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In this article, we study the inconsistency of a system of max -T fuzzy relational equations of the form A□ max T x = b, where T is a t-norm among min, the product or Lukasiewicz's t-norm. For an inconsistent max -T system, we directly construct a canonical maximal consistent subsystem (w.r.t the inclusion order). The main tool used to obtain it is the analytical formula which compute the Chebyshev distance ∆ = inf c∈C ∥b -c∥ associated to the inconsistent max -T system, where C is the set of second members of consistent systems defined with the same matrix A. Based on the same analytical formula, we give, for an inconsistent max -min system, an efficient method to obtain all its consistent subsystems, and we show how to iteratively get all its maximal consistent subsystems.

Introduction

Sanchez's seminal work on systems of max -min fuzzy relational equations established necessary and sufficient conditions for a system to be consistent, i.e., to have solutions [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF]. In [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], Sanchez showed that if the system is consistent, it has a greater solution and a finite set of minimal solutions, and he then described the complete set of solutions of the system. His work was then followed by studies on solving systems based on max -T composition [START_REF] Di | Fuzzy relation equation under a class of triangular norms: A survey and new results[END_REF][START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF][START_REF] Pedrycz | Fuzzy relational equations with triangular norms and their resolutions[END_REF][START_REF] Pedrycz | On generalized fuzzy relational equations and their applications[END_REF] where T is a given t-norm. However, the inconsistency of max -T systems remains difficult to address. Some authors [START_REF] Cechlárová | Resolving infeasibility in extremal algebras[END_REF][START_REF] Li | Fuzzy Relational Equations: Resolution and Optimization[END_REF] highlighted that handling the inconsistency of a system of max -T fuzzy relational equations can be tackled by finding its maximal consistent subsystems. Formally, given an inconsistent system defined by a set of n equations whose indexes are 1, 2, • • • , n, a consistent subsystem defined by a subset of these equations, whose indexes form a subset R ⊆ {1, 2, • • • , n}, is maximal if any subsystem defined by a strict superset of R is inconsistent.

In this article, using recent works [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] on the handling of the inconsistency of max -T systems of the form A□ max T x = b, where T is a t-norm among min, product or Łukasiewicz's t-norm, we directly construct a canonical maximal consistent subsystem of the system A□ max T x = b. The indexes of the equations composing this maximal consistent subsystem are obtained by computing, using the L ∞ norm, the Chebyshev distance ∆ = inf c∈C ∥b -c∥, where C is the set of second members of consistent systems defined with the same matrix A. The author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] gave three analytical formulas for computing the Chebyshev distances ∆ associated to the three max -T systems. For this purpose, we start by showing that these three analytic formulas (which we remind in the article, see [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF] for max -min system, [START_REF] Sussner | Implicative fuzzy associative memories[END_REF] for max -product system and (19) for max-Łukasiewicz system) have a canonical single expression, which depends only on the t-norm T considered. For a max -T system whose matrix is of size (n, m), ∆'s canonical form is expressed as ∆ = max 1≤i≤n δ i where δ i = min 1≤j≤m max 1≤k≤n δ T ijk , see (24). The computation of (at most) n 2 • m numbers δ T ijk is therefore necessary to obtain the Chebyshev distance. From ∆'s canonical form, we introduce the set N c , see (25), composed of the indexes i of the equations of the considered system, whose corresponding δ i is equal to zero. In order to prove that the subsystem defined by the set N c is a maximal consistent subsystem, we first give an important characterization of the case δ T ijk > 0, where δ T ijk is involved in ∆'s canonical form (see (Lemma 2) and also (Lemma 1)). Then, we study any equation whose index i is in the intersection of the complement of the set N c and a set R ⊆ {1, 2, . . . , n} whose corresponding subsystem is consistent, see (Lemma 4), (Lemma 5) and (Lemma 6). These last three lemmas and (Proposition 1) let us prove our main result in (Theorem 1): the subsystem formed by the equations of the system whose indexes are in the set N c is a maximal consistent subsystem. Since the Chebyshev distance ∆ requires the computation of (at most) n 2 • m numbers, the construction of this maximal consistent subsystem has the same computational complexity. We then study the set formed by the consistent subsystems of an inconsistent max -min system. For this purpose, we first arrange in ascending order the coefficients of the second member of the system, and we rely on the Chebyshev distance associated to any subsystem (S R ) defined by a set R ⊆ {1, 2, . . . , n}, see (Lemma 3). Given a consistent subsystem (S R ) of the subsystem (S {1,2,...s} ) where 1 ≤ s ≤ n -1, we can construct, by computing n -s explicit numbers, all the consistent subsystems which are defined by subsets R ′ ⊆ {1, 2, . . . , n} such that R ⊂ R ′ and card(R ′ ) = card(R) + 1. Denoting by E s the set formed by the consistent subsystems of the subsystem (S {1,2,...s} ), we thus obtain a method to build E s+1 (related to (S {1,2,...s+1} )) from E s , see (45), which can be used to get all the maximal consistent subsystems of the whole max -min system, see (Proposition 2).

