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Estimating process-based model parameters from species
distribution data using the evolutionary algorithm CMA-ES
Victor Van der Meersch ∗, Isabelle Chuine CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpel-
lier, France

1. Two main types of species distribution models are used to project species range shifts in future cli-
matic conditions: correlative and process-based models. Although there is some continuity between
these two types of models, they are fundamentally different in their hypotheses (statistical rela-
tionships vs mechanistic relationships) and their calibration methods (SDMs tend to be occurrence
data-driven while PBMs tend to be prior-driven).

2. One of the limitations to the use of process-based models is the difficulty to parameterize them for
a large number of species compared to correlative SDMs. We investigated the feasibility of using
an evolutionary algorithm (called covariance matrix adaptation evolution strategy, CMA-ES) to cali-
brate process-based models using species distribution data. This method is well established in some
fields (robotics, aerospace research, . . . ), but has never been used, to our knowledge, in ecology, de-
spite its ability to deal with very large space dimensions. Using tree species occurrence data across
Europe, we adapted the CMA-ES algorithm to find appropriate values of model parameters. We
estimated simultaneously 27 to 77 parameters of two process-based models simulating forest tree’s
ecophysiology for three species with varying range sizes and geographical distributions.

3. CMA-ES provided parameter estimates leading to better prediction of species distribution than pa-
rameter estimates based on experts knowledge. Our results also revealed that some model parame-
ters and processes were strongly dependent, and different parameter combinations could therefore
lead to high model accuracy.

4. We conclude that CMA-ES is an efficient state-of-the-art method to calibrate process-based models
with a large number of parameters using species occurrence data. Inverse modelling using CMA-ES
is a powerful method to calibrate process-based parameters which can hardly bemeasured. However,
themethod does not warranty that parameter estimates are correct because of several sources of bias,
similarly to correlative models, and expert knowledge is required to validate results.

Keywords: calibration, evolutionary algorithm, cma-es, species distribution model, process-based model,
trees

Introduction

The speed and magnitude of projected climate changes are profoundly affecting species distributions, eco-

logical communities and ecosystem processes, and numerous ecological systems are now approaching
∗Corresponding author - victor.vandermeersch@cefe.cnrs.fr
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tipping points (Lenton et al. 2008; Barnosky et al. 2012; Steffen et al. 2018; but see Brook et al. 2013). Large

uncertainties on the persistence and the resilience of ecosystems exist. Ecological forecasting has now

become a critical tool for managers and decision-makers (Urban 2015), and robust predictive approaches

are necessary to provide reliable projections of species geographic range shifts and ecosystem functioning

(Mouquet et al. 2015). Forecasting the dynamics of ecological systems for the upcoming decades and cen-

turies is very difficult, because ecological systems are extremely complex, influenced by a lot of factors and

processes, and climatic conditions with no analogues in the recent past are forecasted to become common

(Williams et al. 2007; Radeloff et al. 2015; Fitzpatrick et al. 2018). Ecological models have thus increased in

complexity over the last 50 years, incorporating more and more processes described with various degrees

of complexity depending on their objectives.

Nowadays, two main types of species distribution models (SDM) are used to project species range

shifts in future climatic conditions: correlative and process-based models (Dormann et al. 2012). The vast

majority of currently used SDMs are correlative: they seek to find statistical relationships between various

environmental descriptors and species presence and absence. They assume there is an equilibrium be-

tween species distribution and environment (equilibrium postulate, Guisan & Thuiller 2005), that there is

no adaptive responses within a generation (no trait plasticity, Berzaghi et al. 2020), and that species niche

is stable over macroevolutionary time (niche conservatism, Pearman et al. 2008). Most of them include

a fairly large number of predictors (particularly in machine-learning approaches), and consider flexible

transformations (linear, quadratic. . . ) and interactions between them (Merow et al. 2014). Even though

some authors advocate for “putting more biology into SDMs” (Higgins et al. 2012), parameters have no a

priori defined ecological meaning (Dormann et al. 2012) and shape of response curves to environmental

variables is generally not constrained based on biological considerations. Although these models are not

always used correctly (Araújo et al. 2019; Santini et al. 2021), their flexibility makes them an important

tool in predictive ecology (Mouquet et al. 2015). They have been widely used especially to generate species

range projections under current and future climates (e.g. Guisan & Thuiller 2005). Nevertheless, their abil-

ity to accurately describe the effects of climate on species distributions has recently been questioned (e.g.

Fourcade et al. 2018; Journé et al. 2020; Warren et al. 2021).

For all these reasons, another kind of models has been developed. Process-based models aim to translate

into mathematical equations our knowledge about the physiological and ecological processes involved in

an organism’s life, such as growth, reproduction, survival, movement, and interactions with other livebe-
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ings. Process-based models take more time to develop and are more challenging to use, but they might

provide a greater comprehension of the complexity of ecosystem dynamics and more robust projections

in novel conditions (Evans 2012; Zurell et al. 2016; Singer et al. 2016; Urban et al. 2016). A wide variety

of process-based models exists, from quite simple models (e.g. Kleidon & Mooney 2000) to much more

complex ones (e.g. Dufrêne et al. 2005). They all rely on an explicit representation of processes at stake,

with a direct biological interpretation - at least in principle (Connolly et al. 2017). Process-based models

may also include some phenomenological relationships on lower-level processes, but never on the pattern

itself. The choices about the specific processes to include into the model are made based on theory, em-

pirical observations and the objectives of the research, and modeler subjectivity may play an important

role. One of the challenges is to build a model with the appropriate amount of complexity: a too simplistic

model might be unrealistic whereas a very complex model could be far beyond our ability to understand it

(because of interconnected mechanisms) and calibrate it. Each model relies on different hypotheses with

its own balance of complexity, accuracy and parsimony - and thus different numbers of unknown param-

eters to calibrate. Parameter values of this kind of models are obtained with different methods. Some of

these parameters can be individually estimated with field observations or experimental data, or are al-

ready available in the literature. When this is not possible, groups of parameters defining a relationship

between a process variable and environmental variables or other processes are estimated jointly using

inverse modelling methods and data on the processes modelled (e.g. Cailleret et al. 2020; Asse et al. 2020).

Calibration (i.e. parameter setting and estimation) is a fundamental step in the modelling process. It

allows the model to reproduce the reality with more or less success. The result of the calibration provides

insights on the ability of the model to reproduce and explain reality (model predictive power). Calibration

of complex models such as process-based SDMs is time-consuming, and modelers are often challenged by

the dimension of the parameter space, the complexity of the possible correlations among parameters, and

the scarcity of observed experimental data to calibrate them. Therefore, although the philosophy of such

models is to measure parameters, statistical inference might be useful when data are not yet available to

infer parameter values. Parameter inference can be achieved through several methods which have been

developed in the last decades. Most of them fall into two categories: informal and statistical calibration.

On the one hand, statistical calibration assumes a data-generating model, and a likelihood function, which

quantifies the probability of the observed data given the model parameters, is expressed mathematically.

This likelihood is the foundation ofmaximum likelihood estimation and Bayesian inference, two commonly
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used methods for parameter estimation. In practice, deriving the likelihood function can be quite chal-

lenging for complex models with many parameters and thresholding. One approach is to use numerical

methods such as simulation-based inference or \emph{approximate Bayesian computation (e.g. Hartig et

al. 2014). However, obtaining a reliable estimate of the likelihood of a complex process-based model can

require a large number of simulated samples, which can be computationally expensive. On the other hand,

informal calibration uses an informal objective function to measure the discrepancy between the model

predictions and the observed data. By minimizing the objective function, one is able to identify the pa-

rameter values that best fit the observed data, even though it may not have the same statistical rigor as

statistical calibration. This optimization step can be achieved with several methods, either deterministic

(e.g. Nelder-Mead method) or stochastic (e.g. simulated annealing, evolutionary algorithms).

