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Abstract 

Realizing a low-frequency and broad bandgap is extremely challenging because the lattice constant, 

equivalent stiffness, and equivalent density must be taken into account in practice. Despite the 

advances of inertial amplification which is one of the ideal strategies to address this issue, the design 

ideas are mainly limited to the classic geometries featured by mirror symmetry (syndiotacticity), 

confining then progress in this topic. Here, we report numerical and experimental investigation of a 

chiral phononic crystal without mirror symmetry (isotacticity) according to the analogous Thomson 

scattering. Numerical analysis shows that due to the lack of one degree of freedom in isotactic lattice 

(ISL) compared to syndiotactic lattice (SYL), the bandgap starting-frequency of the ISL is significantly 

lower than that the one of the SYL by up to 66%. The bandgap properties are further demonstrated by 

simulation and experimental measurements. This research reveals that the condition of having 

alternating arrangement orientations between neighboring atoms is not indispensable for this kind of 
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bandgap, and a rational geometry satisfying the Thomson scattering-based bandgap conditions can 

further reduce the bandgap frequency without affecting the stiffness and lightweight of the structure.     

1. Introduction 1 

The bandgap in phononic crystals provides a new path to high device performance in vibration 2 

isolation [1, 2], thermal insulation [3, 4], and robust topological wave transmission [5, 6]. In terms of 3 

the low-frequency and broadband isolation for elastic waves, the great efforts inspired by Bragg 4 

scattering [7] and local resonance [8] have been done, such as rainbow trapping [9-11], gradient 5 

distribution [11-15], coupled Bragg scattering and local resonance [16-19], acoustic black holes [20, 6 

21], or nonlinear local resonance [22-25]. Even, the quasi zero stiffness, another one of appealing 7 

strategies, might be a solution of this dilemma because it can lower the frequency of the Bragg 8 

scattering bandgap [26-28], nevertheless the robustness and stability of the system is debatable when 9 

the metastructures are at the quasi-zero state. In general, these strategies are based on sacrificing the 10 

stiffness or (and) the lightweight of the system. It is indisputable that absolute ultra-low and ultra-wide 11 

bandgaps can be achieved as long as discounting the static properties such as lattice constants, 12 

equivalent stiffness, and static equivalent density [29-34]. However, these static properties are critical 13 

to ensure superior stability, reliability, and maneuverability of the high-performance devices in 14 

engineering practice. Therefore, overcoming the conflict between low-frequency and broad bandgaps 15 

and those three properties still remains great challenges. 16 

In 2007, Yilmaz et al. proposed the inertial amplification to solve the above challenge [35]. In the 17 

inertial amplification system, the static inertia can be amplified many times, as a result, it can break 18 

the dependency of the local resonance and Bragg scattering on the stiffness and mass [35, 36]. The 19 

anti-resonance frequency in this structure can enhance the attenuation in low frequency [37-39]. 20 

Inspired by the inertial amplification, more and more novel studies are proposed. For instance, an 21 

octahedron structure was built to isolate the special omnidirectional elastic waves [40]; incorporating 22 

inertial amplification structures in continuous beams to manipulate the transverse wave [41, 42]; a 2D 23 

thin plates embedded the classical inertial amplifier structures was proposed to modulate low-24 

frequency and broad lamb waves [43, 44]; the low-frequency vibration isolation of the corrugated-core 25 
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sandwich panels can be enhanced through embedding the inertial amplification system [45]; a lever-26 

type inertial amplification system can achieve the broadband isolation for the surface wave which is 27 

induced by the seismic [46, 47]; the combination of the inertial amplification and local resonance can 28 

improve the  extremely narrow effective attenuation of the classical local resonance bandgap [48] and 29 

release the dependence on lowering stiffness and increasing mass for low-frequency local resonance 30 

bandgap [49]； the multiple, broadband and highly attenuative bandgaps can be obtained by a system 31 

with inertial amplification, local resonance, and Bragg scattering affect simultaneously [50]. However, 32 

in the last two decades, the design strategies [42, 45, 51-55] have been limited to the form of the 33 

classical inertial amplification sub-structure. 34 

In recent years, the inertial amplification was demonstrated in the axis twist metamaterials as well [56, 35 

