (Gowri-Shankar and Rattray 2005).

We can distinguish between general distribution 
mixture models estimated from curated training data-
bases, and distribution mixture models directly esti-
mated from the datasets at hand. For example, Wang 
et al. (2008) directly estimate mixture model compo-
nents using principal component analysis. Susko et al. 
(2018) use a composite likelihood approach and addi-
tional methods such as taxon weighing. In contrast, the 
rationale behind providing and using general mixture 
models is the assumption that the underlying evolu-
tionary processes share universal features. Quang et al. 
(2008) use the expectation maximization algorithm to 
infer general mixture models consisting of 10, 20, . . . , 60 
components (C10, C20, . . . , C60, collectively CXX mod-
els). Schrempf et al. (2020) used a clustering approach 

VOL. 72

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/4/767/7083631 by U

C
BL SC

D
 Lyon 1 user on 06 N

ovem
ber 2023



SZÁNTHÓ ET AL.—LONG-BRANCH ATTRACTION2023 769

together with different compositional transformations 
to provide a set of general mixture models, termed uni-
versal distribution mixtures (UDM), with the number of 
components ranging from four up to several thousand. 
They also provide the clustering method EDCluster to 
infer dataset-specific distribution mixture models.

Finite mixtures can be used in the context of maxi-
mum likelihood (ML) phylogenetic inference. However, 
statistical analyses of model fit and investigation of 
known cases of LBA indicate that a large number of 
components are necessary for robustness against LBA 
(Schrempf et al. 2020) which is computationally expen-
sive, especially in terms of random-access memory.

Bayesian approaches can more easily accommodate 
richer mixtures. Nonparametric Bayesian methods 
do not require explicit specification of the number of 
mixture components nor their stationary distributions. 
In particular, the CAT model (Lartillot and Philippe 
2004) uses a Dirichlet process prior to approximating 
an arbitrary mixture of stationary distributions across 
sites. The CAT model was shown to be better fitting 
and less prone to LBA than site-homogeneous mod-
els for a series of classic datasets including Nematoda 
and Platyhelminthes (Lartillot et al. 2007) as well as in 
phylogenomic analyses of the tree of life (Williams et 
al. 2020). The impediment of nonparametric Bayesian 
methods, and specifically the CAT model, is that it 
compounds two computationally challenging, but sep-
arately tractable problems, the nonparametric infer-
ence of the underlying distribution across sites and the 
exploration of tree space. The combination of these two 
problems is challenging and can lead to convergence 
problems.

In all cases, mixture modeling approaches accounting 
for across-site compositional heterogeneity are complex 
and require considerable computational resources (e.g., 
Whelan and Halanych 2016). In order to reduce the 
computational cost, Wang et al. (2018) proposed a two-
step approximation. First, site-specific stationary distri-
butions are estimated using a reference mixture model 
and a fixed guide topology. We note that the choice of 
the guide topology affects the estimation of the station-
ary distributions and that a suboptimal guide topology 
may bias the results. Second, a tree is inferred using 
the fixed stationary distributions obtained in the first 
step. Thereby, the runtime is reduced while robustness 
against LBA is improved compared to using the refer-
ence mixture model alone. In particular, the site-specific 
stationary distributions are set to the posterior mean 
site frequencies (PMSF) of the reference mixture model. 
As a result, the phylogenetic accuracy of the PMSF 
approach is inherently limited by how well the refer-
ence mixture model captures across-site compositional 
heterogeneity. There is no reason to restrict the use of 
the PMSF approach to empirical mixture models: any 
random-effect model meant to account for pattern het-
erogeneity could in principle be used here as a reference 
mixture model for computing the posterior means of 
the site-specific stationary distributions.

In this work, we follow a multistep procedure similar 
to the PMSF model and address two points: First, on 
the computational side, we extend the PMSF approach 
by using the CAT model instead of an empirical profile 
mixture model as the reference model for computing 
the profiles. Importantly, the CAT model is used under 
a fixed guide topology. Thus, the problem of simultane-
ous inference of both the site-specific stationary distri-
butions and the tree is reduced to a search of site-specific 
stationary distributions, and tree branch lengths only. 
We termed our approach CAT-PMSF.

Second, we investigate the contribution of sites with 
different degrees of compositional constraints to LBA. 
In particular, we test to what extent more severely 
constrained sites exhibit bias toward LBA trees under 
models that do not adequately account for across-site 
compositional heterogeneity. We employ “composi-
tional constraint analysis,” which examines phylo-
genetic signal for alternative topologies as a function 
of per-site compositional diversity measured by the 
effective number of amino acids (see Materials and 
Methods).

Examining simulated alignments as well as classic 
empirical datasets including Microsporidia (Brinkmann 
et al. 2005), Nematoda, and Platyhelminthes (Philippe 
et al. 2005a), we find conflicting phylogenetic signal 
across sites with different degrees of compositional con-
straints. Based on these results we apply compositional 
constraint analysis to datasets analyzed previously by 
Ryan et al. (2013) and Simion et al. (2017), aiming to 
resolve the early diversification of animal lineages.

Materials and Methods

In the following, we use the terms site-homogeneous 
and site-heterogeneous when referring to models ignor-
ing and accounting for across-site compositional het-
erogeneity, respectively. Furthermore, we use the term 
tree to denote a directed acyclic graph with node labels 
and branch lengths, in which exactly one branch con-
nects any two nodes. We use the term topology to denote 
a tree without information about branch lengths but 
with node labels. We specify an evolutionary model 
with exchangeabilities, EX, and across-site composi-
tional heterogeneity model, ASCH as EX + ASCH. All 
discussed evolutionary models used for simulations as 
well as inferences implicitly use discrete gamma rate 
heterogeneity with four components. We add a flag 
+PMSF to denote usage of the posterior mean site fre-
quency model (Wang et al. 2018).

