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Controlling morpho-electrophysiological
variability of neurons with detailed
biophysical models

Alexis Arnaudon,1,6,* Maria Reva,1,3 Mickael Zbili,1,4 Henry Markram,1 Werner Van Geit,1,2,5 and Lida Kanari1,2
SUMMARY

Variability, which is known to be a universal feature among biological units such as neuronal cells, holds
significant importance, as, for example, it enables a robust encoding of a high volume of information in
neuronal circuits and prevents hypersynchronizations. While most computational studies on electrophys-
iological variability in neuronal circuits were done with single-compartment neuron models, we instead
focus on the variability of detailed biophysical models of neuron multi-compartmental morphologies.
We leverage a Markov chain Monte Carlo method to generate populations of electrical models reproduc-
ing the variability of experimental recordings while being compatible with a set of morphologies to faith-
fully represent specifi morpho-electrical type. We demonstrate our approach on layer 5 pyramidal cells
and study the morpho-electrical variability and in particular, find that morphological variability alone is
insufficient to reproduce electrical variability. Overall, this approach provides a strong statistical basis
to create detailed models of neurons with controlled variability.

INTRODUCTION

Neurons in the brain are highly heterogeneous, both in terms of morphologies and electrical phenotypes. Attempts have beenmade to clas-

sify them into morphological, electrical, or combined morpho-electrical types,1–3 however, even within a single cell type, cells are highly var-

iable. For example, morphologies grow in the available space following the local signaling processes, hence their shapes and sizes are loca-

tion-specific and unique4 and have an impact on electrical properties.5Morphological variability has been studied in the context of robustness

of structural connectivity for example by6–8 and shown to be of critical importance. Electrophysiological variability, even within a firing type is

also of paramount importance9,10 in many aspects of brain modeling. In general, biological noise and variability have implications in a wide

range of brain mechanisms such as behaviors,11 computation,12 neural responses,13 information processing,14 or for brain dynamics.15 Here,

we focus onmodeling the variability of cell firing properties for a given firing type and not onmodeling other types of randomness, such as ion

channel stochasticity, or synaptic noise. Firing variability has been shown to be important for a range of biological mechanisms of the brain,

such as for network properties16, resilience to changes in synchrony with epilepsy,17–19 increased information content for efficient population

coding20–24 or energy efficiency.25

The intra-type variability of neuronal electrophysiological properties has a biological basis but ultimately originates from the choice of the

scientist to classify the recorded cells into a specific firing type. Indeed, cells often form a ‘‘continuumof types,’’ as visible from the often blurry

limits where some cells cannot be consistently classified.3,26 A cell type definition should not only account for specific values of certain elec-

trophysiological features but also for their variability. Within a cell type, this variability will differ across species, age, or even brain regions and

must therefore be factored in. Hence, for modeling studies ranging from detailed single cells to circuit simulations, such a complete charac-

terization of cell types will play an important role. First, for single-cell modeling, the unknown constraints of the feature variability on ion chan-

nel conductances can be statistically quantified by considering an ensemble of models.9 This is important to ensure most biologically plau-

sible models are considered, in light of the recent interest in the inherent degeneracy of electrical models.27–29 Second, one can study the

interplay between these conductances and the resulting firing types to gain a theoretical understanding of the necessary interactions be-

tween ion channels to produce a specific firing type. Additionally, it could lead to the proposition of hypotheses that could be tested exper-

imentally. For example, these hypothesesmight involve conducting ‘‘knock-out’’ experiments on specific channels to verify the accuracy of the

proposed models, such as for example done in the Hippocampus by Roy et al.30 Alternatively, one can verify if the model replicates
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established experiments to delve deeper into their underlying mechanisms, using, for example, a gradual reduction of the target conduc-

tances. Third, having a large population of valid, but generic models, allows the selection of sub-populations with specific properties. Con-

straints can be imposed directly by restricting certain feature values or indirectly via certain properties of larger circuit models, or through

generalization to other morphologies. Such an approach is critical to understanding the role of specific model features in a wider context,

often hardly available via direct model building for complex circuit simulations. A recent attempt at combining electrical models and circuit

dynamics with deep learning by Goncalves et al.31 was limited to simple and well-understood circuit dynamics with a few features, but not yet

scalable toward more detailed circuit models.32–35

In this study, we sample a set of models that accurately reproduce the desired firing type on a population of morphologies taking into

account its variability. This facilitates the statistical analysis of interdependencies between morphological and electrical properties as well

as helps address the question of which morphological features affect specific electrophysiological properties. Finally, and most importantly,

this approach allows the generation of a population of cell models with a controlledmorpho-electrical variability. Several attempts to quantify

the variability in neuronal parameter space have been made in the past. It began as early as,36 then it became central in several works more

than a decade later. First, in a study by Prinz et al.37 they build models of lateral pyloric neurons with this sampling approach to bypass the

common hand-tuning of parameters or later in a study by Taylor et al.38 to perform a more in-depth analysis of ion channels interactions in

biophysical neuronal models. In these works, they randomly sample the parameter space and subsequently filter out models with features out

of their prescribed range. Other approaches leveraging optimization algorithms39 for Purkinje cells or for hippocampal neurons30,40 to under-

stand the shape of the neuron parameter space were attempted.

Here, we will instead use the Markov chain Monte Carlo (MCMC) method (see for example Gilks et al.41) to sample the parameter space of

the electrical model of rat cortical layer 5 pyramidal cells (L5PC).42 This sampling method, already used in a similar context, but on simpler

models by Wang et al.43 provides a tractable Bayesian framework for sampling parameters of the model, not based on machine learning al-

gorithms, such as successfully developed by Goncalves et al. andOesterle et al.31,44 It also improves on random sampling by preventing eval-

uations of too many models with wrong firing properties and provides statistical guarantees that the parameter space is well sampled with

respect to a given probability distribution, implemented here from the cost function constructed from electrophysiological features. From

these sampled models evaluated on a single reconstructed morphology, we develop a method to generalize them to a population of mor-

phologies inspired from Hay et al.45 by adjusting surface areas of the axon initial segment (AIS) and soma based on relative input resistances

between them and the dendrites. With these sampled and adapted models, we studied the morpho-electrical variability of the layer pyrami-

dal cells, and specifically their ability to reproduce experimental variability.
RESULTS

Experimental morpho-electrical variability

We considered two datasets: 64morphologically detailed reconstructions of L5PC32,46 and 44 electrophysiological patch clamp recordings of

the same cell type.32,42 These datasets are separate, hence the recordings cannot be matched to specific morphologies. The L5PC morphol-

ogies are classified into four subtypes according to the properties of the apical dendrite: thick-tufted, bitufted, small-tufted, and un-tufted