Recently, an approach belonging to the evolutionary algorithm family, called Covariance Matrix Adapta-

tion Evolution Strategy (CMA-ES), has been proposed (Hansen & Ostermeier 2001). One of the advantages

of CMA-ES is its ability to cumulate information over iterations in order to adapt its own parameters (in

particular the covariance matrix), which makes it more robust to noise. CMA-ES is especially performant

for non-separable problems (i.e. when the model parameters are dependent) and large search space. This

method has been successfully applied in various fields such as aerospace (e.g. Collange et al. 2010), optics

(e.g. Gagné et al. 2008), and robotics (e.g. Hill et al. 2020). CMA-ES is acknowledged to be one of the most

efficient approaches in continuous black-box optimization (Hansen et al. 2010) but to our knowledge has

never been used in ecology.

Here we explored the feasibility and interests of calibrating process-based SDMs with CMA-ES using

species occurrence data as correlative SDMs do (fitted process-based models sensu Dormann et al. 2012).

We focused on two forest process-based models of varying levels of complexity to evaluate the ability

of CMA-ES to calibrate such models. The two models are PHENOFIT (27 to 36 parameters, Chuine &

Beaubien 2001) and CASTANEA (77 parameters, Dufrêne et al. 2005). Each model also emphasizes dif-

ferent ecological processes: while PHENOFIT focuses on phenology and how it relates to survival and

reproduction, CASTANEA focuses on carbon and water cycles. We focused on three European common

tree species, with different range extent and ecological preferences in order to evaluate the algorithms

performance in various geographical and climatic conditions. European beech (Fagus sylvatica L.) is one

of the most widely distributed broadleaved tree in Europe (from southern Sweden to Sicily and from Spain

to northwest Turkey), holm oak (Quercus ilex L.) is an evergreen broadleaved tree native of the Mediter-

4



ranean region, and silver fir (Abies alba Mill.) is a coniferous tree which mainly occurs in mountain forests

of Central Europe and some parts of Southern and Eastern Europe.

1. Material and methods

1.1. Process-based models

All versions of the models used for this study are coded in Java and distributed by the CAPSIS platform.

PHENOFIT is a process-based species distribution model for forest tree species which focuses on phe-

nology. It relies on the principle that the distribution of a tree species depends mainly on the synchro-

nization of its timing of development to the local climatic conditions (Chuine & Beaubien 2001). It is

composed of several submodels, including phenology models for leaves, flowers and fruits, and stress re-

sistance models. It simulates the fitness (survival and reproductive success) of an average individual using

daily meteorological data, soil water holding capacity and species specific parameters (see Appendix A for

details). PHENOFIT has been validated for several North American and European species by comparing

their known distribution to the modelled fitness (e.g. Morin et al. 2007; Saltré et al. 2013; Duputié et al.

2015; Gauzere et al. 2020).

CASTANEA is an ecophysiological process-based model which simulates carbon and water fluxes in

forests (Dufrêne et al. 2005). The model simulates the ecosystem as an average tree with six compartments

(leaves, branches, stem, coarse roots, fine roots and reserves). It is much more complex than PHENOFIT,

with several processes described and computed, such as photosynthesis, stomatal opening, maintenance

and growth respiration, transpiration, and carbon allocation (see Appendix A for details). CASTANEA

requires daily meteorological variables and soil characteristics. The model has been initially validated at

stand scale for beech (Davi et al. 2005), and was then successfully applied to other European species (e.g.

Davi et al. 2006; Delpierre et al. 2012; Davi & Cailleret 2017).

Both models, in their standard version (called here after expert calibration), are parameterized using

various sources of information. Some parameters are directly measured or found in the literature such

as leaf life span, specific leaf area, LT50 (freezing temperature causing 50% mortality) of leaves, leaf re-

flectance, and so on. Other parameters cannot be measured at all, or their measurement require an enor-

mous effort that cannot be deployed for a large number of species. These parameters are thus inferred by

inverse modelling using either Bayesian methods or optimizing methods and data on the specific process
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they are describing. This is for example the case for phenology models for which all parameters cannot be

measured, especially those describing bud dormancy break regulation, since no method allow to measure

dormancy break precisely so far (except for a few fruit tree species). Finally, a few parameters are pre-

scribed based on expert knowledge as no data to estimate them exist. For this study, the standard versions

of both models were run for the three species using the same climatic data used to do the inverse calibra-

tion (see 1.2.1. Climate data), in order to compare the correctness of the predictions obtained with the two

types of calibration.

1.2. Data for the calibration

1.2.1. Climate and soil data

Raw climatic variables were extracted from ERA5-Land hourly dataset (Muñoz Sabater 2019, 2021) from

1970 to 2000, at a spatial resolution of 0.1 degree in latitude and longitude. We calculated the daily mean

values of the following variables used by PHENOFIT and CASTANEA: minimum, mean and maximum

daily temperatures, mean dewpoint temperature, daily precipitation, daily global radiation and daily mean

wind speed. We computed the daily relative humidity with the ratio of vapor pressure and saturation vapor

pressure (both calculated with Clausius-Clapeyron equation) using humidity R package (Cai 2019). Daily

potential evapotranspiration was calculated with Penman–Monteith equation (FAO standard of hypothet-

ical grass reference surface) using a slightly modified version of the ET() function in Evapotranspiration R

package (Guo et al. 2016).

Water content at field capacity and wilting point data were extracted from EU-SoilHydroGrids (Tóth

et al. 2017) which is at 1km resolution. Percentage of sand, silt and clay particles, percentage of coarse

fragments, bulk density and soil depth were extracted from SoilGrids250m (Hengl et al. 2017) at a 250m

resolution. These data (except for soil depth) are provided at seven soil depths, so we summarized them

(weighted sum or weighted mean) taking into account each layer width and total soil depth. Finally, all

variables were upscaled at the ERA5-Land spatial resolution 0.1° using bilinear interpolation.

1.2.2. Tree occurrence data used for the calibration

Sources of occurrence data are known to differ even for common European trees (Duputié et al. 2014)

and this makes it quite challenging to gather comprehensive data at a sufficient spatial resolution all over
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Europe. The occurrence data we used essentially rely on the EU-Forest dataset (Mauri et al. 2017) which

benefits from inventory and monitoring programmes implemented in most European countries. As EU-

Forest is limited to forest ecosystems, we combined it with presence records extracted from the Global

Biodiversity Information Facility (GBIF 2022, see Appendix B for all download links) but removing obser-

vations outside natural species ranges as defined by Atlas Flora Europeae (AFE, Jalas & Suominen 1972–

2005) and EuroVegMap (Bohn et al. 2003). By doing so, we also included occurrences of isolated native

trees living outside forests, excluding records from arboreta or gardens where the species would have been

planted as an exotic. For holm oak, we also added occurrence records in the Mediterranean Basin from the

WOODIV database (Monnet et al. 2021), leaving out EU-Forest and GBIF records we had already gathered.

We upscaled all species records at the ERA5-Land resolution (0.1°, see 1.2.1. Climate data), i.e. the species

is considered to be present in the cell if there is at least one record. We finally obtained 21458 occurrence

cells for beech, 6653 for holm oak and 5385 for silver fir (see Appendix B for details).

All the datasets described above are presence-only data. Therefore, we generated cells where species

are supposed to be absent, i.e. pseudo-absence cells. In order to avoid as far as possible creating false

absence data, we used EU-Forest cells where the species is not reported present as pseudo-absence cells.

We assumed that national forest inventories were exhaustive (which is not true since only specific forest

plots in a 0.1° cell are monitored). We obtained 25423 absence cells for beech, 37931 for holm oak and 38365

for silver fir (see Appendix C).

We selected subsets of 2000 points (1000 presences and 1000 pseudo-absences) in order to reduce com-

putational costs. For each species, we generated ten presence clusters (k-means algorithm) of similar

bioclimatic conditions based on annual climate normals computed with R package dismo (Hijmans et al.

2021) and ERA5-Land variables. In each cluster, we randomly sampled a number of cells where the species

is present proportional to the total number of a number of cells where the species is present in the cluster.

The aim of this stratified random sampling was to make sure that all species environmental preferences

were proportionally represented. We then randomly sampled the same number of pseudo-absence cells

(see Appendix B for details).

