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Atomic Scale Simulations of {112} Symmetric Incoherent Twin Boundaries in Gold

Yen Fred Woguem∗, Pierre Godard, Julien Durinck, Sandrine Brochard

Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, Poitiers, France

Abstract

The crystalline defects may play an important role in the improvement of the properties of materials. This is the case
of twin boundaries which improve the mechanical properties. Σ3{111} coherent twin boundaries (CTBs) and Σ3{112}
symmetric incoherent twin boundaries (ITBs) are two defects studied in this work. Atomistic simulations with four
interatomic potentials commonly used in the literature and density functional theory have been used to characterize
in detail these two defects in gold. The results show that the excess volumes introduced by twin boundaries strongly
depend on the potential. After the ITB relaxation, a portion of 9R phase is formed. This phase is rotated from the
face centred cubic (fcc) phase through an angle α which has been determined. The 9R phase formation energy γform
has been quantified through atomic scale simulations. We put forward a model to calculate this formation energy γform
as a function of the intrinsic stacking fault energy γISF and the excess volume. This model shows that the interaction
energy between ISFs is much larger for the Ackland and Baskes potentials than for the Foiles and Grochola potentials.
Furthermore, the elastic deformation εxx produced in the system to ensure consistency between the 9R phase and the
fcc phase is computed. It allows us to discuss the width of the 9R phase in terms of γform and elastic energy and not
uniquely in terms of γISF , as previously done in the literature.

Keywords: Twin boundary, Atomistic simulation, Excess volume, 9R phase

1. Introduction

When defects are introduced into materials, their me-
chanical and electrical properties change. In recent years,
Lu and co-workers have shown that nanotwinned metals
have mechanical properties that are usually antagonistic,
namely high yield strength and good ductility, without de-
grading the electrical conductivity [1, 2]. The association
of these properties has also been observed by Anderoglu
et al. [3]. Atomic scale simulations have shown that the
yield strength of twinned gold or copper nanowires of fi-
nite length during deformation depends on the distance
between coherent twin boundaries (CTBs) [4, 5].

The energy dependence on the inclination of Σ3 or other
grain boundaries has been determined, clearly showing lo-
cal minima for particular angles [6, 7, 8, 9]. Recent works
have studied a large set of Σ3 grain boundaries and found
that they facet into one of the three low energy bound-
ary planes, {111}, {211} and {101} [10, 11, 12]. In the
present study, we focus on Σ3{111} coherent and Σ3{112}
symmetric incoherent twin boundaries (ITBs).

Σ3{112} ITBs have been observed experimentally with
transmission electron microscopy [13, 14, 15, 16, 17].
Using high resolution transmission electron microscopy
(HRTEM), it has been shown in gold, palladium, silver
and copper that the dissociation of the ITB may produce
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a hexagonal phase called 9R phase [6, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26]. The appearance of this phase
has been confirmed by atomic scale simulations [13, 14, 18].
The formation of the 9R phase from the undissociated ITB
has been explained by the glide of Shockley partial dislo-
cations [17, 20]. This mechanism has also been observed
by atomistic simulations and it has been shown that, un-
der an applied shear, an ITB reacts by expanding the 9R
phase through the motion of edge Shockley partial disloca-
tions [17, 20, 26, 27]. ITB migration has also been studied
[13, 27].

Wang and co-workers have studied the effect of the in-
trinsic stacking fault energy γISF on the width of the 9R
phase. In their atomic scale calculations, they have con-
sidered different face centred cubic (fcc) metals (Ag, Cu,
Pd and Al), each having different γISF values. They have
noticed that the width of the 9R phase decreases when the
intrinsic stacking fault energy increases [28]. Gu and co-
workers have studied experimentally the effect of the stack-
ing fault energy on the split (or dissociation) length of the
9R phase in coarse-grained Cu-Al alloys using HRTEM.
They have observed that, when γISF increases, the maxi-
mum split length of the 9R phase increases [29]. Though
those previous works both indicate that the width of the
9R phase depends on γISF , their seemingly contradictory
results highlight that this dependence is not so obvious.
This controversy also suggests that it is worth checking if
the width of the 9R phase depends only on γISF or on

Preprint submitted to Materialia



other parameters such as the formation energy of the 9R
phase [18, 30] and/or the elastic deformation produced in
the system to ensure consistency between the 9R and the
fcc phases [18].

In this work, we have used molecular static (MS) simula-
tions in order to characterize the Σ3{111} CTB, Σ3{112}
ITB and the 9R phase in gold with four interatomic po-
tentials commonly used in the literature and the density
functional theory (DFT) method. This provides differ-
ent estimations of several parameters, such as the intrinsic
staking fault energy, for the same material. In order to
study their influence on the width of the 9R phase ensuing
from the ITB relaxation, we have determined the 9R phase
formation energy and the elastic deformation produced in
the system to ensure consistency between the 9R and the
fcc phases for these four potentials and DFT calculations.
We have also developed a model to highlight the param-
eters that influence the 9R phase formation energy, and
compared the obtained values with the simulation results.
This paper is organized as follows: the model, methods
and bulk properties of each phases are detailed in section
II, in section III we present the results of the TBs relax-
ations, and the characteristics of the 9R phase in a relaxed
ITB are then discussed in section IV.

