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Action potentials (APs) are generally produced in response to complex summation of
excitatory and inhibitory synaptic inputs. While it is usually considered as a digital event,
both the amplitude and width of the AP are significantly impacted by the context of
its emission. In particular, the analog variations in subthreshold membrane potential
determine the spike waveform and subsequently affect synaptic strength, leading to
the so-called analog-digital modulation of synaptic transmission. We review here the
numerous evidence suggesting context-dependent modulation of spike waveform,
the discovery analog-digital modulation of synaptic transmission in invertebrates and
its recent validation in mammals. We discuss the potential roles of analog-digital
transmission in the physiology of neural networks.
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THE ACTION POTENTIAL IS NOT A DIGITAL EVENT

In the central nervous system (CNS), synaptic transmission is mainly supported by APs, i.e., it
occurs when a spike has been emitted in the presynaptic cell. Classically, the analogy is made
between the spike and the basic unit of information used in computers (bit), i.e., the spike
is thought to be the minimal unit of information that a neuron can emit. In this view, the
spike is seen as an ‘‘all-or-none’’ digital phenomenon whose shape is constant or whose shape
modifications are not relevant for neuronal processing (Maley, 2018). These two assertions are
wrong in most of the neuronal cell types, despite some cases showing very stable spike shape
(Sierksma and Borst, 2017; Figure 1A).

In most neurons, the spike waveform is highly variable in function of the quantity of voltage-
gated channels available at spike emission. This quantity depends on two parameters: the density
and the level of inactivation of the channels. In this review, we will focus on variations in axonal
spike shape that impact neurotransmitter release and synaptic strength.

The first source of spike shape modification is the neuronal firing rate. Repetitive firing may
cause inactivation of both voltage-gated sodium channels (Nav) and voltage-gated potassium
channels (Kv). Nav inactivation leads to a decrease in spike amplitude during AP trains
(Brody and Yue, 2000; Prakriya and Mennerick, 2000; He et al., 2002; Kawaguchi and Sakaba,
2015; Ma et al., 2017; Ohura and Kamiya, 2018; Figure 1B), while Kv inactivation leads to an
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FIGURE 1 | Effect of repetitive firing on axonal Action Potential (AP) shape. (A) AP waveform is highly stable during high-frequency trains in the Calyx of Held
recorded in vivo. Note that the APs are indistinguishable when they are superimposed. Adapted with permission from Sierksma and Borst (2017). (B) AP amplitude
decrease during repetitive firing in Purkinje cells bouton. Note that increasing the frequency of AP train provokes an enhancement of AP amplitude decrease.
Adapted with permission from Kawaguchi and Sakaba (2015). (C) AP duration increase during repetitive firing in hippocampal mossy fiber bouton. Adapted with
permission from Geiger and Jonas (2000).

increase in spike width (Jackson et al., 1991; Park and Dunlap,
1998; Shao et al., 1999; Geiger and Jonas, 2000; Faber and
Sah, 2003; Kim et al., 2005; Deng et al., 2013; Liu et al.,
2017; Ma et al., 2017; Figure 1C). When it invades the
presynaptic terminal, the spike provokes the opening of voltage-
gated calcium channels (Cav), leading to an increase of Ca2+

concentration in the bouton and the release of neurotransmitters.
Due to the power law between intra-terminal Ca2+ concentration
and neurotransmitter release, small variations in presynaptic
calcium entry, occurring through spike shape modifications,

can lead to large changes in synaptic transmission (Sabatini
and Regehr, 1997; Bollmann et al., 2000; Bischofberger et al.,
2002; Fedchyshyn and Wang, 2005; Yang and Wang, 2006;
Bucurenciu et al., 2008; Scott et al., 2008; Neishabouri and Faisal,
2014). In fact, spike broadening during repetitive firing entails
synaptic transmission facilitation in the pituitary nerve (Jackson
et al., 1991), dorsal root ganglion (Park and Dunlap, 1998) and
mossy fiber bouton (Geiger and Jonas, 2000). Other studies
showed that spike amplitude depression during repetitive firing
provokes a decrease in synaptic transmission at hippocampal
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(Brody and Yue, 2000; Prakriya and Mennerick, 2000; He
et al., 2002) and cerebellar synapses (Kawaguchi and Sakaba,
2015). Therefore, spike shape variations participate in short-term
synaptic plasticity produced by repetitive firing (Zucker and
Regehr, 2002). In addition, Hebbian or homeostatic forms of
synaptic plasticity may result from modulation of presynaptic
spike waveform via long-term regulation of ion channel
density (Gandhi and Matzel, 2000; Yang and Wang, 2006;
Hoppa et al., 2014).