Regarding PHENOFIT model, we calibrated ten times each species parameter set, with 5 repetitions on

2 random subsets of presences/pseudo-absences, except for beech. In the latter case, we ran 10 repetitions

on 10 subsets (i.e. 100 calibrations) to investigate both the effect of subsampling and the effect of stochas-

ticity. Since CASTANEA computing time was much higher (see Table 1), we ran only two calibration for
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each species (on 2 different random subsets).

1.3. Model calibration

1.3.1. Covariance Matrix Adaptation Evolution Strategy principles

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust optimization

algorithm for non-linear, non-convex, as well as non-separated optimization problems in continuous do-

main (Hansen & Ostermeier 1996; Hansen & Ostermeier 2001; Hansen 2006). It is based on the principle of

evolutionary biology, via recombination, mutation and selection of the most fit candidate solutions (i.e. pa-

rameter sets providing the best predictions). At each iteration:

- λ candidate solutions are evaluated, i.e. model runs λ times with λ different parameter sets and the ob-

jective function is evaluated

- the best µ candidate solutions are selected

- the weighted mean candidate solution m is computed (mean of the best µ parameter sets weighted by

their objective function value)

- covariance matrixC and step size σ are updated (with information accumulated over several consecutive

iterations)

- new λ candidate solutions are sampled in a normal distributionN (m,σC), with both recombination (via

the favorite solutionm) and mutations (via the perturbations σC)

One of the strengths of this approach lies in the combination of rank-µ-update, where prior information

from previous generations is exploited (mean of the previous covariance matrices, with a higher weight

for recent generations), and cumulation, where correlations between generations are retained in an evo-

lution path (sum of consecutive steps), to update the covariance matrix at each step (see Hansen 2016 for

a detailed description of the algorithm).

1.3.2. CMA-ES in practice

One of the advantages of CMA-ES is that it does not require a complex parameter tuning: as best parameter

values at a given time of the optimization process might no longer be efficient later, CMA-ES implements

an internal adaptation of its parameters. We only chose the number of candidate solutions λ, depending

on the optimization problem complexity (µ was set to λ/2). The default recommended value for λ is
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4 + 3ln(N), where N is the number of parameters to calibrate (i.e. λ ∈ [14, 17] in our case). We set

λ = 20, in order to improve the global search capability (Hansen & Kern 2004) and take advantage of the

computation power at our disposal. All model parameters were linear scaled into [0; 10] so that the same

standard deviation can be applied to all parameters: here we chose σ = 2 (see Nikolaus Hansen personal

website for practical hints on variable encoding). Our stopping criterion for the optimization procedure

was the budget, i.e. the number of model runs.

For an easier use and the sake of reproducibility, we chose to use a pure R implementation of CMA-

ES available in the R package cmaes (Trautmann et al. 2011). The function cma_es() enables us to do λ

function evaluations in parallel so as to substantially reduce computation time. It also allows us to define

lower and upper bound constraints, by penalising the objective function value of the candidate solution if

it violates the boundaries. We customized the cma_es() function to add an option to define death penalty

constraints (rejection of the infeasible candidate solution who is sampled again), in order to define a range

of ecologically possible solutions in terms of inequality constraints between parameters (see Appendix

D for details about boundaries and constraints handling). Death penalty is the easiest way to handle

constraints when the feasible region is fairly large, but it is not perfect as there is no use of information

from infeasible points (i.e. points which violate the constraints).

The objective function for the calibrationwas the area under the receiver operating characteristic curve

(AUC), evaluated against a subsets of 2000 points (see 1.2.2. Tree occurrence data). Although AUC has

been criticized as an imperfect measure of model performance (Lobo et al. 2008; Leroy et al. 2018), we used

it as objective function because our goal here was only to calibrate models by maximizing discriminating

capacity (i.e. potential to correctly classify presences and absences) with a threshold-independent measure.

We used the AUC R package (Ballings & Van den Poel 2013), and chose the two following model output

variables as proxies of classification probabilities (i.e. used to determine if the species can be present or

not): fitness index for PHENOFIT and carbon reserves for CASTANEA (see Appendix A).

We implemented the CMA-ES calibration on two computing clusters: GenOuest from IRISA-INRIA

(genouest.org) and TGCC (Très Grand Centre de Calcul) from CEA (hpc.cea.fr). As the models are coded

in Java (see 1.1 Process-based models), they need a process of deallocating memory handled by a garbage

collector. For PHENOFIT, each function evaluation (i.e. each model simulation) was run on a 2-core com-

puting unit in order to have enough computing resources for both simulation and garbage collection. We

thus needed twice as many cores as functions evaluated in parallel. CASTANEA model requires a fairly
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Table 1: Summary of model calibration settings. Average runtime was assessed on the GenOuest cluster.

Model Output
variable
of interest

Number
of param-
eters
calibrated

Number
of
candidate
solutions
λ

Number
of cores

Total
memory

Number
of model
evalua-
tions

Average
runtime
for one
calibra-
tion

PHENOFIT Fitness
index

[27; 36] 20 40 80 GB 6000 ∼ 24
hours

CASTANEA Carbon
reserves

77 20 100 120 GB 4000 ∼ 20 days

high computation time, so we used a nested parallelism distribution, where each parallel simulation was

distributed on 4 computing units. We thus used 4 times as many cores as functions evaluated in paral-

lel, plus some extra cores for garbage collection. We used R package future (Bengtsson 2021) for parallel

processing.

2. Results

2.1. Calibration results

Calibrations using species distribution data are hereafter called inverse calibrations, and calibrations based

on expert knowledge, observations and measurements of the processes modelled are called expert calibra-

tions.

CMA-ES calibration of PHENOFIT model allows an average 17.2% increase of AUC across the three

species compared to expert calibration (Figure 1). The maximum increase is obtained for silver fir, from

0.72 to 0.9 (25%).

CMA-ES calibration of CASTANEA allows an average 23.7 % increase of AUC compared to expert calibra-

tion (Figure 2), and a maximum increase obtained for holm oak (34.7%).
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Figure 1: Species distribution maps obtained with PHENOFIT expert and inverse calibrations, compared
with observed species occurrences. Optimal threshold to dichotomize model predicted fitness index in
presence/absence is the Youden index-based cut-off point. Note that models predict species climatic niche
which is larger than the realized niche that corresponds to species presence map.
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Figure 2: Species distribution maps obtained with CASTANEA expert and inverse calibrations, compared
with observed species occurrences. Optimal threshold to dichotomize model predicted carbon reserves
in presence/absence is the Youden index-based cut-off point. Note that models predict species climatic
niche which is larger than the realized niche that corresponds to species presence map. Note also that
CASTANEA cannot be used in high-latitude regions (grey area).
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2.2. Impacts of subsampling and calibration stochasticity

2.2.1. Variability of calibration performance

Figure 3: Effects of data sub-sampling and stochasticity on CMA-ES calibration using the PHENOFIT
model for beech: (A) calibrationAUC (calculated onlywith calibration cells) and (B) total AUC (calculated
with all presence/absence cells). Each color is a different sub-sampling of occurrence data, each point is
a calibration run. Diamonds (with black border) are mean AUC values. On (A), the grouping letters
represent the multiple comparisons with pairwise Dunn’s tests.

The 100 calibrations of the PHENOFIT model realized for beech showed that random data subsampling

had an effect on the final objective function value (i.e. the AUC computed on the 2000 calibration points).

Kruskal-Wallis test was significant (p = 2.1e-08), meaning that at least one subset provided better AUC

during calibration. According to Dunn’s tests, 11 pairwise comparisons out of 45 were significant (Figure

3.A.). The calibration AUC ranged from 0.879 to 0.923 over all subsets, with a mean value of 0.9.