2. Models and Methods

2.1. Studied systems

For this study, we first considered Σ3(111) CTB and
Σ3(112̄) ITB in an fcc crystal. Both TBs can be con-
structed by tilt operations: the CTB by cutting the crystal
along a (111) plane and performing a 180° rotation of one
part around the [112̄] direction, and the ITB by cutting
the crystal along a (112̄) plane and performing a 180° ro-
tation of one part around the [111] direction. However, the
detailed atomic structure of Σ3{112} ITBs is much more
complex than that of a CTB, and can be considered in sev-
eral ways, as shown in figure 1. The type I ITB structure,
as labeled by Wang et al [26], is shown in figure 1b and 1c.
It is obtained from the dichromatic pattern and an appro-
priate choice of the cutting (boundary) plane. It can also
be described by a set of three Shockley partial dislocations
δA, δB, δC, one partial on every (111) plane [17, 20]. The
repeatable sequence is δA : δC : δB, where δC is a pure
edge dislocation with a Burgers vector 1/6[112̄], δA and
δB are mixed dislocations with the same edge component
and opposite screw components; their Burgers vectors are
respectively 1/6[12̄1] and 1/6[2̄11].
The atomic structure of the type I ITB discussed above

is not the only one that can be obtained for a Σ3(112̄)
symmetric ITB. First, by selecting a different cutting plane
in the dichromatic pattern, or by using a different set of
partial dislocations (δC:−2δC:δC), one gets the type II
ITB [26]. This type II ITB is not considered here, because
Wang et al have shown that, after relaxation, though it is
stable energetically, it has a larger boundary energy and

Figure 1: Atomic structure viewed along [11̄0] of (a) a perfect fcc
crystal and (b) a crystal with a Σ3(112̄) type I ITB before relaxation.
The stacking sequences are indicated by letters, ABC and UVWXYZ,
along [111] and [112̄] directions, respectively. In b) the position of the
twin boundary plane is indicated by a dotted line and the zoomed
zone by a dashed line. c-e) Zooms on different ITB types viewed
along [11̄0]: c) type I, d) type III and e) type IV. The structural
units and the ITB description with Shockley partial dislocations are
highlighted.The different shadings correspond to the position of the
atoms along [11̄0], equal to zero or a0c

√
2/4 (a0c being the lattice

parameter of the fcc crystal).

should be less prevalent than the type I ITB [26]. Second,
with the same set {δA, δB, δC} of partial dislocations as
for the type I ITB, but shifting the glide planes, two other
ITB atomic structures are obtained, as shown in figure 1d
and 1e. We call them type III for the δB : δA : δC partial
dislocations sequence and type IV for the δC : δB : δA
sequence (note that the glide plane reference is fixed for
the first dislocation of the sequence). Figure 2 shows the
detailed formation mechanism of the type III ITB from a
perfect fcc crystal by the successive glide of the repeatable
set of partial dislocations.

For classical MS calculations, the numbers of (111),
(11̄0) and (112̄) atomic planes in the computation cell
for the ITB study are respectively 18, 12 and 216. The
corresponding figures for the study on the CTB are 216,
24 and 24. We call the directions x//[111], y//[11̄0] and
z//[112̄]. Free surfaces limit the system along the normal
to the twin boundary, while periodic boundary conditions
are used along the orthogonal directions.

Due to the high numerical cost inherent to DFT calcula-
tions in comparison to classical MS simulations, the com-
putational cell for the configuration including the ITB is
more limited in size with 9, 2 and 60 (111), (11̄0) and (112̄)
planes respectively. The computational cell for the CTB
is built with basis vectors along the [110], [1̄10] and [111]
with 2, 2 and 19 atomic planes along these three crystal
directions respectively. 3D periodic boundary conditions
are considered with a vacuum thickness of 14 Å along the
normal to the twin boundaries in order to prevent interac-

2



Figure 2: Glide of the set of partial dislocations to form the type III ITB.

tions between the periodic images of the system.

2.2. Methods

For classical MS calculations, we have used the
LAMMPS (Large-Scale Atomic/Molecular Massively Par-
allel Simulator) code [31] with the embedded-atom method
(EAM) interatomic potentials of Foiles [32], Grochola
[33] and Ackland [34], and the modified embedded-atom
method (MEAM) potential of Baskes [35]. Relaxation of
the model has been done using the Hessian-free truncated
Newton algorithm at 0 K. All atom positions are relaxed
fully and independently until all the force components on
any atom do not exceed 10−4 eV/Å.