The article is structured as follows. In (Section 2), we remind the necessary background for solving max -T systems and present some of the results on the inconsistency of these systems proven in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] i.e., the formulas to compute the Chebyshev distances ∆ for a max -min system, a max -product system and a max-Łukasiewicz system, see ( 14), ( 16) and ( 19) respectively. In (Section 3), we obtain a canonical single expression for these three formulas, which depends only on the t-norm considered, see (23). We introduce some notations (Notation 2) and the set N c , see (25). Then, we characterize the case δ T ijk > 0, where δ T ijk is involved in ∆'s canonical form, and we provide a formula for the Chebyshev distance associated to a subsystem of the system, which is defined by a subset of equations of the considered system. In (Section 4), we prove some preliminary results ((Lemma 4), (Lemma 5), (Lemma 6) and (Proposition 1)), which are necessary to establish (Theorem 1). In (Section 5), we present our method for efficiently finding all consistent subsystems of an inconsistent max-min system and apply it to obtain all the maximal consistent systems of the inconsistent system. Finally, we conclude by giving some potential applications of our results, in particular some based on max -T learning methods.

Background

In this section, T denotes a continuous t-norm and I T its associated residual implicator [START_REF] Peter Klement | Triangular norms[END_REF]. We remind the three main t-norms (min, product and Łukasiewicz's t-norm) and their associated residual implicator (the Gödel implication, the Goguen implication and Łukasiewicz's implication, respectively). We remind the necessary background for solving systems of max -T fuzzy relational equations of the form A□ max T x = b. Finally, we present some recent results of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] on the handling of the inconsistency of systems of max -T fuzzy relational equations, in which the author gave, for each max -T system, an explicit analytic formula for computing the Chebyshev distance ∆ = inf c∈C ∥b -c∥, where C is the set of second members of consistent systems defined with the same matrix A.

The following notations are reused from [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF]: Notation 1. The set [0, 1] n×m denotes the set of matrices of size (n, m) i.e., n rows and m columns, whose components are in [0, 1]. The set [0, 1] n×1 is the set of column vectors of n components and [0, 1] 1×m is the set of row matrices of m components.

The order relation ≤ on the set [0, 1] n×m is defined by:

A ≤ B iff we have a ij ≤ b ij for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, where A = [a ij ] 1≤i≤n,1≤j≤m and B = [b ij ] 1≤i≤n,1≤j≤m .
For x, y, z, u, δ ∈ [0, 1], we put:

• x + = max(x, 0), • z(δ) = min(z + δ, 1), • z(δ) = max(z -δ, 0) = (z -δ) + .

T-norms and their associated residual implicators

A triangular-norm (t-norm, see [START_REF] Peter Klement | Triangular norms[END_REF]) is a map T : [0, 1] × [0, 1] → [0, 1], which satisfies:

T is commutative: T (x, y) = T (y, x),
T is associative: T (x, T (y, z)) = T (T (x, y), z), T is increasing : x ≤ x ′ and y ≤ y ′ =⇒ T (x, y) ≤ T (x ′ , y ′ ), T has 1 as neutral element: T (x, 1) = x.

To the t-norm T is associated the residual implicator

I T : [0, 1] × [0, 1] → [0, 1] : (x, y) → I T (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}.
For all a, b ∈ [0, 1], the main properties of the residual implicator I T associated to a continuous t-norm T are:

• I T (a, b) = max{z ∈ [0, 1] | T (a, z) ≤ b}. Therefore, T (a, I T (a, b)) ≤ b.
• I T is left-continuous and decreasing in its first argument as well as right-continuous and increasing in its second argument. • For all z ∈ [0, 1], we have:

T (a, z) ≤ b ⇐⇒ z ≤ I T (a, b). • We have b ≤ I T (a, T (a, b)).
The t-norm min denoted by T M , has a residual implicator I T M which is the Gödel implication:

T M (x, y) = min(x, y) ; I T M (x, y) = x -→ G y = 1 if x ≤ y y if x > y . ( 1 
)
The t-norm defined by the usual product is denoted by T P . Its associated residual implicator is the Goguen implication:

T P (x, y) = x • y ; I T P (x, y) = x -→ GG y = 1 if x ≤ y y x if x > y . (2) 
Łukasiewicz's t-norm is denoted by T L and its associated residual implicator is Łukasiewicz's implication I T L :

T L (x, y) = max(x + y -1, 0) = (x + y -1) + ; I T L (x, y) = x -→ L y = min(1 -x + y, 1). (3) 

Solving systems of max -T fuzzy relational equations

A system of max -T fuzzy relational equations based on a matrix A = [a ij ] ∈ [0, 1] n×m and a column-vector b = [b i ] ∈ [0, 1] n×1 is of the form: (S) :

A□ max T x = b, (4) 
where x = [x j ] 1≤j≤m ∈ [0, 1] m×1 is an unknown vector and the matrix product □ max T uses the continuous t-norm T as the product and max as the addition.

Using the vector e = A t □ min I T b, (5) where A t is the transpose of A and the matrix product □ min I T uses the residual implicator I T (associated to T ) as the product and min as the addition, we have the following equivalence proved by Sanchez for max -min composition [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF], and extended to max -T composition by Pedrycz [START_REF] Pedrycz | Fuzzy relational equations with triangular norms and their resolutions[END_REF][START_REF] Pedrycz | On generalized fuzzy relational equations and their applications[END_REF] and Miyakoshi and Shimbo [START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF]:

A□ max T x = b is consistent ⇐⇒ A□ max T e = b. (6 
) Example 1. We study the following max -min system denoted A□ max min x = b where:

A =    1 0.4 0.5 0.7 0.7 0.5 0.3 0.5 0.2 1 1 0.6 0.4 0.5 0.5 0.8    and b =    0.8 0.7 0.4 0.4    . ( 7 
)
We compute the potential greatest solution of the system using the Gödel implication → G , see [START_REF] Baaj | Learning rule parameters of possibilistic rule-based system[END_REF], which is associated to the t-norm min:

e = A t □ min → G b =    0.8 0.4 0.4 0.4    .
We check that:

A□ max min e =    0.8 0.7 0.4 0.4    = b.
So the system A□ max min x = b is consistent.

