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Abstract
This paper introduces NLDS-QL1 , a translator of data science questions expressed in natural language (NL) into data science
queries on graph databases. Our translator is based on a simplified NL described by a grammar that specifies sentences
combining keywords to refer to operations on graphs with the vocabulary of the graph schema. This paper shows NLDS-QL in
action within a scenario to explore and analyse a graph base with patient diagnoses generated with the open-source Synthea.
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1. Introduction
The volume of connected data, often modelled as graphs,
has grown exponentially. The availability of these graphs
data collections has been democratised through social
networks and knowledge graphs used to explore con-
tent (e.g. scientific papers, clinical cases). Although this
accessibility is promising, it introduces a barrier for non-
experts, who have to familiarise with the nature of the
data, the way they have been represented in the database
and the specific query languages or user interfaces to
access them.

Besides, the emergence of data science has brought a
new type of ’complex’ queries embodying a data analysis
scenario. A data science query generally refers to a work-
flow of tasks including exploration, data cleaning and
preparation, sampling and analysis. These workflows in-
clude visualisation and evaluation tasks that involve the
calculation of scores and metrics. Implementing these
workflows is a challenge even for engineers and data
scientists. In most cases, users should have advanced
skills in querying and analysing the data according to
their needs and the type of search questions to be an-
swered. Requiring formal and technical expertise from
non-computer scientists is not obvious or reasonable.

In our work, the goal is to identify important research
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questions, formulated by non-technical experts over data
collections. Allowing their expression in natural lan-
guage (NL) would optimize data accessibility. However,
this facility implies complex NL analysis, particularly
when such questions are intended to be transformed into
sophisticated workflows. Thus, to achieve our goal, we
address the problem under a reverse-engineering strat-
egy: we build a simplified natural language (NL) grammar
and map NL data science questions to graph data science
queries as those proposed by Neo4J DS templates. The
users can then express their questions using this simpli-
fied NL with sentences that correspond to the DS Neo4J
templates, seeing and assessing the results and proposing
new questions over an enriched vocabulary that can extend
the NL query language treated by our tool.

Contribution We propose NLDS-QL, a semi-
automatic and evolutive interface for processing experts’
NL questions on a given vocabulary. It derives data
science query templates that program the answers to
these questions, and offers a conversational evaluation
of results and adapted vocabulary. NLDS-QL is based
on a simplified English NL that associates a vocabulary
based on graph schema keywords to refer to operations
on graphs (e.g., attributes describing the nodes, links,
and associated labels). Depending on the type of queries
to explore graphs or to analyse them, their expression in
NL can yield to a more or less complex document.

NLDS-QL in action. NLDS-QL has been experimented
in the context of medical diagnostics using the patient
graph of the Synthea1 data collection and using Neo4J
for running translated queries. Assuming that they have

1https://xilinx.github.io/graphanalytics/recom-tg3/
synthea-overview.html
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a collection of data corresponding to medical follow-
ups, doctors (users) express the questions whose answers
would be helpful for the elaboration of a diagnosis and
their decision making. Questions described in written or
spoken English can denote navigational, aggregation and
data science queries requiring centrality and clustering
algorithms to be expressed and answered. Given the am-
biguity of the NL, the translation of questions can lead to
several Cypher (data science) queries. So the use of NLDS-
QL is proposed under a conversational pipeline where
users acquainted with Cypher can choose the query that
best corresponds to their expectations before executing
them. Non-expert users can decide to let the system run
different Cypher queries, analyse their results and then
choose one or adjust their question.

The remainder of the paper is organised as follows.
Section 2 synthesises the main families of works address-
ing NL to query languages translation and processing.
Section 3 describes the general architecture of NLDS-QL.
Section 4 describes the experimental scenario for NLDS-
QL and the tasks proposed to users for testing it. Section
5 concludes the paper and discusses lessons learned from
the implementation and experimention of our approach.

2. Related work
Existing work has addressed data mining using NL, but
not yet the expression of data science questions. There
are different approaches to developing a NL interface
for database queries, in general for relational systems.
Georgia Kutrika [1] describes the process of handling
NL queries with a workflow that consists of three steps.
Given a relational database and assuming knowledge of
the schema vocabulary: 1. Analysis of the NL query ex-
pression; 2. Disambiguation and interpretation, which
produces a set of ranked interpretations; 3. Finally, the
translation into SQL and its execution. Three genera-
tions of NL Query to SQL Transformation systems can
be identified [2], namely:

1. Keyword based i.e. information retrieval tech-
niques to evaluate queries. For example, sys-
tems like Discover (query interpretations as sub-
graphs), DiscoverIR [3, 4], Spark (ranking and
fast execution) [5].

2. NL processing based like NaLIR (parser) [6],
ATHENA [7] (ontologies and mappings).

3. Machine translation using neural networks [8],
like NL to SQL conversion as a language trans-
lation problem. The challenge is training a neu-
ral network on a large number of NL/SQL query
pairs. Approaches like SQLNet [9], Hydranet
adopt this strategy.

On the other hand, we identify two families of works
concerning NL Graph Querying.