Another source of spike waveform variation is the presence
of neuromodulators. Neuromodulation alters spike shape via
subthreshold modifications of membrane potential or channel
biophysics regulation. In hippocampal neurons, glutamate and
GABA have been shown to depolarize axonal membrane
potential leading to spike broadening, probably through
Kv channel inactivation, inducing an increase in synaptic
transmission (Ruiz et al., 2010; Sasaki et al., 2011). In
cortical pyramidal neurons, dopamine fixation on D1 receptors
causes a decrease in Kv1-dependent ID current, due to the
hyperpolarization of its inactivation curve, leading to axonal
spike broadening (Dong and White, 2003; Yang et al., 2013).

Action Potential (AP) waveform in neuronal compartments
depends on the local density of voltage-gated ion channels.
For example, the AP duration decreases during its axonal
propagation in L5 pyramidal neurons due to axonal expression
of Kv1 channels (Kole et al., 2007). Recent studies have shown
that the density of voltage-gated channels is not homogenous all
along the axon, leading to local variation of spike shape during
its propagation. The density of peri-terminal Kv3 channels
determines local spike width and synaptic release in terminals
of cerebellar stellate cell interneurons (Rowan et al., 2016). In
axons of cortical neurons, varying density of Nav channels
determines branch-specific spike amplitude and spike-evoked
presynaptic Ca2+ entry (Cho et al., 2017). Therefore, the
distribution of synaptic strength in neuronal networks is likely
to be in part determined by the variability of AP waveform in the
presynaptic terminals.

Finally, spike broadening and increased synaptic release due
to Kv channel dysfunction or Kv channel down-regulation
has been associated with various neurologic disorders such as
schizophrenia, episodic ataxia type 1, fragile X syndrome, autism
and epilepsy (Deng et al., 2013; Begum et al., 2016; Crabtree et al.,
2017; Vivekananda et al., 2017; Scott et al., 2019).

Therefore, the spike waveform can be modified by neuronal
firing rate, neuromodulation, variation in local voltage-gated
channel density, voltage-gated channel long-term regulation
and dysfunction of voltage-gated channels in the pathological
context. All these spike waveform variations modify Ca2+ entry
and synaptic release at presynaptic terminals. As spike shape
modifications alter the transmission of synaptic information, it
should not be considered as a purely digital event.

In the following sections, we will focus on spike shape
modulation by subthreshold variations of membrane potential.
We will see that the spike waveform is determined by an
analog information, the subthreshold neuronal activity, leading
to synaptic release modulation. This phenomenon has been
called Analog-Digital synaptic transmission (Clark and Häusser,

2006; Alle and Geiger, 2008; Debanne et al., 2013; Rama et al.,
2015b; Zbili et al., 2016).

BIRTH OF ANALOG-DIGITAL
MODULATION OF SYNAPTIC
TRANSMISSION AT INVERTEBRATE
SYNAPSES

AP Amplitude-Dependent Modulation of
Synaptic Strength
The modulation of spike-evoked synaptic transmission by
modulation of the presynaptic AP waveform has been first
reported at the squid giant synapse by Hagiwara and Tasaki
(1958). This pioneering study revealed that the amplitude of
the presynaptic spike directly determines the amplitude of
the postsynaptic response. The EPSP modulation was found
to be extremely large, from virtually no detectable response
to ∼7–8 mV (Hagiwara and Tasaki, 1958). The modulation
of the presynaptic spike amplitude was simply obtained by
varying the intensity of subthreshold depolarization. This spike-
amplitude dependent modulation of synaptic transmission has
been confirmed by subsequent studies at the squid giant
synapse (Takeuchi and Takeuchi, 1962; Miledi and Slater, 1966;
Kusano et al., 1967).

While it has been suspected for a long time that a
presynaptic hyperpolarization increased spike-evoked synaptic
transmission (Del Castillo and Katz, 1954), the study by
Takeuchi and Takeuchi (1962) represents the first report
to unambiguously show that transient hyperpolarization of
the presynaptic membrane potential during induction of the
presynaptic AP enhanced the presynaptic spike amplitude
and, subsequently, the postsynaptic response (Figure 2A).
Although the precise mechanisms underlying this modulation
have not been addressed in this study, the facilitation may
result from recovery of sodium current from inactivation (see
also Rama et al., 2015a). This principle has been confirmed
in many studies published later, including one in the squid
(Miledi and Slater, 1966) and another in the crayfish (Dudel,
1971). Interestingly, this hyperpolarization-induced facilitation
of synaptic transmission has also been reported at the rat
neuromuscular junction (Hubbard and Willis, 1962, 1968).

The study by Kusano et al. (1967) was largely inspired by the
work of Hagiwara and Tasaki (1958) but it represents the first
clear demonstration that increasing the input current applied to
trigger a spike leads to an increase in both the presynaptic spike
amplitude and the postsynaptic response (Figure 2B). These two
early studies are somehow without descendants since no other
study has been undertaken since. Furthermore, themechanism of
this modulation has never been clearly identified but it may result
from the minimization of sodium channel inactivation prior to
spike emission.