Chebyshev distance associated to the second member of a system of max -T fuzzy relational equations

To the matrix A and the second member b of the system (S) of max -T fuzzy relational equations, see (4), is associated the set of vectors c = [c i ] ∈ [0, 1] n×1 such that the system A□ max T x = c is consistent:

C = {c = [c i ] ∈ [0, 1] n×1 | A□ max T x = c is consistent}. (8) 
This set allows us to define the Chebyshev distance associated to the second member b of the system (S). Definition 1. The Chebyshev distance associated to the second member b of the system (S) :

A□ max T x = b is: ∆ = ∆(A, b) = inf c∈C ∥b -c∥ (9) 
where:

∥b -c∥ = max 1≤i≤n | b i -c i | .
The following result was proven for max -min system in [START_REF] Ra Cuninghame-Green | Residuation in fuzzy algebra and some applications[END_REF] and recently extended to max -T systems in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF]:

∆ = min{δ ∈ [0, 1] | b(δ) ≤ F (b(δ))}, (10) 
which involves a vector inequality based on the following application:

F : [0, 1] n×1 -→ [0, 1] n×1 : c = [c i ] → F (c) = A□ max T (A t □ min I T c) = [F (c) i ] (11) 
where:

∀i ∈ {1, 2, . . . , n}, F (c) i = max 1≤j≤m T (a ij , min 1≤k≤n I T (a kj , c k )). (12) 
We remind (see [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF]) that for any c ∈ [0, 1] n , we have the inequalities:

∀i ∈ {1, 2, . . . , n} , F (c) i ≤ c i . (13) 
By solving [START_REF] Li | Fuzzy Relational Equations: Resolution and Optimization[END_REF] in the case of a system of max -min fuzzy relational equations A□ max min x = b, the author of [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] gave the following analytical formula for computing the Chebyshev distance associated to its second member b:

∆ = max 1≤i≤n min 1≤j≤m max[(b i -a ij ) + , max 1≤k≤n σ G (b i , a kj , b k )], (14) 
where

σ G (x, y, z) = min( (x -z) + 2 , (y -z) + ). (15) 
Similarly, for the case of a system of max-product fuzzy relational equations A□ max T P x = b, the author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] gave the following analytical formula for computing the Chebyshev distance associated to b:

∆ = max 1≤i≤n min 1≤j≤m max 1≤k≤n σ GG (a ij , b i , a kj , b k ), (16) 
where

σ GG (u, x, y, z) = max[(x -u) + , min(φ(u, x, y, z), (y -z) + )] (17) and φ(u, x, y, z) = (x•y-u•z) + u+y if u > 0 x if u = 0 . ( 18 
)
The author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] also gave the following analytical formula for computing Chebyshev distance associated to the second member b of a system of max-Łukasiewicz fuzzy relational equations A□ max

T L x = b: ∆ = max 1≤i≤n min 1≤j≤m max 1≤k≤n σ L (1 -a ij , b i , a kj , b k ), (19) 
where

σ L (u, x, y, z) = min(x, max(v + , (v + y -z) + 2 )) with v = x + u -1. (20) 
From these formulas, the author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] proved that F (b(∆)) is the greatest Chebyshev approximation of the second member b, so the system A□ max

T x = F (b(∆)) is consistent and ∥F (b(∆)) -b∥ = ∆.
Therefore, the author showed the following important equivalence for max -T systems:

∆ = 0 ⇐⇒ The system (S) is consistent. ( 21 
)
Example 2. (continued) We reuse the matrix A and the vector b of (Example 1), see [START_REF] Di | Fuzzy relation equation under a class of triangular norms: A survey and new results[END_REF].

• The Chebyshev distance associated to the max -min system A□ max min x = b is equal to zero (this system is consistent).

• The Chebyshev distance associated to the second member of the max -product system A□ max T P x = b is roughly equal to 0.083 (this system is inconsistent). We compute 

F (b(∆)) =    0.
A□ max T P x = F (b(∆)) is consistent. • The Chebyshev distance associated to the second member of the max -Łukasiewicz system A□ max T L x = b is equal to 0.1 (this system is inconsistent). We compute F (b(∆)) =    0.9 0.6 0.5 0.5    and the system A□ max T L x = F (b(∆))
is consistent.

Preliminaries

In this section, we begin by showing that the formulas (( 14), ( 16) and ( 19)) of the Chebyshev distance ∆ = ∆(A, b) associated to the three max -T systems of the form (S) : A□ max T x = b, see ( 4), have a canonical single expression, which depends only on the t-norm T . We then give some notations (Notation 2). In particular, we denote by (S R ) the subsystem of the system (S) defined using the set R ⊆ {1, 2, . . . , n} of the indexes of the equations taken from the system (S) to form the subsystem (S R ).

We establish some properties ((Lemma 1), (Lemma 2) and (Lemma 3)) of the numbers δ T ijk involved in the canonical formula of ∆. These results will be useful in the next section to prove (Theorem 1), which allows us to obtain a canonical maximal consistent subsystem of an inconsistent system (S) just by computing the Chebyshev distance ∆ associated to the system (S).