Effective Number of Amino Acids

Given a distribution π = (πA,πR, . . . ,πV) of amino 
acid frequencies, we seek a simpler measure Kef f (π) 
in the closed interval [1, 20] that indicates the effective 
number of different amino acids used. We refer to this 
number as the “effective number of amino acids,” and 
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denote it as Kef f  (Schrempf et al. 2020). Lartillot et al. 
(2007) and Pollock et al. (2012) refer to the same concept, 
calling it the “effective size of the amino acid alphabet” 
or the “biochemical diversity.”

There are at least two conceptual platforms to com-
pute Kef f : (i) Homoplasy, that is, the probability of sam-
pling the same amino acid twice, and (ii) the Shannon 
entropy. Lartillot et al. (2007) and Pollock et al. (2012) 
use the Shannon entropy. Schrempf et al. (2020) exam-
ine both concepts and did not observe significant dif-
ferences between the two definitions of Kef f . Here, we 
prefer to compute Kef f  using homoplasy because the 
probability of LBA directly depends on the probability 
of homoplasy. Briefly, if the phylogenetic model under-
estimates the probability of homoplasy in the align-
ment, sequence similarities may be wrongly attributed 
to a potential “close evolutionary distance,” and not to 
potential “random similarity because of homoplasy.”

In particular, the probability of homoplasy is

G (π) =
∑

i∈{A,R,...V}

π2
i ,

(1)

and the effective number of amino acids is the inverse

Kef f (π) = G(π)−1. (2)
Kef f  is a convenient measure because it ranges from 

1.0, when one amino is used exclusively, to 20.0 for a 
uniform distribution. Furthermore, we can apply Kef f  
to the distribution of amino acid frequencies at a given 
site. In this case, Kef f  denotes the “number of amino 
acids used at a given site.” Finally, we note that Wright 
(1990) also uses the concept of homoplasy (which popu-
lation geneticists call “homozygosity”) to define a more 
elaborate measure of the “effective number of codons 
used in a gene” (see also Fuglsang 2006).

CAT-PMSF

Figure 1 shows an overview of the CAT-PMSF pipe-
line. The input to CAT-PMSF is an alignment. The out-
put of the CAT-PMSF pipeline is a tree robust to LBA.

Step 1: Use a site-homogeneous model to infer an ML 
tree with IQ-TREE 2 (Minh et al. 2020). Specifically, we 
used LG exchangeabilities (Le and Gascuel 2008), the 
empirical stationary distribution of amino acids, and a 
discrete gamma rate model (Yang 1993) with 4 catego-
ries (LG + F + G4 in IQ-TREE 2 terminology).

Step 2: Use the topology of the obtained tree, which 
may be biased by LBA, in a subsequent Bayesian anal-
ysis with the CAT model (Lartillot and Philippe 2004) 
in PhyloBayes (Lartillot et al. 2013). Analogous to the 
PMSF approach, call this the “guide topology.” Fix the 
guide topology during this step of the CAT-PMSF pipe-
line to reduce the computational requirements of the 
CAT model. Then, extract the posterior mean site-spe-
cific stationary distributions of amino acids. In our 
analyses, we either used Poisson (Felsenstein 1973; Nei 
1987), LG (Le and Gascuel 2008), or GTR (Tavaré 1986) 

exchangeabilities, and a discrete gamma rate model 
with 4 categories. We ran two Markov chains until either 
the effective sample size of all parameters was above 

Figure 1.  The CAT-PMSF pipeline. a) Apply a site-homogeneous 
maximum likelihood (ML) model (LG + G4; Yang 1993; Le and 
Gascuel 2008) with IQ-TREE 2 (Minh et al. 2020). The obtained tree 
may still suffer from the long-branch attraction. b) Fix the topology 
of this tree in a site-heterogeneous inference with the Bayesian CAT 
model (Lartillot and Philippe 2004) and extract the posterior mean 
site-specific stationary distributions of amino acids. c) Estimate a 
tree robust to long-branch attraction with the obtained site-specific 
stationary distributions in IQ-TREE 2.

VOL. 72

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/4/767/7083631 by U

C
BL SC

D
 Lyon 1 user on 06 N

ovem
ber 2023



SZÁNTHÓ ET AL.—LONG-BRANCH ATTRACTION2023 771

100 or after visual inspection with Tracer (Rambaut et 
al. 2018) indicated convergence. Due to computational 
constraints the Markov chains involving the Simion et 
al. (2017) and Ryan et al. (2013) alignments do not reach 
an estimated sample size of 100 for each parameter, for 
detail see Supplementary Tables S16–S28. For the GTR 
model, we also extracted the posterior mean exchange-
abilities from the results of PhyloBayes. All scripts are 
available in the Dryad Digital Repository: https://doi.
org/10.5061/dryad.g79cnp5rh and at https://github.
com/drenal/cat-pmsf-paper.

Step 3: Use the custom site-specific stationary dis-
tributions in IQ-TREE 2. To this end, use capabilities 
of IQ-TREE 2 were implemented as part of the PMSF 
method (Wang et al. 2018). The PMSF method has two 
steps. First, infer the site-specific stationary distribu-
tions. Second, use the inferred site-specific stationary 
distributions for phylogenetic inference. Here, we use 
the second step of the PMSF method together with the 
custom site-specific stationary distributions obtained in 
Step 2 of the CAT-PMSF pipeline.