AP Duration-Dependent Modulation of
Synaptic Strength
Modulation of synaptic strength by AP duration was reported
later, after the discovery of enhancement of synaptic
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FIGURE 2 | Modulation of AP waveform and synaptic strength by presynaptic membrane potential in invertebrates. (A) Hyperpolarization of the presynaptic
element leads to an increase in the spike amplitude and the post-synaptic potential amplitude at squid giant synapse. Adapted with permission from Takeuchi and
Takeuchi (1962). (B) Increasing the current applied to emit the spike leads to a decrease in presynaptic spike latency, an increase in spike amplitude and an
increased EPSP amplitude at the squid giant synapse. Adapted with permission from Kusano et al. (1967). (C) Depolarization of the presynaptic cell leads to an
increase in spike-evoked synaptic transmission at the cholinergic synapse of Aplysia. Adapted with permission from Shapiro et al. (1980).

transmission by AP amplitude modulation. The first clear
study stating context-dependent enhancement of synaptic
transmission due to the broadening of presynaptic AP is that
of Shapiro et al. (1980). The authors reported that in connected
neurons from Aplysia, depolarization of the presynaptic neuron
inactivates a potassium current, leading to a broadening of the
spike and an enhancement of synaptic transmission (Shapiro
et al., 1980; Figure 2C). One should note that this effect is
exactly the opposite of that described in the squid where a
presynaptic depolarization reduced spike-evoked transmission.
Before this study, Shimahara and Tauc (1975) reported similar
findings but the mechanism was not studied in this first report
(Shimahara and Tauc, 1975). Later, Shimahara confirmed that
blocking Kv channels with 4-aminopyridine suppressed the
increase in synaptic transmission induced by depolarization

(Shimahara, 1981, 1983). However, in these studies, it was
unclear whether voltage was mainly acting on spike amplitude
or spike duration.

Presynaptic Voltage-Dependent
Modulation: Role of Calcium Current
Beyond inactivation of Kv channels, a second mechanism had
been identified in the Shapiro et al.’s (1980) study showing
depolarization-induced enhancement of synaptic transmission.
They showed that subthreshold depolarization of the presynaptic
neuron to −55/−35 mV activated a steady-state Ca2+ current
that also contributed to the modulation of transmission, possibly
by controlling release probability (Shapiro et al., 1980; Connor
et al., 1986). Similar depolarization-induced enhancement of
synaptic transmission has been reported at an inhibitory synapse
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in the leech (Nicholls andWallace, 1978). This study reports that
small presynaptic depolarizations increase synaptic strength in
an AP waveform independent way (probably due to basal Ca2+

accumulation), while stronger depolarizations enhance synaptic
release via broadening of the presynaptic spike. Therefore,
depolarization-induced enhancement of synaptic transmission
via basal Ca2+ increase and via spike broadening can
coexist at invertebrates’ synapses. Recently, the depolarization-
induced enhancement of synaptic transmission via basal Ca2+

accumulation has been confirmed in heart interneurons of the
leech (Ivanov and Calabrese, 2003) and B21 sensory neurons of
the Aplysia (Ludwar et al., 2009, 2017; Evans et al., 2011).

Two main features should be noted in these pioneering
studies. First, the modulation of synaptic transmission was found
to be extremely large (about an order of magnitude). Second,
only one type of modulation was found in a given presynaptic
cell-type (i.e., only depolarization-induced facilitation
in the Aplysia or hyperpolarization-induced facilitation
in the squid).

RECENT DEVELOPMENTS

From the early studies on spike-evoked release modulation
via presynaptic membrane potential, we can conclude that
spikes contain more information than usually thought. In fact,
the synaptic strength depends on the subthreshold membrane
potential of the presynaptic cell, indicating that the presynaptic
spike transmits this analog information to the postsynaptic
cell. However, the direction of this modulation of synaptic
transmission seems to depend on the type of synapse. In
fact, in some studies, the rule is: the more depolarized
is the presynaptic cell, the bigger is the PSP (also called
depolarization-induced Analog-Digital Facilitation or d-ADF),
while in others the rule is the opposite (hyperpolarization-
induced Analog-Digital Facilitation or h-ADF). We will see
that the recent developments on the subject have extended the
observations made on invertebrate preparations to mammalian
synapses and have resolved this apparent paradox via the
description of the ion channels responsible for the two
types of ADF.