∆'s canonical form and notations

Let us rewrite the Chebyshev distance associated to the second member of a system of max -min fuzzy relational equations, see [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF], as follows:

∆ = max 1≤i≤n min 1≤j≤m max 1≤k≤n max[(b i -a ij ) + , σ G (b i , a kj , b k )] (22) 
Then, from the formulas of the Chebyshev distances ∆ associated to each of three systems of max -T fuzzy relational equations, see ( 16), ( 19) and ( 22), we can give a canonical formula for ∆ which only depends on the choice of the t-norm T :

∆ = max 1≤i≤n δ i with δ i = min 1≤j≤m δ(i, j) and δ(i, j) = max 1≤k≤n δ T ijk ( 23 
)
where:

δ T ijk =    max[(b i -a ij ) + , σ G (b i , a kj , b k )] if T = T M (min) σ GG (a ij , b i , a kj , b k ) if T = T P (product) σ L (1 -a ij , b i , a kj , b k ) if T = T P (Łukasiewicz's t-norm) . ( 24 
)
(We remind that σ G , σ GG and σ L are defined in [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], ( 17) and (20) respectively and were introduced in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF]).

In this form, we can see that ∆ requires computing (at most) n 2 • m numbers δ T ijk . For a max -T system A□ max T x = b, see (4), we use the following notations: Notation 2.

• N = {1, 2, . . . , n}, M = {1, 2, . . . , m},

• for any subset R ⊆ {1, 2, . . . , n}, we form the following max -T subsystem:

(S R ) : A R □ max T x = b R , where A R = [a ij ] i∈R,1≤j≤m and b R = [b i ] i∈R , whose associated Chebyshev distance is denoted ∆ R := ∆(A R , b R ).
Thus, for any i ∈ {1, 2, . . . , n} , the max -T system (S {i} ) : A {i} □ max T x = b {i} is the system reduced to the i-th equation of (S).

From the canonical form of ∆, see (23), we extract the indexes of equations whose corresponding δ i is equal to zero, in order to form the following set:

N c = i ∈ {1, 2, . . . , n} | δ i = 0 . ( 25 
)
The complement of the set N c is denoted N c . Example 3. (continued) We reuse the matrix A and the vector b of (Example 1), see [START_REF] Di | Fuzzy relation equation under a class of triangular norms: A survey and new results[END_REF].

• The max -min system A□ max min x = b is consistent. We have δ 1 = δ 2 = δ 3 = δ 4 = 0 and the set N c is equal to {1, 2, 3, 4}.

• The max -product system A□ max T P x = b is inconsistent. We have δ 1 = δ 3 = δ 4 = 0 and δ 2 = 0.083, so the set N c is equal to {1, 3, 4}.

• The max -Łukasiewicz system A□ max T L x = b is inconsistent. We have δ 1 = δ 3 = δ 4 = 0 and δ 2 = 0.1, so the set N c is equal to {1, 3, 4}.

Preliminary results

From ∆'s canonical form, see (23), we establish: Lemma 1. For all i ∈ N and j ∈ M (Notation 2), we have

δ T iji = (b i -a ij ) + .
Proof.

• For T = T M (min), from σ G , see [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], we have for all i ∈ N and j ∈ M :

σ G (b i , a ij , b i ) = min( (b i -b i ) + 2 , (a ij -b i ) + ) = 0.
Therefore, from (24), we have:

δ T M iji = max[(b i -a ij ) + , σ G (b i , a ij , b i )] = (b i -a ij ) + .
• For T = T P (product), from the formula of φ, see (18), we have for all i ∈ N and j ∈ M :

φ(a ij , b i , a ij , b i ) = 0 if a ij > 0 b i if a ij = 0 .
We remark that if a ij = 0, then (a ij -b i ) + = 0. Thus, whatever if a ij > 0 or a ij = 0, from the formula of σ GG , see (17), we have:

δ T P iji = σ GG (a ij , b i , a ij , b i ) = max[(b i -a ij ) + , min(φ(a ij , b i , a ij , b i ), (a ij -b i ) + )] = (b i -a ij ) + .
• For T = T L (Łukasiewicz's t-norm), from the formula of σ L , see (20), we have:

δ T L iji = σ L (1 -a ij , b i , a ij , b i ) = min(b i , max((b i -a ij ) + , (b i -a ij + a ij -b i ) + 2 ) = min(b i , (b i -a ij ) + ) = (b i -a ij ) + .
We establish the following equivalences:

Lemma 2. Let i ∈ N and j ∈ M and we assume that b i ≤ a ij . Then, for all k ∈ N , we have:

• for T = T M (min): δ T ijk > 0 ⇐⇒ b i > b k and a kj > b k , (26) 
• for T = T P (product):

δ T ijk > 0 ⇐⇒ a ij > 0 and a kj > b k and b i a ij > b k a kj , (27) 
• for T = T L (Łukasiewicz's t-norm):

δ T ijk > 0 ⇐⇒ b i > 0 and b i -a ij > b k -a kj . (28) 
Proof.

For

T = T M , if b i ≤ a ij then δ T ijk = σ G (b i , a kj , b k ).
From the formula of σ G , see [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], we immediately deduce the equivalence.

