
HAL Id: hal-04271978
https://hal.science/hal-04271978v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Direct and indirect effects of dominant plants on
ecosystem multifunctionality

Jingwei Chen, Ziyang Liu, Hanwen Cui, Hongxian Song, Jiajia Wang, Haining
Gao, Shuyan Chen, Kun Liu, Zi Yang, Yajun Wang, et al.

To cite this version:
Jingwei Chen, Ziyang Liu, Hanwen Cui, Hongxian Song, Jiajia Wang, et al.. Direct and indirect
effects of dominant plants on ecosystem multifunctionality. Frontiers in Plant Science, 2023, 14,
�10.3389/fpls.2023.1117903�. �hal-04271978�

https://hal.science/hal-04271978v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Huakun Zhou,
Northwest Institute of Plateau Biology
(CAS), China

REVIEWED BY

Guofang Liu,
Institute of Botany (CAS), China
Jinlong Zhang,
Kadoorie Farm and Botanic Garden, Hong
Kong SAR, China

*CORRESPONDENCE

Shuyan Chen

chenshy@lzu.edu.cn

SPECIALTY SECTION

This article was submitted to
Functional Plant Ecology,
a section of the journal
Frontiers in Plant Science

RECEIVED 07 December 2022

ACCEPTED 17 February 2023
PUBLISHED 02 March 2023

CITATION

Chen J, Liu Z, Cui H, Song H, Wang J,
Gao H, Chen S, Liu K, Yang Z, Wang Y,
Wang X, Yang X, Meng L, An L, Xiao S and
Le Bagousse-Pinguet Y (2023) Direct and
indirect effects of dominant plants on
ecosystem multifunctionality.
Front. Plant Sci. 14:1117903.
doi: 10.3389/fpls.2023.1117903

COPYRIGHT

© 2023 Chen, Liu, Cui, Song, Wang, Gao,
Chen, Liu, Yang, Wang, Wang, Yang, Meng,
An, Xiao and Le Bagousse-Pinguet. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 02 March 2023

DOI 10.3389/fpls.2023.1117903
Direct and indirect effects
of dominant plants on
ecosystem multifunctionality

Jingwei Chen1, Ziyang Liu1, Hanwen Cui1, Hongxian Song2,
Jiajia Wang2, Haining Gao3, Shuyan Chen2*, Kun Liu1, Zi Yang2,
Yajun Wang1, Xiangtai Wang1, Xiaoli Yang1, Lihua Meng1,
Lizhe An2, Sa Xiao1 and Yoann Le Bagousse-Pinguet4

1State Key Laboratory of Grassland and Agro-ecosystems, College of Ecology, Lanzhou University,
Lanzhou, Gansu, China, 2Ministry of Education Key Laboratory of Cell Activities and Stress
Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 3College of Life
Science and Engineering, Hexi University, Zhangye, Gansu, China, 4Aix Marseille Univ, Centre national
de la recherche scientifique, Avignon Université, Institut de Recherche pour le Développement,
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Biodiversity is essential for the provision of multiple ecosystem functions

simultaneously (ecosystem multifunctionality EMF). Yet, it remains unclear whether

and how dominant plant species impact EMF. Here, we aimed at disentangling the

direct from indirect above- and belowground pathways by which dominant plant

species influence EMF. We evaluated the effects of two dominant plant species

(Dasiphora fruticosa, and the toxic perennial plant Ligularia virgaurea) with expected

positive and negative impacts on the abiotic environment (soil water content and

pH), surrounding biological communities (plant and nematode richness, biomass,

and abundance in the vicinity), and on the EMF of alpine meadows, respectively. We

found that the two dominant plants enhanced EMF, with a positive effect of L.

virgaurea on EMF greater than that of D. fruticosa. We also observed that dominant

plants impacted on EMF through changes in soil water content and pH (indirect

abiotic effects), but not through changes in biodiversity of surrounding plants and

nematodes (indirect biotic pathway). Our study suggests that dominant plants may

play an important role in promoting EMF, thus expanding the pervasive mass-ratio

hypothesis originally framed for individual functions, and could mitigate the negative

impacts of vegetation changes on EMF in the alpine meadows.

