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Contextuality is a feature of quantum correlations. It is crucial from a
foundational perspective as a nonclassical phenomenon, and from an applied
perspective as a resource for quantum advantage. It is commonly defined in
terms of hidden variables, for which it forces a contradiction with the assump-
tions of parameter-independence and determinism. The former can be justified
by the empirical property of non-signalling or non-disturbance, and the lat-
ter by the empirical property of measurement sharpness. However, in realistic
experiments neither empirical property holds exactly, which leads to possible
objections to contextuality as a form of nonclassicality, and potential vulnera-
bilities for supposed quantum advantages. We introduce measures to quantify
both properties, and introduce quantified relaxations of the corresponding as-
sumptions. We prove the continuity of a known measure of contextuality, the
contextual fraction, which ensures its robustness to noise. We then bound the
extent to which these relaxations can account for contextuality, via corrections
terms to the contextual fraction (or to any noncontextuality inequality), cul-
minating in a notion of genuine contextuality, which is robust to experimental
imperfections. We then show that our result is general enough to apply or
relate to a variety of established results and experimental setups.

1 Introduction
Contextuality is well-studied as a nonclassical feature of the empirical predictions of quan-
tum mechanics, which may be considered as a generalisation of Bell nonlocality [1]. First
studied by Bell [2] and Kochen and Specker [3, 4], there now exist a number of gen-
eral, structural frameworks for treating contextuality, including the sheaf [5], graph [6],
hypergraph [7], and contextuality-by-default [8] frameworks. The study of contextuality
has a strong foundational interest, but also led to a range of recent results that establish
links between contextuality and quantum advantage in the aforementioned frameworks
[9, 10, 11, 12, 13, 14, 15, 16, 17]1, which makes it an important phenomenon for applica-
tions in quantum information and computation.

Kim Vallée∗: kim.vallee@lip6.fr
Pierre-Emmanuel Emeriau∗: pe.emeriau@quandela.com

1In particular, the randomness certification protocol demonstrated in [17], which is robust to cross-talk
effects inherent to the experiment, makes use of techniques introduced in the present work.
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As it is usually presented, the physical consequences of contextuality are such that for
any hidden variable theory reproducing the observed behaviour it forces one to give up
on either determinism or parameter independence. In this way, very roughly speaking, we
could say that contextuality prevents the interpretation of measurements as revealing pre-
determined values (determinism)—at least in a way that does not disturb the supposed
underlying state of the system (parameter independence). The structural formalisms men-
tioned above admit equivalent definitions, but which shift the focus away from hidden
variables, and bring into play new techniques and methodologies for analysing contextu-
ality. However, in attempting to grasp the physical meaning of contextuality the hidden
variable description is nevertheless often the most insightful. Through the article we will
use a quantitative measure of contextuality, known as the Contextual Fraction (CF) [5],
which has been shown to generalise Bell and noncontextual inequalities [11]. 2

However, in realistic, noisy experiments, the validity of the assumptions of determinism
and parameter independence can be called into question. As we will discuss, and as has been
pointed out elsewhere (e.g. [20]), beyond certain noise thresholds a contextual experiment
can admit explanations in line with classical intuitions. While noise does not directly
feature in hidden variable models, a standard justification for hidden variable assumptions
is that they reflect some empirical property [21]. So if noise affects those properties it will
also weaken the validity of the assumptions.

In the case of determinism, the analogous empirical property is sharpness (usually of
measurements). In theory at least, classical and quantum physics allow for measurements
that are perfectly sharp: e.g. if the measurement is immediately repeated it returns the
same outcome [22]. An extreme example of a dichotomic unsharp measurement would be
one which independent of the state returns outcomes 0 or 1 with equal probability.

While this is perfectly reasonable as a measurement, it would be unreasonable to assume
that such a measurement is capable of revealing pre-determined values of some properties
of the state it is applied to. In practice, realistic measurements may be sharp to a good
approximation but will never be perfectly sharp.

In the case of parameter independence the analogous empirical property is no-signalling
or no-disturbance. In Bell-type scenarios, no-signalling is the property that any party’s
measurement choice does not influence other parties’ measurement outcomes. In contextu-
ality scenarios like those of [5, 6, 7, 8], we do not need to assume different spacelike separated
parties but may still speak of a generalised no-signalling property sometimes referred to as
no-disturbance. In theory at least, the empirical behaviours of systems that obey classical
or quantum physics should be perfectly non-signalling in this generalised sense. In prac-
tice, however, no realistic empirical model can ever be perfectly non-signalling. This could
simply be due to finite statistics, or have to do with systematic errors such as imperfect
shielding or experimental crosstalk. Our work is concerned with systematic errors and the
properties of the behaviour underlying given empirical data. For methods to deal with
the problem of finite statistics in experimental trials, we refer the reader to [23, 24] when
testing local realism, and to [25, 26] for device-independent information processing.

So if we never observe perfectly sharp nor non-signalling empirical data, why should
we expect an underlying hidden variable or physical description of the system be perfectly
deterministic and parameter independent? We propose to quantify unsharpness and sig-
nalling, and to admit hidden variable models that are nondeterministic and parameter
dependent to a corresponding extent. Contextuality should only be considered robust to

2The CF can be viewed as a generalisation of the non-local content defined in [18]. A related notion
of noncontextual content [19], which appeared later, corresponds to 1 − CF; in other words it is the
noncontextual fraction.

2



Empirical property Hidden-variable property
No-Signalling (NS) Parameter Independence (PI)
Sharpness Outcome Determinism (OD)

Table 1: Comparison between characteristics of the empirical data and its counterpart at the hidden-
variable level.

the above objections if it cannot be accounted for by this additional flexibility afforded to
hidden variable explanations. In other words, any attempt to explain robust contextuality
would necessitate more non-determinism or more disturbance than is empirically justified.

Relationship to Contextuality-by-Default (CbD) The CbD approach to contex-
tuality [8] is a general (hidden-variable) model-independent treatment of contextuality in
the presence of signalling, in part motivated by applications to empirical data arising both
in physical [27] and non-physical settings, e.g. in linguistics [28, 29] or psychology [30, 31].
A key component of CbD analysis is the notion of a maximal coupling of empirical data.
Although it is not the usual perspective of CbD, maximal couplings can be viewed as a
kind of hidden variable model in which the amount of parameter dependence is constrained
to match the amount of signalling present in the empirical data, wherever measurements
appear in multiple contexts. At a conceptual level there is thus a clear similarity between
CbD and the present approach. There are also some clear distinctions. We wish to reason
about which physical mechanisms could underlie a given empirical behaviour. For that
reason, from the outset, we explicitly anchor the foundations of our approach in terms of
hidden variable models, as they provide a broad framework for hypothesising and reasoning
about such mechanisms. By design, it is therefore clearer how to extract a physical meaning
from an observation of genuine contextuality with our approach.3In contrast to CbD, the
present approach admits the degree of parameter dependence to be bounded by empirical
signalling in a flexible manner – in particular without requiring the bounds to be saturated,
allowing for different kinds of hidden variable explanation. In any case the quantification of
signalling and parameter dependence in both approaches are different. Our quantification
methods are motivated by natural connection or analogy to the contextual fraction [11].
This is known to coincide [32, 33] in some specific scenarios with measures used within the
CbD approach [34], which however are only defined for dichotomic measurements. Finally,
while the CbD approach applies to signalling, we will also bring into play considerations
of sharpness.

Relationship to other previous works Previous analyses have focused specifically
on robustness to unsharpness [35, 36, 37], or to signalling [38, 8]. Others have considered
generalised notions of hidden variable models that allow extra expressivity through state
updating [39, 40]. The work of [41] takes into account both signalling and unsharpness,
although the analysis is limited to the Bell-CHSH scenario; in particular our approach
retrieves those results and extends them to any scenario.

Our aim is to provide a simplified, holistic approach that is robust to both objections.
We show that experiment-friendly [17] inequalities that straightforwardly extend the con-
textual fraction measure [11] and test for witnessing genuine contextuality can be obtained

3The approach may have significance for reasoning about mechanisms underlying empirical data in other
settings too, but here our primary focus is on their well-established application to physical phenomena.
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by setting lower bounds on the admissible fraction of nondeterminism η and parameter-
dependence σ.

2 General framework for contextuality
Here we briefly summarise some of the main ideas from [5, 11]. An extended introduction
can be found in the Supplemental Material.

2.1 Ingredients à la Abramsky-Brandenburger
Measurement scenario.— An abstract description of an experimental setup is described

by a measurement scenario ⟨X,M, O⟩ where (i) X is a finite set of measurement labels;
(ii) M ⊆ P(X) is the set of all maximal contexts, i.e. sets of compatible measurements,
and forms a cover of X; (iii) O = (Ox)x∈X where Ox is the outcome set corresponding to
measurement x ∈ X.

Empirical behaviours.— Given the description of the experimental setup, either calcu-
lating theoretical predictions for admissible joint outcomes or performing repeated runs of
the experiment with varying choices of measurement context and recording the frequencies
of the corresponding joint events results in a probability table which is formalised as an
empirical model. Formally, an empirical model, or behaviour, e on ⟨X,M, O⟩ is a family
e = (eC)C∈M where eC is a probability distribution on the corresponding joint outcome
space.