Depolarization-Induced Analog-Digital
Facilitation (d-ADF) in Mammalian Brain
The first descriptions of d-ADF in mammalian CNS have been
made in Calyx of Held (Turecek and Trussell, 2001; Awatramani
et al., 2005), CA3 area (Saviane et al., 2003), hippocampal
mossy fibers (Alle and Geiger, 2006) and L5 pyramidal
neurons (Shu et al., 2006; Figures 3Ai,Bi; Table 1). In all
these cases, a depolarization of the presynaptic cell preceding
the AP leads to an increase in synaptic transmission from
30% to 100% depending on the studies. However, a precise
examination shows that different mechanisms are responsible for
these d-ADFs.

d-ADF via Basal Ca2+ Accumulation at the Terminal
The first mechanism described for d-ADF is not due to spike
shape modulation. A weak opening of synaptic Cavs during

the subthreshold depolarization leads to an increase in the
basal Ca2+ concentration at the terminal, and consequently,
an enhancement of synaptic release when the spike invades
the presynaptic terminal (Debanne et al., 2013; Rama et al.,
2015b; Zbili et al., 2016). This mechanism has been described
at the Calyx of Held (Turecek and Trussell, 2001; Awatramani
et al., 2005; Hori and Takahashi, 2009), cerebellar molecular
layer interneurons (Bouhours et al., 2011; Christie et al.,
2011) and at the dendro-dendritic synapses between mitral
cells of the olfactory bulb (Fekete et al., 2014). Due to
the slow dynamics of Ca2+ accumulation, several seconds
of depolarization are needed to fully facilitate synaptic
transmission. Interestingly, basal Ca2+ accumulation induces
synaptic release facilitation in two different ways. First, the
increase in basal Ca2+ concentration directly enhances
the release probability, probably via the promotion of the
vesicles priming and of the coupling between vesicles and
Cav channels (Neher and Sakaba, 2008). Second, it can
provoke a Ca2+-dependent hyperpolarizing shift of Cav
channel activation (Borst and Sakmann, 1998; Cuttle et al.,
1998), leading to an increase of the spike-evoked Ca2+

transient (Hori and Takahashi, 2009; Christie et al., 2011).
Importantly, these two effects can occur at the same synapse
(Hori and Takahashi, 2009).

d-ADF via Modulation of Presynaptic Spike Width
The second mechanism underlying d-ADF in mammals is
the inactivation of Kv channels during the subthreshold
depolarization. This phenomenon provokes broadening of the
presynaptic spike (Figures 3Aii,Bii), leading to an increase
in the spike-evoked Ca2+ transient and an enhancement of
synaptic release (Debanne et al., 2013; Rama et al., 2015b; Zbili
et al., 2016; Figures 3Ai,Bi). Importantly, the time constant of
this type of d-ADF depends on the inactivation time-constant
of the Kv involved in the phenomenon. In L5 pyramidal
neurons, CA3 pyramidal neurons and CA1 pyramidal neurons,
slowly inactivating Kv1 channels are responsible for the d-ADF,
and therefore the phenomenon presents a slow time constant
(several seconds; Saviane et al., 2003; Shu et al., 2006, 2007;
Kole et al., 2007; Sasaki et al., 2011, 2012; Zhu et al., 2011;
Kim, 2014; Bialowas et al., 2015). In contrast, in inhibitory
interneurons of the cerebellum (stellate cells), d-ADF depends
on fast Kv3.4 inactivation and is, therefore, quicker to take place
(100 ms of depolarization to have an effect and 1 s for a full
increase in synaptic transmission; Rowan and Christie, 2017).
Importantly, at invertebrates’ synapses, the d-ADF via basal
Ca2+ accumulation and the d-ADF via Kv inactivation are not
mutually exclusive andmay occur at the same synapses (Bialowas
et al., 2015; Rama et al., 2015b).

A Peculiar Case: d-ADF at Mossy Fiber Boutons
In granule cells of the Dentate Gyrus, an EPSP can
propagate from the dendrites to the presynaptic bouton
and increase spike-evoked synaptic transmission at mossy fiber
bouton/CA3 synapses (Alle and Geiger, 2006). Surprisingly,
this d-ADF seems to be Ca2+-independent. In fact, it does
not go along with an increase in basal Ca2+ concentration or
spike-evoked Ca2+ transient (Scott et al., 2008), and it is not

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 160

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Zbili and Debanne Analog-Digital Transmission

FIGURE 3 | Analog-Digital Facilitations at mammalian synapses. (A) Depolarization-induced Analog-Digital Facilitation (d-ADF) at L5-L5 synapses. Depolarization of
the presynaptic cell leads to an increase in synaptic transmission at L5/L5 synapses (i) that is due to the broadening of the axonal spike measured by whole-cell
recording from an axonal bleb (ii). Adapted with permission from Shu et al. (2006). (B) d-ADF at CA3/CA3 synapses. Long depolarization of the presynaptic cell leads
to an increase in the synaptic transmission (i) that is mediated by the broadening of the axonal spike measured in voltage imaging (ii). Adapted with permission from
Bialowas et al. (2015). (C) Hyperpolarization-induced Analog-Digital facilitation (h-ADF). Hyperpolarization of the presynaptic cell leads to an enhancement of synaptic
transmission at L5/L5 synapses: (i) due to an increase in the spike amplitude measured by whole-cell recording from an axonal bleb, (ii) adapted with permission from
Rama et al. (2015a).