KEYWORDS

ecosystem multifunctionality, plant biodiversity, soil biodiversity, dominant plants,
alpine meadow
1 Introduction

Biodiversity is essential for the provision of multiple ecosystem functions

simultaneously (ecosystem multifunctionality; EMF, Hector and Bagchi, 2007), such as

litter decomposition, ecosystem production, food web stability, and climate regulation

(Van Der Heijden et al., 2008; Bodelier, 2011; Bardgett and Van Der Putten, 2014;
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Handa et al., 2014). While multiple facets of biodiversity can impact

on EMF (e.g. Flynn et al., 2011; Soliveres et al., 2016; Le Bagousse-

Pinguet et al., 2019; Le Bagousse-Pinguet et al., 2021; Yuan et al.,

2021), focusing solely on diversity stricto sensu ignores the

overwhelming influence of species dominance on ecosystem

functions (Grime, 1998; Garnier et al., 2004). According to the

mass-ratio hypothesis (Grime, 1998), the effects of plant species on

ecosystem functioning are proportional to plant biomass (Grime,

1998). However, this hypothesis was originally proposed for single

functions (Grime, 1998; Smith and Knapp, 2003; Garnier et al.,

2004), but yet remains less clear when focusing on EMF (Le

Bagousse-Pinguet et al., 2019). Determining the key role of

dominant species on EMF not only expands our fundamental

understanding of the Biodiversity-EMF relationships, but could

also help to prioritize relevant biodiversity attributes in

conservation programs (Balvanera et al., 2014; Brum et al., 2017).

Dominant species can impact on ecosystem functioning

through multiple pathways. On the one hand, dominant species

and their traits can affect directly individual ecosystem functions,

such as biomass production or nutrient cycling (e.g. Garnier et al.,

2004). For instance, species assemblages dominated by recalcitrant

species (i.e. the dominant species that exhibit high leaf lignin

concentration) have been shown to decrease EMF, particularly

the functions related to decomposition processes (Austin and

Ballare, 2010; Le Bagousse-Pinguet et al., 2021). On the other

hand, dominant species could also have indirect effects on

ecosystem functioning, i.e. through the changes in local above-

and belowground diversities. Dominant plant species can have

negative effects on plant growth and establishment (e.g. due to

asymmetric light competition, Grime, 1973), decreasing local plant

biodiversity (Hejda et al., 2021), and ultimately ecosystem

functioning (Livingstone et al., 2020). However, these species

could also have positive effects (i.e. facilitation, Bertness and

Callaway, 1994), and play as ecosystem engineers that enhance

abiotic conditions (e.g. soil water content and pH) in their vicinity

(Cavieres et al., 2014; Ellison, 2019). In these cases, dominant plants

could promote plant (Michalet et al., 2006; Le Bagousse-Pinguet

et al., 2014) and soil biodiversity and activity, including soil

bacterial (Hortal et al., 2015), and fungal diversity and abundance

(Delgado-Baquerizo et al., 2016b; Le Bagousse-Pinguet et al., 2021).

Disentangling the direct (positive and negative) from indirect

above- and belowground pathways by which dominant plant

species influence EMF remains poorly explored, although such an

integrative framework could contribute to the global understanding

of the impact of biodiversity on ecosystem functioning.

Finally, the mediating role of soil nematodes in the influence of

dominant plants on EMF has rarely been explored. Nematodes

include a wide variety of trophic groups, such as herbivores,

omnivores, predators, and microbial feeders, and are known to

play important roles in soil food webs (Ferris, 2010). Furthermore,

dominant plants can play a key role in regulating soil nematode

abundances (De Deyn et al., 2004) or their richness through

changes in understory plant and microbial diversity (Wang et al.,

2019b). Altogether, soil nematodes represent key organisms

influencing ecosystem functioning, e.g. by grazing on plant roots

(Yeates et al., 2009) or by regulating microbial communities, litter
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decomposition, and nutrient cycling (Yeates et al., 2009; Garcıá-

Palacios et al., 2016; Yeates and Coleman, 2021). Yet, exploring the

impacts of soil nematodes on EMF and their role in the indirect

pathways by which dominant plants influence EMF is essential for

maintaining high levels of ecosystem function in the context of

grassland vegetation change.

Previous studies have shown that soil pH and water content are

important drivers of soil biological communities (Fierer and

Jackson, 2006), and ecosystem functions or processes (e.g. soil

organic carbon accumulation, nitrogen mineralization, and plant

productivity) (Chen et al., 2013; Jing et al., 2015; Li et al., 2017).

Therefore, here we investigated the role of dominant plant species

on the abiotic environment (soil pH and water content), on

biological communities (surrounding plants, nematodes, and

microbial richness, abundances, and biomasses), and on the EMF

of grassland ecosystems using nine soil functions related with

biological productivity, nutrient cycling, and build-up of nutrient

pools. We focused on alpine grasslands because they cover 86% of

the Qinghai-Tibet Plateau (Wang and Cheng, 2001), are

biodiversity hot-spots (Bengtsson et al., 2019), and support the

provision of essential ecosystem services such as animal husbandry,

forage production or carbon sequestration (Clough et al., 2014;

Newbold et al., 2016). We used two common plant species with

potentially negative and positive effects on biodiversity and EMF:

Ligularia virgaurea Mattf. ex Rehder. & Kobuski. (Ligularia Cass,

Asteraceae) and Dasiphora fruticosa (L.) Rydb. (Dasiphora,

Rosaceae). L. virgaurea is a perennial herb widely distributed in

the alpine meadows of the Qinghai-Tibet Plateau, and it is a

poisonous weed plant (Wang et al., 2008) that can be fatal for

animals (Ma et al., 2006; Shi et al., 2011). D. fruticosa is a common

shrub of the alpine meadows within an elevation range from 2700 to

4500 m.a.s.l (Wang et al., 2017). D. fructicosa has been shown to

promote the survival of surrounding graminoids (Xu et al., 2010;

Michalet et al., 2014) or through indirect effects that promote

nematode abundance by increasing grass biomass (Wang et al.,

2018). However, these positive effects can be hidden by complex

indirect interactions among plant functional groups (Xu et al., 2010;

Michalet et al., 2014). We hypothesized that: (1) D. fruticosa would

increase and L. virgaurea would reduce the EMF; (2) dominant

plants would influence EMF through modifying the abiotic drivers,

such as soil water content and pH; (3) dominant species would also

indirectly affect EMF by influencing biodiversity, especially

soil nematodes.
2 Materials and methods

2.1 Study site

The experiment was conducted in the alpine grasslands of the

eastern Qinghai-Tibet Plateau, i.e. at the Gansu Gannan Grassland

Ecosystem National Observation and Research Station in Maqu

(33°40′N, 101°51′E) at 3550 m.a.s.l, Gansu, China. The mean

annual temperature is 1.2°C, with the lowest temperatures

occurring in January (-10°C) and the highest in July (11.7°C).

The mean annual precipitation reaches 564 mm, mostly
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concentrated from May to September. Yaks have been grazing the

alpine grassland in the study area since 1999, with a density of 1.6

head ha-1 (Hu et al., 2015). Vegetation did not experience significant

degradation over the least 20 years. The vegetation cover of the

study site is dominated by the shrub Dasiphora fruticosa (Rosaceae)

and Ligularia virgaurea (Asteraceae), but also includes other

perennial plant species such as Carex atrofusca (Cyperaceae),

Agrost is hugoniana (Poaceae) , Euphorbia altot ibet ica

(Euphorbiaceae) and Halenia elliptica (Gentianaceae) (See

Supplementary Table 1 for more information about each

plant species).
2.2 Experimental design

Our observational design was set up in early June 2016 (See

Supplementary Figure 1). Fifteen blocks were set up within a

homogenous and flat alpine grassland landscape, which is one of

the representative landscape types of the Tibetan Plateau and the main

typical habitat of the distribution ofD. fruticosa and L. virgaurea (Chu

et al., 2014; Qian et al., 2022). Two hundred individuals of D. fruticosa

could be observed (25% of the total cover), and thousands of L.

virgaurea (15% of the cover) in this landscape. Each block included 3

plots of 30 cm × 30 cm: one grassland plot including the dominant

shrub D. fruticosa, one including the dominant poisonous weed L.

virgaurea and one grassland control without D. fruticosa or L.

virgaurea. The canopy size of each shrub was around 50 cm ×

70 cm in our study, so to ensure that the sample plot was

completely under the canopy, we set up a 30 cm × 30 cm plot. The

dominant plant represented the center of the plot. Altogether, our

study included a total of 45 plots.
2.3 Sampling and measurement

In each plot, we collected a composite soil sample, resulting from

three sub-samples (4 cm diameter) randomly taken by a soil auger at

15 cm depth. We mixed each composite soil sample and removed the

gravel. We divided the composite soil samples into two replicates, and

stored them at 4°C: one replicate was used to extract nematodes, and

the other to measure soil physicochemical properties.

We measured 9 soil variables that were uncorrelated with each

other (See Supplementary Figure 2), and together constitute good

proxies for biological productivity, nutrient cycling, and nutrient

pools establishment (Bowker et al., 2013; Soliveres et al., 2016;

Delgado-Baquerizo et al., 2016a; Wang et al., 2019a): soil nitrate

(NO3
-), soil ammonium (NH4

+), soil organic carbon (SOC), soil

total phosphorus (TP), soil total nitrogen (TN), urease (URE),

phosphatase (PHO), invertase (INV), protease (PRO).

We measured soil water content (SWC) by taking 5 g fresh soil

and placing them in an oven at 90°C for 48 h until constant weight.

After removing plant residues and gravel, the remaining soil was

air-dried (avoiding direct sunlight), and then sieved (aperture of

0.25 mm). Soil pH was quantified in a 1:2.5 soil: deionized water

slurry using a pH meter (PHSJ-3F, Shanghai INESA Scientific
Frontiers in Plant Science 03
Instrument Co., Ltd, China). TP and TN were digested by

concentrated H2SO4, followed by Mo-Sb antispetrophotography

and semi micro-Kjeldahl (Bao, 2000) with an auto chemistry

analyzer (SmartChem 200, AMS Alliance, Italy). SOC was

determined following the wet oxidation method. Soil NH4
+ and

NO3
- were extracted using 2 M KCl (1:10 soil: solution ratio) and

analyzed with an auto chemistry analyzer.

