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Résumé – Le problème de complémentarité linéaire (LCP) désigne une classe de problèmes d’optimisation linéaire. Motivés par une question
issue de l’écologie théorique, nous étudions les grands systèmes d’équations différentielles couplées de Lotka-Volterra (LV), où l’interaction entre
équations est modélisée par une grande matrice aléatoire. Après avoir montré qu’un équilibre stable d’un tel système satisfaisait un problème
de LCP, nous analysons ses propriétés statistiques en adaptant des techniques issues de l’Approximate Message Passing (AMP), une famille
d’algorithmes et techniques développés par Donoho, Montanari et al. ces 15 dernières années. Nous retrouvons ainsi des résultats de Bunin
et Galla, établis à l’aide de techniques de physique théorique. Ces concepts de LCP et d’AMP présentent un intérêt pour notre communauté,
au-delà de leur utilisation spécifique dans un contexte d’écologie théorique.

Abstract – The Linear Complementarity Problem (LCP) is a class of problems from mathematical optimization. Motivated by a question from
theoretical ecology, we study large Lotka-Volterra (LV) systems of coupled differential equations where the interaction between equations is
modeled by a large random matrix. After proving that the stable equilibrium of such a system satisfies a LCP, we analyze its statistical properties
by adapting techniques from Approximate Message Passing, a series of techniques and algorithms developed by Donoho, Montanari et al. these
last 15 years. In particular, we recover results established by Bunin and Galla at a physical level of rigor. We believe that these LCP and AMP
concepts are of interest to the Statistical Signal Processing community beyond their specific application to a problem of theoretical ecology.

1 Introduction and main result
Large Lotka-Volterra (LV) systems of coupled differential equa-
tions, where the coupling between the differential equations is
made out of a large non-Symmetric random matrix, are popu-
lar in theoretical ecology to model, study and understand food-
webs and other large systems in interaction. Of interest is the
existence of a stable equilibrium point and its statistical proper-
ties: proportion of positive components (representing surviving
species) at equilibrium, distribution of these components, etc.

After recalling the formal definition of a Linear Complemen-
tarity Problem, we shall prove that the stable equilibrium of
a LV system is the solution of a LCP based on the LV sys-
tem’s parameters. Based on recent techniques borrowed from
Approximate Message Passing [10, 12], we present a rigorous
analysis of the statistical properties of a LCP solution and re-
cover results established by Bunin [4] and Galla [5] at a physi-
cal level of rigor.

This work extends to a non-Symmetric setting the results of
Akjouj et al. [15].

Linear Complementarity Problem. The Linear Complemen-
tarity Problem (LCP) is a class of problems from mathemat-
ical optimization which in particular encompasses linear and
quadratic programs; standard references are [8, 9]. Given a
n × n matrix M and a n × 1 vector q, the associated LCP

denoted by LCP (M, q) consists in finding two n × 1 vectors
z,w satisfying the constraints:

z ≥ 0 ,

w = Mz + q ≥ 0 ,

wTz = 0 (⇔ wkzk = 0 ; 1 ≤ k ≤ n) .

(1)

Since w can be inferred from z, we denote z ∈ LCP (M, q) if
(w, z) is a solution of (1).

Lotka-Volterra system. Large Lotka-Volterra (LV) systems
of differential equations are widely used in various scientific
fields involving complex dynamical systems with interacting
components, such as biology, ecology, chemistry, etc. [1, 2].
A LV system represents a good trade-off between a fairly real-
istic model and a mathematically tractable one. In the sequel,
we use the ecological terminology and refer to the interacting
components as species.

A large LV system is a system of differential equations:

dxk(t)

dt
= xk(t)

rk − θxk(t) +
1

α
√
n

∑
`∈[n]

Ak`x`(t)

 ,

(2)
where k ∈ [n] := {1, · · · , n}.

The number n represents the number of species within the
system, the unknown vector x = (xk)k∈[n] is the n× 1 vector



the components of which are solutions to (2) and evolves with
time t > 0 according to this dynamics. Quantity xk(t) repre-
sents the abundance of species k at time t, a value representing
the population size of the species.

In Eq. (2), rk represents the intrinsic growth rate of species
k; we denote by r = (rk) the n×1 vector of these rates. Value
θ is an intraspecific competition coefficient, and Ak` is the per
capita effect of species ` on species k (interactions).

Hereafter, we focus on the idealized model θ = 1:

dxk
dt

= xk

(
rk − xk +

(Ax)k
α
√
n

)
, (3)

In an ecological or biological context (think of animal species
interacting in a lake or a remote valley, or the human micro-
biome), it is often extremely difficult and/or expensive to es-
timate precisely each interaction strength Ak`. In the absence
of any prior information, these interactions can be modeled as
random (see for instance [3]), which we assume in the sequel:

Assumption 1. matrix (Ak`)k,`∈[n] is a n× n matrix of inde-
pendent and identically distributed (i.i.d.) standard Gaussian
N (0, 1) random variables (RV).