For

T = T P , if b i ≤ a ij then δ T ijk = σ GG (a ij , b i , a kj , b k ) = max[(b i -a ij ) + , min(φ(a ij , b i , a kj , b k ), (a kj -b k ) + )] = min(φ(a ij , b i , a kj , b k ), (a kj -b k ) + )
. Thus, we have:

δ T ijk > 0 ⇐⇒ φ(a ij , b i , a kj , b k ) > 0 and a kj > b k .
We distinguish two cases when computing φ(a ij , b i , a kj , b k ): it returns For T = T L , we have

(bi•a kj -aij •b k ) + aij +a kj if a ij > 0 or it returns b i if a ij = 0 (
δ T ijk = σ L (1 -a ij , b i , a kj , b k ) = min(b i , max((b i -a ij ) + , (bi-aij +a kj -b k ) + 2 )). Since b i ≤ a ij , we have δ T ijk = min(b i , (bi-aij +a kj -b k ) + 2
) and we immediately deduce the equivalence.

From (Notation 2), we give the formula of the Chebyshev distance associated to the subsystem

(S R ) : A R □ max T x = b R : Lemma 3.
For any non-empty subset R ⊆ {1, 2, . . . , n}:

1. The Chebyshev distance associated to the subsystem (S R ) is:

∆ R = max i∈R min 1≤j≤m max k∈R δ T ijk . ( 29 
)
2. We have the following equivalence:

(S R ) : A R □ max T x = b R consistent ⇐⇒ ∀i ∈ R ∃j ∈ M such that max k∈R δ T ijk = 0.
The proof of this lemma is easy using (21) and ( 23).

Let us illustrate this result with the subsystems reduced to a single equation: Example 4. For all i ∈ {1, 2, . . . , n}, we have, see (Lemma 1):

(S {i} ) : A {i} □ max T x = b {i} consistent ⇐⇒ ∃j ∈ M such that δ T iji = (b i -a ij ) + = 0.
4 Find a maximal consistent subsystem of an inconsistent system of max -T fuzzy relational equations

Let us take a non-empty subset R ⊆ N and assume that the subsystem (S R ) :

A R □ max T x = b R is consistent (Notation 2)
. For an index i of an equation which is in the intersection of the set R and the complement N c of the set N c , see (25), we establish four important results ((Lemma 4), (Lemma 5), (Lemma 6) and (Proposition 1)).

Finally, we show our main result (Theorem 1), which allows us to obtain a canonical maximal consistent subsystem of an inconsistent system (S) by computing the Chebyshev distance of the system (S). Lemma 4. Let i ∈ R ∩ N c . Then, we have:

∀j ∈ M, max k∈N δ T ijk > 0, ( 30 
) ∃j ∈ M, max k∈R δ T ijk = 0. (31) 
Proof. If i / ∈ N c , it means that δ i = min j∈M max k∈N δ T ijk > 0, from which we establish (30). From (29), we also deduce (31).

Lemma 5. Let i ∈ R ∩ N c and j ∈ M and we assume that:

max k∈R δ T ijk = 0. (32) 
Then, we have:

1. b i ≤ a ij .
2. There exists k 1 ∈ R such that δ T ijk1 > 0.

Proof. Let us take k = i in (32), then we obtain δ T iji = 0. From (Lemma 1), we deduce that we have:

δ T iji = (b i -a ij ) + = 0. So b i ≤ a ij .
We apply (30) to the index j ∈ M and we obtain:

max k∈N δ T ijk > 0.
By taking into account (32), we then deduce that there exists an index k 1 ∈ R such that δ T ijk1 > 0.

Lemma 6. Let an index i ∈ R ∩ N c and an index j ∈ M satisfy (32). For any index k 1 ∈ R ∩ N c such that δ T ijk1 > 0, there exists an index k 2 ∈ R such that:

δ T ijk1 > 0, δ T k1jk2 > 0, δ T ijk2 > 0, k 1 ̸ = k 2 .
Proof. From (Lemma 5), we have

b i ≤ a ij . An index k 1 / ∈ N c means that ∀l ∈ M, max k∈N δ T k1lk > 0. By taking l = j, we obtain max k∈N δ T k1jk > 0. Let k 2 ∈ N be such that δ T k1jk2 > 0.
Let us check for each of the three t-norms that we have:

k 1 ̸ = k 2 , δ T ijk2 > 0, k 2 ∈ R.
• For T = T M (min), as we have b i ≤ a ij , then by applying (26) to δ T ijk1 > 0, we deduce: b i > b k1 and a k1j > b k1 .

The inequalities a k1j > b k1 and δ T k1jk2 > 0 allow us to apply (26) and we obtain:

b k1 > b k2 , a k2j > b k2 . So k 1 ̸ = k 2 .
As we now have:

b i > b k1 > b k2 , a k1j > b k1 , a k2j > b k2 .
and also b i ≤ a ij , we deduce from (26) that we have δ T ijk2 > 0. As, by hypothesis, we have max k∈R δ T ijk = 0, we necessarily have k 2 ∈ R.

• For T = T P (product), by applying (27) to δ T ijk1 > 0, we obtain:

a ij > 0, a k1j > b k1 , b i a ij > b k1 a k1j .
The inequality a k1j > b k1 allows us to apply (27) to δ T k1jk2 > 0 and to obtain:

a k1j > 0, a k2j > b k2 , b k1 a k1j > b k2 a k2j . So k 1 ̸ = k 2 .
Furthermore, we deduce from the previous inequalities:

a ij > 0, a k2j > b k2 , b i a ij > b k1 a k1j > b k2 a k2j .
By applying (27) (we also have b i ≤ a ij ), we obtain δ T ijk2 > 0. As, by hypothesis, we have max k∈R δ T ijk = 0, we necessarily have k 2 ∈ R.