1. Approaches that address NL translation on
SPARQL for knowledge graph queries, such as [8],
concerning machine learning techniques (Tree-
LSTM and neural networks), and methods based
on grammar and logical predicates [10, 11].

2. Approaches that translate questions into struc-
tured queries using NL processing methods such
as: named entity recognition, binary relationship
(pattern) extraction, key entity identification, and
relationship mapping to graph components [12].

The literature agrees that little work has addressed
the issue of answer validation, i.e. how can a user con-
firm that the results match the query’s intent? With the
emergence of data science, two questions arise: How
to express data exploration, cleaning and preparation,
sampling and analysis, visualisation and metrics calcu-
lation? How to model and process research questions
formulated by non-technical experts? How to allow their
NL expression and translation into data science queries?

Our work proposes an interactive reverse-engineering
method that highlights essential aspects to be considered
when dealing with NL medical queries. It is the basis for a
user-friendly interface adapted for the medical personnel.

3. NLDS-QL
The general process implemented by NLDS-QL is shown
in Figure 1. The first two phases of our translation ap-
proach are devoted to analysing the NL query, which is
expressed as a text (see the NL processing and NL parsing
phases in Figure 1). The text can be written or defined
as a voice message and transcribed into text. Therefore,
the NL processing phases implement the classical text
processing of syntactic analysis to produce an expression
tree that represents the query (this is done by a parser
as shown in Figure 1). The tree is then processed to pro-
duce one or more corresponding Cypher queries in the
query generation phase (see the query generation phase
in Figure 1). Finally, the queries are evaluated on Neo4J
(see the query evaluation phase in Figure 1).

Overview of NLDS-QL expressions. The expression
of NLDS-QL questions is based on the way data science
operations are applied on graphs in Neo4J. Neo4J de-
fines a general template including several commands for
expressing the execution of a DS query.

DS operations are generally applied on graph views
created in memory from persistent graphs. The views
require main memory space to be allocated for creating
them and main memory resources for using algorithms
with specific execution conditions expressed in param-
eters. Thus, Neo4J provides commands for performing
these estimations and then calling DS operations with
given parameters’ values. Finally, DS operations can yield
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Figure 1: NLDS-QL general architecture

new graphs that can be named and persist or not. The
creation of new graphs and whether to persist them is
expressed as function call commands.

Consequently, the definition of data science questions
in NL include expressions for specifying the commands
specified in the Neo4J template. The most simple expres-
sion for defining a graph view and estimating the memory
required assuming that it is stored in Neo4J and that the
graph schema with the nodes and relations is available,
is defined with the following English expression:

• Create and estimate memory for the graph view
<subgraph-name> [named as < view name >]
with the node < node name > and the relationship
< relationship name > [oriented]

The data science operation task includes estimating
the cost in memory of applying a graph data science al-
gorithm on the graph, using the algorithm on the graph
view. According to specific keywords, NLDS-QL can
determine the type of algorithm that can be applied. Key-
words like most important, most popular, most influential
refer to centrality algorithms such as PageRank and Lou-
vain and classify, communities, group can refer to cluster-
ing algorithms like Label Propagation, as illustrated by
the following three questions:

• 𝑄1 : Estimate the required memory for applying
< DS algorithm name> on the graph view < view
name >

• 𝑄2 : Find the most important/most popular< node
name > with < relation name > [in the graph <
graph name >] with < number of iterations >
maximum of iterations and with a damping factor
< floating number >

• 𝑄3 : Classify/Find groups/communities of < node
name > within the view < view name > with
relation < relation name > with < number of
iterations > maximum of iterations

4. Applying NLDS-QL for
exploring a medical graph

We set up an experiment to validate our approach. There-
fore we use the patient part of the Synthea Generic study.
The Synthea’s Generic Graph2 models various diseases
conditions that contribute to the medical history of syn-
thetic patients 800K vertices and nearly 2000K edges.

Querying graphs is based on navigational queries,
which retrieve information already "contained" in a graph.
In the Synthea graph, it is possible to ask simple queries
like : How many patients are there in the Synthea study?
Which allergies are identified in the Synthea study pa-
tients? But it is also possible to go further and ask an-
alytical type questions that involve classification tasks
such as What are the most frequently prescribed drugs
for patients in the Synthea study? Answering this type
of query involves performing a sequence of tasks ordered
in a pipeline, which we call a data science query.

Use case The use case is based on the Synthea patients
graph shown in Figure 2. It describes the immunisations,
allergies, conditions, studies, procedures and care plans
of patients. Each entity and its relations are characterised
by properties that describe them. The patient graph has
approximately 100 thousand nodes and 37 thousand rela-
tions stored on Neo4J.

The use case of NLDS-QL on the Synthea patients
graph is based on a conversational pipeline where expert
and non-expert users can ask questions to start explor-
ing the graph (see Figure 3). The use case environment
initially shows the Synthea patients graph, and users can
ask for details about the description of the graph, like the
number of nodes and relations. Then, the user can ask a
question. The system generates one or several queries,

2https://xilinx.github.io/graphanalytics/recom-tg3/
synthea-overview.html
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Figure 2: Synthea patients’ graph

and then the user can either choose one or several queries
to be adjusted or executed and then modified (see right
side of Figure 3). For every choice, the user can evalu-
ate the system’s performance with stars that show the
degree of satisfaction.