(see STAR methods and Kanari et al.47). We will refer to thick-tufted the subtype denoted as TPC:A in Kanari et al.47 We rediametrized all

the morphologies according to the algorithm presented in STAR methods to ensure that they have consistent diameter profiles. The algo-

rithms first fit a model of the diameter as a function of distance to the furthest terminal points from the morphological population, and then

assign diameters according to it. As our goal was to obtain consistent diameter profiles, this algorithm yielded satisfactory results, but more

biologically based diametrization algorithms could be used.48

To illustrate the variability present in the morphologies of the thick-tufted L5PC, we plotted representative morphologies of the mean,

large, small, and exemplar cells (see Figure 1A) and extracted 11 morphological features per dendritic type (5 shown in Figure 1B, others

shown in with the blue data in Figure S5). The first three cells were selected based on their total surface areas, and the exemplar is the

cell with the proximal dendritic surface area closest to the median profile of the population (see blue data in STAR methods). We observed

that morphological features such as total surface areas, total lengths, or the number of bifurcations shown in Figures 1A and 1B vary from 3-to

5-fold. These large differences within the thick-tufted morphological type show that a single morphology cannot be a faithful representation

of the entire population. Nevertheless, we will need to choose one exemplar morphology to sample electrical models with MCMC in the next

section. We pick the dendrites of the morphology with the proximal surface area profile closest to the mean profile of the population and

create a soma and AIS with the average size from the population (see STAR methods for more details).

To illustrate the variability of electrophysiological properties of L5PCs, we plotted the distribution of some of the 61 extracted features in

Figures 1C and 1D (see Table S1 for the complete list of features). Features are extracted from traces obtained during the experimental appli-

cation of specific protocols,32,42 andwe chose as an illustration to use the protocol of 200% rheobase current step. In the example in Figure 1C,

we selected three recordings from three cells with different mean frequencies for this step protocol. The mean frequency ranges from 5Hz to

14Hz, a nearly 3-fold range. The variability of other electrical features, such as holding current (required current to hold the cell at � 83 mV),

threshold current or other firing properties is also large (see Figure 1D).

Overall, a few correlations are observed between morphological features (see blue data in Figure S5), and similarly for electrical features

(see blue data in Figure S4). For example, trivial correlations between mean firing frequency with inter-spike intervals (ISI), longer apical den-

drites with larger apical surface areas, and less trivial ones such as threshold current with time to first action potential (AP) or mean frequencies

across step current amplitudes. These observations suggest that, as is the case for morphological classes,47,49 electrical features are not
2 iScience 26, 108222, November 17, 2023
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Figure 1. Morphological and electrical variability in thick-tufted L5 pyramidal cells

(A) Distribution of total surface areas of thick-tufted layer 5 pyramidal morphologies and four examples with small, mean, and large areas as well as exemplar

morphology. Colored dots in (A) and in (B) correspond to these morphologies. The thick line is the mean, dash lines are 1sd and dotted-dash lines are 2sd of

the data.

(B) Distributions of some morphometrics related to morphological size and surface area. Refer to Figure S5 for more morphometrics and correlations between

them.

(C) Distribution ofmean firing frequencies for the 44 recordings of step protocol at 200% threshold current, with three examples, with small, mean, and largemean

firing frequencies. Colored dots in (C) and in (D) correspond to these recordings.

(D) Distribution of some other electrical features extracted from the same protocol as well as the threshold and holding current at� 83 mV. Refer to Figure S5 for

more features and correlations between them.
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simply linearly correlated. In the case of morphologies, simple morphometrics cannot sufficiently describe the complexity of branching

structures50 while for electrical features, the non-linear, voltage, or calcium-dependent dynamics of the ionic channel conductances create

a complex interplay between ionic currents.51
MCMC sampling of electrical models

To reproduce the experimental variability of electrical features in our dataset we built multi-compartmental electrical models composed of

the examplar morphology and a set of 30 free parameters based on Hodgkin-Huxley mechanisms, as described in Markram et al. and Reva

et al.32,42 (see also STAR methods). We then apply the MCMC method to sample electrical models in this parameter space as follows.
iScience 26, 108222, November 17, 2023 3
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First, to assess the validity of a given set of parameters p to reproduce a target neuronal type, we compared the feature values extracted

from simulated traces under specific protocols with the mean and standard deviation of the same features on the population of experimental

recordings (see STARmethods). More precisely, we computed an absolute Z score for each evaluated feature and a global cost function as the

largest score across all features. Often, the sum of the scores is used as a costCðpÞ to quantify the quality of an electrical model (see Van Geit

et al.52). Here, instead, we used the maximum score as it results in overall better models by preventing any Z score from growing too large

relative to the others. Indeed, there could be situations where one feature has a large score, but the optimization algorithm is stuck in a local

minimum from where it is unable to improve this feature, it will keep trying to reduce the sum of scores by changing the other features, which

are probably already at an acceptable level. With the maximum of the scores, such a local minimum will not be seen at all. In addition, it pre-

vents redundant features to bias the cost in their direction. For example, if the spiking is regular, all the interspike intervals will be highly corre-

lated, hence the sum of scores will contain several times the same information.

From the cost function, we defined a probability function on the parameter space,

P
�
p
�
fexp

�
�C

�
p
�

T

�
; (Equation 1)

parameterized by a temperature parameter T. For lower T, the generated samples remain around local minima of the cost function while for

larger T the samples cover more volume with larger costs. In the extreme of T/0, we theoretically recover the global minimum, and T/N

leads to a uniform sampling of parameters. Sampling from our cost function ensures that most models have a low cost andmaximal variability

as compared to samples extracted during optimizations. Indeed, this statistical method is mathematically guaranteed to produce samples

from this distribution. To do so, we ran several MCMC chains from random initial conditions, which we updated using the Metropolis-

Hastings algorithm with multi-variate Gaussian prior (see STAR methods). The sampling quality was validated with an acceptance rate above

50% and fast decaying auto-correlation (see Figure S3).

Using this MCMC sampling method of the parameter space, we obtained 2730088 models, from which 2090653 have costs below our

threshold of 5sd. We checked whether the obtained population of models reproduced the experimental variability of the electrical features

(Figures 1C and 1D). Most of the distributions are centered around the experimental mean (solid lines in Figure 2B), except for the mean AP

amplitude, inverse time to first AP andmean after-hyperpolarization (AHP) depths (Figure 2B). FormeanAP amplitude and inverse time to first

AP, as somemodels are close to the mean experimental value, it could be possible to perform a specific selection for these features to obtain

a distribution closer to the experimental population. However, for the mean AHP depth, all models present a smaller value than the mean

experimental value, showing a limitation of our modeling approach to reproduce this specific feature.

The large population of models gave us the opportunity to explore the possible causal link between the model parameter values and the

feature values. For this reason, we looked at the correlation between a subset of features and parameters (Figure 2C) measured with the Pear-

son coefficient. We found that some features have a large correlation with few parameters (with up to 0.87 between holding current and ~gIh
in

Figure 2D (top) or 0.68 for mean AP amplitude and somatic Na in Figure 2D [bottom]). On the contrary, other parameters (such as AHP depth)

present low correlations with a large subset of parameters (see AHP depth in Figure 2C). Therefore, AHP depth is controlled by more param-

eters than other features, making it intrinsically harder to control. While, holding current at� 83 mV is highly correlated with ~gIh
conductance,

(Figure 2D [top]), the variability of this feature cannot be fully explained by the variability in ~gIh
. The additional variability partially comes from

~gpas, which is also correlated with holding current (Figure 2F). In general, the variability of feature values depends on the interplay between

several underlying parameters, and more parameters are required for features related to spiking (Figures 2G and S9).