DFT caculations are performed using the VASP (Vienna
Ab initio Simulation Package) code [36, 37, 38], within the
Generalized Gradient Approximation (GGA) framework
parametrized by Perdew, Burke and Ernzerhof (PBE) [39]
but also within the Local Density Approximation (LDA)
framework. The interactions between ions (core electrons
and atom nucleus) and valence electrons are described by
the Projector Augmented Wave (PAW) pseudopotential
formalism [40]. A Monkhorst-Pack sampling of the irre-
ducible Brillouin zone is used with 20×20×20 k-points
for the primitive cell of the Au crystal (12×20×1 and
20×20×1 for the cells containing the ITB and the CTB,
respectively). A cut-off energy equal to 400 eV is consid-
ered for the truncation of the plane-wave expansion of the
electron basis set. The ground state charge density is cal-
culated using the blocked Davidson iteration scheme and
the position of the ions is optimized by a conjugate gra-
dient algorithm until the total energy no longer varies by
more than 10−4 eV.

The analyses of the obtained structures have been per-
formed with the OVITO (Open Visualization Tool) soft-
ware [41].

2.3. Bulk characteristics of the fcc and 9R phases

Some characteristics of the fcc phase in gold for the four
potentials and the DFT are given and compared to ex-
perimental data in table 1. While all potentials show sat-
isfactory values for the lattice parameter, the GGA-DFT
overestimates it with a difference of 2.2% and the LDA-
DFT slightly underestimates it. Compared to the experi-
mental and DFT values, the intrinsic stacking fault energy
γISF is underestimated by Foiles, overestimated by Gro-
chola and Baskes and accurately estimated by Ackland.
The experimental stiffness coefficients are reproduced to
10% by the interatomic potentials and to 5-60% by DFT
depending on whether LDA or GGA is considered. The
best match to the experimental data is obtained by the
Grochola potential and using the LDA for the classical
and DFT calculations respectively. Indeed, the values of
stiffness coefficients obtained using the LDA are closer to
experimental ones than using the GGA, as already men-
tioned in [42].

A bulk system of 9R phase has been constructed (figure
3) and relaxed to calculate its cohesive energy Ecoh,R, lat-
tice parameters a0R and c0R, stiffness coefficients and bulk
modulus. The results are given in table 2. To the best of
our knowledge, there is no experimental data to compare
with our numerical results for the 9R phase: indeed, this
crystallographic structure does not seem to be stable in
the bulk for gold. As such, a more rigourous term to de-
scribe the structure that appears at the ITB dissociation
would be complexion rather than phase [46, 47]. Since the
introduction of the notion of complexion in 2006 [46], an
entire field, stemming from the complexions in ceramics
and expanding into metallic systems, has been developing,
to which our study might be related. However, all the com-
plexion transitions studied in the literature and reviewed
e.g. in [47] do not apply in our case. In this paper, we
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Foiles Grochola Ackland Baskes GGA LDA Experiment

a0c (Å) 4.08 4.07 4.08 4.07 4.17 4.06 4.08 [43]
Ecoh,c (eV/atom) -3.930 -3.924 -3.789 -3.929 NC NC
γISF (mJ/m2) 4.8 42.6 32.0 56.0 27.5 27.0 33 [44]
C11 (GPa) 180 201 186 188 148 211 202 [45]
C12 (GPa) 156 169 157 158 130 182 170 [45]
C44 (GPa) 45 46 42 43 20 38 45 [45]
B (GPa) 164 180 167 168 136 192 180 [45]

Table 1: Fcc gold lattice parameter a0c, cohesive energy Ecoh,c, intrinsic stacking fault energy γISF , stiffness coefficients C11, C12, C44 and
bulk modulus B obtained from the different interatomic potentials, DFT and experimental data. NC stands for Not Computed.

prefer the term 9R phase commonly used in the literature
for decades. Note that in this paper, the [0001]h direction
of the bulk hexagonal 9R phase is called [111]9R direction
of the 9R phase, because the 9R phase can be considered
as the stacking of nine (111) planes in an fcc phase with
one intrinsic stacking fault every three planes (see figures
3). The values of the cohesive energies of the 9R and fcc
phases have been computed for a bulk system.

3. Results and discussions

3.1. Twin boundaries relaxation

3.1.1. Relaxation of types I, III and IV ITBs and descrip-
tion of the 9R phase

We have determined the relaxed configurations and en-
ergies of the CTB and of types I, III and IV ITBs. For
the four interatomic potentials, a portion of 9R phase is
formed during the relaxation of the ITB, as shown in figure
4. For each potential, the atomic structure and energy ob-
tained after relaxation are exactly the same regardless of
the type of unrelaxed ITB (I, III, or IV) considered as the
starting configuration. However, the atomic displacements
are smaller during the relaxation of a Σ3(112̄) symmetric
ITB when the glide of partial dislocations starts from a
type III ITB, as shown in figure 5.

The 9R phase appears due to the glide of the pure
edge partial dislocations δC, producing one intrinsic stack-
ing fault every three planes, and thus the ABCBCACAB
stacking. It can also be described using hexagonal (H) and
fcc (C) planes by the CHHCHHCHH stacking. The array
of Shockley partial dislocations between the 9R and the fcc
phases induces a rotation of their (111) planes (figure 4.a);

the theoretical angle is α = arctan
(

1
3
√
2

)
≈13.26◦ [7].