blocked by application of 10 mM EGTA (Alle and Geiger,
2006) or 1 mM BAPTA (Scott et al., 2008). However, it should
be noted that the increase in Ca2+ entry can be too subtle to
be seen with Ca2+ fluorescent indicators. Moreover, at the
Calyx of Held, it is necessary to apply 10 mM EGTA + 1 mM
BAPTA to efficiently block d-ADF (Hori and Takahashi, 2009).
Therefore, the mechanism of d-ADF at this synapse could be

Ca2+-dependent and needs further studies to be unraveled
(Debanne et al., 2013).

Hyperpolarization-Induced Analog-Digital
Facilitation (h-ADF) in Mammalian Brain
Recent studies showed that a presynaptic hyperpolarization
before the spike leads to an increase in spike-evoked
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TABLE 1 | Analog-digital facilitation.

Authors Species Cell type Mechanism

d-ADF Shimahara and Tauc (1975) Aplysia Interneuron Not studied
Nicholls and Wallace (1978) Leech Heart interneuron • Basal Ca2+

• Kv inactivation
• AP broadening

Shimahara and Peretz (1978) Aplysia Interneuron Not studied
Alle and Geiger (2006) Rat Mossy fiber giant bouton Unknown
Scott et al. (2008) Rat Mossy fiber giant bouton Unknown
Zorrilla de San Martin et al. (2017) Rat Purkinje cells Unknown

Shapiro et al. (1980) Aplysia Cholinergic interneuron L10 • Basal Ca2+

• Kv inactivation
• AP broadening

Shimahara (1981, 1983) Aplysia Left pleural ganglion • Kv inactivation
• AP amplitude increase?

Saviane et al. (2003) Rat CA3 pyramidal neuron • Kv inactivation
• AP broadening

Shu et al. (2006)/Shu et al. (2007) Ferret/Rat L5 pyramidal neuron • Kv inactivation
• AP broadening

Kole et al. (2007) Rat L5 pyramidal neuron • Kv inactivation
• AP broadening

Ruiz et al. (2010) Rat Mossy fiber giant bouton • AP broadening
Zhu et al. (2011) Rat L5 pyramidal neuron/interneuron synapses • Kv inactivation
Sasaki et al. (2011) Rat CA3 pyramidal neuron • Kv inactivation

• AP broadening
Sasaki et al. (2012) Rat CA3 pyramidal neuron • Kv inactivation

• AP broadening
Kim (2014) Rat CA1 pyramidal neuron/interneuron synapses • Kv inactivation

• AP broadening
Bialowas et al. (2015) Rat CA3 pyramidal neuron • Basal Ca2+

• Kv inactivation
• AP broadening

Rowan and Christie (2017) Mouse Cerebellar interneuron (stellate cell) • Kv inactivation
• AP broadening

Connor et al. (1986) Aplysia Cholinergic interneuron L10 • Basal Ca2+

Turecek and Trussell (2001) Rat Calyx of Held • Basal Ca2+

Ivanov and Calabrese (2003) Leech Heart interneuron • Basal Ca2+

Ludwar et al. (2009) Aplysia Sensory neuron B21 • Basal Ca2+

Evans et al. (2011) Aplysia Sensory neuron B21 • Basal Ca2+

Ludwar et al. (2017) Aplysia Sensory neuron B21 • Basal Ca2+

Awatramani et al. (2005) Rat Calyx of Held • Basal Ca2+

Hori and Takahashi (2009) Mouse/Rat Calyx of Held • Basal Ca2+

Christie et al. (2011) Rat Cerebellar interneuron (Molecular Layer) • Basal Ca2+

Bouhours et al. (2011) Rat Cerebellar interneuron (Molecular Layer) • Basal Ca2+

h-ADF Del Castillo and Katz (1954) Frog Neuromuscular junction Unknown
Takeuchi and Takeuchi (1962) Squid Giant synapse • AP amplitude increase
Miledi and Slater (1966) Squid Stellate ganglion • AP amplitude increase
Dudel (1971) Crayfish Motor nerve • AP amplitude increase
Hubbard and Willis (1968) Rat Neuromuscular junction • AP amplitude increase
Hubbard and Willis (1962) Rat Neuromuscular junction • AP amplitude increase
Thio and Yamada (2004) Rat Hippocampal neurons Unknown
Cowan and Stricker (2004) Rat L4 pyramidal neuron Unknown
Ruiz et al. (2003) Guinea pig Bouton en passant, mossy fiber Unknown
Rama et al. (2015a) Rat CA3 and L5 pyramidal neuron • Nav deinactivation