However, more importantly, the repetition of calibrations on different subsets had no significant im-

pact on the total AUC computed on all presence/absence points (Kruskal-Wallis test, p = 0.96). Thus, no

subset led to an overall better prediction of the species distribution (see Figure 3.B.). The total AUC ranged

from 0.881 to 0.914, with a mean value of 0.896.
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2.2.2. Non-identifiability of parameters

To illustrate the variability in the parameter estimates that can be obtained with the inverse calibration, we

focused on the leaf unfolding date submodel of PHENOFIT (see Appendix A and Appendix G). The param-

eter values found by CMA-ES varied greatly across the 100 calibrations (Figure 4). For example, the critical

amount of chilling Ccrit required to break bud dormancy and the critical amount of forcing Fcrit required

to break bud ranged from 1.02 to 149.96 and from 1.5 to 79.26 respectively, with a mean value of 51.52 and

38.78. Their coefficient of variations were 126.7% and 51.9% respectively. Kendall correlation coefficient

between Ccrit and the threshold temperature of the response function to temperature during dormancy

Tb is 0.64 (p < 0.001). Kendall correlation coefficient between Fcrit and the mid-response temperature T50

is -0.55 (p < 0.001).

Figure 4: Effects of stochasticity of CMA-ES calibrationd on PHENOFIT leaf unfolding model parameter
values for beech. Each panel is a parameter. Y-axis limits are lower and upper bounds used during
calibration. Each point is a calibrated parameter value, color gradient is based on Fcrit values. Red
diamonds are parameter values obtained with expert calibration, blue ones are parameter values obtained
with the best inverse calibration.
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3. Discussion

Our results showed that CMA-ES is an efficient optimizer for inverse calibration of complex ecological

models. The algorithm was able to find parameter sets that significantly improved the predictions of

the calibrated models compared to the expert parametrization. However, our study also highlighted the

issue of non-identifiability of parameter values due to the data limitation and the dependence between

process-based model parameters, which may result in diverging parameter values even though the cali-

brated models describe the observed species distribution well.

3.1. Performance and advantages of CMA-ES to calibrate complex models in ecology

Here we demonstrated that inverse calibration with CMA-ES is feasible and provide good results for com-

plex and runtime-expensive ecological models.

With a subsampling of species occurrence data, the algorithm succeeds in finding parameter sets which

provide higher AUC values. The predictions of the calibrated models are sharply improved compared to

expert parametrization (Figure 1 and Figure 2). Two striking examples are the increase in the performance

of PHENOFIT model for silver fir, from 0.72 to 0.9, and of CASTANEA model for holm oak, from 0.7 to

0.95. Moreover, CMA-ES performed equally well regardless of the species occurrence subset used during

calibration (Figure 3.B.), and thus permitted to find a good compromise between computational cost and

calibration efficiency.

CMA-ES is a “generic” optimizer which can be applied to various problems. It is easy to use as it

does not require an extensive tuning to efficiently explore the parameter space. We only had to choose

the number of candidate solutions λ, and the initial search region (initial starting point and step size σ).

As well as being quasi parameter-free, CMA-ES has several structural advantages particularly useful for

complex optimization problems. First, the algorithm’s covariance matrix enables the learning of second-

order information, which provides insights into pairwise dependencies between parameters. Second, the

covariance matrix adaptation of CMA-ES is highly efficient in handling ill-conditioned and non-separable

problems (Hansen et al. 2011). Last, CMA-ES’s update mechanism of step size σ (i.e. the mutation force)

helps prevent premature convergence (Hansen & Ostermeier 2001), allowing the algorithm to explore

more of the search space. CMA-ES has been shown to outperform several other optimization algorithms

(Hansen et al. 2010), and is usually the most efficient method when the target cost (i.e. the number of
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objective function evaluations) is about 100 ∗ N (N being the dimension of the parameter search space,

Bäck et al. 2013).

3.2. Non-identifiability of parameter values

Equifinality is a common problem encountered during model calibration, where multiple parameter sets

can produce equally good fits to the observed data. This issue can arise due to several factors, includ-

ing limitations in the quantity or quality of available data, competing processes within the model, and

parameter interactions that affect the model output in complex ways.

In both models used in this study, biological mechanisms are explicitly calculated in several submodels

(e.g. a leaf unfolding submodel or a stomatal opening submodel). A submodel output has inevitably a sig-

nificant influence on the other submodels as biological processes can be highly dependent with feedbacks:

in CASTANEA, for example, the stomatal opening affects the photosynthesis, and vice versa. Within each

submodel, parameters are also strongly dependent because of structural correlations. To illustrate this

problem, we focused on the beech leaf unfolding submodel of PHENOFIT (see Appendix A). This model

has 6 parameters (Chuine 2000): a starting date of the processes (t0), one parameter describing the re-

sponse function to temperature during the dormancy phase (Tb), two parameters describing the response

function to temperature during the phase of bud growth (dT , T50), and two parameters representing the

sums of the daily responses to temperature during bud dormancy (Ccrit) and during bud growth (Fcrit)

that respectively determine the date of bud dormancy break and the date of leaf unfolding (see Appendix

G for details). Since no information on the date of bud dormancy break is available for the calibration,

a first structural negative correlation exists between Ccrit and Fcrit: the same leaf unfolding date can be

obtained with either a long dormancy phase and short bud growth phase or a short dormancy phase and

a long bud growth phase. Other structural correlations exist between Tb and Ccrit on the one hand and

dT /T50 and Fcrit on the other hand: for example, a rapid accumulation of chilling units with a high crit-

ical chilling requirement could yield identical results as a slow accumulation with a low critical chilling

requirement (i.e. the threshold temperature Tb and the critical chilling requirement Ccrit are dependent,

see Figure G.1.A. in Appendix G).

Consequently, several parameter sets may be statistically equivalent and parameters non-identifiable.

In fact, calibration repetitions gave diverging parameter values (Figure 4) while being efficient in distin-

guishing between species presence and absence (i.e. AUC ~ 0.9, Figure 3). Thus, even if the calibratedmodel
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describes the observed species distribution very well, it does not necessarily mean that parameter values

are ecologically relevant. This concern is similar to the criticisms against correlative SDMs, in which pa-

rameter values and correlations that well reproduce species ranges do not necessarily describe a complex

biological reality. In our case, the constraints imposed by the explicit mathematical equations embedded

in the models we used were not sufficient to ensure calibration convergence towards similar solutions that

would have suggested a high biological realism. However, it is worth noting that we deliberately chose

large parameter ranges (although biologically realistic, i.e. corresponding to the observations made on the

different processes modelled across different species) in order to give free rein to the optimization algo-

rithm. As our goal was to assess the performance of CMA-ES objectively, we did not attempt to minimize

this non-identifiability issue by restricting the parameter space. To deal with equifinality issues, an avenue

to explore could be the use of multiple objective functions during model calibration to assess different as-

pects of the model performance. Additionally, if a closed-form likelihood can be derived, one could use a

Bayesian framework to combine prior knowledge and inverse estimation of parameters to constrain the

parameter space and study the nature of trade-offs between parameters (Hartig et al. 2012; Cailleret et al.

2020).

3.3. Methodological issues and perspectives

Our goal here was to investigate the performance of CMA-ES to calibrate quite complex process-based

species distribution models using species occurrence data. We did not attempt to validate our parametriza-

tions using temporally or spatially independent data, andAUCwas only used to determine if model outputs

were consistent with species distributions. However, AUC is scale-invariant: it measures how well predic-

tions are ranked rather than their absolute values. For example, with PHENOFIT, a species with a fitness of

0.8 could be considered as absent while another one with the same fitness could be considered as present.

Therefore, when it is used as an objective function for model calibration, we probably lack some precision

and consistency among species’ parameters estimation. Further work could thus be conducted to examine

the effects of choosing a different objective function.

It would also be valuable to use a significantly higher computing power, with an adapted version of

CMA-ES. To improve the global search performance of CMA-ES, we slightly increased the number of can-

didate solutions λ (Hansen & Kern 2004) and used a computing cluster to evaluate λ functions in parallel.