Non-signalling.— A behaviour e is non-signalling when for any two contexts C1 and
C2, eC1 |C1∩C2 = eC2 |C1∩C2 . The notation eC |U with stands for the marginalisation of the
probability distribution eC to U ⊆ C: for t ∈ OU , eC |U (t) :=

∑
s∈OC ,s|U =t eC(s), where

s|U is simply the function restriction of s to the domain U and OU :=
∏

x∈U Ox.
(Non)contextuality.— Informally, an empirical behaviour e is said to be noncontextual

whenever context-wise predictions can all be obtained as the marginals of one probability
distribution over global value assignments.

Note at this point that the statement concerns only the empirical model, and we have
not referred to any underlying hidden variable model. The relationship with hidden vari-
able models was made explicit in [5] for the case of perfectly parameter-independent hid-
den variable models (see Proposition 1). Thus the Abramsky–Brandenburger approach
is equivalent to, yet neatly abstracts away from, hidden-variable models. It also leads to
convenient tools like the contextual fraction to quantify contextuality [11], which we recap
next. Establishing an analogous relationship for noisy data, and a convenient method for
quantifying contextuality in a noise-robust manner contextual is the main contibution of
this work.

2.2 Quantifying contextuality and signalling
By definition OX is the set of global assignments of an outcome to each measurement. Let
n := |OX | be the number of global assignments and m :=

∑
C∈M |OC | the number of total

‘local’ (or context-wise) assignments ranging over all contexts. We use bold notation for
vectors. Local assignments can be listed as: {⟨C, s⟩ s.t. C ∈ M and s ∈ OC}. Then the
incidence matrix M which records the possible restrictions from global assignments g to
local assignments ⟨C, s⟩ is a m× n (0,1)-matrix defined as:

M[⟨C, s⟩, g] :=
{

1 if g|C = s

0 otherwise .
(1)
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To understand its action, consider the columns of M as listing the global assignments
g ∈ OX . In particular, notice that rows are labelled by local assignments s, and that for
any given row and column, M assigns the value 1 whenever the corresponding local and
global assignments agree, g|C = s (and 0 otherwise).

The empirical model e can be represented as a vector ve ∈ [0, 1]m where for a given
context C ∈ M and a local assignment s ∈ OC , ve[⟨C, s⟩] = eC(s). This is the flattened
version of the tables that are usually used to represent empirical models.

Contextual fraction.— Given empirical behaviours e1 and e2 on ⟨X,M, O⟩, e = λe1 +
(1 − λ)e2 for λ ∈ [0, 1] is another valid empirical model. Instead of asking whether e
is contextual, we can wonder what fraction of e can be explained noncontextually. This
amounts to looking for a convex decomposition of the form e = λeNC+(1−λ)e′ with weight
λ on the noncontextual part. Maximising λ yields the irreducible part of contextuality
called the contextual fraction (see Figure 1):

CF(e) := 1 − NCF(e)
:= 1 − max{λ | ∃eNC non-contextual for which e′ = λeNC + (1 − λ)e′} .

(2)

It has a number of desirable properties [11] including that it can be computed as a linear
program: 

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve

b ≥ 0 .

(P-NCF)

This program computes the noncontextual fraction NCF(e) of e. We refer the interested
readers to the Appendices for more details.

Signalling fraction.— In the same spirit, we introduce the signalling fraction SF(e) of a
signalling behaviour e by looking for a convex decomposition within the signalling polytope
(see Figure 1) that maximises the weight of the non-signalling part:

SF(e) := 1 − NSF(e)
:= 1 − max{λ | ∃eNS non-signalling for which e′ = λeNS + (1 − λ)e′} .

This maximised weight can also take values in the interval [0, 1] and is called the sig-
nalling fraction4. Just like the contextual fraction, the irreducible weight on the signalling
part is the signalling fraction and can be computed with a linear program. Idealised em-
pirical behaviours predicted by quantum mechanics, in which contexts consist of perfectly
commuting observables, will not be signalling. However, in realistic settings noise can
manifest itself to introduce some amount of signalling and the signalling fraction defined
above will quantify this as a property of the empirical data.

Just like the contextual fraction, the signalling fraction of any empirical behaviour can

4The signalling fraction originates from unpublished work of Samson Abramsky, Rui Soares Barbosa
and SM.
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be efficiently computed through a linear program:

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve

Mb ≥ 0 .

(P-NSF)

Again this program is computing the no-signalling fraction NSF(e) := 1 − SF(e) of e.
Further details can be found in the Appendices.

2.3 Relaxing parameter independence and outcome determinism
Hidden variable models.— Hidden variable models (HVMs) provide a broad, general

approach to considering possible physical explanations underlying observed data5. We
usually place assumptions on HVMs to reflect notions of classicality—for instance outcome
determinism and parameter independence [5].

Formally a HVM on ⟨X,M, O⟩ is a triple
〈
Λ, p, (hλ)λ∈Λ

〉
where: (i) Λ is a finite space

of hidden variables; (ii) p is a probability distribution on Λ; (iii) for each λ ∈ Λ, hλ is a
behaviour on ⟨X,M, O⟩.

Essentially each hidden variable has a behaviour associated with it. We may only have
probabilistic information about which hidden variable pertains, reflected by the probability
distribution p. This gives rise to an effective overall empirical behaviour h :=

∑
λ∈Λ p(λ)hλ.

A sufficient condition for h to be non-signalling is parameter independence, which requires
that for all λ ∈ Λ and contexts C1, C2 ∈ M, hλ

C1
|C1∩C2 = hλ

C2
|C1∩C2 .

To ensure sharpness we can impose outcome determinism i.e. that ∀λ, ∀C ∈ M, hλ
C is

a Dirac distribution on a given joint outcome in OC . Note that, in contrast to parameter
independence, it is always possible to find a decomposition of an empirical behaviour into
deterministic hidden variables (which may be signalling). The following proposition is a
corollary of [5, Prop. 3.1 and Th. 8.1].

Proposition 1 (from [5]). An empirical behaviour e is noncontextual (CF(e) = 0) if and
only if it is realisable by a parameter-independent, deterministic HVM.

We relax the assumptions of OD and PI below.

Definition 1 ((1 −σ) PI HVM). A hidden-variable model is said to be (1 −σ) parameter-
independent if for all hidden variables λ, there exists a decomposition of hλ of the form
hλ = (1 − σλ)hλ

NS + σλh
′λ with hλ

NS a parameter-independent model and with necessarily
σλ ≤ σ.

Note that σ is not necessarily the signalling fraction of the overall empirical behaviour
realised by the HVM, but rather the maximum parameter dependence allowed for each
hidden variable behaviour.

Definition 2 ((1 − η) OD HVM). A hidden-variable model is said to be (1 − η) outcome
deterministic if for all hidden variables λ, there exists a decomposition of hλ of the form
hλ = (1 − ηλ)hλ

OD + ηλh
′′λ with hλ

OD an outcome deterministic behaviour (which may be
parameter-dependent) and ηλ ≤ η.

5Sometimes HVMs may also be referred to as ontological models – attempts to capture an underlying
ontology or physical reality. Note however that in some circumstances this terminology may implicitly
assume additional structure to what define for HVMs here [42].
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An interesting and well-studied behaviour is the PR-box [43]. It is a non-signalling,
maximally contextual (CF = 1) empirical model. In other words it does not admit a HVM
realisation that satisfies the strict definitions of parameter independence and outcome
determinism. However, under our relaxed definitions, we could in fact explain PR-box
correlations by HVMs by allowing either (i) a degree of outcome non-determinism or (ii)
parameter dependence (or a combination of both).

To see how PR-box behaviour can be explained by outcome non-deterministic HVMs,
we assume parameter independence (σ = 0) and note that it only admits a (1−η) outcome-
deterministic HVM with η = 0.5. To see this, the model is composed of a single hidden
variable behaviour, the PR-box itself, which is parameter-independent:

hPR = hλ
PR . (3)

Since it’s possible to express the hidden variable behaviour of the PR-box as a mixture of
two deterministic (but parameter-dependent) behaviours:

hλ
PR = 1

2h
λ
M1 + 1

2h
λ
M2 , (4)

then, by Definition 2, η = 1/2. On the other hand the PR-box could also arise from a
purely outcome deterministic (η = 0) HVM. Revisiting the decomposition from Eq. (4),
this can be seen as describing the PR-box by an outcome deterministic hidden variable
model containing two maximally signalling hidden variable behaviours (σ = 1) which each
pertains with equal probability: ePR = 1

2h
λ1
M1

+ 1
2h

λ2
M2

. For a longer discussion on the
PR-box we refer the reader to appendix (A.d).

Note that the assumptions of determinism and parameter independence are not quite on
an equal footing. If parameter independence is relaxed completely (that is, allowing σ = 1)
then determinism becomes trivial in the sense that any behaviour will admit deterministic
HVMs. On the other hand, if determinism is relaxed, but parameter independence is
respected, then only a non-signalling behaviour may be constructed. A related discussion
can be found in [44].

3 Continuity of the contextual fraction
Since realistic experiments are inherently noisy, it is important that any measure of con-
textuality is robust to noise. At the very least it should satisfy some notion of continuity
with respect to some total variation distance V generalised to empirical models (see Sup-
plemental Material). The main theorem in this section is thus significant independently of
the rest of the present work, and adds to the list of desirable properties of the contextual
fraction measure identified in [11].

Theorem 1. Let e and e′ be empirical models on the measurement scenario ⟨X,M, O⟩.
If V (e, e′) ≤ ε for ε > 0 then |CF(e) − CF(e′)| ≤ |M|ε.