This study of the causal link between parameters and features allows a refinement of the MCMC sampling. For example, the correlation

between the mean AP amplitude and the maximum conductance of the somatic sodium channel (~gNa) Figure 2D (bottom) suggests a way to

control the AP amplitude by adjusting the upper bound of the somatic ~gNa to around 0.15. In this way, most models will be more centered

around the experimental mean (around 68 mV) during MCMC sampling, thus producing more valid models for the same computational cost

than sub-sampling.We also looked if constraining themodels below 3sd for all the features produces the emergence of correlations between

parameters (Figure 2E). For example, we observed a negative correlation betweenmaximal somatic Na conductances andmaximal axonal Na

conductances (as already noticed in Schneider et al.53). This correlation is partly imposedby the constraint from theAP amplitude. In fact, if the

somatic Na conductance is high, the axonal conductance has to be low to maintain AP amplitude within the experimental range. This rep-

resentation of the accepted models (constrained by the cost) can be seen as a global map of the parameter space where valid models

are located (with costs below 5sd). Regardless of their locations, the models will globally perform equally well (see Figures 2A and 2B) but

will contain subtle differences that can be quantified or controlled with MCMC sampling.
Generalization of electrical models to a population of morphologies

To sample valid models with MCMC we used a single exemplar morphology assumed to represent an entire population of morphologies.

Since our original motivation was to obtain a population of models and morphologies such that any pairs were valid with high probability,

we needed to ensure that our MCMCmodels remained valid on the entire population of morphologies. First, to check the validity of models,

we used a cost function based on a reduced set of features, discarding features based on backpropagating action potentials (bAP), which are

sensitive to the shape and length of the dendrite tree. Then, due to the large number of models obtained fromMCMC,we began by randomly

sampling 100models with a cost below 3sd (out of 100678), such that theMCMCdensity ofmodels was preserved. This results inmodels being

more likely to be away from the region of invalidmodels in the parameter space, hence possibly more generalizable. Indeed, one expects that
4 iScience 26, 108222, November 17, 2023
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Figure 2. Electrical model generation with MCMC

(A) Traces of the step 200% protocol for four models picked such that the red has large AP amplitudes, green has small amplitudes while blue and magenta have

amplitudes around the median. We refer to Figure S10 for currentscape plots of these traces.

(B) Distribution of some feature values of step 200% protocol for models sampled via MCMC with cost < 4. The thick line is the mean, dash lines are 1sd and

dotted-dash lines are 2sd of the experimental data (same for all panels).

(C) Correlation matrix between features of (B) and parameters mostly correlated with these features (Pearson > 0:2 and p value of 0).

(D) Density of models for holding current at � 83 mV and mean AP amplitude as a function of their mostly correlated parameters, selected from (C) The colored

dots represent the four models in (A).

(E) Corner plot of model densities with one-dimensional marginals on the diagonal. The gray scales are normalized per pair of parameters and only the most

correlated (Pearson > 0:2 and p value of 0) pairs of parameters are shown. The colored dots represent the four models in (A).

(F) Average holding current at � 83 mV value over all parameters except for the two mostly correlated parameters to predict holding current (~gpas and ~gIh
).

(G) Average threshold current value over all parameters except the three mostly correlated parameters to predict threshold current (~gpas, ~gIh
, and axonal ~gNa).
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if a model is close to the boundary of this region, a change in themorphology would affect the effective conductances of the whole cell, which

may bring a cell out of the valid region.

To improve the generalizability of our electrical models on various morphologies, we adapted the soma and AIS surface area by

computing the relative input resistances between soma, AIS, and dendrites. Indeed, as it was noticed in early works such as,54 ormore recently

in,42,45 the relative input resistances between the AIS, soma and dendrites are essential to determine the excitability of the cell. The important

quantities to consider in this context are called r factors54 and are defined as the ratio of input resistances of specific compartments as

r =
Rin;soma

Rin;no soma
; rAIS =

Rin;AIS

Rin;no AIS
(Equation 2)

where Rin;soma and Rin;AIS are the input resistance of the isolated soma and AIS compartments, and Rin;no soma is the input resistance of all the

neurites at the soma location but without the soma, so effectively recorded at the beginning of the AIS. Similarly, Rin;no AIS is the input resis-

tance of the soma and dendrites, without the AIS, recorded at the soma. In, Hay et al.45 the authors rescaled themaximal conductances of the

AIS and soma tomatch the r factors of the optimized cell. Here, we consider that the AIS and soma sizes have variability that can be exploited

to improve the generalization of fixed electrical models. We thus rescaled the surface area of the AIS and soma of eachmorphology such that

the r factorsmatch a given target value.We had to find the target values for r and rAIS for each pair between the 100 electrical models and the
iScience 26, 108222, November 17, 2023 5
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Figure 3. Generalization with AIS/soma adaptation

(A) Cost of models by varying soma and AIS size for the four morphologies of Figure 1A. The region enclosed in dashed lines has a cost below 5sd while that in

solid lines has a cost below 6sd. The dot shows the location of the cell with unscaled AIS and soma.

(B) Step traces of the large morphology with fixed soma (left) and AIS (right) scales but with varying AIS (left) and soma (right) scales.

(C) The model validity region with cost of 5sd (dashed) and 6sd (solid) of panel A is mapped to the r factor plane. The dots again represent the unit AIS and soma

scales while the black cross is the location of the best model obtained by minimizing the cost from the exemplar with the grid search in (A), bottom right.

(D) Histograms of feature values on all pairs of electrical models and morphologies with (black) and without (blue) soma and AIS adaptation. The thick line is the

mean, dash lines are 1sd and dotted-dash lines are 2sd of the experimental data.

(E) r and raxon as a function of the ~gpas and ~gIh
parameters.
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4 examplar morphologies, one for each morphological type. The target r values are found with a grid search on AIS and soma scales for the

optimal cost (see STAR methods). We thus have one set of the target r factors per model and morphological type.

We first show how rescaling the AIS and soma size changes the cost of amodel (Figure 3A) on the fourmorphologies shown in Figure 1.We

observe that for all morphologies, a reduction of the AIS size leads to a large increase in cost (clipped at 8sd) while the change of soma size

does not impact the firing pattern (Figure 3B). This result is related to the coupling between axonal and somatic compartments, as recently

studied in more detail with a similar sampling approach in Zang et al.55 The exact shape of the level set of cells with costs less than 5sd largely

depends on the morphology (Figure 3A, the region below 5sd is enclosed in the dashed lines). For some morphologies, the original AIS and

soma size do not produce a valid model (Figure 3A, color dots). In particular, the region of valid models is small for large cells but large for

small cells. By converting the AIS and soma scales to r factors (Figure 3C) we confirm that the target r factors (black cross) obtained from the

exemplar cell are within, or close to the validity region of other morphologies. If the cells are too different, such as our small and large mor-

phologies (see Figure 1A), their validity region in the r factor planemay not overlap for both to work with a single target r factor. As this over-

lap depends on the electrical model, it defines its generalizability on a population of morphology (see next section).