We were able to use between 40 and 120 cores, which is far from the computing power of some GPUs
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(> 2000 cores). In this case, choosing a very large number of candidate solutions might not be the best

choice. To use efficiently this large parallel computing power, one could rather use a CMA-ES restart strat-

egy (e.g. IPOP-CMA-ES, Auger & Hansen 2005), where the number of candidate solutions is successively

increased (by a factor of 2), and run these calibrations in parallel. Moreover, when a model requires a

high computation time and thus only a small budget can be afforded, the original fitness function could

be approximated with a surrogate model in order to reduce the number of original function evaluations

required (e.g. Auger et al. 2004 ; Loshchilov et al. 2013).

There are several issues regarding the process-basedmodels we usedwhich can impact their calibration

and bias their parameter estimates. First, like any model, although they have a certain level of complex-

ity, they are not a perfect representation of the reality, and their inherent structural errors increase the

probability of finding parameter values that deviate from the true values of the underlying processes (see

Oberpriller et al. 2021). Second, they do not necessarily include all the environmental factors at stake. For

example, pedologic variable in PHENOFIT only involve the water holding capacity. In this model, other

variables such as pH or soil texture are not considered. Third, and more importantly, they are used here to

represent the fundamental niche, and to estimate the potential distribution of the species using pedocli-

matic variables. When calibrated against observed distributions, which represent the realized niche, they

face the same issues as correlative models, and their parameter estimated can be distorted because com-

pensating for processes not represented in the model (e.g. biotic interactions). In addition, in our case here,

land use management probably also play an important role in shaping tree realized distribution, while not

being addressed in the models. We included GBIF occurrence data, and especially as much as possible

isolated native tree records outside forests, to help correct this problem, but it is impossible to be exhaus-

tive at the spatial resolution of 0.1°. At this scale, local variations of soil characteristics and of competitive

interactions among trees (e.g. along an altitudinal gradient) can also not be considered.

Finally, several authors advocate for process-basedmodeling approaches relying upon species response

functions that are a priori defined (e.g. Higgins et al. 2020). However, the main limitation of such models is

the data availability to infer their parameters (Urban et al. 2016). Expert parameterization is often long and

arduous. One possible way to facilitate parameter value estimation would be to use inverse calibration,

and we demonstrated here that CMA-ES can be a powerful optimizer to this end. For example, CMA-ES

driven by species occurrence data could be used to calibrate submodels whose parameter values cannot

be measured or are too hard to measure experimentally. However, when a structural correlation exists
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(i.e. trade-off between processes that are inherently present and interconnected in the model, as in the

leaf unfolding submodel), inverse calibration might not provide the right parameter estimates. In such

a case, expert knowledge, observations and measurements are necessary to determine a posteriori which

estimates are the most realistic. This is possible in the case of process-based SDMs, and usually not feasible

in the case of correlative SDMs. A combination of both expert and inverse calibrations might offer a new

perspective for spreading the use of process-based models in predictive ecology, especially for climate

change impact studies.

Acknowledgements

The authors would like to thank Hendrik Davi for helping us in using the CASTANEA model. We are

also deeply grateful for many helpful comments from Florence Tauc. We would also like to thank François

de Coligny, manager of the CAPSIS platform, Gilles Le Moguedec, and the GenOuest and TGCC teams

for their support. Finally, we would like to thank Florian Hartig and another anonymous reviewer whose

comments and suggestions helped us improve and clarify this manuscript.

V.V. was supported by a GAIA doctoral school PhD Fellowship.

Conflict of interest

The authors have no conflicts of interest to declare.

Author contributions

I.C. devised the main conceptual ideas. V.V. worked out the technical details, performed the numerical

calculations and wrote the first draft of the manuscript. The two authors discussed the analyses and the

results, and contributed to the final manuscript.

Data availability

ERA5-Land dataset is available on the Copernicus Climate Change Service website. EU-SoilHydroGrids is

available on the European Soil Data Centre website. SoilGrids250m is available on the International Soil

Reference and Information Centre website. EU-Forest database is available on FigShare. The R code associ-

ated with this work is available on this GitHub repository, as well as on Zenodo (10.5281/zenodo.7774981).

19

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://esdac.jrc.ec.europa.eu/content/3d-soil-hydraulic-database-europe-1-km-and-250-m-resolution
https://www.isric.org/explore/soilgrids
https://www.isric.org/explore/soilgrids
https://figshare.com/collections/A_high-resolution_pan-European_tree_occurrence_dataset/3288407
https://github.com/vvandermeersch/inverse_calibration
https://doi.org/10.5281/zenodo.7774981


References

Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A.,

Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E. & Rahbek, C. (2019). Standards

for distribution models in biodiversity assessments. Science Advances, 5. 10.1126/sciadv.aat4858

Asse, D., Randin, C.F., Bonhomme, M., Delestrade, A. & Chuine, I. (2020). Process-based models out-

compete correlative models in projecting spring phenology of trees in a future warmer climate.

Agricultural and Forest Meteorology, 285-286, 107931. 10.1016/j.agrformet.2020.107931

Auger, A. & Hansen, N. (2005). A restart CMA evolution strategy with increasing population size. 2005

IEEE Congress on Evolutionary Computation, pp. 1769–1776 Vol. 2.

Auger, A., Schoenauer, M. & Vanhaecke, N. (2004). LS-CMA-ES: A Second-Order Algorithm for Covari-

anceMatrix Adaptation. Parallel Problem Solving fromNature - PPSN VIII (eds X. Yao, E.K. Burke, J.A.

Lozano, J. Smith, J.J. Merelo-Guervós, J.A. Bullinaria, J.E. Rowe, P. Tino, A. Kabán &H.-P. Schwefel),

pp. 182–191. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg.

Bäck, T., Foussette, C. & Krause, P. (2013). Empirical Analysis. (eds T. Bäck, C. Foussette & P. Krause),

pp. 55–83. Natural Computing Series. Springer, Berlin, Heidelberg.

Ballings, M. & Van den Poel, D. (2013). AUC: Threshold independent performance measures for proba-

bilistic classifiers.

Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte,

J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., Roopnarine, P., Vermeij, G., Williams,

J.W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D.P., Revilla, E. & Smith, A.B. (2012).

Approaching a state shift in Earth’s biosphere. Nature, 486, 52–58. 10.1038/nature11018

Bengtsson, H. (2021). A unifying framework for parallel and distributed processing in r using futures.

Berzaghi, F., Wright, I.J., Kramer, K., Oddou-Muratorio, S., Bohn, F.J., Reyer, C.P.O., Sabaté, S., Sanders,

T.G.M. & Hartig, F. (2020). Towards a New Generation of Trait-Flexible Vegetation Models. Trends

in Ecology & Evolution, 35, 191–205. 10.1016/j.tree.2019.11.006

20

https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1016/j.agrformet.2020.107931
https://doi.org/10.1038/nature11018
https://doi.org/10.1016/j.tree.2019.11.006


Bohn, U., Neuhäusl, R., Gisela Gollub, Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H. & Weber, H.

(2003). Map of the natural vegetation of europe - scale 1:2500000.

Brook, B.W., Ellis, E.C., Perring, M.P., Mackay, A.W. & Blomqvist, L. (2013). Does the terrestrial bio-

sphere have planetary tipping points? Trends in Ecology&Evolution, 28, 396–401. 10.1016/j.tree.2013.01.016

Cai, J. (2019). Humidity: Calculate water vapor measures from temperature and dew point.

Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L. & Bugmann, H. (2020). Bayesian calibration of a

growth-dependent tree mortality model to simulate the dynamics of European temperate forests.

Ecological Applications, 30, e02021. 10.1002/eap.2021

Chuine, I. (2000). A Unified Model for Budburst of Trees. Journal of Theoretical Biology, 207, 337–347.

10.1006/jtbi.2000.2178

Chuine, I. & Beaubien, E.G. (2001). Phenology is a major determinant of tree species range. Ecology

Letters, 4, 500–510. 10.1046/j.1461-0248.2001.00261.x

Collange, G., Reynaud, S. & Hansen, N. (2010). Covariance matrix adaptation evolution strategy for

multidisciplinary optimization of expendable launcher family. 13th AIAA/ISSMO multidisciplinary

analysis optimization conference.