A detailed proof is given in Supplemental Material.

Sketch of proof. We use the theory of finite dimensional linear programming, and more
precisely perturbation theory [45, Section 5.6]. The idea is to control perturbation of the
optimal value of the primal program by exhibiting optimal solutions of the dual program
and a perturbed dual program.
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NCF(e NS)

e

NSF(e)

M1

M2

PR

D

Figure 1: A schematic representation of a cut of the signalling correlation polytope for the (2,2,2)
Bell scenario with the no-signalling (NS) polytope and the noncontextual (NC) polytope inscribed in
it. Vertices of the polytopes are highlighted: dark blue vertices correspond to NC sharp behaviours;
light blue vertices to maximally contextual yet no-signalling behaviours (forming the NS polytope); and
yellow vertices correspond to the signalling sharp behaviours. Note that contextual vertices of the non-
signalling polytope, unlike noncontextual ones, are not vertices of the signalling polytope. The quantum
set (not represented) in general corresponds to a convex set between the NS and NC polytopes. For
a signalling behaviour e, its non-signalling fraction (maximal weight on the non-signalling part eNS in
a convex decomposition) is represented. Likewise, the noncontextual fraction of eNS is represented.
Labels displayed for some vertices are to be referred to in Figure 2.

4 Corrected Bell and Noncontextuality Inequalities
The nonclassicality criterion CF > 0 applies for perfectly sharp and no-signalling be-
haviours. Below we want to relax these assumptions and still derive an inequality that
captures genuine nonclassicality.

4.1 Relaxing parameter independence and sharpness

Lemma 1. Let
〈
{λ}, δλ, (hλ)

〉
be a (1−ηλ) OD and (1−σλ) PI HVM. Then, if 2ηλ+σλ <

1, the contextual fraction of the hidden variable model satisfies CF(hλ) ≤ ηλ.

A detailed proof is given in Supplemental Material.

Sketch of proof. Using Definition 2, we can distinguish two cases for an optimal outcome
deterministic decomposition: either hλ

OD is parameter-independent, in which case we com-
pare with (2) to see that the bound is respected, or hλ

OD is parqameter-dependent, in
which case we show that σλ + 2ηλ ≥ 1 contradicting the initial assumptions.

Theorem 2. Let e =
∑

λ p(λ)hλ be a behaviour realisable by a (1 − σ) PI and (1 − η) OD
HVM

〈
Λ, p, (hλ)λ∈Λ

〉
such that σ+ 2η < 1. Then its contextual fraction is bounded above

by: CF(e) ≤ η.

A detailed proof is given in Supplemental Material.
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Sketch of proof. By applying Lemma 1 to all hidden variable behaviours and using the
convexity of the contextual fraction, we obtain Theorem 2.

A similar result was obtained previously in [41] specifically for the Bell-CHSH sce-
nario, with similar definitions of parameter dependence and determinism. In comparing
the works, one should note that here we assume measurement independence (also related
to experimenter free-will), that is p(λ|x, y) = p(λ|x′, y′) = p(λ) and thus don’t include
correction terms related to measurement dependence in our inequality.

The condition 2ηλ + σλ < 1 from Lemma 1 can be motivated either from experimental
considerations or by taking a more theoretical approach. First, in real experimental setups,
we expect a low-noise regime so that we remain close to the quantum (or classical) set.
In this case the ontological conditions 2ηλ + σλ < 1 should be respected. Secondly, for n-
cycle scenarios [46], one can find a hidden variable behaviours which respect 2ηλ + σλ = 1
such that CF(hλ) = 1. The proof is given in the Supplemental Material and Figure 2
gives a geometric intuition for why this holds. In this case, the inequality for genuine
nonclassicality (CF > 1) would become trivially unsatisfiable. For more general scenarios
it is an open problem to know whether there always exists at least one hidden variable
behaviour such that CF = 1 when 2ηλ + σλ ≥ 1.

We note that in the case of determinism (η = 0), due to Definitions 1 and 2, we have
either σ = 0 or σ = 1. Due to the condition σ + 2η < 1, Theorem 2 can either be applied
for a parameter-dependent HVM or it cannot be applied since σ = 1. Instead, this result
is of most use when parameter dependence can be accounted for by a lack of determinism:
η ≥ σ.

4.2 Relaxing only parameter independence
As noted earlier, parameter dependence and determinism are not on an equal footing. For
instance relaxing completely parameter independence trivialises outcome determinism. We
note that our previous derivation in Section 4.1 is quite rigid for determinism. Following
Definition 1, if we impose outcome determinism then the following holds:

η = 0 =⇒ σ ∈ {0, 1} . (5)

This implies that if one has a perfectly sharp experiment, then parameter dependence is
either forbidden σ = 0 or always maximally relaxed σ = 1.

Let us review another way of looking at only relaxing parameter-independence while
preserving outcome determinism. Another form of relaxation has been used in various
references e.g. [47, 38]. These relaxations have the assumption of outcome determinism
(η = 0), defined in the same manner as Definition 2 but they relate parameter dependence
to another quantity that we will call σ′ here. Generally speaking, in the case of deter-
minism, each hidden variable behaviour hλ is either parameter-independent or maximally
parameter-dependent. Thus we can split the sum of all hidden variables depending on
their parameter-dependence:

e =
∑

hλ∈PI

p(λ)hλ +
∑

hλ /∈PI

p(λ)hλ , (6)

where PI here is used as a shorthand for the set of hidden variable behaviours that are
parameter-independent.

The new definition of parameter independence is now a bound on the probability to
have parameter-dependent hidden variables by σ′:∑

hλ /∈PI

p(λ) ≤ σ′ . (7)

9



This in turn leads easily to a bound on the contextual fraction (due to its convexity):

CF(e) ≤
∑

hλ∈PI

p(λ)CF(hλ) +
∑

hλ /∈PI

p(λ)CF(hλ)

CF(e) ≤
∑

hλ /∈PI

p(λ)CF(hλ)

CF(e) ≤
∑

hλ /∈PI

p(λ)

CF(e) ≤ σ′ .

(8)

Note again that this derivation only holds for deterministic hidden variables.

5 Approaches to experimental bounds
To relate Lemma 1 to statistics gathered during experiments, it is necessary to either phys-
ically impose restrictions on the values of σ or η or to make assumptions on their bounds
based on observations from experiments. In Bell scenarios, for example, separation of par-
ties allows us to make the assumption that the HVM should be parameter-independent i.e.
σ = 0. In this case, Fine’s theorem [48] (more precisely its generalisation in [5]) states that
outcome determinism (η = 0) is equivalent to non-contextuality (CF = 0). However in the
absence of spacelike separation (σ > 0), we need to make assumptions on how experimental
data is related to possible HVMs.

Parameter-independence. By definition, σ ≥ SF(e) for any HVM realisation of a
behaviour e. It means that the allowed parameter-dependent fraction σ cannot be lower
than the observed signalling fraction of the behaviour e since SF is the optimal solution of a
minimisation program. In a general manner, one wishes however to be able to upper bound
the parameter dependence of the hidden variables according to the observed signalling:

σ ≤ f (SF(e)) ,

where the function f is to be chosen, perhaps motivated by experimental considerations,
through partial device characterisation, space-like shielding, or any other appropriate
method. The simplest assumption would thus be σ = SF(e) but it is important to recall
that whereas parameter independence of a HVM implies that the empirical behaviour it re-
alises is non-signalling, the converse does not hold in general, so this is a strong assumption
to impose. Note, however, that the analogous assumption is made in the contextuality-by-
default approach to contextuality which also applies in the presence of signalling, and has
been employed in experimental tests of contextuality analysed via contextuality-by-default
[27] and the present approach [17].

Outcome determinism For determinism, an analogous approach would be to bound
η by an appropriate quantification of the unsharpness of the empirical measurements. A
convenient approach could be to follow the definition of sharpness found in [22]. Each
context of measurements could be performed not once, but twice in quick succession, and
the probabilities of seeing a change in outcomes between successive measurements would
give an indication of the unsharpness. This does however entail an additional assumption of
measurement non-invasiveness [49, 50], i.e. that measurement does not alter the underlying
state of the system (neither the value of λ nor the response hλ). In this way it allows for
effectively accessing properties of hλ. This can be a sensible approach in experiments such
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Figure 2: A schematic diagram of a vertical cut of Figure 1. Here, discs of radius η have been added
around the deterministic points to represent the accessible hidden variable behaviours for a given η.
Theorem 2 applied in this scenario means that whenever σ + 2η < 1, the only accessible behaviours
are the ones within the light blue disc surrounding the deterministic classical blue point. On the other
hand, when σ+2η ≥ 1 the behaviours inside the intersections of the yellow discs (centred on maximally
signalling vertices) and the signalling polytope become accessible, and thus CF = 1 is reachable.

as that of Kirchmair et al. [39, 47] in which sequences of measurements were performed on
trapped ions.

For cases where repeated measurements of a system are not practical, for example
in optical setups where photons are absorbed during the measurement, we must follow a
different approach. One possibility is to assume the existence of a particular set of prepa-
rations that allows us to assess if a measurement device is responding deterministically
or not (similar to the assumption of a tomographically complete set of preparations used
in [51, 20, 37, 36]). This is motivated by the fact that in the ideal quantum mechanical
description for any sharp measurement there is always a set of states which return deter-
ministic responses. If we assume that we have such special, preparable states, they can be
used to quantify outcome determinism.