The 9R phase was not clearly obtained during the re-
laxation of the ITB in our DFT calculations. In that case,
the ITB relaxes in a configuration for which the δC edge
dislocation seems to have hardly moved. We suspect that
the reduced size of the system impedes the full formation
of the 9R phase by promoting instead crystal rotations
on either side of the ITB as an additional energy release
mechanism (figures 4.e and f). But DFT calculations with
larger systems are beyond the scope of this study.

3.1.2. Twin boundaries excess volume and energy

The introduction of a twin boundary in a previously
perfect crystal may change its volume if the crystal size is
free to relax. The excess volume is defined as this varia-
tion of volume per unit area of twin boundary [50, 51]. It
represents the expansion or contraction along the normal
to the TB. It will be denoted by δCTB or δITB for CTBs
or ITBs, respectively. To determine it, we consider two
systems, one with a TB and free surfaces and another one
with only surfaces, which is the reference system. The ex-
cess volume δTB is computed as δTB =

lzf−lz0
2 where lz0

is the relaxed length of the reference system and lzf is the
length of the relaxed system containing the twin bound-
ary. The volume difference obtained for the whole system
is divided by 2 to get the excess volume per grain, and it
reduces to a length difference since it is normalized by the
surface area of the twin boundary. The twin boundaries
energies are obtained as the difference in energies of the
two relaxed systems (crystal with the TB and reference
system) divided by the twin boundary area. For all the
potentials and our DFT calculations, the excess volume
and energy values found for the CTB and the ITB are
reported in table 3.

One can note that the values of the twin boundary ex-
cess volume and energy greatly depend on the potential.
In modulus, the excess volume of the ITB is greater than
or equal to the one of the CTB. The energy of the ITB is
much larger than that of the CTB. The excess volume of
the CTB is negative for the potentials of Foiles and Gro-
chola and positive for the potentials of Ackland, Baskes
and the DFT calculations. For the ITB, the excess volume
is negative for the Grochola potential and positive in all
other cases. We observe that the same effect as with DFT
is obtained with the potentials of Ackland and Baskes for
both the CTB and the ITB, while with the Foiles poten-
tial it is only for the ITB, and the Grochola potential gives
signs in contrast with the DFT for both TBs. Among the
different potentials, the one of Grochola gives the smaller
δCTB but the larger γCTB , which was not expected. In-
deed, a rough correlation between the excess volume and
the energy of a grain boundary is established in the litera-
ture [8, 52]. In contrast to the CTB, our simulations with
the four interatomic potentials exhibit a clear increase of
γITB with δITB . We tested that the system size influ-
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Figure 3: Representation of a) the hexagonal structure of the 9R phase and b) the fcc phase. α̂ = 90◦, β̂ = 90◦ and γ̂ = 120◦ for the
hexagonal structure. The coordinate system of figure b is orthogonal. [hkl]9R and [hkl]fcc refer to directions expressed in a cubic system for
the 9R and fcc structures respectively whereas [uvtw]h refers to a hexagonal system. Atoms are colored according to the common neighbour
analysis (CNA) parameter (characteristic of the local crystal structure around an atom [48, 49]): atoms in an fcc and a hexagonal crystal
arrangement are respectively in green and red. The stacking sequences indicated by letters (ABC) refer to an fcc structure.

Foiles Grochola Ackland Baskes GGA LDA

a0R (Å) 2.886 2.878 2.869 2.876 2.932 2.856
c0R (Å) 21.18 21.12 21.49 21.24 22.00 21.37

Ecoh,R (eV/atom) -3.929 -3.918 -3.785 -3.924 NC NC
C11,R (GPa) 206 223 249 229 193 276
C12,R (GPa) 157 164 170 166 117 154
C13,R (GPa) 138 141 136 147 105 151
C33,R (GPa) 227 247 289 239 175 253
C44,R (GPa) 23 28 22 23 14 20
C66,R (GPa) 25 29 39 31 38 61
BR (GPa) 167 176 186 180 NC NC

Table 2: 9R gold lattice parameters a0R and c0R, cohesive energy Ecoh,R, stiffness coefficients (Cij,R) and bulk modulus (BR) obtained
from the different interatomic potentials and the DFT. NC stands for Not Computed.

Foiles Grochola Ackland Baskes GGA LDA

δCTB (Å) -1.2 10−3 -2.0 10−3 5.8 10−3 2.5 10−3 6.1 10−3 7.3 10−3

δITB (Å) 0.020 -0.002 0.180 0.060 0.061 0.039
γCTB (mJ/m2) 2.4 21.3 17.3 20.2 15.3 14.0
γITB (mJ/m2) 386.9 371.1 580.8 438.3 223.8 320.4

Table 3: Excess volume δTB and energy γTB of CTBs and ITBs for the interatomic potentials and DFT.
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Figure 4: Relaxed ITB atomic structure with the potentials of a)
Foiles, b) Grochola, c) Ackland, d) Baskes, and DFT calculations
using (e) LDA and (f) GGA. Atoms are colored according to their
CNA parameter: atoms in an fcc, a hexagonal and an unidentified
crystal arrangement are respectively in green, red and white. α is
the rotation angle of (111) atomic planes in the 9R phase and θ is
the angle between the two basis vectors x and v. The green, blue and
red lines correspond to the three different (111) planes considered to
determine θ in subsection 3.2.1.