For exploring the Synthea graph, the use case proposes
a set of queries that include navigational queries of the
type selection, projection, aggregation.
Selection. Find the Medications for which the DESCRIP-
TION is Lisinopril 10 MG Oral Tablet and the REASON of
the DESCRIPTION is Hypertension.

MATCH (n:Allergies)
return n.DESCRIPTION

Projection. Which is the birthplace of the PATIENTS in
the study?

MATCH (n:Patients)
return n.BIRTHPLACE

Selection and Projection. Find the Encounters DESCRIP-
TION node where the DESCRIPTION of the drugs is Am-
lodipine 5 MG Oral Tablet.

MATCH
(n:Encounters)-[*]->
(m:Medications {
DESCRIPTION:
’Amlodipine 5 MG Oral Tablet’

})
return n.DESCRIPTION, m.DESCRIPTION

Aggregation. How many patients are caucasian?

MATCH (n:Patients {RACE:’white’})
return count(n)

For data science queries, the use case shows NLDS-QL
questions that refer to centrality type operations. Note
that the translation is quite complex as it involves:

• Specifying a graph view from the patient graph,
as Neo4J works with graph views stored in RAM
when data science algorithms are applied.

• Then it is possible to generate two queries that
call the page rank algorithm to process the key-
word "most important" with the possibility to
make the view persistent and consider the con-
straints related to the parameters of the Pagerank
algorithm.

Centrality.
Find the most popular Encounters for Medications in the
graph.

MATCH
(n:Encounters)-
[r:ENCOUNTER_FOR_MEDICATION]-()
with n,count(*) as degree
return id(n), degree

ORDER BY (degree) DESC

Find the most important Drugs prescribed for the PATIENT
with a maximum of 25 iterations and a damping factor of
0.60.

CALL gds.graph.create(
’my_graph’,
’Medications’, {

PATIENT_HAS_MEDICATION: {
orientation: ’NATURAL’

}
})

CALL gds.pageRank.write.estimate(
’my_graph’, {

writeProperty: ’pageRank’,
maxIterations: 25,
dampingFactor:0.60

})
YIELD nodeCount, relationshipCount,

bytesMin, bytesMax,
requiredMemory

CALL gds.pageRank.
stream(’my_graph’)

YIELD nodeId, score
RETURN gds.util.

asNode(nodeId).name AS name,
score

ORDER BY score DESC LIMIT 10

In this example, NSDL-QL generates the template that
includes first the graph "my_graph". Then it computes
the estimation of required memory, number of nodes and
relations, minimum and maximum bytes that will yield
the resulting graph when executing PageRank with the
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NLDS-QL:> Which groups of Patients have adhered to the same Medical Plan

CALL gds.labelPropagation.write.estimate('my_graph’, 
{writeProperty: 'community’}) 

YIELD nodeCount, relationshipCount, bytesMin, 
bytesMax, requiredMemory

CALL gds.labelPropagation.stream('my_graph',{maxIterations: 20}) 
YIELD nodeId, communityId
RETURN communityId, count(nodeId) AS size 
ORDER BY size DESC LIMIT 5

Execute Modify Evaluate

NLDS-QL:> Show the Synthea graph

Figure 3: Use case conversation pipeline

specified parameters. Then the call to the algorithm with
the result format with the top 10 nodes associating each
node with its score.
Community detection. The translation also involves
several operations as described in the definition of data
science queries.
Get the subgroup of Patients who have PA-
TIENT_HAS_CAREPLAN in the graph with max
iterations 20

CALL gds.labelPropagation.
write.estimate(
’my_graph’, {

writeProperty: ’community’
})

YIELD nodeCount, relationshipCount,
bytesMin, bytesMax,
requiredMemory

CALL gds.labelPropagation.
stream(’my_graph’,
{maxIterations: 20})

YIELD nodeId, communityId
RETURN communityId,

count(nodeId) AS size
ORDER BY size DESC LIMIT 5

5. Conclusion and Results
This paper introduced NLDS-QL and showed through a
use case how to map NL data science questions (using

an adapted vocabulary) to Neo4J data science query tem-
plates. The use case aimed at querying and analysing a
graph in the medical domain. Users with medical and
non-medical backgrounds can define a sequence of nat-
ural language queries executed step by step to explore
the graph, as in data science questions. Thereby users
can acquire an understanding of medical prescriptions
proposed to patients by classifying their treatment, their
physiological characteristics to better understand how
diseases are diagnosed and treated according to patients
conditions. In this way, we showed the essential aspects
of a data science query template expressed in NL.

The approach is flexible and can be enhanced for pro-
cessing documents with richer NL vocabulary and more
complex templates. The intervention of a human in han-
dling natural language queries calls for the design of
an interactive strategy based on conversation. We have
started to design a more evolved conversational inter-
face considering human in the loop and user profiling
techniques.
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