6 Relationship to previous results
We now discuss how our results relate to others that have previously appeared in the
literature [47, 38, 52, 53, 54]. To this end we will consider how to fine-tune the parameters
appearing in Theorem 2 or the derivation in Section 4.2 to adjust it to some specific
experimental setups or data. In particular we will show how several previous results are
contained and can be extended within our approach. In this section our intention is to be
illustrative rather than exhaustive with respect to existing literature.

6.1 Relaxing determinism in known frameworks
As already discussed, in the case of determinism, we could apply directly the derivation
from Section 4.2. In this case we would obtain directly the results from [47, 38]. However,
one may also be interested in relaxing determinism and looking at how our result obtained
in Theorem 2 could be apply in this setting. In the following, we thus aim to relate
Theorem 2 to results imposing determinism.

Ref. [47]. We will show that relaxing determinism is an alternative to relaxing pa-
rameter dependence for a high enough relaxation. Reference [47] is concerned with the
order in which measurements are performed within a context but this is not something we
have sought to capture in our approach. Our approach may still be applied, but will simply
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treat such orderings as the same context. The correction term in [47] arises as a sum over
probabilities that the outcome of an observable ‘flips’ in a given context. Roughly:

ε =
∑

C∈M
pflip[C] ,

where pflip[C] is the probability that at least one measurement outcome in context C is
flipping. As an example, in the CHSH scenario where C = AB we have pflip[AB] =
p [(a = 1|A) and (a = 0|AB)] +p [(a = 0|A) and (a = 1|AB)] where a is the outcome of A.
In the CHSH scenario, the bound becomes 6:

CF(e) ≤ pflip[AB] + pflip[AB′] + pflip[A′B] + pflip[A′B′]
≤ ε ,

(9)

We propose instead to consider the case where the flipping occurs only due to lack of de-
terminism. We thus relax determinism by making the assumption that signalling observed
at the empirical level is the result of non-determinism only:

η := max
C∈M

(
pflip[C]

)
. (10)

In this case, we are in the regime where η ≥ σ. If 2η + σ < 1, then we can simply apply
Theorem 2:

CF(e) ≤ max
C∈M

(
pflip[C]

)
. (11)

Ref. [38]. This work also aims at correcting inequalities with an additional term
depending on

Pr(oC
x ̸= oC′

x ) ≤ ε (12)

where oC
x is the outcome of some observable x in context C, and C∩C ′ ̸= ∅. The corrected

bound proposed by [38] is the following:

CF(e) ≤
∑

i ωi(ki − 1)
βmax − βcl

ε , (13)

where ωi are the weights of the inequality being tested, βmax is its algebraic bound and
βcl its classical bound, and ki is the degree of measurement i (the number of times it
appears in different contexts, e.g. ki = 2 for all measurements in the CHSH scenario). In
the same spirit as our approach to Ref. [47], we assume that the difference of the outcomes
in different context is just due to lack of determinism:

Pr(oC
x ̸= oC′

x ) ≤ η . (14)

Which, by application of Theorem 2, gives:

CF(e) ≤ η . (15)

We now compare the two bounds in different known scenarios.
Following [38], we are interested in ranges of ε for which this bound on the contextual

fraction is less than or equal to CFQ, the maximum attainable contextual fraction over

6Note that this is an upper bound, since it could be that the flipping of A and B always occur together,
which means we would double the impact of the flipping on the violation.
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quantum mechanical models. Otherwise noise would be too high to tell apart quantum
behaviours from noisy classical ones. While there is no general relation between

∑
i ωi(ki −

1) and βmax −βcl in Equation (13), in practical examples note that the numerator is much
larger than the denominator. We can take as an example the Peres-Mermin square [55,
39]. In our approach saturating the quantum bound, which for the Peres-Mermin square
coincides with the algebraic bound, would require η = 1, whereas for [38] it is saturated
once ε = 6−5

72 ≈ 0.0138. Thus for the same ontological assumptions, we obtain a non-
classicality witness which remains useful in a much higher noise regime.

6.2 Application to experimental results
This subsection considers experimental works that did not apply corrected inequalities,
or to which we wish to directly compare the result of Theorem 2. Unlike in the previous
section, we directly take the values from the experiments to compute the corrected bound.
This subsection may serve as an example of various means to compute η and σ from
experiments, by making assumptions on the hidden variables from the empirical behaviour.

Ref. [54]. The authors reproduce a Hardy-like KCBS inequality, such that in theory
p(1, 1|i, i + 1) = 0 for i ∈ {1, 2, 3, 4, 5} for sharp measurements. Yet in practice they do
obtain some events (1, 1|i, i + 1), which means that part of the process is noisy (whether
it is preparation, measurement or transformation). It makes sense to assume then that
measurements are unsharp and the sharpness of measurement can be a good indicator of
the hidden variable properties. If the detector fails η of the time then the HV behaviours
would be 1 − η of the time deterministic (same detectors click) and η of the time giving a
random result. Thus we propose to chose

η = max
i

(p(1, 1|i, i+ 1)) (16)

such that the unsharpness reflects the value of η. With this choice we retrieve the same
result as that of [54].

The assumption made in the aforementionned reference is that ε of the time the max-
imum violation is attained, leading to the following corrected inequality :

|⟨KCBS⟩| ≤ (1 − ε)βcl + εβmax , (17)

which in terms of CF is equivalent to

CF ≤ ε . (18)

Our result—derived from ontological considerations— states that the maximum non-determinism
is given by η, leading to the same mathematical conclusion:

CF ≤ η . (19)

Since we arrive at the same mathematical conclusion, we can tell that their violation is
robust to the amount of observed unsharpness. They get η = 0.021 while they obtain a
violation CF ≈ 0.16 which is largely above the expected bound given by Theorem 2.

Ref. [52]. Our work may be applied to the experimental procedure described in [52]
to test the KCBS inequality [56]. The experimental setup is designed to ensure that mea-
surements cannot have context dependence, up to a set of assumptions, except for one
measurement A1 appearing in contexts A1A2 and A5A1. They thus label the measure-
ment appearing in these contexts as A1 and A′

1 respectively, so that the modified KCBS
inequality looks like:

⟨A1A2⟩ + ⟨A2A3⟩ + ⟨A3A4⟩ + ⟨A4A5⟩ + ⟨A5A
′
1⟩ ≥ −3 − κ , (20)
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where κ is a correction term depending on the correlation between A1 and A′
1. In our

approach, rather than considering these as distinct measurements, we would rather account
for any discrepancy as unsharpness and attribute this to either parameter dependence or
outcome indeterminism at the hidden variable level. As A1 is a dichotomic measurement
this amounts to attributing η in the following way:

η = max
o∈{−1,1}

p(A1 = o|A′
1 = −o) . (21)

The bound of [52] is tighter: they obtain CF ≤ 0.041(2) versus CF ≤ 0.072 as a criterion
for classicality when recast in our terms. A contextuality-by-default analysis led to a
normalised bound of CF ≤ 0.234 [27]. In contrast to both analyses we point to the fact
that our approach provides a clear relationship with assumptions at the ontological level.

Ref. [53]. This paper is a photonic implementation of an experiment proposed in
[57] which aims at closing the compatibility loophole. It uses photonic qutrit in order to
violate the following inequality:

P (DA
1 = 1|DB

0 = 1) − P (TA
0 = a0|DB

0 = 1) − P (TA
1 = a1|DB

0 = 1) ≤ 0, (22)

where DO
i and TO

i are observables and a0 and a1 are further parameters that describe the
measurements. Here we wish to test our results to compare the experimental results to
the theoretical bound. In this paper we can take departure from the expected quantum
behaviour as unsharpness at the level of the probabilities, such that:

η = max
x

(|pth(x) − pexp(x)|) . (23)

where x is taken in the set of all possible events: DA
1 = 1|DB

0 = 1, TA
0 = a0|DB

0 = 1
and TA

1 = a1|DB
0 = 1. pth and pexp are the theoretical probability and the experimental

probability respectively. The highest difference is found for pexp(TA
1 = a1|DB

0 = 1), where
the theoretical prediction is 0 and the experimental result is 0.010 ± 0.001. Then we can
assume that η ≤ 0.01. On the other hand, signalling is measured to be of the order of 10−3

thus we can safely apply Theorem 2 by assuming that σ = 0.001:

CF ≤ η ≤ 0.01, (24)

which we can directly compare to their result CF = 0.89 > 0.01 implying that they are
indeed witnessing noise-robust contextuality.

Ref. [58]. This reference is another significant experiment on contextuality which
closes the sharpness, detection and compatibility loopholes, thus claiming to be significantly
loophole free. The experiment focuses on an inequality equivalent to the CHSH inequality
with two ions of different nature in order to avoid interference on the measurements and
operations:

C = ⟨Ô0Ô1⟩ + ⟨Ô1Ô2⟩ + ⟨Ô2Ô3⟩ − ⟨Ô3Ô0⟩ ≤ 2. (25)

In order to close the sharpness loophole, they measure the repeatability Ri of the
observables Ôi. It corresponds to the number of times the observable Ôi gives different
outcomes when measured twice in a row. The lowest repeatability is found to be R0 ≈
97% for Ô0. Taking the repeatability as a good indicator of unsharpness, if we consider
that both parties have at least a repeatability Ri ≥ 1 − ϵ = 0.97 then one can define
η = 1 − (1 − ϵ)2 = 2ϵ− ϵ2. Thus, η ≈ 0.06.