Notice that each variable Ak` is multiplied by the normaliz-
ing factor (α

√
n)−1. The positive number α is an extra param-

eter reflecting the interaction strength.

The equilibrium of a LV system satisfies a LCP. A key el-
ement to understand the dynamics of (2) is the existence of an
equilibrium x∗ = (x∗k)k∈[n] such that

x∗k

(
rk − x∗k +

(Ax∗)k
α
√
n

)
= 0 ∀k ∈ [n] , (4)

and the study of its stability, that is the convergence of a solu-
tion x to the equilibrium x∗: x(t) −−−→

t→∞
x∗ if x(0) is suffi-

ciently close to x∗.
It is well known that for LV equations, the fact that x(0) > 0

(componentwise) implies that x(t) > 0 for every t > 0, but
one can have some components xk(t) of x(t) vanishing to zero.
We hence only consider non-negative equilibria x∗ ≥ 0.

Relying on standard properties of dynamical systems, see
for instance [7, Theorem 3.2.5], a necessary condition for the
equilibrium x∗ to be stable is that

rk − x∗k +
(Ax∗)k
α
√
n
≤ 0 . (5)

As we shall see, this casts the problem of finding a non negative
equilibrium into the class of LCP.

Denote Ǎ = A
α
√
n

. Gathering the constraints of the equilib-
rium x∗ defined in (4) and (5), we get:

x∗ ≥ 0 ,

rk − x∗k + (Ǎx∗)k ≤ 0 ,

xk
(
rk − x∗k + (Ǎx∗)k

)
= 0 .

Otherwise stated, x∗ ∈ LCP (I − Ǎ,−r).

Based on Takeuchi and Adachi’s theorem [7], we have proved
in [13] (see also [14]) thatLCP (I−Ǎ,−r) eventually admits a
unique solution if α >

√
2 and that this equilibrium is globally

stable for the system (2), for any initial condition x(0) > 0.
An interesting and highly non-trivial question is the follow-

ing: is it possible (and if so, how?) to extract statistical infor-
mation for x∗ from the random matrix model of Ǎ? As we shall
see, the answer is positive and relies on Approximate Message
Passing techniques.

Main result: statistical properties of the LCP solution. In
the sequel, we assume that α >

√
2. This implies that for

a given realization ω, there exists N(ω) such that LCP (I −
Ǎω,−r) admits a unique solution x∗ = (x∗i )i∈[n] for any n ≥
N(ω). Denote by W2−−→ the 2-Wasserstein convergence of prob-
ability measures, that is the convergence for every test function
f continuous and sub-quadratic, i.e. |f(x)| ≤ K(1+ |x|2). We
also assume that there exists a nonnegative real random vari-
able r satisfying P(r > 0) > 0 such that

µr =
1

n

∑
i∈[n]

δri
W2−−−−→
n→∞

L(r) . (6)

We finally assume that r is independent from A.
We are now in position to state the main theorem:

Theorem 1. Let α >
√

2. Denote by µx∗
the empirical mea-

sure
µx∗

=
1

n

∑
i∈[n]

δx∗
i
.

Let Z ∼ N (0, 1) and consider the following fixed point equa-
tion with unknown σ > 0:

σ2 =
1

α2
E(σZ + r)2+ where x+ = max(x, 0) . (7)

Then this equation admits a unique solution σ > 0 and there
exists a random variable Y D= (σZ + r)+ such that

µx∗ W2−−−−→
n→∞

L (Y ) a.s.

Otherwise stated, for every test function f continuous and sub-
quadratic, a.s.

1

n

∑
i∈[n]

f(x∗i ) −−−−→
n→∞

Ef(Y ) .

Remark 1. 1. The set of test functions contains the con-
tinuous bounded functions, so that (a.s.) µx∗

converges
weakly to the distribution of Y .

2. As will be illustrated by the simulations, (see Fig 1), the
quantity P{σZ+r > 0} is a good proxy for the empirical
proportion of surviving species

#{x∗i > 0}
n

=
1

n

∑
i∈[n]

1[0,∞)(x
∗
i )

(although the theorem does not provide a theoretical guar-
antee since the function x 7→ 1[0,∞)(x) is not continu-
ous).



3. Theorem 1 provides information on the distribution of
surviving species. On the one hand, one can easily prove
that the distribution L(Y | Y > 0) admits the density:

fY |Y >0(y) =
1(y>0)

P(σZ + r > 0)

∫
e−

(y−r)2

2σ2

σ
√

2π
Pr(dr) .

(8)
On the other hand, one can plot the histogram of the
positive components x∗i > 0 of x∗. Simulations illustrate
a good matching between the theoretical distribution and
its empirical counterpart, see Figure 2.