• For T = T L (Łukasiewicz's t-norm), by applying (28) to δ T ijk1 > 0, we obtain:

b i > 0, b i -a ij > b k1 -a k1j .
The inequality b k1 -a k1j < b i -a ij ≤ 0 allows us to apply (28) to δ T k1jk2 > 0 and we obtain:

b k1 > 0, b k1 -a k1j > b k2 -a k2j .
So k 1 ̸ = k 2 . Furthermore, we deduce from the previous inequalities:

b i > 0, b i -a ij > b k1 -a k1j > b k2 -a k2j .
By applying (28), we obtain δ T ijk2 > 0. As by hypothesis, we have max k∈R δ T ijk = 0, we necessarily have k 2 ∈ R.

The following statement will be very useful to prove our main result: Proposition 1. We assume that N c ⊆ R. Let i ∈ R ∩ N c and j ∈ M satisfy (32). For any integer p ≥ 1, we can find a set of indexes {k 1 , k 2 . . . , k p } ⊆ R verifying:

card ({k 1 , k 2 . . . , k p }) = p and δ T ijk1 > 0, δ T ijkp > 0, and for all l ∈ {1, 2, . . . , p -1}, δ T k l jk l+1 > 0. ( 33 
)
Proof. We will prove this result by induction on p.

For p = 1, this follows immediately from (Lemma 5). For p = 2, let us take an index k 1 ∈ R satisfying δ T ijk1 > 0 and as R ⊆ N c , we deduce, by applying (Lemma 6), an index k 2 ∈ R such that the set {k 1 , k 2 } satisfy (33).

Assume that we have constructed a set {k 1 , k 2 , . . . , k p-1 } ⊆ R such that: card({k 1 , k 2 , . . . , k p-1 }) = p -1 and δ T ijk1 > 0, δ T ijkp-1 > 0, and for all l ∈ {1, 2, . . . , p -2}, δ T k l jk l+1 > 0.

Let us prove the existence of an index k p such that the set {k 1 , k 2 , . . . , k p-1 , k p } satisfy (33). We have to prove:

k p ∈ R, card ({k 1 , k 2 . . . , k p }) = p and δ T kp-1jkp > 0 and δ T ijkp > 0.
As we have k p-1 ∈ R and R ⊆ N c we have:

δ kp-1 = min l∈M max h∈N δ T kp-1lh > 0.
For l = j, we deduce:

max h∈N δ T kp-1jh > 0.
Let us take an index k p ∈ N such that δ T kp-1jkp > 0. Let us remark that if we prove that δ T ijkp > 0, by (32), we conclude that k p ∈ R. Let us check for each of the three t-norms the remaining conditions: card ({k 1 , k 2 . . . , k p }) = p and δ T ijkp > 0.

• For T = T M (min), by the recurrence hypothesis, we apply p -1 times the equivalence (26) and we obtain:

b i > b k1 > b k2 > • • • > b kp-1 and a kp-1j > b kp-1 . (34) 
As we have b kp-1 < a kp-1j , we can apply (26) to δ T M kp-1jkp > 0 and we obtain:

b kp-1 > b kp and a kpj > b kp . (35) 
Then, from (34

) we deduce b i > b k1 > b k2 > • • • > b kp-1 > b kp and a kpj > b kp . So card ({k 1 , k 2 . . . , k p }) = p.
As we have b i ≤ a ij (Lemma 5), we conclude that δ T M ijkp > 0.

• For T = T P (product), by the recurrence hypothesis, we apply p -1 times the equivalence (27) and we obtain:

b i a ij > b k1 a k1j > • • • > b kp-1 a kp-1j
and a ij > 0, for all l ∈ {1, 2, . . . , p-2}, a k l j > 0, and

a kp-1j > b kp-1 . (36) 
As we have b kp-1 < a kp-1j , we can apply (27) to δ T P kp-1jkp > 0 and we obtain:

b kp-1 a kp-1j > b kp a kpj and a kpj > b kp . (37) 
Then, from (36

) we deduce bi aij > b k 1 a k 1 j > b k 2 a k 2 j > • • • > b k p-1 a k p-1 j > b kp
a kp j and a kpj > b kp . So card ({k 1 , k 2 . . . , k p }) = p. As we have b i ≤ a ij (Lemma 5), we conclude that δ T P ijkp > 0.

• For T = T L (Łukasiewicz's t-norm), by the recurrence hypothesis, we apply p -1 times the equivalence (28) and we obtain:

b i -a ij > b k1 -a k1j > • • • > b kp-1 -a kp-1j and b i > 0, for all l ∈ {1, 2, . . . , p -2}, b k l > 0. (38) 
As we have b kp-1 -a kp-1j < b i -a ij ≤ 0, we can apply (28) to δ T L kp-1jkp > 0 and we obtain:

b kp-1 -a kp-1j > b kp -a kpj . (39) 
Then, from (38

) we deduce b i -a ij > b k1 -a k1j > b k2 -a k2j > • • • > b kp-1 -a kp-1j > b kp -a kpj and b i > 0.
So card ({k 1 , k 2 . . . , k p }) = p and by (28) we have δ T L ijkp > 0.

We now prove our main result: Theorem 1. Assume that there is at least one equation of index i that is solvable independently of the others, i.e., there is a subsystem reduced to a single equation (S {i} ) that is consistent. Then, we have:

1. The set N c is non-empty (N c ̸ = ∅).

The system (S Nc ) :

A Nc □ max T x = b Nc is consistent.
3. Among the consistent subsystems (S R ) :

A R □ max T x = b R of the system (S) : A□ max T x = b with R ⊆ {1, 2, . . . , n}, the consistent subsystem (S Nc ) : A Nc □ max T x = b Nc
is maximal in the following sense: any subsystem defined by a strict superset of N c is inconsistent.