We can assume that signalling is so small that it can be neglected. In fact, they measure
the cross-talk between the two ion species, and they observe that both have a maximum
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population transfer between 1.9×10−6 and 4.3×10−6 when they are excited by the wrong
laser which is negligible for their experiment, and we do not consider it here.

We can compute our bound since 2η + σ ≈ 0.12 + 0 < 1 which satisfies the condition
for Theorem 2. Then for the empirical model eC associated to C we have:

CF(eC) ≤ 0.06, (26)

which translates in term of the inequality to

C ≤ 2 + (4 − 2)η
≤ 2.12.

(27)

Since they obtain a violation C = 2.526 ± 0.016, our framework with these assumptions
certifies this experiment as contextual.

7 Conclusion
In this work, we present a new bound on the contextual fraction allowed by hidden-variable
models that have access to limited parameter dependence (related to empirical signalling)
and nondeterminism (related to empirical unsharpness). We considered several approaches
to bounding parameter dependence and nondeterminism of an HVM, which inevitably
employ additional assumptions that relate these HV properties to empirical signalling and
unsharpness. This allows for a robust testing of non-classicality for noisy measurements.

The main goal of this work is to achieve the above in the broadest and simplest way.
It is not our aim to assert which assumptions are valid, though this is a crucial question,
but rather to provide clear mathematical results and bounds which are straightforward
to check, around which such discussions may take place. A benefit of our approach is
that it allows clarity in where the additional assumptions must sit—i.e. in experimentally
accessing the values for η and σ. Note that no such assumptions are brought into play
yet in proving the bounds of Lemma 2 and Theorem 1; these follow from the definitions.
We presented a variety of possible assumptions that would allow η and σ to be empirically
bounded by looking at previous works in the literature [38, 47, 52, 53, 54]. In this way, we
see that our framework is broad enough to subsume a wide variety of previous approaches.

With respect to applications, and beyond purely foundational considerations, it has
also recently been demonstrated that bounds on η and σ can be translated into constraints
on adversaries or computational models, for example in generating certified randomness
in the presence of bounded signalling on a microchip [17]. Seeking clarity and flexibility
in the role and choice of the assumptions that can allow empirical access to parameter
dependence and nondeterminism can thus be of benefit for future applications of these
inequalities to quantum information and computing more broadly.
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Supplemental Material
A General framework for contextuality
This section summarises some of the main ideas from [5, 11], setting out the definition
of contextuality, assumptions on hidden variable models, and how these are related, and
finally defining the contextual fraction, a quantitative measure of the degree to which
observed empirical data is contextual.

A.1 Scenarios and Behaviours
An abstract description of a particular experimental setup is formalised as a measurement
scenario.

Definition 3 (Measurement scenario). A measurement scenario is a triple ⟨X,M, O⟩
where:

• X is a finite set of measurement labels.

• M is a covering family of X i.e. it is a set of subsets of X such that ⋃
C∈MC = X.

The element C ∈ M are taken as maximal contexts and represent maximal sets of
compatible observables 7.

• O = (Ox)x∈X is a finite set of outcomes for each measurement. If some set of
measurements U ⊆ X are considered together then the corresponding joint outcome
set is given by the (Cartesian) product of the respective outcome spaces: OU =∏

x∈U Ox.

For example, the setup corresponding to the usual CHSH experiment [64] or (2,2,2) Bell
scenario—two spacelike separated parties, Alice and Bob, each have two possible binary
measurements—is described by:

X = {a, a′, b, b′},
M = { {a, b}, {a, b′}, {a′, b}, {a′, b′} },
∀x ∈ X,Ox = {0, 1} .

(A.28)

Next, given the description of the experimental setup, either calculating theoretical pre-
dictions for admissible joint outcomes or performing repeated runs of the experiment with
varying choices of measurement context and recording the frequencies of the corresponding
joint events results in a probability table which is formalised as an empirical model.

Definition 4 (Empirical model/behaviour). Given a measurement scenario ⟨X,M, O⟩,
an empirical model (or behaviour) is a family e = (eC)C∈M where eC is a probability
distribution on the joint outcome space OC .

For example, an empirical model corresponding to the usual CHSH experiment is given
by Table 2. We may further require that the empirical data is non-signalling by imposing
compatibility conditions across different contexts, that is, for C,C ′ ∈ M, eC |C∩C′ =
eC′ |C∩C′ .

7From recent works using the Sheaf-theoretic treatments for contextuality [59, 60, 61, 62, 63], M is often
taken as the set of maximal contexts requiring that M be an anti-chain with respect to subset inclusion
i.e. that no element of the family is a proper subset of another.
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A B 00 01 10 11
a b p1 p2 p2 p1
a b′ p1 p2 p2 p1
a′ b p1 p2 p2 p1
a′ b′ p2 p1 p1 p2

Table 2: Quantum empirical model on the (2, 2, 2) Bell scenario specifying the probabilities of the joint
outcomes for the CHSH model with p1 = 2+

√
2

8 and p2 = 2−
√

2
8 . Here ai and bi for i = 1, 2 represent

quantum observables for CHSH with eigenvalues relabelled as 0 and 1. Joint probabilities are obtained
by the Born rule.

A.2 Contextuality and its quantification via the contextual fraction
Now that we have defined what we mean by a measurement scenario and an empirical
model we can define precisely what we mean by contextuality which is a property of the
empirical data.

Definition 5 (Noncontextuality). A non-signalling empirical model e on a measurement
scenario ⟨X,M, O⟩ is said to be noncontextual if there exists a global probability distribu-
tion d on OX such that eC = d|C .

This corresponds to a property of extendability for the empirical data i.e. the fact that
we can extend all probability distributions into a global one from which it is possible to
marginalise in order to retrieve a probability distribution for a given context. If such a
global distribution cannot be found then e is said to be contextual.

A more refined question than asking if an empirical model e is contextual is to ask what
fraction of the empirical data admits a noncontextual explanation. This is formalised as
the contextual fraction [5, 11]. Instead of asking for a global probability distribution from
which the empirical behaviour e can be deduced by marginalisation at each context, the
idea is to look for a subprobability distribution b (i.e. that sums to less than 1) on OX

explaining some fraction of the data i.e. we require that ∀C ∈ M, b|C ≤ eC . Ideally, we
would like to find such a b maximising 1 · b =

∑|OX |
i=1 bi.

Definition 6 (Noncontextual fraction). Given an empirical model e on a measurement
scenario ⟨X,M, O⟩, its noncontextual fraction is given by:

NCF(e) := sup {1 · b | b ≥ 0 s.t. ∀C ∈ M, b|C ≤ eC} .

Note that by construction, we have that NCF(e) ∈ [0, 1]. The case NCF(e) = 1 for non-
signalling date corresponds to noncontextuality while NCF(e) = 0 corresponds to maximal
contextuality or strong contextuality [5]. Naturally, the contextual fraction is defined as:
CF(e) := 1 − NCF(e). We would like to stress that for non-signalling data contextuality
corresponds to the case that CF(e) > 0, though our aim is to modify this inequality to
include about genuine contextuality of noisy data.

Now we would like to give a more geometric take on the contextual fraction. Given two
empirical models e1 and e2 on the same measurement scenario ⟨X,M, O⟩, we can define
a third valid empirical by taking a convex sum of e1 and e2: for instance λe1 + (1 − λ)e2
for λ ∈ [0, 1] is another valid empirical model. Asking what fraction of a non-signalling
empirical model e admits a noncontextual explanation is asking for a convex decomposition
of the form:

e = λeNC + (1 − λ)e′ (A.29)
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with weight λ on the noncontextual part. Maximising λ yields the noncontextual fraction
NCF(e) (see Figure 3).

A convenient property of the contextual fraction is that its computation can be cast
as a linear program [11]. Fix n := |OX | the number of different global assignments and
m :=

∑
C∈M |OC | the number of total local assignments ranging over contexts. We use bold

notation for vectors. Local assignments can be listed as: {⟨C, s⟩ s.t. C ∈ M and s ∈ OC}.
Then the incidence matrix M which records the possible restrictions from global to local
assignments is a m× n (0,1)-matrix defined as:

M[⟨C, s⟩, g] :=
{

1 if g|C = s

0 otherwise .
(A.30)

To understand its action, read M column-by-column by fixing a global section g ∈ OX . For
this specific column, M assigns the value 1 in the row corresponding to the local section s
in context C whenever g|C = s (and 0 otherwise). The empirical data e can be represented
as a vector ve ∈ [0, 1]m where for a given context C ∈ M and a local assignment s ∈ OC ,
ve[⟨C, s⟩] = eC(s). This is the flattened version of the tables (see for instance Table 2) that
are usually used to represent empirical models. In the noise-free regime e is noncontextual
if and only if there exists a global probability distribution d ∈ [0, 1]n such that Md = ve

and that NCF(e) < 1 corresponds to the non-existence of such a global distribution d.
Definition 6 can be expanded as:

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve

b ≥ 0 .

(P-NCF)

Interestingly, the dual of this program (with a clever change of variable) is of particular
interest since it allows to compute the expression of a Bell inequality optimised to the
empirical data [11, 65]. We present the dual program of (P-NCF) without the change of
variable a := |M|−11 − y below as it is enough to prove the continuity result of interest.

Find y ∈ Rm

minimising y.ve

subject to:

MT y ≥ 1

y ≥ 0 .