Figure 5: Slip of the pure edge partial dislocations δC yielding the
9R phase for a type III ITB.

ence on the computed excess volume values is weak: for
example, the values of the excess volumes for the CTB
determined with the Foiles potential are -1.179×10−3 and
-1.181×10−3 Å for 108 and 432 layers, respectively.

3.2. The 9R phase in a relaxed Σ3{112} ITB

3.2.1. Width of the 9R phase

The width of the 9R phase obtained with classical MS
has been determined using two methods, termed the an-
gular method which is also accessible experimentally and
the disregistry method which needs numerical simulations.

The angular method relies on the rotation of atomic
planes in the 9R phase. We have determined the angle
θ = 90◦ − α between the x (the [111] direction of the
fcc phase) and v//[112̄] directions in each crystallographic
phase (see figure 4). One obtains curves θ = f(z) (z being
the coordinate along the [112̄] direction in the fcc phase)
for the three (111) planes of the 9R phase (HHC sequence).
The results are shown in figure 6 for the Foiles potential.
The first plane (in red) is in a fcc planes stacking, whereas
the second (in blue) and third planes (in green) are in
hexagonal close-packed stackings.

A threshold is chosen such that the 9R phase corre-
sponds to a disorientation α > 3◦, or θ < 87◦. The width
of the 9R phase is obtained using the mean of the ex-
treme values stemming from the three curves correspond-
ing to the three planes (see the inset in figure 6). The
uncertainty is around 0.6 Å. The results obtained for the
four potentials are given in table 4. Besides the 9R phase
width, this method allows us to quantify the rotation of the
(111) planes across the ITB. We have computed the max-
imum angle of disorientation αm (average over the three
planes), which values are also given in table 4. These val-
ues are straightforwardly compared with experiments since
this method has been used to determine the width of the
9R phase on HRTEM images [15]. However, it strongly
depends on the choice of the threshold; another method is
thus proposed.

Since the 9R phase is delimited by the mixed disloca-
tions on one side and the edge dislocations on the other
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Foiles Grochola Ackland Baskes

e9R (disregistry) (Å) 7.7 5.2 3.1 3.6
e9R (angle) (Å) 9.9 7.2 7.0 6.9
αm (degree) 10.92 12.05 8.40 11.30

Table 4: Width of the 9R phase obtained with the disregistry and angular methods and the maximum angle of disorientation αm obtained
with the angular method for the four interatomic potentials.

Figure 6: Line profile of the angle θ variation across the ITB for
the Foiles potential. The three (111) planes of the HHC sequence
correspond to the three lines in green, blue and red in figure 4.a. The
inset shows how the extreme values of the width are determined.

side, we have considered the disregistry method which
makes it possible to precisely determine the positions of
these different dislocations. The disregistry is the evo-
lution, after the glide of a dislocation in a plane, of the
relative positions between pairs of atoms [26, 53]. The dis-
registry is calculated in the (111) glide planes of the δA,
δB and δC dislocations, for pairs of atoms that are nearest
neighbours on each side of the considered glide plane. It
is decomposed into “edge” (along z) and “screw” (along
y) components, denoted e.g. by (DAz, DAy) for the δA
dislocation. In figure 7, the edge (respectively screw) com-
ponent of the disregistry is adimensionalized with the norm
of the edge (respectively screw) component of the mixed
partial dislocations Burgers vectors. The width e9R of the
9R phase has been determined using the edge component
DCz of the disregistry in the glide plane of the δC dislo-
cation (which is a pure edge dislocation), and the screw
component of the disregistry DAy in the glide plane of
the δA mixed dislocation. Two limits are used, as shown
in figure 7a: the first one is at the position of the last
point with a normalized disregistry value of 1 for DAy,
the second one is the position of the δC dislocations cores,
which is determined as the inflection point of the arctan-
gent function used to fit DCz (red curve in figure 7b).
The δC dislocations cores have also been localized with
the DXA (Dislocation Extraction Algorithm) of OVITO
(figure 7c); their positions are in excellent agreement with
the disregistry analysis. The width of the 9R phase ob-

tained for all the potentials with this procedure is given in
table 4.

Note that we considered that the 9R phase was delim-
ited by the edge dislocations δC and the mixed dislocations
δA. This led e.g. to a width of 7.7 Å for the Foiles poten-
tial. Had we chosen the other mixed dislocations δB, we
would have found 6.9 Å. However, this choice of a differ-
ent criterion does not change the order of the potentials
as far as the width is concerned. Also, this order is al-
most not changed when considering the angular method,
with the largest width obtained for the Foiles potential,
then the Grochola potential, and comparable widths for
the Ackland and Baskes potentials.