57]. Subsequently, an analogue of Thomson scattering was proposed theoretically, numerically, and 36 

experimentally to describe its underlying physics [58]. From the physics point of view, the coupling 37 

of orthogonal polarizations is a means to amplify the inertia [56, 57, 59], while the destructive 38 

interference is another key factor in opening the bandgap [58]. Achieving destructive interference 39 

relies on secondary scattered waves of the same polarization having opposite motion directions [58]. 40 

Based on this, a planar orthorhombic chiral lattice based on Thomson scattering was reported recently 41 

[60], in which an ultra-broad bandgap was achieved. It's worth noting that, an identical geometric 42 

feature can be observed from these studies [35, 57, 61-63], i.e., these geometries have a distinctive 43 

feature of alternating movement orientations between adjacent atoms (described as syndiotacticity [57] 44 

for convenience).  45 

In fact, according to the three conditions for the bandgap generation [58], it is possible to achieve this 46 

bandgap even if the adjacent atoms in this non-mirror chiral lattice do not have alternating arrangement 47 

directions (isotacticity) as long as the horizontal tangential motion of the planar non-mirror chiral 48 

lattice (three-triplet lattice) is suppressed. Since the ligaments between adjacent lumped masses are 49 

continuous, theoretically, the number of wave reflections can be effectively reduced, which in turn 50 

reduces the resonance peaks in the FRF. Eventually, a bandgap with lower frequency than the mirror 51 

lattice will be produced. 52 
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Here, a planar chiral phononic crystal with non-mirror feature is proposed. To differentiate from the 53 

classic models, we name the phononic crystals with mirroring property which have Thomson 54 

scattering-induced bandgaps as syndiotacticity, and the other one with non-mirror property as 55 

isotacticity. To emphasis the novelty in this work, an isotactic lattice (ISL) and a syndiotactic lattice 56 

(SYL) are compared on the condition of the same lattice constant, equivalent stiffness, and density. 57 

We demonstrate that although both ISL and SYL satisfy the Thomson scattering conditions, i.e., 58 

orthogonal motions coupled to the lumped masses and the opposite motion directions in the second 59 

scattering, and because of the lack of the symmetry, at the starting boundary of the attenuation, ISL 60 

has one less resonant peak than SYL, thus, inducing a lower-frequency bandgap than that of SYL. 61 

2. Structures and results 62 

 63 

Fig. 1. (a) Schematics of the arrayed lattice (ISL). (b) Dimensions of the lumped mass. (c)-(e) The 64 

various in ligaments between ISL, SYL, and BRL. 65 

Tacticity is a concept in polymer science to describe the relative orientation of adjacent chiral centers 66 

[64, 65]. This concept was firstly introduced in the chiral phononic crystal to describe the bandgap 67 

variances in syndiotactic lattice (SYL) and isotacticic lattice [57]. To facilitate the distinction, we state 68 
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syndiotacticity and isotacticicity to define the lattice with mirror and non-mirror features, respectively. 69 

To clarify the novelty of this study, SYL, ISL and Bragg scattering lattice (BRL) are discussed together. 70 

Fig. 1(a) shows the ISL schematic with lattice constant 𝑎=80 mm, 𝑑!=37 mm, 𝑑"=30 mm, 𝑑#=27 71 

mm, ℎ!=10, ℎ"=8 mm, ℎ#=3 mm, and 𝑡=2.5 mm. The details of the lumped mass can refer to Fig. 72 

1(b). It should be stated that the shape of the lumped mass is intended to obtain the inertia amplification 73 

factor as larger as possible [66]. Meanwhile, it should be note that three sorts of lattice have the same 74 

outline except the shape of the ligaments. As illustrated in Fig. 1(c)-1(e), the ligament in ISL is tangent 75 

with the circle whose diameter is 𝑑". SYL is by mirroring the sub unit cell of ISL (highlighted by gray 76 

dotted line in Fig. 1(c)). In BRL, the centerline of the ligament is perpendicular to the tangent of the 77 

circle with 𝑑". 78 

Traditional phononic crystals consisted of a homogeneous continuous matrix and periodic scatterers, 79 

so the non-dimensional bandgap was evaluated using normalized criteria of the material acoustic speed 80 

and lattice constants [17, 67]. Later, the quadratic tailoring matrix was proposed because it can 81 