• AP amplitude increase

neurotransmitter release in hippocampal cultures (Thio and
Yamada, 2004), L4 pyramidal neurons (Cowan and Stricker,
2004), CA3 pyramidal neurons and L5 pyramidal neurons
(Rama et al., 2015a; Figure 3Ci; Table 1). This facilitation
ranges between 10% and 100% depending on the studies and
the cell type. At CA3/CA3 and L5/L5 synapses, the mechanism

underlying h-ADF has been fully described: a presynaptic
hyperpolarization results in the recovery from inactivation
of presynaptic Nav channels, which provokes an increase
in presynaptic spike amplitude (Figure 3Cii), leading to
an enhancement of spike-evoked Ca2+ entry and synaptic
release (Rama et al., 2015a; Figure 3Ci). This phenomenon
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is likely to occur at hippocampal mossy fiber, in which a
somatic hyperpolarization results in an increase of spike-evoked
Ca2+ transient at small axonal varicosities (Ruiz et al., 2003).
Interestingly, due to the fast biophysics of Nav channels,
h-ADF is extremely fast and occurs within 15–50 ms of
hyperpolarization. Therefore, it can be induced by a unique
IPSP preceding the spike. Hence, rebound spiking should have a
bigger impact on the postsynaptic cell if h-ADF is present at the
synapse. One can think that h-ADF is a widespread phenomenon
because it depends on Nav channels which are present in all
spiking neuron types. However, it should be noted that a
strong Nav channel density should attenuate the impact of their
de-inactivation on the spike amplitude, and therefore decrease
the h-ADF (Rama et al., 2015a). Moreover, Nav1.6 channels,
which are the main subtype in pyramidal cells axons, are strongly
inactivated at resting potential (Hu et al., 2009), and therefore
are suited to underlie h-ADF. Parvalbumin positive (PV+)
fast-spiking interneurons contain axonal Nav1.1 channels, a
subtype that display less inactivation at resting membrane
potential than Nav1.6 (Patel et al., 2015), and a much higher
density of axonal Nav channels than pyramidal cells (Hu and
Jonas, 2014; Hu et al., 2014). Therefore, one can expect that
this type of interneuron lacks spike amplitude modulation
and h-ADF.

Coexistence of d-ADF and h-ADF at the
Same Synapses
d-ADF and h-ADF are due to different mechanisms and present
different time constants (100 ms to several seconds for d-ADF,
15–50 ms for h-ADF). It has been shown that d-ADF and h-ADF
coexist and can be summed at CA3/CA3 synapses (Rama et al.,
2015a). In fact, a long depolarization (10 s) followed by a brief
hyperpolarization (200 ms) entails a bigger increase in spike-
evoked synaptic transmission than a long depolarization or a
brief hyperpolarization alone. Why has this coexistence not been
shown in early studies in invertebrates? For synapses that display
h-ADF but not d-ADF, we can assume a lack of inactivating
potassium channels at the synapses studied, which prevents spike
broadening by depolarization (giant synapse of the squid and
frog neuromuscular junction). In the case of studies that report
only d-ADF, it should be noted that the protocol used is not
relevant to observe h-ADF. In fact, a brief hyperpolarization
(15–200 ms) is needed to unravel h-ADF at synapses that also
present d-ADF. A long hyperpolarization (several seconds) can
induce de-inactivation of Kv1 channels and spike sharpening,
which can thwart h-ADF (Bialowas et al., 2015; Rama et al.,
2015a). In the studies made on invertebrates that report d-ADF
but no h-ADF, the resting membrane potential was modified for
several seconds before spike emission, which may explain why
the h-ADF has not been reported. Therefore, additional studies
are needed to unravel the degree of coexistence of d-ADF and
h-ADF at invertebrates and mammals synapses.

Physiological Consequences of ADFs
Spatial Extent of ADFs
One of the main issues concerning Analog-Digital Facilitations
is the spatial extent of these phenomena along the axon. In

fact, ADFs are produced by subthreshold modifications of the
somatic potential that spreads to the presynaptic terminal and
modifies presynaptic spike shape or basal Ca2+ (Debanne et al.,
2013; Rama et al., 2015b). Therefore, the axonal space constant
is a major determinant of the spatial extent of ADF. The axonal
space constant varies among neuronal types, depending on the
axonal diameter, the density of axonal branching and the axonal
membrane resistance (Sasaki et al., 2012).