3.2.2. Formation energy of the 9R phase

Classical molecular statics simulations give the cohesion
energies Ecoh,c and Ecoh,R of the fcc and 9R phases, re-
spectively (tables 1 and 2); the difference between these
two terms is the formation energy of the 9R phase:

Eform = Ecoh,R − Ecoh,c. (1)

The formation energy Eform has also been figured out
from DFT calculations by taking the difference between
the energies per atom of the bulk fcc phase and 9R phase.

In addition, the formation energy can also be appre-
hended with the following model. Let us consider a
box with nine (111) planes of 9R phase. The energy
of this system can be described in two ways: first, it is
given by E1 = NEcoh,R, with N the number of atoms
in the box. Second, this system may also be defined
as an fcc phase with one intrinsic stacking fault every
three planes; the energy of the system is then given by
E2 = NEcoh,c + 3SγISF + Sγint−ISFs; S is the surface
of the (111) planes and γint−ISFs is the interaction en-
ergy between the ISFs per unit area of ISF. The volume of
this box is, according to the first description, V1 = Nv9R
with v9R the atomic volume in the 9R phase given by

v9R =
√
3
2

a2
0Rc0R
9 . According to the second description,

the same volume is V2 = Sh with h the height of the box
given by h = 3

√
3a0c+12δCTB (we use the fact that an ISF

may be described as two CTBs on adjacent planes, and
that each CTB introduces an excess volume of 2δCTB).
Considering E1 = E2 and V1 = V2, the model leads to an
estimation of the formation energy of the 9R phase:

E
(mod)
form =

(
v9R√

3a0c + 4δCTB

)(
γISF +

γint−ISFs

3

)
. (2)
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Foiles Grochola Ackland Baskes GGA LDA
Eform (eV/atom) 7.1 10−4 6.4 10−3 4.1 10−3 5.9 10−3 3.3 10−3 3.1 10−3

E
(mod)
form (eV/atom) 7.1 10−4 6.4 10−3 4.8 10−3 8.4 10−3 4.3 10−3 4.0 10−3

Table 5: Comparison between the formation energy of the 9R phase, Eform = Ecoh,R − Ecoh,c, with Ecoh,R and Ecoh,c obtained from the

simulations (tables 1 and 2) and E
(mod)
form obtained from the model (equation 2).

Figure 7: Disregistry analysis for the Foiles potential: a) normalized
disregistry versus the position z in δA, δB and δC (111) glide planes.
The indexes y and z denote respectively screw and edge components.
(b) DCz curve with its fit by an arctangent function. (c) Relaxed
ITB atomic structure with atoms coloured according to their CNA
parameter (same color code as in figure 4) and localization of the
dislocations cores (blue dots) using the DXA (Dislocation Extraction
Algorithm) of OVITO.

Table 5 presents the comparison between the results ob-
tained using this model when γint−ISFs is neglected and
the results provided by the simulations. We observe that
the model gives values of the same order of magnitude as
simulations, the differences coming from the interaction
energy between the ISFs. These values suggest that the
modulus of the interaction energy between ISFs is com-
paratively large for the Baskes potential, for which the
difference between Eform obtained from the simulation

and E
(mod)
form obtained from the model is the largest. For

the Foiles and Grochola potentials, the interaction energy
between the ISFs is so small that, within the uncertain-
ties of the calculations, there is no difference between the
obtained formation energies. According to our model, the
interaction energy between the ISFs is not insignificant for
the Ackland and Baskes potentials and for DFT calcula-
tions. We note that this correlates well with the descrip-
tion of an ISF as two CTBs on adjacent planes: while γISF

is very close to 2γCTB for the Foiles and Grochola poten-
tials (see tables 1 and 3), the difference for the Ackland
and Baskes potentials and for DFT calculations indicates
a large interaction between the ISFs. This explains why
there is no linear or even monotonic relationship between
the 9R phase formation energy and γISF .

3.2.3. Lattice parameters and elastic energy of the 9R
phase

The description of the 9R phase in terms of an fcc phase
with an ISF every three planes, and of an ISF as two CTBs
in consecutive planes, allows an estimation of the 9R phase
lattice parameter. Indeed, in the ABCBCACAB sequence,
the expected value of the c0R lattice parameter (distance
along the [111]9R direction1 for nine (111) planes in the
9R phase) is

c
(mod)
0R = c0c + 12δCTB (3)

where c0c = 3
√
3a0c is the same distance in the fcc phase.

The obtained values are given in table 6 and compared to
the results from the simulations. This model implies that
when δCTB > 0, c0c < c0R, which is the case for the po-
tentials of Ackland and Baskes and the DFT calculations,
and that when δCTB < 0, c0c > c0R which happens for the
potentials of Foiles and Grochola.