drastically enhance the impedance between the matrix and scatterers, thus realizing an absolute low-82 

frequency and broadband Bragg scattering bandgaps [29, 68]. Observing from kinetic equation, the 83 

enhancement of the impedance reduces the equivalent stiffness or (and) equivalent density of the 84 

system, i.e., these two metrics (equivalent stiffness and equivalent density) are inversely proportional 85 

to the bandgap starting frequency [66, 69, 70]. Therefore, the bandgap evaluation should take into 86 

account the equivalent stiffness and equivalent density in addition to the lattice constant. In order to 87 

fairly evaluate these three bandgaps, we use Eq. (1) to normalize the band structure. 88 

 𝑓$ = 𝑓𝑎'
%!
&!

,  (1)  89 

where 𝑚' = 0.15 kg in three lattices. To obtain the equivalent stiffness, using ANSYS workbench 90 

LS-dyna simulates the compression for the geometric models shown in Fig. 2(a-c). The material is one 91 

kind of Nylon with the elastic modulus 𝐸 = 1.6 × 10(	Pa, Poisson's ratio 𝑣 = 0.4, and density 𝜌 =92 

1000	kg/m#. ℎ! equals 20 mm to avoid the z-axis deformation. We should note that the thickness 93 

ℎ! of the models shown in Fig. 2(a-c) is two times of that in bandgap calculation, therefore, the actual 94 

stiffness of the models in the normalized bandgap is 0.5 times of the stiffness denoted in Fig. 2(e). 95 

However, in the normalized band structure, because the stiffness of BRG, ISL, and SYL is missing a 96 
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same coefficient which is 0.5 times, there is no influence on the fair comparison. Plate 𝑎 is fixed and 97 

plate 𝑏  has a velocity of 500 mm/s along the -𝑥  axis. For convergence, the contact frictional 98 

coefficient between the sample and plates 𝑎 and 𝑏, and between the sample and itself is 0.1 [71]. As 99 

shown in Fig. 2(d), the strain of the system focuses on the ligaments, that means the equivalent stiffness 100 

is mainly determined by the ligaments. This is the reason that we neglect the contribution of the lumped 101 

mass to the equivalent stiffness in order to speed up the calculation.  102 

 103 

Fig. 2. (a) – (c) structure schematics of ISL, SYL, and BRL in compression simulation, 104 

respectively. (d) Equivalent stress contour of ISL when the displacement is 4 mm. (e) Fitted 105 

force-displacement results of ISL, SYL, and BRL, where 𝒌𝑩, 𝒌𝑺, and 𝒌𝑰 means the stiffness of 106 

BRG, SYL, and ISL, respectively. 107 

Fig. 2(e) shows the force-displacement results in linear elastic stage. Remarkably, although ISL and 108 

SYL have distinct configurations in ligaments, ISL (𝑘,=110 N/mm) and SYL (𝑘-=104 N/mm) have 109 

almost identical equivalent stiffness, which effect has been verified experimentally in our previous 110 

study [60]. Because of the distinct ligament configuration of the BRL, its equivalent stiffness is 111 

𝑘.=253 N/mm and significantly higher than the other two results. Because the stiffness is a key factor 112 
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effecting on the frequency, as a result, it requires us to normalize the band structures (Fig. 3) using Eq. 113 

(1) for a fair appraisal. 114 

Fig. 3 shows the band structures calculated in COMSOL Multiphysics. In simulation, Bloch period 115 

boundary is applied in the unit cell and the band structures can be obtained through sweeping along 116 

the wave vector Γ-X-M-Γ as shown in Fig. 3(a). Due to the fact that translation and rotation are coupled 117 

only in the 𝑥𝑜𝑦 plane; the degree of freedom of the ligaments along the z-axis are constrained to 118 

avoid the interference from out-of-plane modes. 119 

The band structures in non-dimensional range of 0.5 are presented Fig. 3(a-c). In classic BRL (Fig. 120 

3(a)), a broad bandgap extending from 0.0949 to 0.318 can be found. However, the bandgap of SYL 121 

(Fig. 3(b)), extending from 0.074 to 0.488, is broader than BRL. The most prominent is that ISL (Fig. 122 

3(c)) has two bandgaps. The first one extends from 0.0251 to 0.117 and the other one from 0.193 to 123 