For each model, we obtained target r factors using the examplar morphologies and we used the targets to fit the AIS and soma size of

eachmorphology (see STARmethods). These adapted cells have a clear reduction of extreme values of features as compared to non-adapted

cells (Figure 3D), and in particular for threshold current, where 7:4% of the cells have a threshold above 5sd without adaptation while only 1:1%

of cells are above 5sd after adaptation. As r factors are based on input resistance, they are highly sensitive to the passive leak and Ih channel

densities (Figure 3E). It should therefore be possible to predict the target r values directly by looking at these parameters instead of

computing the AIS and soma scaling on the examplar morphologies. To demonstrate it, we fitted a regressor learning model (see STAR

methods) to predict the values of r factors from the model parameters and achieve a 10-fold accuracy for the prediction of r of 1:36G

0:34 and for rAIS of 27:5G8:6. As described in the next section, this AIS/soma adjustment, which corresponds to some artificially controlled

variability, is important to ensure that a model can be generalized to a population of morphologies with substantial variabilities.
6 iScience 26, 108222, November 17, 2023
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Figure 4. Morpho-electrical selection and variability

(A) Selection matrix for thick-tufted cells where selected models and morphologies are delimited with the orange line. Each pixel corresponds to a model, where

models in light gray have scores below 5sd, in gray have some features with costs higher than 5sd and in black pixels are models that do not spike. The four

morphologies of Figure 1 are represented with colored ticks, and the model of Figure 4 with a red tick. We refer to Figure S11 for the same selection matrix

without AIS and soma adaptation.

(B) Proximal (up to 500mm) dendritic surface areas for all morphologies with non-selected morphologies in orange versus the number of failed models for each

morphology. The four morphologies are also highlighted with colored crosses.

(C) From the classification of selected models from their parameters with a classifier algorithm (10-fold accuracy of 0:89G0:08), three parameters are most

important, with a clear correlation. Models with small ~gpas values also contain models for which we have not been able to fit the AIS/soma resistance model

(not shown in A).

(D) Distribution of features obtained by freezing the redmodel (57 points in red), the exemplar morphology (75 points in green), or 500models randomly sampled

from the 5197 total pairs with cost < 5 (in black). The red line corresponds to the value of the black model with exemplar morphology. The thick line is the mean,

dash lines are 1sd and dotted-dash lines are 2sd of the experimental data.

(E) p value of Levene’s test centered with mean. Each dot is the p value of this test between the experimental data shown in Figure 1 and all MCMCmodels with

cost < 3 in black, subsets of models in red and morphologies in green. The distributions per feature in (D) correspond to single points in this plot.
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Morpho-electrical selection and variability

Even with AIS and soma adaptation, it is not guaranteed that all pairs of models and morphologies will work together. For example, the

morphology with the smallest area (green color Figure 3C) is close to the non-valid regime. It is possible that a better choice of the target

r factors exists, but given our current algorithm based on a single exemplar morphology, the success rate for model morphology pairs is

satisfactory, as shown in Figure 4A. We distinguish three levels of models: valid models (light gray), models for which there are some features

with scores larger than 5sd (gray) and models where the search for threshold current failed, hence they do not spike during step protocols

(black) (Figure 4A). Only the first class of models with all scores below 5sd will be considered as models representative of the cell type. By

sorting the electrical models from the less generalizable (failing when applied to a lot of morphologies) to the most generalizable (produce

good cells for all the morphologies), we were able to select a large fraction of morphologies and electrical models (delimited with orange

lines) such that most pairs have a cost below 5sd. In Figure S11A, we show the same selection matrix without adaptation, which needs a

more drastic selection of models and morphologies. Models that do not generalize well on the morphological population could also be

seen as less robust under morphological perturbations than others. A similar recent study, but with perturbation of ion channel maximal con-

ductances was done in,55 which found that the coupling between somatic and axonal compartments was important to maintain the rebound

bursting features. Here, this coupling is leveraged to adapt the AIS and soma scales with the r factor.

Given the morphological variability of our population of pyramidal cells, we can investigate the relationships between some global

morphometrics and generalizable cell models. For example, the proximal (up to 500mm) surface areas of selected (black) and non-selected

(orange) morphologies is a good predictor of the number of failed models, of model generalizability (see Figure 4B). In fact, best morphol-

ogies (i.e., that failed with a small number of electrical models) have surface areas close to the exemplar morphology, while most distant mor-

phologies (with large or small surface areas) are much less generalizable (they failed with a large number of electrical models). This result in-

dicates the range of proximal surface areas of morphologies that can be generalizable from a single exemplar morphology.We also show the

same result without adaptation where the region of validity is below the exemplar (see Figure S11B). If the largest cells are important for a
iScience 26, 108222, November 17, 2023 7
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given study, two choices are possible. One can recalibrate the r factors using a larger exemplar morphology, or, if this is not sufficient, run

MCMC sampling again to produce another set of models. The second choice will arise only for extrememorphological differences where the

valid regime in the parameter space is not reached with the MCMC sampling based on the first exemplar.

In this context, we ask whether it is possible to predict if an electrical model is generalizable from the parameter values. From inspecting

parameter distribution between each set of models (generalizable and not generalizable) there are no evident differences (not shown), but

when training the XGBoost classifier56 (see STAR methods), the 10-fold accuracy reaches 0:89G0:08, showing that it is possible to accurately

predict the generalizability of a model on a given population, but only via nonlinear, higher-order combinations of parameters. In Figure 4C,

we show the values of the main parameters detected via Shap feature importance analysis57 involved in predicting the generalizability of

models on the population of morphologies. We found that small passive and axonal Na conductance and large Ih conductances are more

likely to produce non-generalizable models.