However, the difference in lattice parameters between
the two phases is not the main reason for the deforma-
tion of the 9R phase. Indeed, when this phase is formed

1We recall that [111]9R corresponds to the [0001]h direction of
the bulk hexagonal phase.
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through the relaxation of the ITB, the array of dislocations
that separate the fcc and 9R phases induces a rotation, and
the 9R phase is strained to ensure consistency between its
(111) planes and the (111) planes of the fcc phase, as shown
in figure 8. Because of the large difference in the volumes
occupied by the two phases, it is supposed that the fcc
phase is relaxed whereas the 9R phase has to accommo-
date the mismatch. The strain εxx is thus determined by

εxx =
c0c cosα− c0R

c0R
(4)

where α=13.26◦ is the theoretical rotation angle. It
is found that the 9R phase is highly contracted along
x//[111] (see εxx values in table 6). There is no relax-
ation of the simulation cell along the y//[11̄0] direction,
so the 9R phase is forced to have the same lattice param-
eter as the fcc phase along y. The ensuing strain εyy has
also been determined, but its value is much smaller than
εxx. The boundary conditions being free surfaces along the
normal to the ITB, the stress components implying the z
coordinate vanish and do not consequently contribute to
the elastic energy stored in the 9R phase.

Since the stiffness coefficients and the bulk lattice pa-
rameters of the 9R phase have been computed (table 2),
and the width of the 9R phase ensuing from the ITB re-
laxation has been determined, we can estimate the elastic
energy γelas per unit surface of the ITB for the four in-
teratomic potentials. Neglecting the component εxy and
supposing that the strain is homogeneous, we obtain

γelas =
e9R
2

Cijklεijεkl (5)

with ij and kl being either xx or yy. After a change of
coordinates to express the stiffness coefficients of the 9R
phase in the x, y, z basis, and using the width of the 9R
phase obtained with the disregistry method, this elastic
energy is obtained. The values vary between 22 mJ/m2

(Grochola and Baskes potentials) and 43 mJ/m2 (Ackland
potential), see table 7.

3.2.4. Contributions in the ITB energy and parameters de-
termining the width of the 9R phase

We have estimated in previous subsections the 9R phase
formation and elastic energies which contribute to the en-
ergy of the relaxed ITB. The ITB energy contains also in-
terfacial energies, and since the two interfaces differ (with
the δA and δB dislocations on one side, the δC on the other
side), there are two terms γfcc−9R and γ9R−fcc. Finally,
these two interfaces interact with an interaction energy
γint. We thus have the following decomposition:

γITB = γform + γelas + γfcc−9R + γ9R−fcc + γint. (6)

Note that all these quantities have the dimension of an
energy per unit area. In particular, γform is obtained with:

γform =
Eform × e9R

v9R
. (7)

Figure 8: a) [111] directions in the fcc phase and in the 9R phase
issued from a relaxed ITB. The angle between [111]fcc and [111]9R is
α. b) Representation of the lattice mismatch at the fcc-9R interface
as the difference between the two inclined arrows.
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Foiles Grochola Ackland Baskes GGA LDA

c0R (Å) 21.18 21.12 21.49 21.24 22.00 21.37

c
(mod)
0R (Å) 21.19 21.13 21.26 21.18 21.74 21.20
c0c (Å) 21.20 21.15 21.19 21.15 21.67 21.11
εxx (%) -2.56 -2.55 -4.06 -3.11 -4.13 -3.85
εyy (%) 3.5 10−2 1.6 10−4 -5.1 10−1 -6.7 10−2 5.7 10−1 5.2 10−1

Table 6: Lattice parameter along [111] in the 9R phase obtained from simulations (c0R) and from equation 3 (c
(mod)
0R ), and the same

parameter obtained from simulations in the fcc phase (c0c). Deformations εxx (equation 4) and εyy (see text for details).

Using the width of the 9R phase obtained with simulations
after the ITB relaxation (table 4, disregistry method), the
formation energy and the elastic energy of the 9R phase
have been computed in mJ/m2 to find their contributions
in the ITB energy. The results are shown in table 7. We
found that the formation energy of the 9R phase (that de-
pends on γISF and on the interaction between the ISFs,
see equation 2) has a contribution from 1 to 9% of the value
of the ITB energy. The contribution of the elastic energy
varies from 5 to 8% depending on the potential. Thus, the
main contribution to the energy of the ITB comes from
the interfacial energies γfcc−9R, γ9R−fcc and the interac-
tion energy γint between these two interfaces. This inter-
action between the two interfaces is necessarily repulsive,
otherwise no 9R phase would be formed.

It can be noted that the condition for the expansion of
the 9R phase is given by ∂γITB/∂e9R < 0, which leads to:

−∂γint
∂e9R

>
γform
e9R

+
γelas
e9R

, (8)

since γfcc−9R and γ9R−fcc do not depend on e9R. In the
inequality of equation 8, the first member corresponds to
the interaction force (per unit surface) between both fcc-
9R interfaces and depends on the thickness e9R of the 9R
phase. γelas and γform being given by equations 5 and 7
respectively, the second member does not depend on e9R
and represents the minimum value of the repulsive inter-
action stress for the 9R phase to expand. Although a full
description of the ITB dissociation requires an accurate
knowledge of γint with respect to e9R, the second member
of equation 8 can provide good insight in the propensity
of the metal to form 9R phase from the ITB dissociation.
In this case, it is shown that γform/e9R and γelas/e9R are
the two main parameters to discuss.
We stated in subsection 3.2.1 that the disregistry

method requires choosing which of the dislocations δA or
δB separate the 9R and fcc phases. For the Foiles po-
tential for example, this choice induces a variation of 12%
in the estimation of the 9R phase width (6.9 Å instead
of 7.7 Å). Since the formation and the elastic energies of
the 9R phase in the relaxed ITB are proportional to its
width, a width of 6.9 Å leads to γform = 4.7 mJ/m2 and
γelas = 25 mJ/m2, which changes their contribution to the
ITB energy by less than 1%.