Simulations

In order to assess the accuracy of CAT-PMSF, we sim-
ulated alignments of 10,000 amino acids under a distri-
bution mixture model (Schrempf et al. 2020). We used 
Poisson exchangeabilities (Felsenstein 1973; Nei 1987) 
and a discrete gamma rate model (Yang 1993) with 4 
categories with shape parameter α = 0.78. The distribu-
tion mixture model has site-specific stationary distribu-
tions. For each site, we sampled a random distribution 
from a universal set of distributions (Schrempf et al. 
2020) obtained from the HOGENOM (Dufayard et al. 
2005) and HSSP (Schneider et al. 1997) databases.

We used Felsenstein-type trees with four leaves (insets 
in top row of Fig. 2; Felsenstein 1978). Felsenstein-type 
trees exhibit two long branches separated by a short 
internal branch. The quartet trees had different branch 
length proportions between short (q) and long (p) 
branches. We fixed q to 0.1 and changed p between 0.1 
and 2.0. We stored the randomly sampled site-specific 
stationary distributions used for the simulation. For the 
simulations, we used the ELynx suite (https://github.
com/dschrempf/elynx). The scripts and the simulated 
data are available in the Dryad Digital Repository: 
https://doi.org/10.5061/dryad.g79cnp5rh and at 
https://github.com/drenal/cat-pmsf-paper.

Compositional Constraint Analysis

We calculated the site-specific likelihood differences 
between two analyses constrained to two different 
topologies (-g flag in IQ-TREE 2), let us denote them 
topology A and B, respectively. For example, in the 
simulation study, we chose topology B such that the 
inferred tree was of the Felsenstein-type (insets in top 
row of Fig. 2). Felsenstein-type trees exhibit a short 
internal branch separating two long extant branches. 
We chose topology A such that the inferred tree was of 

the Farris-type (inset in bottom row of Fig. 2b). Farris-
type trees have two long extant branches that merge 
before joining a short internal branch. For a comparison 
of Felsenstein-type and Farris-type trees, see for exam-
ple Leuchtenberger et al. (2020). For each site i, we cal-
culated the log-likelihood difference as

∆ log Li = log LBi − log LAi . (3)

A positive value of ∆logLi indicates that site i sup-
ports topology B. A negative value indicates support for 
topology A.

We ordered and binned the sites according to their 
Kef f  values and summed the site-specific log-likeli-
hood differences within each bin. We chose 20 bins 
because there are 20 amino acids, but different bin 
sizes may be used (Supplementary Figs. S13–S15 
available in the Supplementary material which can be 
found in the Dryad Digital Repository: https://doi.
org/10.5061/dryad.g79cnp5rh). For the simulation 
study, we used the actual Kef f  values of the sampled 
amino acid profiles during the simulation. For the 
analyses of empirical datasets, we used the Kef f  val-
ues calculated from the site-specific stationary distri-
bution obtained in Step 2 of the CAT-PMSF pipeline. 
Taxa in the insets of Figures 3 and 4 are represented 
using Phylopic (http://phylopic.org/), the silhou-
ette for Microsporidia is based on Tosoni et al. (2002, 
Figure 7).

Dataset involving Platyhelminthes and Nematoda

Philippe et al. (2005a) address a well-known LBA arti-
fact concerning the placement of Platyhelminthes and 
Nematoda on the tree of Bilateria. Lartillot et al. (2007) 
revisit the same dataset and provide two reduced, 
and overlapping alignments which contain 37 spe-
cies for Nematoda and 32 species for Platyhelminthes, 
respectively. Both alignments have a length of 35,371 
amino acids. Figure 3a,b and Supplementary Figs. S1 
and S2 show simplified and complete species trees, 
respectively.

Dataset involving Microsporidia

The dataset provided by Brinkmann et al. (2005) com-
prises 40 species with 24,294 amino acids. It contains 
an Archaean outgroup and eukaryotic taxa. Of par-
ticular interest are the Microsporidia, a group of uni-
cellular parasites that lack mitochondria and instead 
possess mitosomes. Microsporidia evolve fast, and 
site-homogeneous methods fail to correctly classify 
them. Application of site-heterogeneous methods con-
firms that Microsporidia are the closest sister species 
of fungi (Brinkmann et al. 2005). For these reasons, the 
dataset containing Microsporidia is ideal as a proof of 
concept for CAT-PMSF. Figure 3c and Supplementary 
Fig. S3 show simplified and complete species trees, 
respectively.
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Figure 2.  Highly constrained sites drive long-branch attraction artifacts in the Felsenstein zone. We simulated amino acid alignments with 10,000 
sites exhibiting across-site compositional heterogeneity (Schrempf et al. 2020) along Felsenstein-type trees (insets in the top row; Felsenstein 1978) with 
different branch lengths q = 0.1 and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed analyses with CAT-PMSF, the Poisson (Felsenstein 1973; Nei 
1987), the LG (Le and Gascuel 2008), and the GTR (Tavaré 1986) models constrained to the correct topology as well as to an incorrect topology (inset 
in the bottom row; Farris 1999) with IQ-TREE 2 (Minh et al. 2020). The site-specific log-likelihood differences between the maximum likelihood trees 
of the two competing topologies binned according to the site-specific effective number of amino acids are shown. A positive value (blue background) 
indicates support for the true topology, a negative value (yellow background) indicates support for the incorrect topology exhibiting long-branch 
attraction. The LG and GTR models incorrectly infer Farris-type trees if p ≥ 0.8.