The activity of URE was measured by the reaction of urease

enzyme ammonia with phenol-sodium hypochlorite in an alkaline

medium (Huang et al., 2015). The activity of INV was measured by

using the dinitrosalicylic acid method (Asare-Brown and Bullock,

1988). PHO activity was determined by using disodium diphenyl

phosphate colorimetry (Tabatabai and Bremner, 1969). Ninhydrin

colorimetry was used to determine PRO activity (Watanabe and

Hayano, 1995).
2.4 Biodiversity indices

We focused on plant species richness, biomass, and abundance

as potential aboveground indirect biotic drivers, as they are known

to have an impact on EMF (e.g. Maestre et al., 2012; Soliveres et al.,

2016). In each plot, all herbaceous plants were thus identified at the

species level to calculate the plant richness. We also counted the

number of each individual plant species to evaluate the abundance

of aboveground plant communities and then harvested per species

to assess the aboveground biomasses. The plant material was oven-

dried for 48 h at 80 ° before weighing. Note that the Shannon index

of plant diversity was also calculated. However, this index was

further removed from subsequent analyses due to high correlation

with plant richness (r = 0.8, Supplementary Figure 3).

We also considered the richness, biomass, and abundance of

nematodes as potential indirect soil biotic drivers of dominant plant

species on EMF. We used the modified Baermann wet funnel

technique to extract nematodes from 50 g. of fresh soil (Liu et al.,

2008). We identified all nematodes in each sample to genus/species

level and converted nematode abundances to the number of

individuals per kg. of dry soil (ind. kg-1 dry soil). We also

calculated the Shannon index of nematode diversity. However,

this index was further removed from subsequent analyses due to

high correlation with nematode richness (r = 0.9, Supplementary

Figure 3). We finally measured the maximum width and length of

all nematodes observed. We used Andrassy’s formula (Andrássy,

1967) to estimate nematode biomass:

Weightnematode(mg) =
W2ðmmÞ
1:6� 106

� L ðmmÞ eq: 1;

where W is the maximal width of nematodes and the L is

their length.

Finally, we considered microbial C and N biomasses as proxies

of the C and N sources in the systems (Sanaullah et al., 2011). They

were measured based on the Chloroform fumigation extraction

method (Brookes et al., 1985). Then a microbial C:N biomass ratio

was calculated and used as a surrogate of ecosystem productivity

and soil fertility (Sanaullah et al., 2011; Cheng et al., 2020).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1117903
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1117903
2.5 Multifunctionality indices

We evaluated EMF using both the averaging (Mouillot et al.,

2011) and the multiple threshold approaches (Byrnes et al., 2014),

which allowed us to assess whether multiple functions are

simultaneously performing at high levels, and to consider

potential trade-offs between the functions assessed (Le Bagousse-

Pinguet et al., 2019; Le Bagousse-Pinguet et al., 2021). The averaged

EMF index (EMFA) was calculated using each of the 9 soil variables

(SOC, TN, TP, NH4
+, NO3

-, URE, PRO, PHO, INV). We scaled the

9 variables to range from 0 to 1 with the formula:

f (x) =
xi − xmin  

xmax − xmin
eq:2;

where x is the value of the function with its maximum (xmax)

and minimum (xmin) values measured, then we averaged the

standardized variables to obtain the EMFA for each plot. We also

computed EMF-threshold values of 25% (MFT25), 50% (MFT50),

75% (MFT75), according to Byrnes et al. (2014).
2.6 Statistical analyses

Generalized linear mixed modeling (GLMM) was used to

evaluate the effects of D. fruticosa, L. virgaurea, and the control

on EMF, and on plant and nematode diversity and biomass and soil

properties, with the treatments as fixed effects, and block as a

random effect. The uniformity and dispersion of these models were

checked and adjusted accordingly. The beta and poisson generalized

linear models were used for proportional and counting data,

respectively (Douma and Weedon, 2019). We also used

“compois” or “genpois” distribution due to the presence of

underdispersion (i.e. variance < mean) in the data (Zuur et al.,

2007). Tukey’s HSD test was used for post-hoc analyses to

determine significant differences between treatments.