In CA3 hippocampal neurons, the axonal space constant has
been evaluated around 200–500 µm (Sasaki et al., 2012; Bialowas
et al., 2015; Rama et al., 2015a). In L5 pyramidal neurons,
the value estimated ranges between 500 µm (Shu et al., 2006;
Kole et al., 2007) and 1,000 µm (Christie and Jahr, 2009). In
CA1 pyramidal neurons, the axonal space constant was found
to be around 700 µm (Kim, 2014). Therefore, ADFs seem to
be restricted to local brain circuits. For example, d-ADF has
been found between CA3 neurons but not at the synapses
between CA3 and CA1 neurons (Sasaki et al., 2012). However,
several lines of evidence suggest that ADFs could also occur
between more distant neurons. First, most of the recordings
have been made in young animals (14–30 days after birth), in
which the myelin sheet is still in development, and may have
underestimated the axonal space constant in myelinated axons,
such as CA1 and L5 pyramidal neurons. In fact, cortical myelin
has been shown to develop up to 22 months after birth (Hill et al.,
2018). Moreover, in myelinated axons of cat motoneurons, the
axonal space constant was found to be 1,700 µm (Gogan et al.,
1983). Second, neuromodulation can induce direct subthreshold
potential modifications of presynaptic terminals by presynaptic
receptor activation. Presynaptic glycinergic receptor activation
depolarizes the Calyx of Held, leading to an increase in
spike-evoked synaptic release (Turecek and Trussell, 2001).
Similarly, presynaptic GABAA receptor activation depolarizes
the presynaptic terminal, leading to an enhancement of spike-
evoked synaptic transmission at mossy fiber giant bouton and
Purkinje cells (Ruiz et al., 2010; Zorrilla de San Martin et al.,
2017). In contrast, in L5 pyramidal neurons, axonal GABAA
receptor activation leads to a hyperpolarization, a decrease of
axonal spike width and a decrease of spike-evoked Ca2+ entry
(Xia et al., 2014). Finally, glutamate released by astrocytes
depolarizes terminals in CA3 pyramidal neurons, leading to an
increase in spike width and synaptic release (Sasaki et al., 2011).
In these latter cases, ADFs are not dependent on subthreshold
membrane potential spreading from the soma and could occur
even at long range connections.

Time Constant of ADFs
ADFs present various time constants which determine their
potential roles in network physiology. In fact, in most of the
studies, d-ADF needs 100 ms to several seconds of presynaptic
depolarization to occur. On the contrary, h-ADF can be
produced by fast presynaptic hyperpolarization (15–50ms; Rama
et al., 2015a). This difference is well explained by the underlying
mechanism of d-ADF and h-ADF: slow accumulation of basal
Ca2+ (Bouhours et al., 2011; Christie et al., 2011) or slow Kv
inactivation for d-ADF (Shu et al., 2006, 2007; Kole et al., 2007;
Bialowas et al., 2015), fast recovery from inactivation of Nav for
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h-ADF (Rama et al., 2015a; Zbili et al., 2016). Therefore, d-ADF
and h-ADF should have different consequences on information
transfer in neuronal networks.

d-ADF May Maintain Excitatory Synaptic Strength
During Cortical Up-States
It has been proposed that d-ADF, due to its slow time-
constant, occurs during global network state modifications such
as slow-wave sleep associated cortical up and down states (Shu
et al., 2006). During an up state, all the neurons of a network will
depolarize leading to a global increase in synaptic release through
d-ADF. At the same time, the global depolarization should
decrease the driving force associated with synaptic excitatory
current. In fact, while d-ADF increases synaptic strength by a
factor around 1% per mV of presynaptic depolarization (Kole
et al., 2007; Bialowas et al., 2015), calculations of driving force
for AMPA-driven synaptic current predict a synaptic strength
decrease of around 1.5% per mV of postsynaptic depolarization.
Therefore, in the case of a globally depolarized neuronal network,
d-ADF can be considered as a homeostatic process thatmaintains
an excitatory synaptic strength constant despite the decrease of
the driving force.

d-ADF May Maintain Excitatory-Inhibitory Balance
During Up-States
Interestingly, at connections between L5 pyramidal neurons,
a depolarization of the presynaptic pyramidal neuron entails
both an increase of the monosynaptic EPSP (i.e., classical d-
ADF) and an increase in disynaptic inhibition (Zhu et al., 2011).
This depolarization-induced facilitation of disynaptic inhibition
results from d-ADF occurring at a synapse between L5 pyramidal
neurons and neighboring interneurons, leading to an increase
in interneuron firing. This phenomenon has been proposed to
be important for the persistence of excitatory-inhibitory balance
during up-states where d-ADF may increase excitatory and
inhibitory activity at the same time (Zhu et al., 2011).