Figure 3.  Highly constrained sites explain classic examples of long-branch attraction. We analyzed three empirical datasets including a) 
Platyhelminthes and b) Nematoda (Philippe et al. 2005a), and c) Microsporidia (Brinkmann et al. 2005). We performed analyses with CAT-
PMSF, the LG (Le and Gascuel 2008), the GTR (Tavaré 1986), and the LG + C60 + PMSF (Quang et al. 2008; Wang et al. 2018) models constrained 
to either one of two competing topologies (insets in top versus bottom rows) with IQ-TREE 2 (Minh et al. 2020). The site-specific log-likelihood 
differences ∆logL between the LBA-prone and non-LBA-prone topologies binned according to the site-specific effective number of amino 
acids Kef f  estimated by PhyloBayes (Lartillot and Philippe 2004) are shown. A positive value (blue background) indicates support for the now 
accepted topology, a negative value (yellow background) indicates support for the topology prone to long-branch attraction. Site-homogeneous 
models infer the wrong topology for all three datasets.
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Metazoan Datasets

The placement of Ctenophora on the tree of Metazoa 
is still a matter of debate. We apply CAT-PMSF to 
two datasets. First, the alignment provided by Ryan 
et al. (2013) contains 61 species with 88,384 amino 
acids. Second, the alignment provided by Simion 
et al. (2017) contains 97 species with 401,632 amino 
acids. The complete set of outgroups comprises 2 
Filasterea, 5 Ichthyosporea, and 18 Choanoflagellatea. 
The Choanoflagellatea are the closest outgroup. Figure 
4 shows results obtained from a reduced alignment 
in which we retained only the Choanoflagellatea. The 
reduced alignment yields 90 species. Figure 4 and 
Supplementary Fig. S4 show simplified and complete 
species trees, respectively.

Compositional Heterogeneity across Branches

CAT-PMSF assumes homogeneity of the evolutionary 
process across the branches of the tree. The matched-
pairs test of symmetry (Ababneh et al. 2006) tests for 
compositional heterogeneity between two sequences. 
Homo v2.1 (https://github.com/lsjermiin/Homo.
v2.1) performs this test for all pairs of sequences in an 
alignment. We applied Homo v2.1 to the simulated as 
well as empirical alignments.

Results

In brief, CAT-PMSF comprises three steps: (i) estimate 
a guide topology using a site-homogeneous model, (ii) 
estimate site-specific stationary distributions with the 
CAT model in PhyloBayes (Lartillot and Philippe 2004) 
using the guide topology, and (iii) phylogenetic infer-
ence in an ML framework with a distribution mixture 
model sharing one set of exchangeabilities, and using 
the obtained site-specific stationary distributions (see 
Materials and Methods).

Simulation Study

We assessed and compared the accuracy of CAT-
PMSF with other site-homogeneous and site-hetero-
geneous models. To this end, we simulated amino 
acid sequence alignments with a length of 10,000 
sites along Felsenstein-type quartet trees (insets in 
top row of Fig. 2; Felsenstein 1978). We used uniform 
exchangeabilities (Poisson; Felsenstein 1973) and an 
across-site compositional heterogeneity model with 
site-specific stationary distributions based on a UDM 
model (see Material and Methods; Schrempf et al. 
2020). We set the branch length of the short branch 
q to 0.1, and varied the length of the long branch p 
between 0.1 and 2.0. As expected, using Homo v2.1, 
we did not detect evidence for compositional hetero-
geneity across sequences in the simulated alignments 
(Supplementary Section Compositional heterogeneity 
across sequences).

The true topology was not recovered with site-homo-
geneous models when p ≥ 0.8. Instead, a Farris-type (or 
LBA) tree is recovered (Supplementary Figs. S7 and S8 
and Supplementary Tables S1 and S2). Figure 2 shows 
the results of the compositional constraint analysis for 
different values of p = 0.2, 0.8, and 1.2, contrasting the 
site-wise log-likelihood differences between the ML trees 
constrained to the true (Felsenstein-type) and incorrect 
(Farris-type) topologies exhibiting LBA (see Materials and 
Methods). Supplementary Figs. S7 and S8 show results for 
other values of p. We binned sites according to the effective 
number of amino acids (Kef f , see Materials and Methods) 
used by the respective site profiles. Lower values of Kef f  
correspond to sites under stronger compositional con-
straints. Compositional constraint analysis compares per 

Figure 4.  CAT-PMSF shows a consistent signal for Porifera as 
the sister group to all other animals on the alignment from Simion 
et al. (2017). We performed analyses with CAT-PMSF, the LG (Le 
and Gascuel 2008), the GTR (Tavaré 1986), and the LG + C20 + PMSF 
(Quang et al. 2008; Wang et al. 2018) models constrained to either 
one of two competing topologies (insets in top versus bottom rows) 
with IQ-TREE 2 (Minh et al. 2020) on the alignment from Simion et 
al. (2017). The site-specific log-likelihood differences between the 
maximum likelihood trees of the two competing topologies binned 
according to the site-specific effective number of amino acids Kef f  
estimated by PhyloBayes (Lartillot and Philippe 2004) are shown. 
Site-homogeneous models and the site-heterogeneous LG + C20 
+ PMSF model show inconsistent signal between more versus less 
constrained sites and favor Ctenophora at the animal root. CAT-
PMSF favors Porifera at the animal root, although this result is only 
significant when using the closest outgroup exclusively.
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site phylogenetic signal for two alternative topologies as a 
function of Kef f . Here, positive log-likelihood differences 
indicate support for the true topology. Conversely, nega-
tive values indicate support for the alternative topology 
exhibiting LBA. In the absence of model misspecification, 
we expect consistent phylogenetic signal (i.e., support for 
either one or the other topology) across sites, and indepen-
dent of the true value of Kef f .