The third statement of the above theorem means that for any non-empty subset R ⊆ {1, 2, . . . , n}, we have:

The system (S R ) is consistent and

N c ⊆ R =⇒ N c = R.
We begin by proving the second statement, and we will then prove the first and third statements simultaneously.

Proof.

• Proof of the second statement (assuming that N c ̸ = ∅).

To prove that the subsystem (S Nc ) is consistent, we must show that ∆ Nc = 0, see (Lemma 3), which means that for any i ∈ N c , there is an index j ∈ M such that max k∈Nc δ T ijk = 0. Let an index i ∈ N c . We have:

δ i = min j∈M max k∈N δ T ijk = 0.
We can easily deduce that there is an index j ∈ M such that:

0 = max k∈N δ T ijk ≥ max k∈Nc δ T ijk .
• Proof of the first and third statement.

Let R ⊆ N be a non-empty set such that the system (S R ) is consistent and N c ⊆ R. We will show the equality N c = R.

In particular, if we take R = {i} and we suppose that the subsystem (S R ) is consistent, then we trivially have

∅ ⊂ R, thus N c ̸ = ∅.
Let us show that N c = R by contradiction.

Assume that we have

N c ⊂ R. Let an index i ∈ R ∩ N c .
By (Lemma 4), we can take an index j ∈ M verifying (32):

max k∈R δ T ijk = 0.
Then by (Proposition 1), we conclude that for any integer p ≥ 1, we have p ≤ card(R), which is a contradiction.

We have proven that N c = R.

Consequently, the computational complexity for obtaining the maximal consistent subsystem (S Nc ) of an inconsistent system (S) is the same as that for computing the Chebyshev distance ∆.

Example 5. (continued) We reuse the matrix A and the vector b of (Example 1), see [START_REF] Di | Fuzzy relation equation under a class of triangular norms: A survey and new results[END_REF].

• For the max -min system A□ max min x = b, its unique maximal consistent subsystem is the system itself, since the system A□ max min x = b is consistent and therefore N c = {1, 2, 3, 4}.

• For the inconsistent max-product system A□ max T P x = b and the inconsistent max-Łukasiewicz system A□ max T L x = b, we have N c = {1, 3, 4}. So the system (S Nc ) : A Nc □ max T P x = b Nc is a maximal consistent subsystem of the system A□ max T P x = b and the system (S Nc ) : A Nc □ max T L x = b Nc is a maximal consistent subsystem of the system A□ max T L x = b. For each inconsistent system, we obtain a consistent subsystem of it by removing the equation whose index is 2.

5 Method for easily finding all consistent subsystems of an inconsistent max -min system

In this section, we give an efficient method for obtaining all consistent subsystems of an inconsistent max -min system. We begin by giving some notations and establishing (Lemma 7). Based on this result, we introduce our method (Subsection 5.3) which allows us to obtain, iteratively, all the maximal consistent subsystems of an inconsistent system (Proposition 2). Finally, we illustrate our method by an interesting example.

Notations

Let (S) : A□ max min x = b be a max -min system where A = [a ij ] 1≤i≤n,1≤j≤m and b = [b i ] 1≤i≤n . We suppose that the coefficients of b are ordered in ascending order, i.e., we have:

b 1 ≤ b 2 ≤ • • • ≤ b n . (40) 
We reuse (Notation 2) i.e., for any subset R ⊆ {1, 2, . . . , n}, we form the following max -min subsystem:

(S R ) : A R □ max min x = b R , where A R = [a ij ] i∈R,1≤j≤m and b R = [b i ] i∈R .
We compute the Chebyshev distance associated to the subsystem (S R ) by (see (Lemma 3)):

∆ R = max i∈R δ R i where δ R i = min 1≤j≤m max k∈R δ T M ijk . (41) 
We assume that each of the equations in the system (S) is solvable independently of the others, which means that all subsystems reduced to one equation are consistent:

for all i ∈ N, the system (S {i} ) :

A {i} □ max min x = b i is consistent. ( 42 
)
For all s ∈ N , we associate to the subsystem (S {1,2,...,s} ), the following set:

E s = R ∈ 2 {1,2,...,s} | (S R ) : A R □ max min x = b R is consistent . (43) 
The set E s is non-empty since, from (42), all singletons {1}, {2}, • • • , {s} are in E s .

Preliminary result

The following result allows us to construct, from a consistent subsystem of (S {1,2,...,s} ) a consistent subsystem with a larger number of equations, if it is possible.

Lemma 7. Let 1 ≤ s < n -1 be fixed and consider a subset of equation indexes R ∈ E s which allows us to form a consistent subsystem of (S {1,2,...,s} ). For any k ∈ N such that k > s, we put the following subset R k = R ∪ {k} and we have (using the formula (41)):

1. ∀i ∈ R , δ R k i = 0, 2. The subsystem (S R k ) is a consistent subsystem ⇐⇒ δ R k k = 0.
Proof. It suffices to prove the first statement.