Linear mixed effect models (LMM) were used to evaluate the

impacts of abiotic and biotic drivers on EMF. We used the EMF

indices as response variables, and soil (pH, SWC, and their

quadratic term) and biotic attributes (dominant plants; plant

richness, abundance, and biomass; nematode richness, abundance,

and biomass; microbial biomass C:N) as predictors, and included

the block as a random effect. Note that since some diversity index do

not necessarily change linearly along environmentally strong

gradients (e.g. soil pH and water content), we considered the

quadratic term of soil pH and water content. Before regression

analysis, the predictors highly correlated (r > 0.7) and the variance

inflation factor (VIF) value of more than 10, such as plant and

nematode Shannon diversity, were removed from all analyses (See

Supplementary Figure 3 and Supplementary Table 2).

All response variables and predictors were Z-scored

(standardized deviated) prior to analyses to account for parameter

estimates within a comparable scale. To assess the relative effect of

each predictor on EMF, we used a method similar to the variance

decomposition. In short, the method can be simply calculated the

ratio between the standardized regression coefficients of predictors

and the sum of all standardized regression coefficients in the models
Frontiers in Plant Science 04
(Gross et al., 2017; Yuan et al., 2021). We also repeated these

analyses without random effect to ensure the robustness of our

results (See Supplementary Table 3).

For each EMF index, a model selection procedure was used to

select the most parsimonious set of predictors (Le Bagousse-Pinguet

et al., 2017). We first generated all possible combinations of

predictors, and then selected the set of best-supported models

within a DAICc of 2 (See Supplementary Table 4). Before

analysis, we scaled all predictors using the Z-scored (standardized

deviated) method (Le Bagousse-Pinguet et al., 2017).

Finally, piecewise structural equation modeling (pSEM) was

used to test for the direct and indirect effects of L. virgaurea and D.

fruticosa on EMF through changes in abiotic and biotic attributes.

We set up an a-priori models, while only considering dominant

plants, and the significant biotic and abiotic indirect drivers found

with the linear modeling procedure (Supplementary Figure 5). We

thus considered the dominant plant type D. fruticosa or L.

virgaurea) as predictors, SWC and pH as indirect abiotic drivers,

and plant and nematode richness as indirect biotic drivers of EMF.

The model fits of pSEM were assessed using Shipley’s test of d-

separation through Fisher’s C statistic (Lefcheck, 2016).

Our data analyses were conducted in R software, ver. 4.0.3 (R

core Team, 2020). The calculation of EMF indices was conducted

using the getStdAndMeanFunctions function in the ‘multifunc’

package (Byrnes et al., 2014). Shannon diversity was calculated

using the diversity function in the ‘vegan’ package (Oksanen et al.,

2019). The GLMMs were performed using the glmmTMB function

with a genpois link (i.e. count data for the underdispersion), or with

a beta link (i.e. proportional data) in the ‘glmmTMB’ package

(Brooks et al., 2017) and the lmer (i.e. normal data) and glmer

function with a poisson link (i.e. count data for no dispersion) in the

‘lme4’ package (Bates et al., 2015). The model diagnosis of linear

mixed models was conducted using the testUniformity function in

the ‘DHARMa’ package (Hartig, 2020), and the testDispersion

function in the ‘DHARMa’ package (Hartig, 2020) for the

dispersion test. The dredge function in the ‘MuMIn’ package

(Bartoń, 2020) for the model selection procedure. The marginal

means (EMMS) of GLMMs and LMMs were estimated using the

emmeans function in package ‘emmeans’ (Lenth et al., 2020). The

pSEMs were conducted using the psem function in the R package

‘piecewiseSEM’ (Lefcheck, 2016). Package ‘ggplot2’ (Wickham,

2016) was used to plot figures.
3 Results

EMF indices strongly varied in response to dominant plants

(Figure 1). The allopathic L. virgaurea significantly increased all

EMF indices compared to the control plots (Figures 1A–D). This

was particularly true for individual functions such as SOC, TN,

NH4+, and for most of the enzymes considered (See Supplementary

Figures 4A, C, E–I). The facilitative speciesD. fruticosamostly led to

intermediate values of EMF indices (Figures 1A, C, D), although a

significant increase in EMF was observed when the ecosystem was

performing low (MFT25: Figure 1B). This pattern mostly occurred

because the effect of D. fruticosa on individual ecosystem functions
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were not consistent, and could be either positive (SOC, TN, NH4+,

INV) (See Supplementary Figures 4A, C, E, F) or neutral (TP, NO3
-,

URE, PHO) (See Supplementary Figures 4B, D, H, I).