h-ADF May Participate to Network Synchronization
Because of the fast de-inactivation time constant of Nav channels,
h-ADF can be induced by a single IPSP preceding the presynaptic
spike (Rama et al., 2015a). Therefore, h-ADF modulates synaptic
strength on a short time scale and may participate in fast
network processing. First, it is well known that hyperpolarization
produced by interneurons is able to synchronize the spiking
of neighboring pyramidal neurons. Usually, one explains this
phenomenon by a transient silencing of the pyramidal cells
as a whole, causing the post-hyperpolarization spiking to
occur in synchrony. It can also be enhanced by the so-called
‘‘rebound spiking,’’ which is often due to the recovery from
inactivation of T-type Ca2+ channels and Nav channels
during the hyperpolarization. Interestingly, the h-ADF, which
increases the inter-pyramidal synaptic strength after a transient
hyperpolarization, has been shown to increase the interneuron-
driven network synchronization (Rama et al., 2015a). Second,
it has been shown that sequences of co-activated pyramidal
neurons are often preceded and can be produced by inter-
neuronal firing (Sasaki et al., 2014). It would be interesting
to examine whether the increase in inter-pyramidal synaptic

strength through h-ADF participates in the production of
neuronal ensembles by interneurons. Third, h-ADF could be
a detection mechanism for unexpected spikes. In fact, when
the neuron is hyperpolarized, the spiking probability decreases.
However, due to h-ADF, if a spike occurs during a low
spiking probability state, the synaptic release is increased,
compared to a spike produced at the resting membrane
potential. Therefore, h-ADF increases the informational content
of unexpected spikes in cortical networks. Finally, it has been
proposed that h-ADF participates in the increase of synaptic
transmission during silent states of the slow wave sleep, in
which cortical neurons can be hyperpolarized by 5–15 mV
(Timofeev and Chauvette, 2017).

CONCLUSION AND FUTURE DIRECTIONS

We have reviewed evidence showing that the informational
content of the spike is dependent on the context of its
emission. In fact, the presynaptic spike waveform varies as
a function of the neuronal firing rate, the neuro-modulatory
state or the subthreshold voltage fluctuations. Moreover,
this information is transmitted to postsynaptic neurons by
modulation of spike-evoked calcium entry and neurotransmitter
release. In this view, the neurotransmission in mammalian
CNS needs the occurrence of a digital signal (the spike),
whose waveform is modulated by the sub-threshold signal.
It has been proposed that synaptic transmission relies on a
hybrid between analog and digital signaling, called Analog-
Digital synaptic transmission (Clark and Häusser, 2006; Alle
and Geiger, 2008). Consequently, the description of APs as
purely digital events to study information processing of neuronal
networks should be abandoned. In fact, it has been shown
that an ‘‘AP waveform code’’ is highly reliable and more
informative than a purely digital code (de Polavieja et al.,
2005; Juusola et al., 2007). Several issues have to be solved
to unravel the physiological implications of context-dependent
spike waveform modulation. First, ADFs should be tested at
various stages of neuronal development. One could expect that
context-dependent modulation of spike waveform is larger in
developing networks, which present a lower density of voltage-
gated channels and therefore a less stable spike shape. Second,
d-ADF and h-ADF have to be studied in adult networks,
in which the myelination process is completed, to confirm
the spatial extent of these phenomena. In fact, two published
studies report paired recordings of thalamo-cortical connections
(Bruno and Sakmann, 2006; Hu and Agmon, 2016), making
it possible to test if ADFs occur at long range connections
when the axon is myelinated. Third, it would be interesting
to observe the extent of ADFs in interneurons. In fact, due
to their high voltage-gated channel density, it seems that
fast-spiking cortical interneurons do not present spike waveform
modulation in function of the membrane potential (Tateno and
Robinson, 2006; Goldberg et al., 2008). In contrast, cerebellar
stellate cells present depolarization-induced spike broadening
and an increase in synaptic release (Rowan and Christie,
2017). Therefore, GABAergic transmission may undergo ADF,
depending on the type of interneuron studied. Finally, the spike
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waveform effects may not be restricted to synaptic release and
may affect dendritic computing. In fact, it has been proposed
that a spike broadening causes a shunting of incoming PSPs
and a decrease in their summation, promoting a low firing
rate (Hausser et al., 2001; Juusola et al., 2007). Interestingly, in
L5 pyramidal neurons, depolarization-induced spike broadening
has been shown to have a shorter time-constant in the soma
than in the axon (Shu et al., 2007), due to local differences
in potassium current expression (fast inactivating IA current
in the somato-dendritic compartment and slow inactivating ID
current in the axon). Moreover, in contrast with the axonal
spike broadening, it seems that the dendritic spike broadening
reduces the Ca2+ entry through the decrease of the driving
force promoting the Ca2+ tail current in granule cells of the
dentate gyrus (Brunner and Szabadics, 2016). Therefore, it is

likely that subthreshold depolarization has different effects on
somato-dendritic and axonal computing. The pursuit of the
investigation on neuronal computation via spike waveform
will certainly unravel the physiological importance of this
phenomenon on networks dynamics.
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