Finally, from this population of models and morphologies, we assessed how well they match the variability of the experimental data (Fig-

ure 1), and in particular, the morphological or electrophysiological variability alone is sufficient to reproduce the experimental variability. For

this, we fixed the model used in Figure 4 and compared the distributions of the features when evaluated on all selected morphologies (Fig-

ure 4D, red dots). We found that, for this specific electrical model, the morphological variability is not sufficient to explain the experimental

features variability. In fact, we can see that for features such as holding current, AP amplitude or time to first AP, distributions of features ob-

tained by modification of morphology are less variable than experimental features (Figure 4D, the thick line is mean, the dashed line is 1 sd,

and the dotted dashed line is 2sd of experimental data). Then, we fixed the exemplar morphology and compared the distributions of the

features when evaluated on all selected electrical models (Figure 4D, green dots). Fixing a morphology seems to produce more consistent

variabilities across features, except for AHP depth, which is biased toward low values already in the MCMC sampling. Therefore, the exper-

imental variability of electrical features seems to mostly arise from the variability of the ion channel densities in the population. We finally

looked at the feature distributions when testing all the pairs between selectedmorphologies and selected electrical models (Figure 4D, black

dots) and found an even larger feature variability, showing that combining both morphological and electrophysiological variability is impor-

tant to reproduce experimental variability. In order to quantify these variabilities, we compared these distributions with the experimental data

with the Levene statistical test (centered with mean) (Figure 4E) by fixing all morphologies (green) or all models (red). We found with this pro-

cedure, more feature distributions presented a p value for the Levene-test smaller than 0.05 with a fixed electrical model than with a fixed

morphology, consistent with the results in panel d. Finally, the black dots show the comparison between experimental feature distributions

and distributions when testing all the 5197 pairs between electrical models and morphologies which all have p-values above 0.05 (distribu-

tions not distinguishable from the experimental one) but for the mean AHP depth. Therefore, applying MCMC sampling, soma and AIS

scaling by r factors procedure and selection of generalizable electrical models andmorphologies, allowed us to build a population of models

that reproduces the variability of the features found in a neuronal population.

Further generalizations

From MCMC sampling, we only selected 100 models to perform AIS/soma adaptation to create a set of valid pairs of electrical models and

reconstructions. This was primarily due to the computational cost of calibrating the r factors and evaluating all the models on morphologies

to select them.By using standard tree-basedmachine learning regressors and classifiers (see STARmethods)we fittedmodels for ther factors,

the AIS/soma resistances, and model generalizability, we were able to use more models from MCMC sampling with reduced computational

cost. In total, we evaluated 13794 new pairs of selected morphologies and sampled models where 92:8% have cost below 5sd (as light gray

pixels in Figure 4A) and 98:9% that are able to fire (as gray pixels in Figure 4A). Once calibrated, our method of adapting the soma and AIS

canbeapplied tomodels sampledwithMCMCnot yet usedandproducea larger numberof generalizablemodelswithout theneed for expen-

sive calibration and validation of r factors and fully leverage the variability createdbyMCMCsampling for statistical analysis or circuit building.

Increasing the number of models is often not sufficient to capture the entire biological variability, especially if experiments involve inter-

neuron connectivity or synaptic inputs. For this, one could usemore reconstructions if they fall within the estimated valid surface area bounds,

or leverage neuronal synthesis algorithms. Here, we generated morphologies with the algorithm of Kanari et al.49 based on the topological

descriptor introduced inKanari et al.50 (seeSTARmethods) to show that ifmorphologies fall within theoriginal population, there is a highprob-

ability that theywill performwell on all selectedmodels.We found that 94:8%of the generated pairs from100 synthesizedmorphologies had a

cost below 5sd, but only a few with small oblique surface areas were consistently failing. This suggests that some specific morphological fea-

tures should also be taken into account to refine how morphologies are classified to produce consistent populations for electrical modeling.

In this work, we focused exclusively on layer 5 pyramidal cAD cells, but in Figure S8 and STARmethods, we show the application of MCMC

and generalization on another electrical type, the continuous non-accommodating interneuronal types. We found similar properties to the

cADpyr models, whereby MCMC captures non-trivial parameter correlations, small morphologies are harder to generalize but from the

selected set of morphologies and models, we are able to generate more valid models. Our approach of MCMC sampling and further model

and morphology selection thus works on any electrical types, provided sufficient features are available and can be used to construct models

with controlled variability for several electrical types, for inter-type comparisons, or building more realistic microcircuits.

DISCUSSION

In this work, we present a framework to study detailed biophysical models of neurons. In particular, we take into account the experimental

variability of morphologies and electrophysiological features within cell types. For this, we leveraged a standard statistical method,
8 iScience 26, 108222, November 17, 2023
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MCMC, to generate thousands of electrical models reproducing experimental variability, and we generalized them to a population of

detailed reconstructions of morphologies by adjusting AIS and soma size according to calibrated r factors.

With this approach, we produce a population of models with feature variability close to experimental data and we demonstrate that

morphological variability alone is not sufficient to reproduce the observed electrical behavior. The variability of electrical models asmeasured

by the feature values is a direct consequence of the parameter variability.9 In order to ensure that the feature variability matches the exper-

imental data, strong constraints are necessary on the model parameter space, which is possible to be analyzed with MCMC samples. The

study of these constraints is out of the scope in the current paper, but preliminary analysis indicates that a few constraints are low-dimensional,

while many are high-dimensional, in particular for complex features such as average AHP depth during a step protocol. These constraints on

the parameter space are a result of the choice of protocols and features. Thus to obtain more precise models and reproduce specific firing

properties, such as BAC,58,59 even stronger constraints are most certainly required, for example, more specific apical ion channels. Hence,

such MCMC sampling methods, or improvements of them,43 provide a tool to detect model limitations and investigate their origins.

The study of model generalizability on a population of morphologies suggests a new morphological grouping based on specific

morphological features, related to their electrical activity. Given an exemplar with calibrated r factors, we find that the proximal dendritic

surface area (i.e., up to around 500mm including basal and oblique dendrites) is a good predictor for the validity of the morphology on that

model. However, other more specific morphological features, such as oblique dendrite areas, also have an impact, as was discovered with

synthesized morphologies in STAR methods. As such morphological features do not necessarily correlate with more generic classifications

involving specific apical features (tuft, no-tuft) or axonal ones (mostly for inter-neurons), it may be possible to create more targetedmorpho-

logical types of neurons based on these to ensure that all morphologies of a specific type will perform well with a single set of r factors. In

addition, it may be interesting to study what fundamental properties of a model ensure its generalizability. For example, Otopalik et al.60

showed that some electrophysiological features of gastric mill neurons in crustacean stomatogastric ganglion are not affected substantially

by the morphological anatomy of the cells.

The sampling of large parameter space to study neuronal models is an active research topic, with several recent advances31,44,61–64

including machine learning for Bayesian inference of model parameters in the context of single cells or even circuit simulations. We instead

provide an alternative framework to sample models under experimental constraints without using machine learning. For machine learning

algorithms, a sufficient number of samples are needed to obtain reliable models, whereas in our case, only a few samples could be reliably

sampled to fit the experimental data. Our MCMC method is thus more appropriate for some use cases, such as model building (adjusting

parameter bounds for example) or generalization on a population of morphologies (for which many samples will be too computationally

intensive), but can still producemanymodels for finer statistical analysis. Our method lacks some of the predictive power of machine learning

models for regimes not characterized by the electrical features, but with large enough sampling and specific studies of a subset of models,

some predictions could also be made.