At odds with this expectation, site-homogeneous 
evolutionary models exhibit conflicting phylogenetic 
signal between sites with lower and higher Kef f  values 
(Fig. 2, Supplementary Figs. S7 and S8). For site-ho-
mogeneous evolutionary models, more constrained 
sites with a lower value of Kef f  exhibit bias toward the 
incorrect topology exhibiting LBA. For p ≥ 0.8, the bias 
outweighs the correct signal of less constrained sites 
with high values of Kef f , and the incorrect topology 
has higher support than the true topology. In contrast, 
the site-heterogeneous LG + C60 + PMSF and Poisson 
+ CAT-PMSF models show consistent support for the 
true topology.

To ascertain the statistical significance of the com-
positional constraint analysis we calculated Pearson’s 
correlation coefficients, as well as Spearman’s and 
Kendall’s rank correlation coefficients and associated 
p-values between the log-likelihood differences and 
the site-specific Kef f  values (Supplementary Section 
Measuring correlation between Kef f  and site-specific 
log-likelihood difference; Supplementary Tables S3, 
S5, and S7). For the Pearson’s correlation coefficient, 
site-homogeneous models exhibit large and significant 
correlation for p ≥ 0.8, whereas the log-likelihood dif-
ferences and Kef f  values of site-heterogeneous models 
are not correlated.

Approximately unbiased (AU) tests (Shimodaira 
2002) of ML trees inferred by the GTR + CAT-PMSF 
model constrained to the two alternative topologies 
reject the incorrect topology exhibiting LBA in favor 
of the true topology for p < 1.5 (Supplementary Table 
S9). AU tests of the Poisson + CAT-PMSF model show 
similar results in that the topology exhibiting LBA is 
rejected for p < 1.6 (Supplementary Table S10). The LG 
+ CAT-PMSF model only rejects the topology exhibiting 
LBA for p < 0.8, and favors the incorrect topology for 
p > 1.0 (Supplementary Table S10).

Finally, we note that site-heterogeneous models with 
GTR exchangeabilities perform well if p ≤ 1.4. This is an 
interesting observation, because the simulations used 
the Poisson model with uniform exchangeabilities, and 
both Phylobayes and IQ-TREE 2 use LG exchangeabil-
ities as starting values when inferring GTR exchange-
abilities (e.g., see the results of the GTR + CAT-PMSF 
model in Fig. 2c). This indicates, that the inference of 
exchangeabilities has converged well if p ≤ 1.4. In con-
trast, model misspecification by fixing the exchange-
abilities to the ones of the LG model indeed leads to 
inconsistent signal similar to the one obtained with 
site-homogeneous models when p ≥ 0.8 (e.g., see the 
results of the LG + CAT-PMSF model in Fig. 2c). The 

Poisson + CAT-PMSF model is even more accurate 
when using the true topology or the true site-specific 
stationary distributions (Supplementary Figs. S7 and 
S8). In all cases excluding the LG + CAT-PMSF and GTR 
+ CAT-PMSF models for large p, the site-heterogeneous 
models infer the true topology (Supplementary Figs. S7 
and S8).

Applications to Empirical Data

Similar to the simulation study above, for empirical 
alignments the site-specific stationary distributions 
obtained in Step 2 of the CAT-PMSF pipeline can be 
used to quantify the strength of compositional con-
straint measured by Kef f  and perform compositional 
constraint analysis. Figure 3 shows results for three 
datasets exhibiting classic LBA artifacts when we use 
site-homogeneous models for inference: The place-
ment of Platyhelminthes and Nematoda (Philippe et 
al. 2005a), as well as the placement of Microsporidia 
(Brinkmann et al. 2005; Lartillot et al. 2007). For all 
three datasets, Homo v2.1 reported some level of 
compositional heterogeneity across sequences (see 
Materials and Methods and Supplementary Section 
Compositional heterogeneity across sequences). 
Supplementary Figures S9 and S11 show the cumu-
lative site-specific log-likelihood differences and 
Supplementary Figures S13–S15 provide results for 
alternative bin sizes.

For site-homogeneous models, the site-specific 
log-likelihood differences between the ML trees con-
strained to the two competing topologies (insets of Fig. 
3; top vs. bottom) show conflicting phylogenetic signal 
between more or less constrained sites. The bias toward 
the topologies exhibiting LBA artifacts of more con-
strained sites outweighs the signal of less constrained 
sites in all three datasets.

The site-heterogeneous LG + C60 + PMSF model 
shows reduced, but still apparent conflict compared to 
site-homogeneous models and the LG + C10 + PMSF 
model (Supplementary Fig. S9). For Platyhelminthes, 
the bias is strong enough that the total likelihood across 
all sites is higher for the LBA topology, while for the 
datasets involving Nematoda and Microsporidia, the 
LG + C10 + PMSF model recovers the correct topology, 
albeit with reduced support. In general, the results of 
the LG + C10 + PMSF and LG + C60 + PMSF models are 
consistent with the observation (Schrempf et al. 2020) 
that increasing the number of mixture model compo-
nents of the CXX models decreases the bias introduced 
by more constrained sites. Pearson correlation coeffi-
cients are greater for site-homogeneous models than for 
models LG + C10 + PMSF and LG + C60 + PMSF, but 
significant for each of these (Supplementary Tables S4, 
S6, and S8).

In contrast, CAT-PMSF exhibits consistent signal 
toward the assumed-to-be-correct topologies across 
all sites and datasets with no significant correlation 
between log-likelihood difference and site-specific Kef f  
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value (Supplementary Table S4). The ML trees inferred 
by CAT-PMSF are consistent with the accepted phylo-
genetic relationships and AU tests confirm the rejection 
of trees with LBA topologies (Supplementary Tables 
S12–S14).