We are now in position to discuss the obtained widths of
the 9R phase ensuing from the ITB relaxation. They are

Figure 9: γISF (in black), γform/e9R (in blue) and γelas/e9R (in
orange) versus the width of the 9R phase obtained from the simula-
tions with the disregistry method.

significantly different when estimated with the different
potentials. We plot in figure 9 the intrinsic stacking fault
energy γISF , the 9R phase formation energy γform/e9R
and the elastic energy γelas/e9R per unit volume versus the
width of the 9R phase obtained by the disregistry method
for the four interatomic potentials used in this study. It
shows that the variations of γISF or γform/e9R as a func-
tion of the width of the 9R phase show no clear trend,
but the width increases when γelas/e9R decreases. Indeed,
the elastic energy contributes to limiting the extension of
the 9R phase. The second member of the equation 8, i.e.
γform/e9R+γelas/e9R, follows the same trend as γelas/e9R.
It has to be noted also that the values of γelas/e9R and
γform/e9R found in DFT should predict the formation of
a 9R phase with a thickness between those obtained with
Ackland and Baskes potentials. The absence of 9R phase
in DFT calculations might be explained by the additional
relaxation mechanism (crystal rotations) not included in
our model and certainly due to the reduced sizes consid-
ered in such simulations. Focusing on a single material
but with potentials leading to different γISF , our study
emphasizes that the width of the 9R phase cannot be sim-
ply related to the stacking fault energy, but that some
other parameters have to be taken into account, and sug-
gests that the elastic deformation has a greater influence
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Foiles Grochola Ackland Baskes
γform (mJ/m2) 5.2 31.7 12.0 20.1
γform/γITB (%) 1.3 8.5 2.1 4.6
γelas (mJ/m2) 28 22 43 22
γelas/γITB (%) 7 6 7 5

Table 7: Formation energy in mJ/m2 and ratio of the formation energy of the 9R phase to the ITB energy; elastic energy in mJ/m2 (equation
5) and ratio of the elastic energy in the 9R phase to the ITB energy.

on the width of the 9R phase when compared to the other
two parameters. This may explain the seemingly contra-
dictory results obtained by Wang and co-workers (decrease
of the 9R phase width with γISF ) [28] and by Gu and co-
workers (increase of the 9R phase width with γISF ) [29].
Finally, we point out that the interfacial energies γfcc−9R

and γ9R−fcc have not been used to discuss the width of the
9R phase because they cannot influence it, though their
interaction obviously has an impact.

4. Conclusion

Atomistic simulations have been used in this work to
characterize Σ3{111} CTBs and Σ3{112} ITBs; their ex-
cess volumes and energy densities were obtained. Symmet-
ric ITBs dissociate and an intermediate 9R phase appears.
Its width has been studied for many interatomic potentials
and with two methods, one accessible experimentally (the
angular method), and another one that needs numerical
simulations (the disregistry method). The main results
obtained in this study can be listed as follows:

• The CTBs and the ITBs introduce an excess volume
in the system. Some potentials give positive excess
volumes (expansion of the system), while others give
negative excess volumes (contraction).

• Contrary to the disregistry method, the angular
method is unable to precisely localize the dislocations
generating the 9R-fcc and fcc-9R interfaces; this in-
duces uncertainties in the determined width.

• The width of the 9R phase cannot be simply related to
the stacking fault energy, some other parameters have
to be considered. This may explain the seemingly
contradictory results obtained in previous studies.

• The formation energy of the 9R phase can be deter-
mined with the intrinsic stacking fault energy, the
CTB excess volume and the interaction energy be-
tween ISFs. This formation energy contributes to less
than 9% to the value of the ITB energy.

• This 9R phase, thin and bounded by two fcc phases
is under compressive strain to ensure consistency be-
tween the (111) planes of the two phases. The elastic
energy contributes to less than 8% to the value of the
ITB energy.

• Besides the 9R phase formation and elastic ener-
gies, the ITB energy contains the interfacial energies
(γfcc−9R and γ9R−fcc) that cannot affect the width
of the 9R phase, and the interaction between these
two interfaces. These interfacial and interaction ener-
gies have an important contribution compared to the
other two. The repulsive interaction between the two
interfaces allows the formation of the 9R phase. The
latter term should be the subject of a future work.

This works was funded by the French Na-
tional Research Agency, grant reference ANR-
19-CE08-0007. This work also pertains to
the French government program ”investisse-
ments d’Avenir”(LABEX INTERACTIFS, refer-
ence ANR-11-LABX-0017-01).
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