Overall, this work proposes a new perspective on building detailed electrical models of neurons with Bayesian statistics via the MCMC

method. We show that we can unravel subtle mechanisms via the study of parameter and electrical feature correlations while providing a

consistent framework to assess the quality of electrical models by controlling their variability on a single morphology or for a population

with its own morphological variability. This work opens further research avenues to study the interplay between electrical models and mor-

phologies, co-regulation,65 energy efficiency,66,67 the impact of morpho-electro variability in circuit simulations,9,68–70 degeneracy27–29 or links

with gene expressions.64 In addition, MCMC sampling of electrical models may become instrumental in making progress on the long-stand-

ing question of redundancy and synergy in biology, and in particular, in neurons.10,51
Limitations of the study

This study also had several limitations. The quality and more importantly the consistency of the recording and neuronal reconstructions may

affect significantly the feature values used to constrain MCMC sampling. We did not study the robustness of the sampling with respect to the

experimental data accuracy by, for example, adding or removingdata points randomly. In order to quantitatively use themeasured parameter

correlations from the sampling, one must ensure that they do not depend significantly on the inaccuracies of the experimental data. Then, in

order to obtain good coverage of large parameter space,many samples are needed, and, depending on the computational cost of evaluating

a single model, this can quickly become unfeasible on small computers. In these cases, a tradeoff has to be made between the quality of the

sampling and the computational cost. It may be possible to implement more modern and faster converging MCMCmethods to improve on

this aspect.
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(2022). Energy-efficient network activity from
disparate circuit parameters. Proc. Natl.
Acad. Sci. USA 119, e2207632119. https://doi.
org/10.1073/pnas.220763211.

26. Scala, F., Kobak, D., Bernabucci, M.,
Bernaerts, Y., Cadwell, C.R., Castro, J.R.,
Hartmanis, L., Jiang, X., Laturnus, S., Miranda,
E., et al. (2021). Phenotypic variation of
transcriptomic cell types in mouse motor
cortex. Nature 598, 144–150. https://doi.org/
10.1038/s41586-020-2907-3.

27. Edelman, G.M., and Gally, J.A. (2001).
Degeneracy and complexity in biological
systems. Proc. Natl. Acad. Sci. USA 98, 13763–
13768. https://doi.org/10.1073/pnas.
231499798.

28. Marder, E., Kedia, S., and Morozova, E.O.
(2022). New insights from small rhythmic
circuits. Curr. Opin. Neurobiol. 76, 102610.
https://doi.org/10.1016/j.conb.2022.102610.

29. Rathour, R.K., and Narayanan, R. (2019).
Degeneracy in hippocampal physiology and
plasticity. Hippocampus 29, 980–1022.
https://doi.org/10.1002/hipo.23139.

30. Roy, R., and Narayanan, R. (2022). Ion-channel
degeneracy and heterogeneities in the
emergence of complex spike bursts in ca3
pyramidal neurons. J. Physiol. 601, 3297–
3328. https://doi.org/10.1113/JP283539.
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45. Hay, E., Schürmann, F., Markram, H., and
Segev, I. (2013). Preserving axosomatic
spiking features despite diverse dendritic
morphology. J. Neurophysiol. 109, 2972–
2981. https://doi.org/10.1152/jn.00048.2013.

46. Reimann, M.W., Sirio Bolaños Puchet,
Daniela Egas Santander, Courcol, J.-D.,
Arnaudon, A., Coste, B., Delemontex, T.,
Adrien Devresse, Dictus, H., Dietz, A., et al.
(2022). Modeling and Simulation of Rat Non-
barrel Somatosensory Cortex. Part I:
Modeling Anatomy. Preprint at bioRxiv.
https://doi.org/10.1101/2022.08.11.503144.

47. Kanari, L., Ramaswamy, S., Shi, Y., Morand, S.,
Meystre, J., Perin, R., Abdellah, M., Wang, Y.,
Hess, K., and Markram, H. (2019). Objective
morphological classification of neocortical
pyramidal cells. Cereb. Cortex 29, 1719–1735.
https://doi.org/10.1093/cercor/bhy339.

48. Bird, A.D., and Cuntz, H. (2016). Optimal
current transfer in dendrites. PLoS Comput.
Biol. 12, e1004897.

49. Kanari, L., Dictus, H., Chalimourda, A.,
Arnaudon, A., Van Geit, W., Coste, B.,
Shillcock, J., Hess, K., andMarkram, H. (2022).
Computational synthesis of cortical dendritic
morphologies. Cell Rep. 39, 110586. https://
doi.org/10.1016/j.celrep.2022.110586.

50. Kanari, L., Dłotko, P., Scolamiero, M., Levi, R.,
Shillcock, J., Hess, K., andMarkram, H. (2018).
A topological representation of branching
neuronal morphologies. Neuroinformatics
16, 3–13. https://doi.org/10.1007/s12021-
017-9341-1.

51. Marder, E., and Taylor, A.L. (2011). Multiple
models to capture the variability in biological
neurons and networks. Nat. Neurosci. 14,
133–138. https://doi.org/10.1038/nn.2735.

52. Van Geit, W., Gevaert, M., Chindemi, G.,
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Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data have been deposited at Zenodo andHarvardDataverse and are publicly available as of the date of publication. Accession numbers

are listed in the key resources table.
� All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table. The code is also available on Github at https://github.com/BlueBrain/emodel-generalisation or on pypi.org at https://

pypi.org/project/emodel-generalisation/0.1.1/.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Morphology dataset

We use the layer 5 pyramidal morphology dataset of,42,46 which is an extended version of the one from.32 It consists of four subtypes, with 64

thick-tufted cells, 38 bitufted cells, 30 small tufted cells and 27 un-tufted cells as defined in.47

Diametrization algorithm

The input to the algorithm is a population ofmorphologies, and it will be applied to a single type of neurite (basal and apical). For each section

of morphology, we compute the path distance from its end to the downstream terminal point that is furthest away (see Figure S2A). We then

normalized these values by the largest path length of the morphology. We also record the section mean diameters and fit a polynomial func-

tion of diameter as a function of the distance, which will be our diameter model, see Figure S1E.

The diametrization of a givenmorphology then first uses this model to assign a diameter to each section independently. It then introduces

a linear tapering of diameters along each section such that the first diameter is the assigned one, and the last is the average between the first

of the current section and the largest first diameter of child sections. If the section is a terminal section, we read the last diameter from the

model.

In Figure S1B we show two examples of rediametrized morphologies, where the left morphology has similar diameters, and the right one

has reduced diameters. In Figure S1D we show the changes of surface areas induced by the rediametrization, mostly affecting the large sur-

face areas (such as for the right morphology), but overall making the distribution of dendritic surface more narrow.

This algorithm is not based on any biological principle, such as for example,48 but resulted in consistent dendritic diameter profiles so that

the possible artifacts of the reconstructed diameters did not bias our generalization results, but only themorphological shapes did.Morework

could be done in assessing the impact of diameters as a function of distance to the soma for example.
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The diametrization algorithm is implemented in the open-source python package https://github.com/BlueBrain/diameter-synthesis.
Exemplar morphology

From a population of morphologies, we select an exemplar morphology as follows.

We compute the average surface area of the soma with the NEURON simulator for greater consistency with Neurolucia format in Fig-

ure S2A as well as the average radius in Figure S2B. We then create a single cylindrical compartment with an average radius and length

computed such that the surface area is also the average from the population.