The Phylogenetic Position of Ctenophora

Finally, we used CAT-PMSF on two metazoan data-
sets (Ryan et al. 2013; Simion et al. 2017) to investigate 
early evolutionary relationships on the animal tree of 
life. It is currently a matter of debate whether sponges 
(Porifera) or comb jellies (Ctenophora) are the sister 
group to all other animals (e.g., Kapli and Telford 2020; 
Li et al. 2021). We refer to the competing hypotheses as 
Porifera-sister and Ctenophora-sister, respectively.

Compositional constraint analysis under site-ho-
mogeneous models, as well as combinations of PMSF 
and site-heterogeneous mixture models with 20 and 60 
components exhibit patterns of conflicting phylogenetic 
signal for sites with different degrees of compositional 
constraints (Fig. 4, Supplementary Figs. S10 and S12) 
for both the alignments from Simion et al. (2017) and 
Ryan et al. (2013). The conflicting signal is consistent 
with LBA driving the placement of Ctenophora as the 
first animal group to emerge (Supplementary Table S4).

Under site-homogeneous models, sites with Kef f  val-
ues up to approximately 10–12 exhibit a strong prefer-
ence for Ctenophora-sister (Fig. 4 and Supplementary 
Fig. S17). Sites with higher Kef f  values, however, 
switch their preference toward Porifera-sister. In con-
trast, under the CAT-PMSF models the Simion et al. 
(2017) dataset exhibits consistent phylogenetic signal 
(Supplementary Table S3) favoring a Porifera-sister 
topology and rejecting the Ctenophora-sister topology 
(AU test P-values between 3.1× 10−4 and 7.7× 10−4

; Supplementary Table S5) with the closest outgroup, 
Choanoflagellatea (Supplementary Figs. S4a and S10). 
For the alignment published by Ryan et al. (2013), the 
total log-likelihood difference of CAT-PMSF between 
the two hypotheses is marginal at only 0.8, suggesting 
a lack of resolution in this dataset. None of the models 
we investigated exhibit consistent phylogenetic signal 
across sites with different degrees of compositional 
constraints.

Discussion

We introduce CAT-PMSF, a method for phylogenetic 
inference from alignments exhibiting across-site compo-
sitional heterogeneity. The CAT-PMSF pipeline uses the 
site-specific amino acid preferences estimated by a non-
parametric Bayesian approach in the context of a down-
stream ML analysis. Doing so combines the benefits of 
both approaches: a more accurate inference of the pat-
terns across sites with a computationally more efficient 
and more reproducible inference of the tree topology. 
In addition to phylogenetic inference, the CAT-PMSF 
pipeline can also be used to investigate the consistency 

of phylogenetic signal for sites under different degrees 
of compositional constraints. Compositional constraint 
analyses on both simulated and empirical datasets 
exhibiting across-site compositional heterogeneity 
show that site-homogeneous and some site-heteroge-
neous mixture models indeed have inconsistent signal 
which contributes to topological bias and LBA artifacts.

In the simulation study (Fig. 2), site-homogeneous 
models favored the incorrect topology when the length 
p of the terminal branches was long enough. By sep-
arating the contribution of sites as a function of com-
positional constraint, we demonstrated that more 
constrained sites drive the bias leading to LBA.

The threshold Kef f  values separating sites support-
ing the correct topology and sites supporting the LBA 
topology depended on the length p of the terminal 
branches: The longer the terminal branches, the higher 
the threshold Kef f  value. We expect this observation 
holds more generally.

In our simulations, support of site-homogeneous 
models shifted from the true topology toward the incor-
rect topology when increasing p to and above 0.8. In 
this case, sites with Kef f  values above that threshold 
failed to compensate for the bias introduced by sites 
with Kef f  values below the threshold. We observed 
no bias when using site-heterogeneous models such 
as Poisson + CAT-PMSF (Fig. 2). Although we expect 
such a result, it is satisfying that inferences of Poisson 
+ CAT-PMSF lack bias even for large values of p ≥ 1.2 
(Supplementary Figs. S7 and S8).

We discovered bias toward one of the topologies in 
simulation studies because we know the true param-
eters and trees. Bias is harder to detect in analyses of 
empirical data. Compositional constraint analysis 
detects conflicting signal between more and less con-
strained sites. Detection of such inconsistencies is a 
strong indicator for bias: Knowing the stationary dis-
tribution of a site alone should not provide us with 
information about the favored evolutionary history. In 
mathematical terms, the log-likelihood difference of a 
site between two hypotheses should be conditionally 
independent given the stationary distribution of that 
site. In contrast, we expect the signal obtained from 
more and less constrained sites to be consistent up to 
the random statistical error.

In our analyses of empirical data, we observed strong 
inconsistencies between more and less constrained sites 
for site-homogeneous models and hardly any inconsis-
tencies when using CAT-PMSF (Fig. 3). Pearson correla-
tion coefficients and P-values confirm this observation 
across a wide range of simulated and empirical datasets 
(Supplementary Tables S3 and S4).

The results are more nuanced for the alignments 
involving Ctenophora. In the case of site-homogeneous 
models, we observe the value of Kef f  correlates strongly 
with the log-likelihood difference between the two 
competing topologies (Fig. 4). Moreover, for the data-
set provided by Simion et al. (2017), CAT-PMSF sup-
ports Porifera-sister—similar to the results reported 
by the original authors, who applied the CAT model 
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to sub-sampled alignments comprising 100,000 sites. 
The support of CAT-PMSF for Porifera-sister is signif-
icant when we use the closest outgroups exclusively 
(Supplementary Table S15). If we add more distant out-
groups, the results are less conclusive (Supplementary 
Table S15). LBA provides an explanation for this obser-
vation: outgroups more distant to the ingroup (i.e., 
the species of interest) attract outgroups closer to the 
ingroup (Hendy and Penny 1989; Adachi and Hasegawa 
1995b) thereby increasing the distance between the 
ingroup and the whole outgroup. Consequently, the 
longer basal branch increases bias due to LBA for 
branches leading to the most recent common ancestor 
of the ingroup. In particular, the elongated basal branch 
of animals increases bias due to LBA for branches lead-
ing to the metazoan root.