(D-NCF)

A.3 Quantifying (non-)signalling
For empirical models outside of the non-signalling polytope, it is possible to define a
measure to know how much the data is signalling or how far away from the non-signalling
polytope the empirical model is. This measure has similar properties to the contextual
fraction but instead of only using global value assignments which are given by the vertices
of the noncontextual polytope (see Figure 3), we also admit maximally contextual vertices
from the non-signalling polytope (e.g. PR-boxes in the (2, 2, 2) Bell scenario). To reach
those vertices, we allow the global distribution to have negative weight on deterministic
noncontextual vertices as long as the marginals for each context are nonnegative. It follows
from [5, Theorems 5.5 and 5.9]. We call this measure the non-signalling fraction NSF.
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Definition 7 (non-signalling fraction). Given an empirical model e on a measurement
scenario ⟨X,M, O⟩, its non-signalling fraction is given by:

NSF(e) := sup {1 · b | ∀C ∈ M, 0 ≤ b|C ≤ eC} .

The signalling fraction of e is the given by SF(e) := 1 − NSF(e). NSF represents the
irreducible weight on signalling vertices one must have in order to explain the data. Similar
to the contextual fraction, it bears a geometrical interpretation (see Figure 3) Asking what
fraction of the empirical model e admits a non-signalling explanation is asking for a convex
decomposition of the form:

e = λeNS + (1 − λ)e′ , (A.31)
with weight λ on the non-signalling part. Maximising λ yields the non-signalling fraction
NSF(e).

Idealised models predicted by quantum mechanics, where contexts consist of perfectly
commuting observables, should not be signalling; however, in realistic settings noise can
manifest itself to make empirical models somewhat signalling. The fraction defined above
will capture this effect as a property of the empirical data. The constraint that for all
contexts C, b|C must be nonnegative ensures that, while probabilities might be negative,
they sum to give a valid empirical model. Just like the contextual fraction, the signalling
fraction of any empirical behaviour can be efficiently computed through a linear program:

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve

Mb ≥ 0 .

(P-NSF)

Signalling is often associated to disagreeing marginals [47, 66] hence the following quan-
tification:

Definition 8 (Maximum Incompatibility of Marginals (MIM)). The MIM of an empirical
model e in a measurement scenario ⟨X,M, O⟩ is given by the highest incompatibility of
marginals:

MIM(e) = max
{∣∣∣eC

∣∣
C∩C′(t) − eC′

∣∣
C∩C′(t)

∣∣∣ , ∀C ̸= C ′ ∈ M,∀t ∈ OC∩C′

}
, (A.32)

where OC∩C′ is the outcome of a measurement in the intersection of C and C ′ (see A.1).

Both notions of signalling (MIM and SF) agree on the non-signalling polytope (i.e. they
are both equal to 0). However there exist points e that are maximally signalling in the
sense that they belong to a facet of the signalling polytope thus SF(e) = 1 and for which
MIM(e) < 1. For instance the following empirical model has SF = 1 but MIM = 0.2821:

A B 00 01 10 11
a1 b1 0 0 0 1
a1 b2 0.2821 0 0.0674 0.6505
a2 b1 0.2821 0.0674 0 0.6505
a2 b2 0.0821 0.4589 0.4589 0

.

Given its geometric interpretation, we believe the signalling-fraction is a more natural
quantification of signalling. We prove below that MIM is always a lower-bound for SF.
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Figure 3: [Left] A schematic representation of a 2-dimensional cut of the non-signalling correlation
polytope for the (2,2,2) Bell scenario. Inscribed in it, in darker colour, is the local (or noncontextual)
polytope of correlations. Vertices of the polytopes are highlighted. The quantum boundary (not
represented) would correspond to a convex line between the two polytopes. The noncontextual fraction
of e NCF(e) is represented and we have CF(e) := 1 − NCF(e). [Right] A schematic representation of
a cut of the signalling correlation polytope for the (2,2,2) Bell scenario with the non-signalling (NS)
polytope and the noncontextual (NC) polytope inscribed in it. Vertices of the polytopes are highlighted.
Note that contextual vertices of the non-signalling polytope, unlike noncontextual ones, are not vertices
of the signalling polytope. For a signalling behaviour e, its non-signalling fraction (maximal weight
on the non-signalling part eNS in a convex decomposition) is represented. Likewise, the noncontextual
fraction of eNS is represented.

Lemma 2. The signalling fraction of a behaviour e is lower bounded by its MIM.

Proof. For any behaviour e, by definition of the non-signalling fraction, decompose it as
follows:

e = NSF(e)eNS + SF(e)e′ , (A.33)

with eNS a non-signalling model. By convexity of the MIM measure:

MIM(e) ≤ NSF(e)MIM(eNS) + SF(e)MIM(e′) (A.34)
≤ SF(e)MIM(e′) (A.35)
≤ SF(e) , (A.36)

since MIM(eNS) = 0 and MIM(e′) ≤ 1.

A.4 Hidden-variable models
Hidden variable models (HVMs) provide a broad general approach to considering possible
physical explanations underlying observed data, often with the goal of explaining certain
properties in a more intuitive way; e.g. analogous to how probabilistic behaviours of clas-
sical statistical mechanics admit a deeper, albeit more complex, deterministic description.
Thus the assumptions that we place on HVMs are usually ways of encoding notions of
classicality.
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Definition 9 (Hidden-variable model). A hidden-variable model on a measurement sce-
nario ⟨X,M, O⟩ consists of the triple

〈
Λ, p, (hλ)λ∈Λ

〉
where:

• Λ is the finite space of hidden variables.

• p is a probability distribution on Λ.

• for each λ ∈ Λ, hλ is empirical model i.e. hλ = (hλ
C)C∈M is a family where, for each

context C ∈ M, hλ
C is a probability distribution on the joint outcome space OC .

This gives rise to a behaviour h :=
∑

λ∈Λ p(λ)hλ.

We say that
〈
Λ, p, (hλ)λ∈Λ

〉
is parameter-independent whenever ∀λ and for any two

contexts C1 and C2, we have that hλ
C1

|C1∩C2 = hλ
C2

|C1∩C2 . This ensures that the behaviour
h is non-signalling.

We say that
〈
Λ, p, (hλ)λ∈Λ

〉
is outcome deterministic whenever ∀λ, hλ gives a deter-

ministic joint outcome for each context (in other words, it is a vertex of the polytope).
The following proposition is a corollary of [5, Proposition 3.1 and Theorem 8.1].

Proposition 2. An empirical model e is noncontextual (CF(e) = 0) if and only if it is
realisable by an outcome deterministic parameter-independent HVM.

The set of local behaviour L is described by a convex combination of hidden variable
behaviours which are deterministic and non-signalling. In other words:

Definition 10 (local polytope). The set of local behaviour L is defined as:

L :=

h =
∑
λ∈Λ

p(λ)hλ|
〈
Λ, p, (hλ)λ∈Λ

〉
is PI and OD

 . (A.37)

This exactly corresponds to the set of behaviours for which the contextual fraction
is exactly zero. We start by relaxing determinism. We call η the fraction of outcome
nondeterminism.

Definition 11 ((1−η) OD HVM). A parameter-independent hidden-variable model is said
to be (1−η) outcome deterministic if for all hidden variables λ, there exists a decomposition
of hλ of the form hλ = (1 − ηλ)hλ

OD + ηλh
′′λ with hλ

OD an outcome deterministic model,
potentially signalling, and with necessarily ηλ ≤ η.

This definition ensures that a PR-box [43] is unsharp since it only admits a (1−η) outcome
deterministic HVM with η = 0.5 when the hidden variables are parameter-independent.
Taking back the measurement scenario for CHSH (A.28), a PR-box has a probability table
given by Table 3.
We now relax parameter-independence:

Definition 12 ((1−σ) PI HVM). A hidden-variable model is said to be (1−σ) parameter-
independent if for all hidden variables λ, there exists a decomposition of hλ of the form
hλ = (1 − σλ)hλ

NS + σλh
′λ with hλ

NS a parameter-independent model and with necessarily
ση ≤ σ.

If one releases parameter independence then there are many possible decompositions of
the PR-box given by Table 3. We give one example of such HVM decomposition with
parameter-dependent hidden variable behaviour in Table 4.
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A B 00 01 10 11
a b 1/2 0 0 1/2
a b′ 1/2 0 0 1/2
a′ b 1/2 0 0 1/2
a′ b′ 0 1/2 1/2 0

Table 3: PR-box empirical model for the CHSH scenario. This empirical behaviour is parameter-
independent and yet it has a contextual fraction of 1. When all the hidden variables are parameter-
independent, the only possible decomposition of the PR-box in a HVM is ePR-box = hλ

PR-box. Thus
η = 0.5 for otherwise there is not parameter-independent HVM describing the PR-box.

A B 00 01 10 11
a b 1 0 0 0
a b′ 1 0 0 0
a′ b 1 0 0 0
a′ b′ 0 1 0 0

(a) hλ
1

A B 00 01 10 11
a b 0 0 0 1
a b′ 0 0 0 1
a′ b 0 0 0 1
a′ b′ 0 0 1 0

(b) hλ
2

Table 4: Two hidden variable behaviour such that the HVM given by hPR-box = 1/2hλ
1 + 1/2hλ

2 gives
a HV explanation for the PR-box. Both hidden variable behaviours are deterministic and parameter-
dependent.