We found that dominant plants had contrasted effects on the

indirect biotic and abiotic drivers considered (Figures 1E–M). D.

fruticosa significantly decreased plant biomass and abundance

(Figures 1F, G). L.virgaurea had a negative effect on plant

abundance (Figure 1G), a positive effect on nematode abundance

(Figure 1J), and a neutral effect on plant biomass (Figure 1F)

compared to the control plots. In contrast, dominant plants had

no impact on the richness of understory plant and nematode

(Figures 1E, H), nematode biomass (Figure 1I), and microbial

biomass C:N ratio (Figure 1K). Finally, dominant plants had

significant effects on the abiotic attributes considered, particularly

by significantly decreasing the soil pH (Figure 1L). D. fruticosa

furthermore had a significant negative effect on SWC, while SWC

under L. virgaurea remained as high as in the control

plots (Figure 1M).

The multiple linear regression models explained a fair amount

of variation in EMF, i.e. ~68%, 35%, 37%, and 43% of variations in

EMFA, MFT25, MFT50, and MFT75 respectively (Figure 2). The

dominant plants D. fruticosa and L. virgaurea together explained
Frontiers in Plant Science 05
on average ~11% of the variation in EMF (5%~20%). In

comparison, the abiotic attributes considered explained ~20% of

the variations in EMF (2~38%), and the cumulative above- and

belowground attributes accounted for ~9% (3%~16%) and 7%

(3%~11%) of the variations in EMF respectively.

L. virgaurea, SWC, soil pH, and plant richness were the main

predictors of EMF (Figure 2A). However, these effects were highly

dependent on the level of performance of the system. D. fruticosa

and L. virgaurea positively affected EMF at the low level of

ecosystem performance (MFT25). Plant richness had a negative

effect on EMF, specifically at the higher level of EMF (MFT75).

Increasing SWC enhanced EMF, specifically at the higher level of

performance (MFT75), and soil pH also reduced EMF in the case of

higher levels of ecosystem performance (MFT50 and MFT75).

The pSEMs explained 52%, 39%, 49%, and 35% of the variations

in EMFA, MFT25, MTT50, and MFT75 respectively (Figure 3). From

the pSEMs results, we can find that the impacts of D. fruticosa and

L. virgaurea on EMF were both a promotion effect, irrespective of

the EMF threshold considered, and the promotion effect of L.

virgaurea was greater than that of D. fruticosa (except MFT25).

The pSEMs showed that L. virgaurea can directly enhance EMFA
and MFT25, and D. fruticosa significantly improved MFT25 directly.
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FIGURE 1

The effects of dominant plants on EMFA (A), MFT25 (B), MFT50 (C), MFT75 (D), plant richness (E), plant biomass (F), plant abundance (G), nematode
richness (H), nematode biomass (I), nematode abundance (J), Microbial biomass C:N ratio (K), soil pH (L), soil water content (M). Different lowercase
letters within panels indicate significant (p-value < 0.1) differences between treatment means, after using Tukey’s method to correct for multiple
comparisons. Error bars represent means ± SE (NS, p> 0.05; *p <0.05; **p <0.01; ***p <0.001).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1117903
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1117903
Meanwhile, both D. fruticosa and L. virgaurea indirectly affected the

EMF through the abiotic pathway. The pSEMs also showed indirect

effects of L. virgaurea on EMFA and MFT50via soil pH (Figures 3A,

E), while D. fruticosa influenced EMFA indirectly through soil pH

and SWC (Figure 3A). We also considered other biological

pathways, such as nematode and plant abundance (See

Supplementary Figure 6), nematode, plant, and microbial biomass

(See Supplementary Figure 7). The results also showed that the

dominant plants affected EMF mainly through the direct path and

abiotic indirect path, and the promotion effect of L. virgaurea on

EMF was higher than that of D. fruticosa.
4 Discussion

Here we aimed at disentangling the direct from indirect abiotic

and biotic (above- and belowground diversities) pathways by which

dominant plant species influence EMF. Our results indicated that

the two dominant plants overall promoted the EMF of alpine

grasslands. Our result brings new evidence on the importance of

dominant plants for EMF and thus expands to multiple ecosystem

functions simultaneously the mass-ratio hypothesis (Grime, 1998),

originally framed for individual functions (Smith and Knapp, 2003;

Garnier et al., 2004).
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The positive effect of dominant plants on EMF occurred

irrespective of their expected (positive and negative) effects. Two

main reasons may explain this pattern. First, dominant plants can

alter the spatial allocation of resources (e.g. fertilizer island effects)

(Maestre and Puche, 2009; Eldridge et al., 2011; Ochoa-Hueso et al.,

2018). For instance, Soliveres and Eldridge (2014) found that

increasing shrub encroachment did not impede ecosystem

functions, but instead had positive effects on plant and soil

properties. Second, grazing may have played an important role in

this process (Daryanto et al., 2013; Soliveres and Eldridge, 2014).