We interpret these findings as a confirmation for 
sponges being the sister group to all other animals 
(dataset of Simion et al. 2017), and believe that the 
inconclusive results obtained from the dataset of 
Ryan et al. (2013) reflect a lack of phylogenetic reso-
lution. Irrespective of the final evolutionary history 
of Metazoa, our results add important evidence that 
ignoring across-site compositional heterogeneity leads 
to LBA (Phillips et al. 2004).

Compositional constraint analysis seeks to decompose 
the log-likelihood contributions of more and less con-
strained sites. We decided to measure how constrained 
sites are by computing the effective number of amino 
acids per site based on the concept of homoplasy, because 
it is inherently related to LBA: A model that underesti-
mates the probability of homoplasy will incorrectly attri-
bute sequence similarities due to homoplasy to a putative 
close evolutionary distance. Other measures of how con-
strained sites are or any monotonic transformation of the 
function computing Kef f  could be used. For example, the 
Shannon entropy can be used to calculate a slightly dif-
ferent measure of the effective number of amino acids, 
albeit with similar characteristics (Schrempf et al. 2020). 
To reiterate, compositional constraint analysis is useful, 
because we do not expect that the topological preference 
depends on how constrained sites are. Indeed, if all sites 
have been produced under the same evolutionary his-
tory, then they should agree on the preferred topology 
(or, possibly, abstain, e.g., if they are constant), and this, 
even if they otherwise differ in other aspects of the evo-
lutionary process (such as the biochemical constraints). 
In particular, we expect that the sign of the site-specific 
log-likelihood difference does not change between more 
or less constrained sites. However, this is exactly what 
we observe for almost all inferences when using site-ho-
mogeneous models and even for some inferences with 
site-heterogeneous models (e.g., Figs. 2–4). More quan-
titatively, the correlation coefficients between Kef f  and 
site-specific log-likelihood difference tend to be stronger 
for site-homogeneous models than for site-heterogeneous 
models (Supplementary Tables S3, S5, and S7).

We also note that CAT-PMSF assumes homogeneity 
of the evolutionary process across branches of the tree. 
The simulation study conforms to this assumption. 

Tests for across-branch homogeneity were less con-
clusive for the empirical datasets (Supplementary 
Section Compositional heterogeneity across sequences) 
than for the simulation study. If the evolutionary pro-
cess is stationary and homogeneous, the CAT model 
should perform well in estimating site-specific amino 
acid compositions. Even if the evolutionary process 
is non-stationary or heterogeneous, the site-specific 
amino acid compositions inferred by the CAT model 
will capture the spectrum of compositions attained at 
least somewhere on the tree. In this case, the inferred 
compositions will not be stationary in the mathemati-
cal sense, but still should have a positive impact on the 
detection of genuine convergent evolution. Ideally, we 
should model across-site and across-branch composi-
tional heterogeneity for amino acid sequences in a com-
bined way. For example, there has been work in this 
direction on nucleotide sequences (e.g., Jayaswal et al. 
2014). In the case of amino acids, one could begin with a 
simulation study testing if (dis)-similarity in amino acid 
composition influences evolutionary distances or even 
the topology estimated by CAT-PMSF or other methods 
accounting for across-site compositional heterogeneity.

The results of CAT-PMSF are conservative because 
the CAT model estimates the site-specific stationary 
distributions using guide topologies prone to LBA 
artifacts. That is, the guide topologies are obtained 
with site-homogeneous models. Even so, CAT-PMSF 
correctly infers the true trees in the simulation study 
(Supplementary Table S1), and trees that we are con-
vinced to be free from LBA artifacts in the analyses 
comprising empirical datasets (Supplementary Figs. 
S1–S6). This observation justifies the usage of site-ho-
mogeneous models in Step 1 of the CAT-PMSF pipeline.

In the simulation study, we observe bias toward Farris-
type trees when using site-homogeneous models, and no 
bias or reduced bias when using Poisson + CAT-PMSF or 
GTR + CAT-PMSF. However, the reduced bias comes at a 
cost: the absolute values of the log-likelihood differences 
are greater for site-homogeneous models than for site-het-
erogeneous models, even though site-heterogeneous 
models are more parameter rich.

In general, site-homogeneous models show conflict-
ing signal between more and less constrained sites, but 
we observe hardly any such inconsistencies when using 
CAT-PMSF. In any case, even when the signal across 
sites is consistent, evidence obtained from highly con-
strained sites should be examined carefully, especially 
when highly constrained sites weigh more heavily than 
less constrained sites. We are convinced that inconsis-
tencies between more and less constrained sites are a 
strong indicator for the presence of LBA.

Li et al. (2021) argue that only the most parameter-rich 
models favor Porifera-sister, and so Porifera-sister is 
not a likely scenario. In contrast, Schrempf et al. (2020) 
report that statistical tests favor models using more 
stationary distributions. This point is confirmed here, 
where we see that CXX models, in spite of being gen-
erally more robust against LBA than site-homogeneous 
models, may still be insufficient and result in conflicting 
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signal (Supplementary Figs. S8–S10). In practice, many 
sites may have evolved under different conditions, so 
we cannot expect all sites to share a universal stationary 
distribution. In fact, we do not even expect stationarity. 
In our opinion, we should analyze data using complex 
models and decide about which parameters are necessary 
to grasp the complexities of evolution. With CAT-PMSF 
we further explored this path. The CAT-PMSF method 
uses site-specific stationary distributions and therefore is 
a parameter-rich model.