B Proof of Theorem 1
Given two probability distributions µ and ν on a countable set Ω, their total variation
distance is given by:

V (µ, ν) := 1
2

∑
ω∈Ω

|µ(ω) − ν(ω)| . (B.38)

Fix a (discrete) measurement scenario ⟨X,M, O⟩. Let e and e′ be two empirical models
on ⟨X,M, O⟩. Define the total variation of a family of distributions by:

V (e, e′) := max
C∈M

V (eC , e
′
C) . (B.39)

Theorem 3. Let e and e′ be empirical models on the measurement scenario ⟨X,M, O⟩.
If V (e, e′) ≤ ε for ε > 0 then |CF(e) − CF(e′)| ≤ |M|ε.

Proof. Fix a measurement scenario ⟨X,M, O⟩ and two empirical models e and e′ on it.
Let n := |OX | ∈ N∗ the number of global assignments and let m :=

∑
C∈M |OC | ∈ N∗ the

total number of local assignments ranging over all maximal contexts.
Let ε > 0 and suppose V (e, e′) ≤ ε. Define ω = (ωC)C∈M as ∀C ∈ M, ωC := eC − e′

C .
The quantity ω verifies two properties. Because of the normalisation conditions on e and
e′ we have that:

∀C ∈ M,
∑

o∈OC

ωC(o) = 0 . (B.40)

and because V (e, e′) ≤ ε then:

∀C ∈ M,
∑

o∈OC

|ωC(o)| ≤ 2ε . (B.41)

Let ω = ω+ − ω− with ω+ = (ω+
C )C∈M the positive part of ω and ω− = (ω−

C )C∈M the
negative part of ω. That is, ∀C ∈ M, ∀o ∈ OC , ω+

C (o) := max {0, ω(o)} and ω−
C (o) :=
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max {0,−ω(o)}. Then Eq. (B.40) becomes:

∀C ∈ M,
∑

o∈OC

ω+
C (o) =

∑
o∈OC

ω−
C (o) . (B.42)

And, because ω+ and ω− have disjoint support, Eq. (B.41) becomes:

∀C ∈ M,
∑

o∈OC

ω+
C (o) +

∑
o∈OC

ω−
C (o) ≤ 2ε . (B.43)

Eq. (B.42) and (B.43) imply that:

∀C ∈ M,
∑

o∈OC

ω±
C (o) ≤ ε . (B.44)

We also define vω (resp. vω+ and vω−) to be the flattened version of the table ω (resp.
ω+ and ω−) as defined in the previous section. From, Eq. (B.44):

∥vω±∥1 = 1 · vω± =
∑

C∈M

∑
o∈OC

ω±(o) ≤ |M|ε . (B.45)

The noncontextual fraction of e NCF(e) is the optimal value of the linear program:

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve

b ≥ 0 .

(P-CFe)

Its dual program reads:

Find y ∈ Rm

minimising y.ve

subject to:
MT y ≥ 1

y ≥ 0 .

(D-CFe)

To compute the noncontextual fraction of e′ NCF(e′), it suffices to replace ve by ve′ in
the programs above: 

Find b ∈ Rn

maximising 1.b
subject to:

Mb ≤ ve′

b ≥ 0 .

(P-CFe′)



Find y ∈ Rm

minimising y.ve′

subject to:
MT y ≥ 1

y ≥ 0 .

(D-CFe′)
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We denote the positive cone in Rd by Rd+ for an integer d. The Lagrangian function
[67] Rn+ × Rm+ −→ R for (P-CFe) and (D-CFe) is, for b ∈ Rn+ and y ∈ Rm+:

L(b,y) = 1 · b − yT (Mb − ve) = y · ve − bT (MT y − 1) . (B.46)

The primal program (P-CFe) indeed corresponds to

sup
b∈Rn+

inf
y∈Rm+

L(b,y) , (B.47)

while the dual program (D-CFe) to

inf
y∈Rm+

sup
b∈Rn+

L(b,y) . (B.48)

We denote f the dual Lagrangian function, that is:

f : Rm+ −→ R

y 7−→ sup
b∈Rn+

[
1 · b − yT (Mb − ve)

]
,

(B.49)

which is well-defined under the constraint MT y − 1 ≥ 0. The relation ≥ has to be
understood as a cone constraint i.e. the fact the all coefficients are positive.

Of course, we can have a similar treatment for e′. This yields the dual Lagrangian
function:

f ′ : Rm+ −→ R

y 7−→ sup
b∈Rn+

[
1 · b − yT (Mb − ve′)

]
.

(B.50)

Importantly, note that (P-CFe) and (D-CFe) (resp. (P-CFe′) and (D-CFe′)) are
strongly dual (i.e. they have the same optimal value) and they both have optimal so-
lutions (since they are finite-dimensional linear programs with a finite value and they have
interior points i.e. points that strictly satisfy all constraints [67]).

Let y∗ ∈ Rm+ be an optimal solution of (D-CFe) and let b′ ∈ Rn+ be a feasible point
of (P-CFe′). Then:

NCF(e) = f(y∗) (B.51)
≥ 1 · b′ − y∗T (Mb′ − ve) (B.52)
≥ 1 · b′ + y∗ · vω , (B.53)

where Eq. (B.51) follows from strong duality; Eq. (B.52) follows from the definition of f
with the supremum on b ∈ Rn+ in Eq. (B.49); and Eq. (B.53) follows from the fact that
y∗ ≥ 0 and that if b′ is feasible for (P-CFe′) then Mb′ ≤ ve−vω and thus −Mb′+ve ≥ vω.
Since this holds for every b′ feasible for (P-CFe′) then in particular at an optimal solution
b′∗ for which 1 · b′∗ = NCF(e′):

NCF(e) ≥ NCF(e′) + y∗ · vω . (B.54)

Now, symmetrically, let y′∗ ∈ Rm+ be an optimal solution of (D-CFe′) and let b ∈ Rn+

be a feasible point of (P-CFe). Then:

NCF(e′) = f ′(y′∗) (B.55)
≥ 1 · b − y′∗T (Mb − ve′) (B.56)
≥ 1 · b − y′∗ · vω , (B.57)
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where Eq. (B.57) follows from the facts that y′∗ ≥ 0 and that if b is a feasible point for
the program (P-CFe) then Mb ≤ ve′ + vω so that −Mb + ve′ ≥ −vω. In particular, at an
optimal solution b∗ ∈ Rn+ for (P-CFe) for which 1 · b∗ = NCF(e):

NCF(e′) ≥ NCF(e) − y′∗ · vω . (B.58)

From Eq. (B.54) and Eq. (B.58), we have that:

NCF(e) + y∗ · vω− ≥ NCF(e′) ≥ NCF(e) − y′∗ · vω+ , (B.59)

where we recall that vω+ is the positive part of vω and vω− is negative part.
Now having a close inspection at the problem (D-CFe) (resp. (D-CFe′)) gives that

1 ∈ Rm+ is necessarily an upper bound for y∗ (resp. y′∗) in the convex cone of positive
vectors, i.e. 1 ≥ y∗ (resp. 1 ≥ y′∗). Indeed, 1 trivially satisfies all the constraints and
gives a weight of 1 to every component in a context. On the other hand, the optimal
solution of (D-CFe) (resp. (D-CFe′)) will give, at worst, a weight of 1 to one specific
component in every context (it needs to satisfy the constraints MT y ≥ 1 and y ≥ 0 while
minimising y · ve′).

Then, because of Eq. (B.45):

y∗ · vω
− ≤ 1 · vω

− ≤ |M|ε (B.60)
−y′∗ · vω

+ ≥ −1 · vω
+ ≥ −|M|ε , (B.61)

so that:
NCF(e) + |M|ε ≥ NCF(e′) ≥ NCF(e) − |M|ε . (B.62)

Thus:

|NCF(e) − NCF(e′)| ≤ |M|ε (B.63)
|CF(e) − CF(e′)| ≤ |M|ε . (B.64)

C Proofs of Lemma 1 and Theorem 2
Lemma 3. Let

〈
{λ}, δλ, (hλ)

〉
be a (1 − ηλ) and (1 − σλ) HVM. Then, if 2ηλ + σλ < 1,

the contextual fraction of each hidden variable behaviour satisfies CF(hλ) ≤ ηλ.

Proof. To prove Lemma 3 we will decompose hλ according to its deterministic and non-
deterministic part optimally:

∃hλ
OD, h

′λ s.t hλ = (1 − η∗
λ)hλ

OD + η∗
λh

′λ . (C.65)

Decomposing optimally implies that η∗
λ is irreducible, hence any other decomposition will

imply ηλ > η∗
λ.

The proof is divided into two parts. Firstly, when hλ
OD is parameter independent, the

bound is trivially found. Secondly when hλ
OD is parameter dependent, it is not possible to

respect the condition σλ + 2ηλ < 1.
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Case hλ
OD is parameter independent.

This case follows from the convexity of the contextual fraction using Eq. (C.65). Since hλ
OD

is parameter independent and deterministic, it must belong to the noncontextual polytope
[5, Prop. 3.1 and Th. 8.1], thus its noncontextual fraction is 0. On the other hand the
contextual fraction of any model is upper bounded by 1 thus:

CF(hλ) = CF
(
(1 − ηλ)hλ

OD + ηλh
′λ

)
≤ (1 − ηλ)CF(hλ

OD) + ηλCF(h′λ)
≤ ηλCF(h′λ)
≤ ηλ .

(C.66)

Again, this is the tightest bound, since we assumed that Eq. (C.65) is optimally decom-
posed.