0.488. When the bandgap width is evaluated at the center frequency of the bandgap [72], their relative 124 

widths are 1.08 (BRL), 1.47 (SYL), and 1.29 & 0.866 (ISL), respectively. 125 

 126 

Fig. 3. Normalized band structures of BRL, SYL, and ISL. The shaded areas indicate the 127 

bandgaps. 128 

Comparing with BRL, one can see that ISL and SYL have significant advantages in width and bandgap 129 

starting frequency of the first bandgap. It cannot be denied that SYL has a wider first bandgap than 130 

ISL. Nevertheless, the bandgap frequency of ISL is 66% lower than that of SYL, which occurs at the 131 

same lattice constant, same static equivalent density and quasi-identical equivalent stiffness. This is an 132 

encouraging result as it practically verifies the arguement [57] that the combination of inertial 133 

amplification and alternating arrangement orientations of adjacent atoms is merely one special case 134 
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for this bandgap formation. This indirectly demonstrates that the analogous Thomson scattering [58] 135 

has universality. 136 

3. Bandgap mechanism 137 

To illustrate the bandgap mechanism of ISL and the cause of the bandgap difference between ISL and 138 

SYL, we simplify ISL and SYL with 2D periodicity to a one-dimensional model and simulate the 139 

transmission of an ISL and an SYL. The models are presented in Fig. 4(a) and Fig. 4(d). 140 

 141 
Fig. 4. (a) Simplified ISL unit cell. Blue domain indicates the ligament and the remaining part is 142 

lumped masses. Two black lines in the ligament denote the location of the concentrated mass 143 

𝒎𝒂, and the concentrated mass is not considered the shape in 𝒙𝒐𝒚 plane and evenly distributed 144 

on both black lines if it is not 0. (b) Band structure of the simplified ISL unit cell, in which the 145 

density of the ligaments is 𝟏𝟎𝟎𝟎	𝐤𝐠/𝐦𝟑 while 𝒎𝒂 is 0. (c) FRF results of one simplified SYL 146 

unit cell. (d) Simplified ISL unit cell. In this simplified unit cell, 𝑳 =60 mm, 𝒅𝟐=30 mm, 𝒅𝟑=26 147 

mm, 𝒕=2 mm, 𝒉𝟏=10 mm. (e) Band structure of simplified ISL unit cell in which the density of 148 

the ligaments is 𝟏𝟎𝟎𝟎	𝐤𝐠/𝐦𝟑 while 𝒎𝒂 is 0. (f) FRF results of one simplified ISL unit cell. 149 

Notable, the concentrated mass in the simulations of (e-f) is 0 and the ligaments are density-free. 150 



 9 / 26 

 

According to the conditions of elastic Thomson scattering [58], ISL and SYL have to own translation-151 

rotation coupling. It has been demonstrated that the chirality is an effective way to achieve the motion-152 

coupling condition, thus producing the inertial amplification effect [59, 61]. However, not all chiral 153 

structures have this basic property [60]. The unit cell like SYL can guarantee this property due to its 154 

symmetry [60]. However, due to the lumped masses in an asymmetric lattice like ISL do not have 155 

symmetry, the entire finite-period structure will be a shear movement. In the absence of external forces 156 

to counteract its shear movement along the 𝑦-axis (refer to coordinate in Fig. 4(d)), the lumped masses 157 

like ISL shown in Fig. 4(d) do not stably produce the motion coupling and thus provide inertial 158 

amplification [60]. 159 

To manually avoid the shear movement along the 𝑦-axis, we allow rotation axes 1 and 2 to rotate 160 

around the 𝑧-axis and move along the 𝑥-axis only. The motion of the entire system along the 𝑧-axis 161 

direction is not allowed in order to avoid the interference of the 𝑧-axis modes. A harmonic uniform 162 

line load along the 𝑥-axis is applied on the rotation axis 1. Two domain point probes are additional at 163 

the centers of axes 1 and 2 to pick up the acceleration. The transmission is calculated as 𝑎3/𝑎4. 164 

In order to control variable of that avoiding the interference from the classical inertial amplification 165 

form [35, 37] in the ligament domain of SYL and facilitate us to find the bandgap difference between 166 

ISL and SYL, the case of non-concentrated mass at the center of the ligament is discussed first and the 167 