We extract the diameters of the first 60mm of the reconstructed axons (see Figure S2C), assumed to be the AIS of the neuron and use the

average diameter to create a two-compartment model of the AIS with constant diameter. We ignore the tapering near the soma, which does

not affect significantly the electrical features (not shown). We then discard the reconstructed axons as we do not electrically model them in

detail but replace them with a constant diameter AIS of length 60mm followed by a 1 mm myelinated section. The AIS will serve to generate

action potentials, and the myelinated section will act as a sink, as an approximation of the effect of removed axonal branches.

In addition, we need to select a morphology that is most representative of the population. Asmost experimental protocols and recordings

wewill use are somatic, electrical models will bemost sensitive to the proximal surface area of dendrites.We compute the total surface area of

all dendrites as a function of path distances in Figure S2D, compute the median profile and select the morphology closest to use as exemplar

dendrites.We apply this procedure to construct a global exemplarmorphology from all L5 PC cells which wewill use forMCMC sampling.We

also create m-type specific exemplars where the dendrites are selected using only morphologies within this m-type, for r factor calibrations.
Electrical models and cost function

Weuse themodel of,42 based on the ones from.32 They are composed of a set of coupled nonlinear equations assigned to each compartment

in amorphology. For each compartment, a subset of these equations is parametrized by properties such as radius and lengths and coupled to

the adjacent compartment via current conservation condition.71 All dynamical equations are of the form

du

dt
= �

X
k

Ikðu; tÞ + IðtÞ; (Equation 3)

where u is the membrane potential, IðtÞ the applied current and Ik the various ionic currents indexed by k, non-linearly depending on the

voltage.

Several protocols defining IðtÞ are applied on the soma and recorded in the somaor along specific dendrites. These protocols are the same

as in,42 where the most important are the step protocols with amplitude relative to the rheobase of the cell. The rheobase is found with a

bisection search, where the lower bound is the holding current, defined as the current to hold a cell at � 83 mV and the current to be

at �30mV , estimated from the input resistance. The holding current is also found from a bisection search, which, as for the threshold, is termi-

nated once a certain accuracy on the current is reached (difference between the last upper and lower bound). If the threshold current is above

�30mV , we assume that the cell cannot spike, thus subsequent protocols are not evaluated, and the cost of themodel is maximal. From these

voltages (or other ion channels) recordings, a number of features, such as mean AP amplitude and AP frequency are extracted, as in.42

Only a subset of all features is used for analysis steps after performing MCMC. In particular, we discard bAP features, which are too sen-

sitive to apical diameters, and APWaveform where the second AP may not happen due to too short step protocol, SpikeRec because it is

related to recovery after a spike, which we do not consider here and IV.

Denoting the simulated k feature values as a vector f = ðf0;.;fkÞ, the parameters as p = ðp0;.;pnÞ and construct a cost function to mea-

sure the model quality as

C
�
p
�
= maxi

��fi�p� � fexp;i
��

s
�
fexp;i

� = maxizi
�
p
�
; (Equation 4)

where zi are the absolute z-scores of each feature indexed by i. Notice that we define the cost as the max of the scores, which is stronger than

the sum of the score usually used in optimisation.52 In addition, each parameter is assigned a predefined range of possible values, possibly

consistent with biological data if any are available.
0.1 MCMC sampling of models

All parameters have normalized versions denoted by bp, such that the available range is ½ �1; 1�, and no bias is induced by the various possible

units or bound sizes of each parameter. The parameter space for a valid electrical model is thus a subspace U of the hypercube ½� 1; 1�n
defined as p˛U if and only if CðpÞ<C�, where C� is a maximum cost to consider a model valid.

To generate many set of parameters to cover this set U, we use the MCMCmethod with the Metropolis-Hastings algorithm as follow. We

define a probability distribution from the cost function as

P
�
p
�
fexp

�
�C

�
p
�

T

�
; (Equation 5)
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where T is a temperature parameter. The goal of MCMC is to sample from this distribution. For this, we use a normal prior distribution

pðbpÞ = Nðbp; eÞn with variance e. Because the parameter space is a hypercube, if the proposed set of parameters lies outside, we re-sample

until we get a point inside the hypercube. For each chain, we then sample a random point bp0 in the hypercube, and compute the next point

in the chain using the Metropolis-Hastings algorithm:

1. propose ibpi+1 � pðbpiÞ,
2. draw 1a � Uð0;Þ,
3. accept bpi+1 if

Pðp_i+1Þ
Pðp_iÞ

R a, else reject and set ibpi+1 = bpi,

4. repeat until the number of iterations is attained.

In practice, we launch several chains for a short so-called burn-in phase with a temperature of 5 and a prior of 0.2sd so that enough chains

have reached the valid regionU. We then restart new chains from a selection of best models obtained in the burn-in phase with a temperature

of 0.5 and a prior of 0.02sd, see Figure S11A. To obtain our final set of parameters in U, we remove samples with C >C�. The parameter e

should be set such that the acceptance rate is around 60 � 80% depending on the chain, to ensure we optimally explore PðpÞ correctly.
The convergence plot in Figure S3A shows the burn-in phase and the longer run, with a uniform sampling of cost values across iterations.

In addition, the auto-correlation plot for this run in Figure S3B shows fast decay of correlations after less than 50 iterations, which gives an

indication of the minimum number of steps one should due to have a good sampling In Figure S3C, we show for each feature the fraction

of time it is the largest, so it defines the cost. A more uniform distribution shows that no features are primarily blocking the chains from reach-

ing low-cost values.

Overall, MCMC sampling can also be used as a tool to improve electrical models. Indeed, the corner plots and one-dimensional marginals

such as shown in Figure 2E are useful for adjusting parameter bounds. If many good models are near the upper bound of a parameter, one

could increase it (if the value remains meaningful) to maybe obtain even better models. On the contrary, if the distribution is very narrow to-

ward small values, reducing the bounds will improve the acceptance rate of the MCMC sampling. The study of correlations between features

(see STARmethods) may also be of interest to detecting the possible lack of feature parametrisability of the model, resulting in a limitation of

the lowest possible scores achievable. With the addition of plots such as Figure S3C which indicates which features saturate the cost more

often, or even with plots of traces for some specificmodels, MCMC sampling can be effectively used to propose improvements on the choice

of ion channel mechanisms or associated parameter bounds.

Correlations of features

In Figure S5A, we compare the feature correlation computed with mutual information between experimental data (see Figure 1) and MCMC

sampling (see Figure 2) showing a good agreement. For example, the inter-spike interval correlation is stronger in MCMC than in the data,

possibly due to experimental noise not present in our simulations. The correlation between mean frequencies is also higher in MCMC sam-

pling, thus IF curves will have more consistent slopes among MCMC models than experimental data. In Figure S5B we show some of these

correlations via scatterplots of experimental and numerical data. In these plots, some experimental outliers (crosses) were detected and

removed to compute the mutual information, as they biased the results substantially. It may therefore important to perform such analysis

of the experimental data to detect any possible outliers that may not be visible in one-dimensional distributions. In addition, these outliers

are few but correspond to stuck cells, thus having stuck cells in the model may be allowed in small numbers, from a pure data point of view.