Upon herbivore trampling effects on soil compaction and water

redistribution that could reduce nematode diversity and ecosystem

functioning (Castellano and Valone, 2007; Allington and Valone,

2010; Andriuzzi andWall, 2017), the unexpected facilitative effect of

L. virgaurea on EMF may arise from mechanisms of associational

avoidance (see Milchunas and Noy-Meir, 2002 for a review). On the

other hand, and according to the attractant decoy hypothesis

(Milchunas and Noy-Meir, 2002), herbivores preferentially

consume palatable plants, such as grasses, thereby altering the

aboveground plant community composition of grasslands

(control) and affecting nutrient input and decomposition (Abule

et al., 2005; see Hempson et al., 2015 for a review). We acknowledge

that our approach does not allow us to fully conclude on the

mechanisms explaining the observed patterns, but this overall
D
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C

FIGURE 2

The effects of biotic and abiotic factors on EMFA (A), MFT25 (B), MFT50 (C), MFT75 (D). Standardized regression coefficients of model predictors,
associated 95% confidence intervals and relative importance of each factor, expressed as the percentage of explained variance. The R2 of the
averaged model and the p-value of each predictor are given as: *p < 0.05; **p < 0.01; ***p < 0.001. lig, L. virgaurea; das, D. fruticosa; SWC, soil
water content; pH, soil pH; neA, nematode abundance; neR, nematode richness; neB, nematode biomass; MB, microbial biomass; C, N ratio; plantA,
plant abundance; plantR, plant richness; plantB, plant biomass.
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positive effect clearly stimulates the need for further research on the

impact of dominants on EMF.

Contrary to the first hypothesis, we did not observe any positive

effects of D. fruticosa on EMF indices (except MFT25), although it is

often regarded as a nurse species (Michalet et al., 2016; Wang et al.,

2017). Our result may relate to the environmental conditions under

which our experimental design was performed. Species interactions

can shift from competitive to facilitative interactions from low to

moderate stress environmental conditions (Bertness and Callaway,

1994). Facilitation then diminishes from moderate to highly

stressed conditions (Michalet et al., 2006; Michalet et al., 2014).
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In this context, and depending on the environmental conditions,

the dominant plant D. fruticosa could have various effects on local

species diversity (Le Bagousse-Pinguet et al., 2012; Liancourt

et al., 2017).

The positive effects of L. virgaurea on EMF were greater than

that of D. fruticosa, to significantly increase each component of

EMF (e.g. soil organic carbon, total nitrogen, ammonium, and for

most of the enzymes considered). L. virgaurea has been found to

increase total soil organic carbon concentrations, soil organic C:N

ratio, and enzymatic activity (Shi et al., 2011), or root secretions to

promote multiple bacterial groups (Wang et al., 2022). Also,
D
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FIGURE 3

Structural equation model assessing the direct and indirect effects of dominant plants on EMFA (A), MFT25 (C), MFT50 (E) and MFT75 (G). Numbers
adjacent to arrows are indicative of the effect size of the relationship. Only significant and marginally significant pathways were shown. Significance
levels are as follows: •, p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001. The right panel of the figure showed that total, direct and indirect standardized
effects of the different drivers of EMFA (B), MFT25 (D), MFT50 (F) and MFT75 (H).
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leaching from allelopathic plants such as L. virgaurea can also

improve soil conditions in their vicinity (Hierro and Callaway,

2003). However, our results do not call for their expansion as a

potential standardization of management. Previous studies have

also found that the expansion of toxic weeds could reduce grassland

areas (Van Auken, 2009), thus limiting the access to palatable food

sources for herbivores (Ma et al., 2006). Therefore, and while

beneficial to soil functions, this species may have negative effects

on key functions on which human society depends. These

antagonistic effects warn for the need of comprehensive efforts

when formulating management policies to deal with the expansion

of toxic weeds rather than a ‘one size fits all’management approach.

Our results also showed that dominant plants mostly impacted

on EMF through changes in soil pH and water content. Soil pH is

known to be an important driver impacting on microbial

communities (Lauber et al., 2009) and EMF (Delgado-Baquerizo

et al., 2016b; Luo et al., 2018). Furthermore, soil pH was highly

related to soil organic carbon, and soil acidification could

contribute to soil organic carbon accumulation, thereby

improving the ability of grassland ecosystems to maintain

multiple functions (Jing et al., 2015). Soil water content had an

indirect positive effect on ecosystem functions, which may relate to

the increase of water holding capacity, further promoting nutrient

cycling and grassland productivity (Guo et al., 2012).

Contrary to expectation, we found negligible indirect biotic

effects, indicating that dominant plants weakly affected the EMF of

alpine grasslands through changes in the richness of plants and key

soil organisms such as nematodes. Furthermore, the effects of plant

richness were only observed at high levels of ecosystem

performance. Our results align with the view of considering other

facets of biodiversity such as functional and phylogenetic diversity

facets, which have been found to contribute more to EMF than

taxonomic richness only (Flynn et al., 2011; Gross et al., 2017; Le

Bagousse-Pinguet et al., 2019; Wen et al., 2019; Le Bagousse-Pinguet

et al., 2021). Also, the absence of effect of belowground biodiversity

may arise from the consideration of nematodes only as an indicator

of belowground biodiversity, while multiple trophic levels are

needed to promote EMF (Jing et al., 2015; Schuldt et al., 2018).