Let i ∈ R, we have i < k, so b i ≤ b k and for all l ∈ M , we have: 24) and the inequality b i ≤ b k , we obtain:

σ G (b i , a kl , b k ) = min( (b i -b k ) + 2 , (a kl -b k ) + ) = 0. Since ∆ R = 0, let j ∈ M be such that max k ′ ∈R δ T M ijk ′ = 0. From k ′ = i ∈ R and (Lemma 1), we deduce 0 = δ T M iji = (b i -a ij ) + . From (
δ T M ijk = σ G (b i , a kj , b k ) = 0. Finally, we obtain from (41): δ R k i ≤ max k ′ ∈ R k δ T M ijk ′ = max(max k ′ ∈R δ T M ijk ′ , δ T M ijk ) = 0. ( 44 
)
5.3 Method for finding all consistent subsystems of an inconsistent max -min system

We will now introduce our method, which allows us to build for 1 ≤ s ≤ n -1 the set E s+1 from the set E s . Trivially,

we have E 1 = {1} .

For 1 ≤ s ≤ n -1 the set E s+1 is given by:

E s+1 = E s ∪ {s + 1} ∪ R | R ∈ E s , R = R ∪ {s + 1}, and δ R s+1 = 0 . (45) 
The equality (45) is easily deduced from (Lemma 7).

Algorithmically, the main step to deduce E s+1 from E s consists in computing the card(E s ) numbers δ R s+1 = min 1≤j≤m max k∈ R δ T M s+1jk . From the set E n we get all the consistent subsystems of the system (S). Starting from a consistent subsystem (S R ) of the system (S {1,...,s} ) that we suppose to be maximal among the consistent subsystems of the system (S {1,...,s} ), we characterize in which case (S R ) is a maximal consistent subsystem of the whole system (S). Proposition 2. Let 1 ≤ s < n -1 and R ⊆ {1, . . . , s}. We suppose that the subsystem (S R ) is a maximal consistent subsystem of (S {1,...,s} ). Then we have:

(S R ) is a maximal consitent subsystem of the system (S) ⇐⇒ ∀k ∈ {s + 1, . . . , n}, δ R k k > 0.

(46)

Proof. The proof of the implication =⇒ follows directly from (Lemma 7). In fact, for any k ∈ {s + 1, . . . , n} we have R ⊂ R k = R ∪ {k}. The maximality of the subsystem (S R ) implies the non-consistency of the subsystem (S R k ), thus δ R k k > 0.

To prove the implication ⇐=, let U ⊆ N such that the subsystem (S U ) is consistent and R ⊆ U , we must prove the equality R = U .

By assumption, if U satisfies the inclusion U ⊆ {1, 2, . . . , s}, then we conclude that R = U .

Let us prove the inclusion U ⊆ {1, 2, . . . , s} by contradiction.

Suppose that there is an index k ∈ {s + 1, . . . , n} ∩ U . Then we have:

R ⊂ R k ⊆ U, R k = R ∪ {k}.
From the consistency of the subsystem (S U ), we deduce that the subsystem (S R k ) is consistent. By applying (Lemma 7), we obtain δ R k k = 0 and then a contradiction.

We can then obtain, iteratively, all the maximal consistent subsystems of the whole inconsistent system. (Example 6) shows that two maximal consistent subsystems do not necessarily have the same cardinality. We have b 1 < b 2 < b 3 < b 4 and each subsystem reduced to a single equation is consistent i.e., for all i ∈ {1, 2, 3, 4}, the system (S {i} ) : A {i} □ max min x = b i is consistent.

We start from E 1 = {1} . We have:

• E 2 = {1}, {2}, {1, 2} ,

• E 3 = {1}, {2}, {3}, {1, 2} ,

• E 4 = {1}, {2}, {3}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4} .

So, {3, 4} and {1, 2, 4} are the two subsets of indexes describing the maximal consistent subsystems of the inconsistent max -min system.

Our method is much faster than checking, using [START_REF] Di | Spatial analysis and fuzzy relation equations[END_REF], the consistency of each of the subsystems (S R ) of (S) one by one.

Conclusion

In this article, we studied the inconsistency of systems of max -T fuzzy relational equations of the form A□ max T x = b, where T is a t-norm among min, product or Łukasiewicz's t-norm. By computing the Chebyshev distance ∆ = inf c∈C ∥b -c∥ associated to the second member b of an inconsistent max -T system where C is the set of second members of consistent systems defined with the same matrix A, using the analytical formulas given in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF], we showed in (Theorem 1) that we can directly find a canonical maximal consistent subsystem of this inconsistent system. We showed that the computational complexity for obtaining this maximal consistent subsystem is the same as that required for computing ∆.

For an inconsistent max -min system, we introduced a method for efficiently obtaining all the consistent subsystems of this system. The method is based on the formula of ∆ for max -min systems and allows us to obtain, iteratively, all the maximal consistent systems of the considered inconsistent system. For the moment, we have not attempted to adapt this method to the cases of max -product and max -Łukasiewicz compositions.

  see its definition in (18)). To have φ(a ij , b i , a kj , b k ) > 0, we must have a ij > 0, as if a ij = 0, we have φ(a ij , b i , a kj , b k ) = b i which would be equal to zero since we suppose b i ≤ a ij . Finally, the inequality b i a ij > b k a kj is equivalent to the strict positivity of (bi•a kj -aij •b k ) + aij +a kj (we have a ij + a kj > 0).

Example 6 .

 6 Let the system A□ max min x = b be defined by:

This work may be useful for solving inconsistency issues in max -T systems involved in max -T learning methods, such as the paradigm of [3] for max -min learning weight matrices according to training data, learning the rule parameters for possibilistic rule-based systems [1,3] or learning associate memories [16]. It can also be useful for applications based on max -T systems, e.g. spatial analysis [6], diagnostic problems [8].