In comparison, the site-specific posterior mean sta-
tionary distributions of the classical PMSF approach 
are a superposition of a finite set of stationary distribu-
tions of the underlying mixture model. Consequently, 
the Kef f  values of the site-specific stationary distribu-
tions of the classical PMSF approach must be equal 
to or larger than the lowest Kef f  value of the station-
ary distributions of the underlying mixture model. 
Furthermore, we expect even the richest distribution 
mixture models do not offer adequate variability of 
components with stationary distributions exhibiting 
low Kef f  values. For example, there are twenty differ-
ent stationary distributions with Kef f  values close to  
 1.0, 190 =

Å
20
2

ã
 stationary distributions with Kef f  val-

ues close to 2.0, and so on.
Finally, the speed benefit of CAT-PMSF originates 

from fixing the topology during the Bayesian analysis 
with the CAT model. Of course, estimating the site-spe-
cific stationary distributions is still by far the most 
time-consuming step. In the future, we aim to design 
improved methods for estimating site-specific station-
ary distributions. Specifically, we are thinking about 
methods based on machine learning such as AlphaFold 
(Jumper et al. 2021).

In conclusion, compositional constraint analyses 
show evidence for a potential LBA caused by model 
misspecification and an argument that careful model 
choice as well as validation is important in phyloge-
netic inference. We also propose a method, CAT-PMSF, 
with the potential to produce more accurate phyloge-
netic estimates using a site heterogeneous, but branch 
homogeneous, substitution process.
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Supplementary material, including data files and/
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Digital Repository: https://doi.org/10.5061/dryad.
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The silhouettes on the inset trees were downloaded 

from PhyloPic database, below we give credit to the cre-
ators of each silhouettes:

- �Chordata silhouette was created by Mali’o Kodis, 
based on photograph by Melissa Frey, published 
under CC BY-NC 3.0 license, https://www.
phylopic.org/images/e00a360c-991a-4f1e-85b9-
9d0aba3e4bc1/ciona-savignyi

- �Nematode silhouette was created by Gareth 
Monger, published under CC BY 3.0 license, 
ht tps ://www.phylopic .org/images/103b-
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- �Platyhelminthes silhouette was created by Michelle 
Site, published under CC BY-NC 3.0 license. https://
www.phylopic.org/images/48c2db88-3f4d-4571-
91ea-1f79bc957aa2/polycladida

- �Choanoflagellatea silhouette was published by T. 
Michael Keesey under public domain. https://
www.phylopic.org/images/6933d88f-db69-4f6c-
94da-602acf028961/monosiga-brevicollis

- �Porifera silhouette was created by Mali'o Kodis, 
based on photograph by Derek Keats, pub-
lished under CC BY 3.0 license. https://www.
phylopic.org/images/3449d9ef-2900-4309-bf22-
5262c909344b/siphonochalina-siphonella

- �Ctenophora silhouette was published by Steven 
Haddock under public domain. https://www.
phylopic.org/images/dfc37b82-ff17-4866-abf9-
1c405a202a13/hormiphora-californensis

- �Placozoa silhouette was created by Oliver Voigt, 
published under CC BY-SA 3.0 license. https://
www.phylopic.org/images/87e2d814-56f7-45bc-
82e3-bed99c8c7f3a/trichoplax-adhaerens

- �Cnidaria silhouette was creaed by Qiang Ou, pub-
lished under CC BY-NC 3.0 license. https://www.
phylopic.org/images/d148ee59-7247-4d2a-a62f-
77be38ebb1c7/xianguangia-sinica

- �Animalia, Arthropoda and Bilateria silhouette was 
published by T. Michael Keesey under public domain. 
https://www.phylopic.org/images/028577c7-8fb7-
4c0e-83ee-5f8035c6e3df/formicoids

- �Archaea silhouette was created by Matt Crook, pub-
lished under CC BY-SA 3.0 license. https://www.
phylopic.org/images/2ec5ab88-2b75-4712-a253-
5520f1f55b73/thermococcus-celer

- �Plantae silhouette was published by Jonathan Wells 
under public domain. https://www.phylopic.org/
images/461f7280-3636-42c0-98fd-4fca668460c5/
oryza-sativa

- �Fungi silhouette was published by T. Michael Keesey 
under public domain. https://www.phylopic.org/
images/8cff2d66-6549-44d2-8304-d2dfecf53d78/
rhizopus-oryzae

- �Animalia silhouette was published by Thomas Hegna 
under public domain. https://www.phylopic.org/
images/0cd6cc9f-683c-470e-a4a6-3b68beb826fa/
drosophila-drosophila-mojavensis
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- �Amoebozoa silhouette was created by Yan Wong 
from photo by Gyik Toma, published under CC BY 
3.0 license. https://www.phylopic.org/images/
fd1d633d-601c-47e9-b987-aa2c1278fd8c/amoeba

- �TSAR silhouette was published by Jonathan Wells 
under public domain. https://www.phylopic.org/
images/e6014244-4dd5-4785-bf2e-c67dc4d05ca8/
plasmodium-falciparum

Links to the licenses used:
- �CC BY-NC 3.0 license https://creativecommons.

org/licenses/by-nc/3.0/
- �CC BY-SA 3.0 license https://creativecommons.

org/licenses/by-sa/3.0/
- �CC BY 3.0 license https://creativecommons.org/

licenses/by/3.0/
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