The reason may be that the soil functions (e.g. soil enzymes) we

selected may be more related to abiotic factors (e.g. soil pH and

water content) than to nematode diversity. Studies on the

relationship between soil species richness and ecosystem function

also show that for nutrient cycling, it depends to some extent on

species traits rather than species richness (Heemsbergen et al., 2004;

Nielsen et al., 2011). In addition, there may be trade-offs in the

relationship between nematodes of different feeding types and EMF.

For example, Du et al. (2022) found that bacterial feeders were

positively correlated with EMF, while fungal feeders and

omnivorous feeders were negatively correlated with EMF.
5 Conclusions

Our findings provided evidence that contrasting dominant plants

such as D. fruticosa and L. virgaurea can increase ecosystem

multifunctionality in the alpine meadows, although our “one-shot”
Frontiers in Plant Science 08
study should be complemented by longer-term and dynamical

approaches. Finally, our results also showed that these effects not

only arise from direct, but also indirect abiotic pathways through

changes in soil conditions. Altogether, our study suggested that

dominant plants may play a key role in promoting multiple

ecosystem functions simultaneously, and could mitigate the negative

impacts of vegetation changes on EMF in the alpine meadows.
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SUPPLEMENTARY FIGURE 1

The schematic diagram of experimental design.

SUPPLEMENTARY FIGURE 2

Pearson’s correlation coefficients between each individual function and their

relationships with EMF indices. Red to black color indicates negative to positive
correlations. The number represent correlation coefficient. TP: soil total

phosphatase; TN: soil total nitrogen; SOC: soil organic carbon; NO3
-: soil

nitrate; NH4
+: soil ammonium; INV: invertase; PRO: protease; URE: urease;

PHO: phosphatase; EMFA: averaged multifunctionality index; MFT25: 25%

threshold-based multifunctionality index; MFT50: 50% threshold-based
multifunctionality index; MFT75: 75% threshold-based multifunctionality index.

SUPPLEMENTARY FIGURE 3

Pearson’s correlation coefficients betweenpairs of abiotic and biotic factors. Red to black
color indicates negative to positive correlations. The number represent correlation

coefficient. lig: L. virgaurea; das: D. fruticosa; SWC: soil water content; pH: soil pH;

plantA: plant abundance; plantR: plant richness; plantB: plant biomass; plantS: plant
Shannondiversity. neA: nematode abundance; neR: nematode richness; neB: nematode

biomass; neS: nematode Shannon diversity; MB:microbial biomass C:N ratio.

SUPPLEMENTARY FIGURE 4

The effects of dominant plants on each of ecosystem functions. Different

lowercase letters within panels indicate significant (NS: p> 0.05; *: p <0.05; **:
Frontiers in Plant Science 09
p <0.01; ***: p <0.001) differences between treatment means, after using
Tukey’s method to correct for multiple comparisons. Error bars represent

means ± SE. For abbreviations, see Supplementary Figure 2.

SUPPLEMENTARY FIGURE 5

An a-priori conceptual model of piecewise structural equation modeling.

SUPPLEMENTARY FIGURE 6

Structural equation model assessing the direct and indirect effects of

dominant plants on averaged ecosystem multifunctionality (A), 25%

threshold-based (C), 50% threshold-based (E) and 75% threshold-based (G)
ecosystem multifunctionality via abiotic factors (soil water content and pH)

and biotic factors (nematode and plant abundance). Numbers adjacent to
arrows are indicative of the effect size of the relationship. Only significant and

marginally significant pathways were shown. Significance levels are as
follows: •, p < 0.10; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The right panel

of the figure showed that total, direct and indirect standardized effects of the

different drivers of EMF.

SUPPLEMENTARY FIGURE 7

Structural equation model assessing the direct and indirect effects of

dominant plants on averaged ecosystem multifunctionality (A), 25%
threshold-based (C), 50% threshold-based (E) and 75% threshold-

based (G) ecosystem multifunctionality via abiotic factors (soil water

content and pH) and biotic factors (nematode, plant and microbial
biomass). Numbers adjacent to arrows are indicative of the effect size

of the relat ionship. Only significant and marginal ly s ignificant
pathways were shown. Significance levels are as follows: •, p < 0.10;

*, p < 0.05; **, p < 0.01; ***, p < 0.001. The right panel of the figure
showed that total, direct and indirect standardized effects of the

different drivers of EMF.
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