Connolly, S.R., Keith, S.A., Colwell, R.K. & Rahbek, C. (2017). Process, Mechanism, and Modeling in

Macroecology. Trends in Ecology & Evolution, 32, 835–844. 10.1016/j.tree.2017.08.011

Davi, H. & Cailleret, M. (2017). Assessing drought-driven mortality trees with physiological process-

based models. Agricultural and Forest Meteorology, 232, 279–290. 10.1016/j.agrformet.2016.08.019

Davi, H., Dufrêne, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A., Rambal, S., Granier, A. & Moors,

E. (2006). Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European

forest ecosystems. Agricultural and Forest Meteorology, 141, 35–56. 10.1016/j.agrformet.2006.09.003

Davi, H., Dufrêne, E., Granier, A., Le Dantec, V., Barbaroux, C., François, C. & Bréda, N. (2005). Mod-

elling carbon and water cycles in a beech forest: Part II.: Validation of the main processes from

organ to stand scale. Ecological Modelling, 185, 387–405. 10.1016/j.ecolmodel.2005.01.003

21

https://doi.org/10.1016/j.tree.2013.01.016
https://doi.org/10.1002/eap.2021
https://doi.org/10.1006/jtbi.2000.2178
https://doi.org/10.1046/j.1461-0248.2001.00261.x
https://doi.org/10.1016/j.tree.2017.08.011
https://doi.org/10.1016/j.agrformet.2016.08.019
https://doi.org/10.1016/j.agrformet.2006.09.003
https://doi.org/10.1016/j.ecolmodel.2005.01.003


Delpierre, N., Soudani, K., François, C., Le Maire, G., Bernhofer, C., Kutsch, W., Misson, L., Rambal, S.,

Vesala, T. & Dufrêne, E. (2012). Quantifying the influence of climate and biological drivers on the

interannual variability of carbon exchanges in European forests through process-based modelling.

Agricultural and Forest Meteorology, 154-155, 99–112. 10.1016/j.agrformet.2011.10.010

Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin,

X., Römermann, C., Schröder, B. & Singer, A. (2012). Correlation and process in species distri-

bution models: Bridging a dichotomy. Journal of Biogeography, 39, 2119–2131. 10.1111/j.1365-

2699.2011.02659.x

Dufrêne, E., Davi, H., François, C., Maire, G. le, Dantec, V.L. & Granier, A. (2005). Modelling carbon and

water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE.

Ecological Modelling, 185, 407–436. 10.1016/j.ecolmodel.2005.01.004

Duputié, A., Rutschmann, A., Ronce, O. & Chuine, I. (2015). Phenological plasticity will not help all

species adapt to climate change. Global Change Biology, 21, 3062–3073. 10.1111/gcb.12914

Duputié, A., Zimmermann, N.E. & Chuine, I. (2014). Where are the wild things? Why we need better

data on species distribution. Global Ecology and Biogeography, 23, 457–467. 10.1111/geb.12118

Evans, M.R. (2012). Modelling ecological systems in a changing world. Philosophical Transactions of the

Royal Society B: Biological Sciences, 367, 181–190. 10.1098/rstb.2011.0172

Fitzpatrick, M.C., Blois, J.L., Williams, J.W., Nieto-Lugilde, D., Maguire, K.C. & Lorenz, D.J. (2018). How

will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

Global Change Biology, 24, 3575–3586. 10.1111/gcb.14138

Fourcade, Y., Besnard, A.G. & Secondi, J. (2018). Paintings predict the distribution of species, or the

challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Bio-

geography, 27, 245–256. 10.1111/geb.12684

Gagné, C., Beaulieu, J., Parizeau, M. & Thibault, S. (2008). Human-competitive lens system design with

evolution strategies. Applied Soft Computing, 8, 1439–1452. 10.1016/j.asoc.2007.10.018

22

https://doi.org/10.1016/j.agrformet.2011.10.010
https://doi.org/10.1111/j.1365-2699.2011.02659.x
https://doi.org/10.1111/j.1365-2699.2011.02659.x
https://doi.org/10.1016/j.ecolmodel.2005.01.004
https://doi.org/10.1111/gcb.12914
https://doi.org/10.1111/geb.12118
https://doi.org/10.1098/rstb.2011.0172
https://doi.org/10.1111/gcb.14138
https://doi.org/10.1111/geb.12684
https://doi.org/10.1016/j.asoc.2007.10.018


Gauzere, J., Teuf, B., Davi, H., Chevin, L.-M., Caignard, T., Leys, B., Delzon, S., Ronce, O. & Chuine,

I. (2020). Where is the optimum? Predicting the variation of selection along climatic gradients

and the adaptive value of plasticity. A case study on tree phenology. Evolution Letters, 4, 109–123.

10.1002/evl3.160

GBIF. (2022). The global biodiversity information facility. https://www.gbif.org [accessed 24 January

2022]

Guisan, A. & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat

models. Ecology Letters, 8, 993–1009. 10.1111/j.1461-0248.2005.00792.x

Guo, D., Westra, S. & Maier, H.R. (2016). An R package for modelling actual, potential and reference

evapotranspiration. Environmental Modelling & Software, 78, 216–224. 10.1016/j.envsoft.2015.12.019

Hansen, N. (2016). The CMA evolution strategy: A tutorial.

Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. (eds J.A. Lozano, P. Larrañaga,

I. Inza & E. Bengoetxea), pp. 75–102. Studies in Fuzziness and Soft Computing. Springer, Berlin,

Heidelberg.

Hansen, N., Auger, A., Ros, R., Finck, S. & Posik, P. (2010). Comparing Results of 31 Algorithms from the

Black-Box Optimization Benchmarking BBOB-2009. ACM-GECCO Genetic and Evolutionary Com-

putation Conference. Portland, United States.

Hansen, N. & Kern, S. (2004). Evaluating the CMA Evolution Strategy on Multimodal Test Functions.

Parallel Problem Solving from Nature - PPSN VIII (eds X. Yao, E.K. Burke, J.A. Lozano, J. Smith,

J.J. Merelo-Guervós, J.A. Bullinaria, J.E. Rowe, P. Tino, A. Kabán & H.-P. Schwefel), pp. 282–291.

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg.

Hansen, N., Niederberger, A.S.P., Guzzella, L. & Koumoutsakos, P. (2009). A Method for Handling

Uncertainty in Evolutionary OptimizationWith an Application to Feedback Control of Combustion.

IEEE Transactions on Evolutionary Computation, 13, 180–197. 10.1109/TEVC.2008.924423

Hansen, N. & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution

strategies: The covariance matrix adaptation. Proceedings of IEEE International Conference on Evo-

23

https://doi.org/10.1002/evl3.160
https://www.gbif.org
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1016/j.envsoft.2015.12.019
https://doi.org/10.1109/TEVC.2008.924423


lutionary Computation, pp. 312–317.

Hansen, N. & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies.

Evolutionary Computation, 9, 159–195. 10.1162/106365601750190398

Hansen, N., Ros, R., Mauny, N., Schoenauer, M. & Auger, A. (2011). Impacts of invariance in search:

When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing,

11, 5755–5769. 10.1016/j.asoc.2011.03.001

Hartig, F., Dislich, C., Wiegand, T. & Huth, A. (2014). Technical Note: Approximate Bayesian param-

eterization of a process-based tropical forest model. Biogeosciences, 11, 1261–1272. 10.5194/bg-11-

1261-2014

Hartig, F., Dyke, J., Hickler, T., Higgins, S.I., O’Hara, R.B., Scheiter, S. & Huth, A. (2012). Connecting

dynamic vegetation models to data – an inverse perspective. Journal of Biogeography, 39, 2240–

2252. 10.1111/j.1365-2699.2012.02745.x

Hengl, T., Jesus, J.M. de, Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotic, A., Shangguan, W.,

Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Bat-

jes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B. (2017). SoilGrids250m:

Global gridded soil information based on machine learning. PLOS ONE, 12, e0169748. 10.1371/jour-

nal.pone.0169748

Higgins, S.I., Larcombe, M.J., Beeton, N.J., Conradi, T. & Nottebrock, H. (2020). Predictive ability of a

process-based versus a correlative species distribution model. Ecology and Evolution, 10, 11043–

11054. 10.1002/ece3.6712

Higgins, S.I., O’Hara, R.B. & Römermann, C. (2012). A niche for biology in species distribution models.