2 Elements of proof
A fixed point equation associated to the LCP. Let y =
(yi)i∈[n] ∈ Rn and denote by y± = (yi±)i∈[n], where x+ =
max(x, 0) and x− = max(−x, 0). Notice that y = y+ − y−
and that yi+ · yi− = 0 for i ∈ [n].

Proposition 2. Let y ∈ Rn the solution of the fixed-point equa-
tion

y = Ǎy+ + r . (9)

Then y+ ∈ LCP (I − Ǎ,−r).
Reciprocally, let x∗ ∈ LCP (I − Ǎ,−r). Denote by

y− = (I − Ǎ)x∗ − r ≥ 0 ,

then y = x∗ − y− is a solution to Eq. (9)

Proof. Suppose that y satisfies (9). Replacing y by y+ − y−
in (9), we obtain (I− Ǎ)y+−r = y− ≥ 0. Since y+ ≥ 0 and
y+i · y

−
i = 0, we have y− ∈ LCP (I − Ǎ,−r). The converse

is immediate.

An iterative scheme to build the LCP solution. Consider
the following iterative scheme{

z0 = 0,

zp+1 = Ǎ (zp + r)+ = A√
n

(zp+r)+
α .

(10)

The following result can be established by induction.

Theorem 3. Let p ∈ N be fixed and let z1, · · · , zp be defined
by (10). Recall that r satisfies (6) and is independent from A.
Then

µ(z1,··· ,zp) =
1

n

∑
i∈[n]

δ(z1i ,...,z
p
i )

W2−−−−→
n→∞

(Z1, · · · , Zp) a.s.,

where (Z1, · · · , Zp) is a centered Gaussian vector whose co-
variance matrix is given by

EZiZj =
1

α2
E(Zi−1 + r)+(Zj−1 + r)+ for i, j ∈ [n] ,

where by convention, Z0 = 0. In particular, if we denote by
σ2
p = var(Zp), then

σ2
p+1 =

1

α2
E(σpZ + r)2+ where Z ∼ N (0, 1) .

Theorem 3 is the main building block of proof of Theorem 1.
It can be proved by an induction over p ≥ 1 which is strongly
inspired by AMP-type results. By a standard argument, we can
prove that σp −−−→

p→∞
σ, where σ is solution of (7).

Another important argument lies in the fact that the Zp’s be-
come more and more correlated as p→∞, which is proved by
establishing that

EZpZp−1

σpσp−1
↗ 1 as p→∞ .

This argument is borrowed from Montanari and Richard [11]
and results in the fact that vectors zp and zp+1 tend to be
aligned for large p, after n → ∞. Setting yp = zp + r and
approximating yp+1 by yp, Eq. (10) writes

yp = Ǎyp+ + r + εp ,

where εp accounts for the approximation yp+1 ' yp. This last
equation is an approximated version of (9) and reads

yp ∈ LCP (I − Ǎ,−r − εp) .

The last argument to establish Theorem 1 is a perturbation
result for the LCP [16] which roughly states that

tε ∈ LCP (Mε, qε) −→ t ∈ LCP (M, q)

as (Mε, qε) −−−→
ε→0

(M, q) as long as the solutions are unique.

3 Simulations
In this section, we provide simulations where the theoretical
and asymptotic results provided in the theorems are compared
to their finite and empirical counterparts. As it appears, the
matching is very good.

4 Conclusion
In this article, we have studied the stable equilibrium point of
the Lotka-Volterra system (2) in the case where the n×n inter-
action matrix A has random N (0, 1) i.i.d. entries. If α >

√
2

then there eventually exists a unique equilibrium x?n which is
itself random, due to the randomness of A, and satisfies the
LCP LCP (I − Ǎ,−r) where Ǎ = A

α
√
n

. Considering the as-

sociated empirical measure µx? = 1
n

∑
i∈[n] δx?i , we establish

that µx? converges towards the distribution of (σZ+r)+ where
Z ∼ N (0, 1), σ satisfies the following fixed-point equation

σ2 =
1

α2
E(σZ + r)2+

and r is a random variable independent from Z whose distribu-
tion is the limit of µr.

Our result is based on a novel Approximate Message Passing
type algorithm designed to handle the non-Symmetric matrix
A. We believe that the interest of this result and method goes
beyond its mere application to theoretical ecology problems.



Figure 1: The plot represents a comparison between the
theoretical proportion of surviving species (continuous line)
and its empirical counterpart - see Remark 1-(2). Size n is
set to 10000; parameter α on the x-axis ranges from 1 to√

2 log(n) ' 4.29. The threshold α >
√

2 (vertical dotted
line) represents the theoretical guarantee to have a stable equi-
librium; α =

√
2 log(n) is the upper-limit above which we

have no extinction (p∗ = 1). Notice that for α ∈ [1,
√

2], the
heuristics shows a remarkable matching with the empirical data
despite no theoretical guarantees.
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