Case hλ
OD is parameter dependent.

In this case we can take ηλ < 0.5 for otherwise 2ηλ + σλ ≥ 1. Thus if our hidden variable
behaviour is of the form (C.65), we will prove by contradiction that it is not possible to
satisfy 2ηλ + σλ < 1. To do so, we rely on the fact that the signalling fraction is lower
bounded by the maximum incompatibility of marginals (see Lemma 2) and we prove the
following lemma:

Lemma 4. For a decomposition of hλ of the form (1 − ηλ)hλ
OD + ηλh

′λ (see Eq. (C.65))
where hλ

OD is parameter dependent and ηλ < 0.5, we have MIM(hλ) ≥ 1 − 2ηλ.

Proof. Let us decompose further Eq. (C.65):

hλ = (1 − 2ηλ)hλ
OD + 2ηλ(1/2h

′λ + 1/2hλ
OD)

= (1 − 2ηλ)hλ
OD + 2ηλh

λ′′ .
(C.67)

Since hλ
OD is deterministic and parameter dependent, we know that MIM(hλ

OD) = 1, which
implies:

∃C,C ′ ∈ M, t ∈ OC∩C′ , hλ
OD,C

∣∣∣
C∩C′

(t) − hλ
OD,C′

∣∣∣
C∩C′

(t) = 1 . (C.68)

Then because h′λ
C

∣∣∣
C∩C′

(t) − h
′λ
C′

∣∣∣
C∩C′

(t) ≥ −1:

1/2(hλ
OD,C

∣∣∣
C∩C′

(t) − hλ
OD,C′

∣∣∣
C∩C′

(t)) + 1/2(h′λ
C

∣∣∣
C∩C′

(t) − h
′λ
C′

∣∣∣
C∩C′

(t)) ≥ 0 . (C.69)

That is:
hλ′′

C

∣∣∣
C∩C′

(t) − hλ′′
C′

∣∣∣
C∩C′

(t)) ≥ 0 . (C.70)

Extending to the general case of Eq. (C.67) leads to:

hλ
C

∣∣∣
C∩C′

(t) − hλ
C′

∣∣∣
C∩C′

(t) =

(1 − 2ηλ)(hλ
OD,C

∣∣∣
C∩C′

(t) − hλ
OD,C′

∣∣∣
C∩C′

(t))

+ 2ηλ(hλ′′
C

∣∣∣
C∩C′

(t) − hλ′′
C′

∣∣∣
C∩C′

(t))

≥ 1 − 2ηλ ,

(C.71)

31



where the last line of Eq. (C.71) is given by equations (C.68) and (C.70). By definition of
MIM:

MIM(hλ) ≥ 1 − 2ηλ . (C.72)

Finally combining Lemma 2 and Lemma 4 we obtain:

σλ ≥ SF(hλ)
≥ MIM(hλ)
≥ 1 − 2ηλ

=⇒ σλ + 2ηλ ≥ 1 .

thus we obtain a contradiction with the assumption.

Theorem 4. Let e =
∑

λ p(λ)hλ a behaviour realisable by a (1 − σ) PI and (1 − η) OD
HVM

〈
Λ, p, (hλ)λ∈Λ

〉
such that σ + 2η < 1. Then its contextual fraction is bounded by

above: CF(e) ≤ η.

Proof. By definition σλ + 2ηλ < σ + 2η, thus by using the convexity of the contextual
fraction and applying Lemma 3:

CF(e) ≤
∑

λ

p(λ)CF(hλ)

≤
∑

λ

p(λ)ηλ

≤ η
∑

λ

p(λ)

≤ η .

(C.73)

D High signalling and unsharpness
We rarely expect the case σλ + 2ηλ ≥ 1 to be interesting. From an experimental point of
view, considering the departure from the quantum set of correlations to be due to noise,
it would mean that the experiment is very noisy. Nonetheless we have a look at this case
here and prove for the n-cycle scenario [46] that we can find a hidden variable model for
which σλ +2ηλ ≥ 1 and CF(hλ) = 1. Since the contextual fraction must be upper-bounded
by 1, this means that all the contextuality that is witnessed can be attributed to noise.

Lemma 5. Let a hidden variable behaviour hλ be decomposed as:

hλ = (1 − β)hλ
OD + βh′λ , (D.74)

where we assume that h′λ does not contain hλ
OD. If β < 0.5 we have that β = η∗

λ with η∗
λ

the irreducible weight on the nondeterministic behaviour.

Proof. The closeness of a point to a behaviour is given by the maximal weight one can
put on the point in a convex decomposition that explains the behaviour. In other words
one can define the closeness ρ between a deterministic point hλ

det ̸= hλ
OD and the given

behaviour hλ with:

ρ = sup
{
r | rhλ

det ≤ hλ, r ∈ [0, 1], for any hλ
det ̸= hλ

OD

}
. (D.75)
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Our assumption leads to ρ ≤ β ≤ 0.5. To show this, by contradiction, if ρ > β then it
means that:

∃hλ
det ̸= hλ

OD, ρh
λ
det ≤ hλ, ρ > β .

But since hλ
det ̸= hλ

OD it means that at least for one context they don’t have the same
support and thus:

∃C ∈ M, t ̸= t′ ∈ O, hλ
OD,C(t) = hλ

det,C(t′) = 1 . (D.76)

This implies that hλ
C(t) ≥ 1 − β and hλ

C(t′) ≥ ρ so summing over this context:∑
s∈OC

hλ
C(s) ≥ (1 − β) + ρ

> 1 ,
(D.77)

where the last inequality comes from the assumption that ρ > β. This contradicts the
normalisation of the hidden variable model, thus we have proven that there does not exist
hλ

det that is closer to hλ. In other words, writing the nondeterministic maximal weight
yields

hλ = (1 − η∗
λ)hλ

OD + η∗
λh

′λ (D.78)

and since hλ
OD is the closest point it corresponds to the best decomposition.

Lemma 6. For the n-cycle scenario, it is possible to find a hidden variable model such
that σλ + 2ηλ = 1 and CF(hλ) = 1.

Proof. Let us define a hidden variable model:

α ∈ [0, 1], hλ
ub = αhλ

S1 + (1 − α)hλ
S2 , (D.79)

where hλ
S1

and hλ
S2

are two deterministic parameter dependent hidden variable behaviours
and are chosen such that a uniform mixture of both gives a contextual parameter inde-
pendent behaviour:

hλ
CPI = 1/2hλ

S1 + 1/2hλ
S2 . (D.80)

In the n-cycle scenario it is always possible to find such behaviours [46], in the CHSH
scenario [68] this corresponds to the PR-box [43]. By using Lemma 5 on equation D.79 we
find that ηλ = min(α, 1 − α). Let us now define another hidden variable behaviour h′λ

ub:

β ∈ [0, 1], h′λ
ub = βhλ

S1 + (1 − β)hλ
CPI . (D.81)

We know that MIM(hλ
S1

) = 1 and MIM(hλ
CPI) = 0. Moreover, in this case:

MIM(h′λ
ub) = βMIM(hλ

S1) + (1 − β)MIM(hλ
CPI)

= β .
(D.82)

Using Lemma 2 we have SF(h′λ
ub) ≥ β. But using the convexity of the signalling fraction

we find:

SF(h′λ
ub) ≤ βSF(hλ

S1) + (1 − β)SF(hλ
CPI)

≤ β .
(D.83)
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Then SF(h′λ
ub) = β. Converting Eq. D.81, by inserting Eq. D.80:

h′λ
ub = βhλ

S1 + β(1/2hλ
S1 + 1/2hλ

S2)

= 1
2(1 + β)hλ

S1 + 1
2(1 − β)hλ

S2

= αhλ
S1 + (1 − α)hλ

S2 , ∀α ∈ [1/2, 1] ,

where α is related to β by α = 1
2(1 + β). Again η∗

λ = 1 − α due to Lemma 5:

η∗
λ = 1 − α

η∗
λ = 1 − 1

2(1 + β)

η∗
λ = 1 − 1

2(1 + σ∗
λ)

2η∗
λ = 1 − σ∗

λ

σ∗
λ = 1 − 2η∗

λ .

Hence we have found a hidden variable model hλ such that σ∗
λ + 2η∗

λ = 1.
We now prove that CF(hλ

ub) = 1. This proof is based on the fact that CF(hλ
CP I) = 1,

thus by decomposing it we obtain (according to Eq. D.80):

hλ
CP I = 1/2hλ

S1 + 1/2hλ
S2

= α

2αh
λ
S1 + 1

2h
λ
S2 + 1 − α

2α hλ
S2 − 1 − α

2α hλ
S2

= 1
2αh

λ
ub +

(1
2 − 1 − α

2α

)
hλ

S2 .

(D.84)

Thus by convexity of the contextual fraction one has :

CF(hλ
CPI) ≤ 1

2αCF(hλ
ub) +

(1
2 − 1 − α

2α

)
CF(hλ

S2)

1 ≤ 1
2αCF(hλ

ub) +
(1

2 − 1 − α

2α

)
=⇒ CF(hλ

ub) = 1 ,

(D.85)

where the decomposition is valid only if α ≥ 0.5. For the case α ≤ 0.5, one must use hλ
S1

instead of hλ
S2

in Eq. D.84. Finally, combining all of the above one gets a hidden variable
model with σ∗

λ + 2η∗
λ = 1 and CF(hλ

ub) = 1.
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