In Figure S5, we perform a similar analysis but on morphological features of reconstructed and synthesized morphologies (see STAR

methods). The pairwise correlations of the selected feature show a good agreement between both sets of morphologies, where only a

few features are strongly correlated.

Soma and AIS input resistance models

To adapt the size of soma and AIS according to the r factors, which are based on input resistances, we need to model the input resistance of

isolated soma and AIS as a function of their sizes. For each model, we evaluate the input resistances as a function of the soma and AIS scales

from 0.1 to 10 and perform a polynomial fit of order 3 on this data in log-log see Figures S6A and S6B, resulting in four parameters per elec-

trical model for both the AIS and soma. In Figures S6C–S6H we show the parameters mostly correlated with the first three fit parameters (the

fourth is also correlated with ~gKv3:1), found by searching for model parameters with Pearson above 0.7 with the fit parameters. We remark that

the passive currents control the affine part of the input resistances of these compartments, while the Kv3.1 current controls its deviation slope

and possible deviations from a linear relation.

Sometimes, the computation of these input resistancemodels fails, either due to simulation issues, or poor polynomial fits. In this case, we

discard the electrical model for later use. These cases happenedmore frequently for lowmodels with low passive conductances, where other

channels have more prominent effects, making the input resistance relation with the AIS and soma size more complex.

M-type specific rho factors

To find optimal r factors we use the exemplar morphology for each m-type and scan for AIS and soma scales from 0.5 to 1.5 in 10 steps and

smooth the scores (with reduced feature set) with a Gaussian kernel of 0.1 width, to obtain a matrix such as in Figure 3, but with lower
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resolution for computational efficiency. The point of the lowest score is selected as the target scale for each pair of m-type/electrical models

(as the black cross in Figure 3C), which are then converted to r factors and stored to later adapt the AIS/soma.

AIS/soma adaptation algorithm

To adapt the AIS and soma size to match the target r factors estimated in STAR methods, we use an iterative algorithm as follows. First, we

adapt the AIS size after evaluating the input resistance of the dendrites and soma and using the polynomial fit of the AIS resistance model to

assign an AIS scale. We then do the same for the soma, with input resistance computed with dendrites and scaled AIS. We repeat this two

times to ensure that the scales of AIS and soma have converged. We do not require a precise convergence to the target rho factor because it

has been calibrated with a small resolution for computational efficiency (see STAR methods) and nearby values are also likely to work equally

well. Nevertheless, this two-step algorithm converges to r factors values at around a few per cent of the target.

Further generalization with machine learning classifiers and regressors

Due to the computational cost of searching for target r factors for each electrical model and fitting input resistance models of the AIS and

soma, we cannot use too many sampled models from MCMC. Hence, to further expand the pool of models, we leverage machine learning

algorithms to estimate these values.

For that, we use gradient boosting tree-based learning algorithm XBGboost56 with the classifier or regressor and default parameter from

the Python implementation. We used default parameters and a learning rate of 0.1 and reported the accuracies computed with 10-fold

validations with 5 randomized repeats.

First, to learn a model of input resistances, we apply the XGBoost regressor on the normalized model parameters with a Pearson corre-

lation larger than 0.7 (shown in Figures S6C–S6H), to prevent any overfitting. If no parameters are correlated enough, we replace the model

with themean value of this parameter.On a new set ofmodels, we then evaluate thesemodels to estimate the input resistance polynomials for

both AIS and soma. To prevent our MLmodel from extrapolating the values, we sub-samplemodels so that their parameters are between the

10’s and 90’s percentile of the trained set (black lines in Figures S6C–S6H).

We train the same regressor model to predict the r factors with normalized model parameters that have a Pearson correlation larger than

0.4 with the r factors. The choice for this lower correlation is from the fact that the calibration of the r factors is based on a coarser scan of the

parameter space, hence it is noisier and we do not expect very high correlations. Again, if no parameters are correlated enough, we replace

themodel with themean value of this parameter. One the additionalmodels, we again use theseMLmodels to predict their r factors, but only

if their parameters land between the 10’s and 90’s percentile.

Finally, we use the XGBoost classifier with the same parameters as previously to estimate electrical model generalization from their param-

eter values. Using the Shap feature important analysis,57 we could find the most important parameters to predict the model’s generalization,

shown in Figure 4C. We then used only models that this classifier predicts as generalizable to test whether our ML calibration produces valid

models (see STAR methods). We used all normalized model parameters to train this classifier, likely overfitting the results, but without much

impact.

Increasing morphological variability with neuronal synthesis

In addition to generating many electrical models of a given cell type reproducing experimental data, we can generate morphologies repro-

ducing experimental data for amorphological type. This can be donewith neuronal synthesis algorithms trained from the selectedpopulation

of reconstructions. Several algorithms are available, such as72,72,73 but we will use here the more recent, topologically based algorithm of.49

We generated 100 thick-tufted morphologies for which we adapted the AIS and soma scales for each selectedmodel, and evaluated all pairs

of synthesized morphologies and models.

First, in Figure S3, we confirm from49 that the experimental morphological variability is well reproduced and in particular the correlations

between some main morphometrics. After the evaluation, we find that 94:8% of the pairs of morphologies and models have cost below 5sd

and 98.7 have cost below 10sd. In Figure S7, we show amore detailed analysis of this result, and in particular only 3 morphologies are respon-

sible for a large part of the costs above 10sd. After further inspections, we found that the surface area of the oblique dendrites is a good pre-

dictor of the failure of the morphology on many models. We leave a more detailed analysis of the reasons for such a correlation for future

works, but it shows that some specific aspects of the branching structure may matter for electrical modeling, even when measured at

the soma.

cNAC electrical model

To show that theMCMCmethodology and results also apply to other electrical models, we used the continuous non-accommodating (cNAC)

electrical model of.32,42

In Figure S8 we show the main results of MCMC and generalization on Martinotti cells. The exemplar was chosen based on m-types with

most reconstructions, with a total of 191 interneurons and 6 morphological types (L23_LBC, L5_MC, L4_LBC, L23_MC, L1_HAC and L4_NBC).

The exemplar for MCMC (Figure S8A) was an L23_MC (Figure S8B, left) and we illustrate in Figures S8C and S8D the generalization on L5_MC

cells.
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We also applied the generalization procedure with ML models of r factors and AIS/soma input resistance to obtain 87:1% of the 7620

evaluated pairs with a score below 5sd, and 98:7% then were able to spike.

As seen from the corner plot, we did not attempt to adjust the bounds of the parameter space precisely in this example, but more work

could be done to refine this interneuron model to perform comparisons with other electrical types.
Electrical features

In Table S1 we list the electrical features evaluated with eFEL library (https://github.com/BlueBrain/eFEL) on experimental and numerical

traces to compute the scores and model cost. We refer the interested reader to42 for more details on the protocols and features.
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