Journal of Biogeography, 39, 2091–2095. 10.1111/jbi.12029

Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2021). Dismo: Species distribution modeling.

Hill, A., Laneurit, J., Lenain, R. & Lucet, E. (2020). Online gain setting method for path tracking us-

ing CMA-ES: Application to off-road mobile robot control. IROS 2020, International Conference on

Intelligent Robots and Systems. Las Vegas, United States.

24

https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.asoc.2011.03.001
https://doi.org/10.5194/bg-11-1261-2014
https://doi.org/10.5194/bg-11-1261-2014
https://doi.org/10.1111/j.1365-2699.2012.02745.x
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1002/ece3.6712
https://doi.org/10.1111/jbi.12029


Jalas, J. & Suominen, J. (1972–2005). Atlas florae europaeae. Committee forMapping the Flora of Europe;

Societas Biologica Fennica Vanamo, Helsinki, Finland.

Journé, V., Barnagaud, J., Bernard, C., Crochet, P. & Morin, X. (2020). Correlative climatic niche models

predict real and virtual species distributions equally well. Ecology, 101. 10.1002/ecy.2912

Kleidon, A. & Mooney, H.A. (2000). A global distribution of biodiversity inferred from climatic con-

straints: Results from a process-basedmodelling study. Global Change Biology, 6, 507–523. 10.1046/j.1365-

2486.2000.00332.x

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. & Schellnhuber, H.J. (2008).

Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences,

105, 1786–1793. 10.1073/pnas.0705414105

Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M. & Bellard, C. (2018).

Without quality presence–absence data, discrimination metrics such as TSS can be misleading mea-

sures of model performance. Journal of Biogeography, 45, 1994–2002. 10.1111/jbi.13402

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008). AUC: A misleading measure of the performance

of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. 10.1111/j.1466-

8238.2007.00358.x

Loshchilov, I., Schoenauer, M. & Sèbag, M. (2013). Bi-population CMA-ES agorithms with surrogate

models and line searches. Proceedings of the 15th annual conference companion on Genetic and evolu-

tionary computation, pp. 1177–1184. GECCO ’13 Companion. Association for Computing Machin-

ery, New York, NY, USA.

Mauri, A., Strona, G. & San-Miguel-Ayanz, J. (2017). EU-Forest, a high-resolution tree occurrence

dataset for Europe. Scientific Data, 4, 160123. 10.1038/sdata.2016.123

Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest,

R.O., Zimmermann, N.E. & Elith, J. (2014). What do we gain from simplicity versus complexity in

species distribution models? Ecography, 37, 1267–1281. 10.1111/ecog.00845

25

https://doi.org/10.1002/ecy.2912
https://doi.org/10.1046/j.1365-2486.2000.00332.x
https://doi.org/10.1046/j.1365-2486.2000.00332.x
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1111/jbi.13402
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1038/sdata.2016.123
https://doi.org/10.1111/ecog.00845


Monnet, A.-C., Cilleros, K., Médail, F., Albassatneh, M.C., Arroyo, J., Bacchetta, G., Bagnoli, F., Ba-

rina, Z., Cartereau, M., Casajus, N., Dimopoulos, P., Domina, G., Doxa, A., Escudero, M., Fady, B.,

Hampe, A., Matevski, V., Misfud, S., Nikolic, T., Pavon, D., Roig, A., Barea, E.S., Spanu, I., Strid,

A., Vendramin, G.G. & Leriche, A. (2021). WOODIV, a database of occurrences, functional traits,

and phylogenetic data for all Euro-Mediterranean trees. Scientific Data, 8, 89. 10.1038/s41597-021-

00873-3

Morin, X., Augspurger, C. & Chuine, I. (2007). Process-Based Modeling of Species’ Distributions: What

Limits Temperate Tree Species’ Range Boundaries? Ecology, 88, 2280–2291. 10.1890/06-1591.1

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E.,

Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly, D., Julliard, R., Kéfi, S., Kergoat, G.J., Lavorel,

S., Le Gall, L., Meslin, L., Morand, S., Morin, X., Morlon, H., Pinay, G., Pradel, R., Schurr, F.M.,

Thuiller, W. & Loreau, M. (2015). REVIEW: Predictive ecology in a changing world. Journal of

Applied Ecology, 52, 1293–1310. 10.1111/1365-2664.12482

Muñoz Sabater, J. (2021). ERA5-land hourly data from 1950 to 1980. https://cds.climate.copernicus.eu/

cdsapp#!/dataset/reanalysis-era5-land

Muñoz Sabater, J. (2019). ERA5-land hourly data from 1981 to present. https://cds.climate.copernicus.

eu/cdsapp#!/dataset/reanalysis-era5-land

Oberpriller, J., Cameron, D.R., Dietze, M.C. & Hartig, F. (2021). Towards robust statistical inference for

complex computer models. Ecology Letters, 24, 1251–1261. 10.1111/ele.13728

Pearman, P.B., Guisan, A., Broennimann, O. & Randin, C.F. (2008). Niche dynamics in space and time.

Trends in Ecology & Evolution, 23, 149–158. 10.1016/j.tree.2007.11.005

Radeloff, V.C., Williams, J.W., Bateman, B.L., Burke, K.D., Carter, S.K., Childress, E.S., Cromwell, K.J.,

Gratton, C., Hasley, A.O., Kraemer, B.M., Latzka, A.W., Marin-Spiotta, E., Meine, C.D., Munoz, S.E.,

Neeson, T.M., Pidgeon, A.M., Rissman, A.R., Rivera, R.J., Szymanski, L.M. & Usinowicz, J. (2015).

The rise of novelty in ecosystems. Ecological Applications, 25, 2051–2068. 10.1890/14-1781.1

Saltré, F., Saint-Amant, R., Gritti, E.S., Brewer, S., Gaucherel, C., Davis, B.A.S. & Chuine, I. (2013).

Climate or migration: What limited European beech post-glacial colonization? Global Ecology and

26

https://doi.org/10.1038/s41597-021-00873-3
https://doi.org/10.1038/s41597-021-00873-3
https://doi.org/10.1890/06-1591.1
https://doi.org/10.1111/1365-2664.12482
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://doi.org/10.1111/ele.13728
https://doi.org/10.1016/j.tree.2007.11.005
https://doi.org/10.1890/14-1781.1


Biogeography, 22, 1217–1227. 10.1111/geb.12085

Santini, L., Benítez-López, A., Maiorano, L., Cengic, M. & Huijbregts, M.A.J. (2021). Assessing the

reliability of species distribution projections in climate change research. Diversity and Distributions,

27, 1035–1050. 10.1111/ddi.13252

Singer, A., Johst, K., Banitz, T., Fowler, M.S., Groeneveld, J., Gutiérrez, A.G., Hartig, F., Krug, R.M., Liess,

M., Matlack, G., Meyer, K.M., Pe’er, G., Radchuk, V., Voinopol-Sassu, A.-J. & Travis, J.M.J. (2016).

Community dynamics under environmental change: How can next generation mechanistic models

improve projections of species distributions? EcologicalModelling, 326, 63–74. 10.1016/j.ecolmodel.2015.11.007

Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P.,

Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F., Fetzer, I., Lade, S.J., Scheffer, M., Winkel-

mann, R. & Schellnhuber, H.J. (2018). Trajectories of the Earth System in the Anthropocene. Pro-

ceedings of the National Academy of Sciences, 115, 8252–8259. 10.1073/pnas.1810141115

Tóth, B., Weynants, M., Pásztor, L. & Hengl, T. (2017). 3D soil hydraulic database of Europe at 250 m

resolution. Hydrological Processes, 31, 2662–2666. 10.1002/hyp.11203

Trautmann, H., Mersmann, O. & Arnu, D. (2011). Cmaes: Covariance matrix adapting evolutionary

strategy.

Urban, M.C. (2015). Accelerating extinction risk from climate change. Science, 348, 571–573. 10.1126/sci-

ence.aaa4984

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-B., Pe’er, G., Singer, A., Bridle, J.R., Crozier, L.G.,

De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J.J., Holt, R.D., Huth, A., Johst, K., Krug, C.B.,

Leadley, P.W., Palmer, S.C.F., Pantel, J.H., Schmitz, A., Zollner, P.A. & Travis, J.M.J. (2016). Improving

the forecast for biodiversity under climate change. Science, 353, aad8466. 10.1126/science.aad8466

Warren, D.L., Dornburg, A., Zapfe, K. & Iglesias, T.L. (2021). The effects of climate change on Australia’s

only endemic Pokémon: Measuring bias in species distribution models. Methods in Ecology and

Evolution, 12, 985–995. 10.1111/2041-210X.13591

27

https://doi.org/10.1111/geb.12085
https://doi.org/10.1111/ddi.13252
https://doi.org/10.1016/j.ecolmodel.2015.11.007
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1002/hyp.11203
https://doi.org/10.1126/science.aaa4984
https://doi.org/10.1126/science.aaa4984
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1111/2041-210X.13591


Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007). Projected distributions of novel and disappearing

climates by 2100AD. Proceedings of the National Academy of Sciences, 104, 5738–5742. 10.1073/pnas.0606292104

Zurell, D., Thuiller, W., Pagel, J., Cabral, J.S., Münkemüller, T., Gravel, D., Dullinger, S., Normand,

S., Schiffers, K.H., Moore, K.A. & Zimmermann, N.E. (2016). Benchmarking novel approaches for

modelling species range dynamics. Global Change Biology, 22, 2651–2664. 10.1111/gcb.13251

28

https://doi.org/10.1073/pnas.0606292104
https://doi.org/10.1111/gcb.13251


Supplementary Appendix A: Insights on the models
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Figure A.1: PHENOFIT model in a nutshell.
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Supplementary Appendix B: Processing of occurrence data

Table B.1: GBIF download links

Species Number of occurrences Download link

Fagus sylvatica 718.898 https://doi.org/10.15468/dl.e9wasa
Quercus ilex 78.979 https://doi.org/10.15468/dl.2a4haw
Abies alba 119.891 https://doi.org/10.15468/dl.my6c9t

Clustering based on climate Stratifieed random sampling

Figure B.1: Stratified random sampling of beech presence records based on climate clusters.
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Figure B.2: Processing of holm oak occurrence records. GBIF: Global Biodiversity Information Facility,
AFE: Atlas Flora Europeae, EVM: EuroVegMap.
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Supplementary Appendix C: Species distributions

Figure C.1: Species distributions of (A) beech, (B) holm oak and (C) silver fir. Green cells are 0.1◦ cells
where species is present, orange cells where species is supposed to be absent.
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Supplementary Appendix D: Objective function and constraint handling in CMA-ES

The AUC as an objective function

The AUC is the area under the receiver operating characteristic curve, which plots sensitivity (correctly

predicted positive fraction) as a function of commission error (falsely predicted positive fraction), as

the probability threshold discriminating presence/absence varies. It is a discrimination metric, which

has been widely used in the species distribution modelling literature.

Box constraint handling

With this constraint handling - implemented by default in the R package cmaes (Trautmann et al. 2011)

- each evaluated solution is guaranteed to lie within the feasible space. Let’s say we have a parameter

vector x. For each parameter xi, we have a lower bound lbi and an upper bound ubi. If a parameter xi

violates one of this bound, we set xi to a new value xrepairedi equal to the closest boundary value (lbi or

ubi). We thus obtained a new parameter set xrepaired, with a minimal ∥x− xrepaired∥ value. This new

feasible solution xrepaired is used for the evaluation of the objective functionAUCmodel(x
repaired), and

to compute a penalty term pen =
∑
i
(xi − xrepairedi )2 = ∥xrepaired − x∥2. Then xrepaired is discarded,

and the algorithm computes the penalized objective function of xrepaired as follows: AUCmodel(x) =

AUCmodel(x
repaired) + pen. This boundary handling could be improved with adaptive weights (see

Hansen et al. 2009).

Ecological infeasibility constraint

We added a simple way to handle ecological constraint (e.g. unfolding before flowering in beech mixed

bud) with a death penalty. When a parameter vector x violates a constraint, it is rejected and generated

again. The main drawback of this approach is that CMA-ES does not use information from unfeasible
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points. An other approach could be to setAUCmodel(x) = 0. However, as our feasible space was large,

the death penalty constraint worked well in our case.

We applied an inequality constraint on both Fagus sylvatica and Quercus ilex, which have mixed buds

(leaves and flowers within the same bud): unfolding must happen before flowering. On the contrary,

we did not apply any inequality constraint on Abies alba simple bud phenology parameters.
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Supplementary Appendix E: Holm oak and silver fir calibrations

Figure E.1: CMA-ES calibration using the PHENOFIT model and holm oak: (A) calibration AUC (only
calibration cells) and (B) total AUC (every presence/absence cells). Each color is a different sub-sampling
of occurrence data, each point is a calibration run. The black horizontal bars represent the pairwise
Mann–Whitney tests between the two subsets.

Figure E.2: CMA-ES calibration using the PHENOFIT model and silver fir: (A) calibration AUC (only
calibration cells) and (B) total AUC (every presence/absence cells). Each color is a different sub-sampling
of occurrence data, each point is a calibration run. The black horizontal bars represent the pairwise
Mann–Whitney tests between the two subsets.
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Supplementary Appendix F: Raw model outputs

Figure F.1: Fitness index predicted by PHENOFIT with the expert and the inverse calibrations.
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Figure F.2: Carbon reserves predicted by CASTANEA with the expert and the inverse calibrations. Note
that CASTANEA cannot be used in high-latitude regions (grey area).
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Supplementary Appendix G: Leaf unfolding submodel

Fagus sylvatica leaf unfolding submodel

This model, called UniChill (Chuine 2000), is a sequential two-phase model (endodormancy and ecodor-

mancy phases).

The endodormancy phase begins at day t0. The daily rate of chilling Rc is defined as a threshold func-

tion of the daily mean temperature Td:

Rc(Td) =

 0 Td ≥ Tb

1 Td < Tb

where Tb is the threshold temperature below which the bud accumulates chilling units.

The endodormancy releases at day tc when the accumulated rate of chilling has reached the levelCcrit:

tc∑
t0

Rc(Td) ≥ Ccrit

Then, the ecodormancy phase begins. The daily rate of forcing Rf is defined as a sigmoid function of

the daily mean temperature Td:

Rf (Td) =
1

1 + e−dT (Td−T50)

where dT is the slope and T50 the mid-response temperature. Bud break occurs at day tf when the

accumulated rate of forcing has reached the level Fcrit:

tf∑
tc

Rf (Td) ≥ Fcrit

Thus, the UniChill model has 6 parameters: t0, Tb and Ccrit for the first phase, dT , T50 and Fcrit for the

second phase.
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Figure G.1: Beech leaf unfolding model parameter density. Y-axis and X-axis limits are lower and upper
bounds used during calibration.

Figure G.2: Median absolute deviation of beech (A) leaf unfolding date and (B) fitness, predicted with
100 calibrated parameter sets of PHENOFIT.
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The median standard deviation of unfolding date across Europe was about 15.4 days. On beech presence

points, it was about 16.2 days. Nearly 90.3% of cells had a median absolute deviation lower than 30

days (Figure F.2.A.). The median standard deviation of fitness across Europe was about 0.148. On

beech presence points, it was about 0.153. Nearly 46.4% and 91.5% of total cells had a median absolute

deviation lower than 0.1 and 0.2 respectively (Figure F.2.B.).

Figure G.3: Mean leaf unfolding day of beech with (A) best CMA-ES calibrated parameters and (B) expert
parameters. Values above June solstice day (167) are in grey. Note that PHENOFIT model assign a value
of 365 when unfolding has not happened at all due to climate conditions.
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