FRFs are presented in Fig. 4(c) and Fig. 4(f). 168 

Observing from Fig. 4(c), one can see that in SYL (Fig. 4(c)), the attenuation starts from the second 169 

resonance peak (around 500 Hz); the attenuation curve from the second resonance peak to the 4 kHz 170 

range is smooth. In terms of ISL (Fig. 4 (f)), there are some differences compared to SYL. The first 171 

one is that there is only one resonance peak before the attenuation of ISL. The attenuation range is cut 172 

off at around 3500 Hz. Besides, there is an anti-resonance notch at 400 Hz, thus significantly enhancing 173 

the attenuation at low frequencies.  174 

In practice, the ligaments cannot be density-free. Therefore, we compared the case of ligaments with 175 

homogeneous density of 1000 kg/m#. For SYL, when the ligament has homogeneous density, an anti-176 

resonance notch can be found at 3700 Hz. If we equate the homogeneous density to a concentrated 177 

mass (𝑚5 = 0.2 g), as shown in Fig. 5(a), both results will be similar except for the slight shift of the 178 
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second resonance peak toward the lower frequency in case of homogeneous density. It is of interest 179 

that, in ISL shown in Fig. 5(b), two cases have no influence on the anti-resonance notch. Besides, 180 

regardless of homogeneous density or a concentrated mass, there is only one phenomenon that a new 181 

resonance peak in 1500-2500 Hz truncate the original attenuation from 200 – 3500 Hz. Eventually, the 182 

first bandgap of ISL covers from 254 Hz to 2240 Hz (Fig. 5(d)), but the bandgap of SYL starts from 183 

740 Hz (Fig. 5(c)) and extends beyond 4000 Hz. 184 

 185 

Fig. 5. (a-b) FRF results for finite structures with different boundaries. The inset in (a) reveals 186 

the resonance-peak details of the blue line. (c-d) FRF results for finite structures with different 187 

periods of simplified ISL and SYL unit cell whose ligaments are density free and have a 188 

concentrated mass of 0.2g. The insets in (c) and (d) are three-period structures of SYL and ISL, 189 

respectively. The gray lines in (c) and (d) are the reference line of attenuation. 190 
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 191 
Fig. 6. The deformation contours of the simplified 1D SYL at the resonance peak and within the 192 

bandgap. (a) Deformation contour of the resonance peak when the ligament is density free and 193 

concentrated mass 𝒎𝒂 is 0. (b) Deformation contour within the bandgap when the ligament is 194 

density free and concentrated mass 𝒎𝒂 is 0. (b) Deformation contour within the bandgap when 195 

the density of the ligament is 1000 𝐤𝐠/𝐦𝟑 and concentrated mass 𝒎𝒂 is 0. (c) Deformation 196 

contour within the bandgap when the density of the ligament is 0 and concentrated mass 𝒎𝒂 is 197 

0.2 g. 198 

Furthermore, we analysis the differences of the bandgap difference between ISL and SYL on 199 

deformation contours. Because ISL and SYL have different bandgap starting frequency but each one 200 

has similar starting attenuation frequency under the three conditions (i.e., density free, concentrated 201 

mass, and homogeneous), we choose the deformation contours which is the nearest to their starting 202 

attenuation, as well as the ones at 350 Hz for ISL and 900 Hz for SYL which are within the bandgap. 203 

Fig. 6 is the deformation contours of SYL and Fig. 7 is that of SYL.  204 

In terms do the SYL, there is a folded corner, which is similar with the form of the classical inertial 205 

amplification [35, 37, 73]. The classical inertial amplification requires a concentrated mass at the folder 206 

corner, in order to provide an amplified inertia for main structures. On the one hand, the amplified 207 

inertia can decrease the resonant peaks before the bandgap, at the same time, it can induce an anti-208 

resonance peak to enhance the attenuation of the bandgap. If the sub-structure of the inertial 209 

amplification is non-mass, the inertial amplification effect will disappear [36]. Therefore, in order to 210 
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avoid the interference from the classical inertial amplification, we compared three cases of density free, 211 

concentrated mass, and homogenous. 212 

Fig. 6(a) shows that even though the folded corner is density-free, the resonant peak of the SYL still 213 

contains the significant motion of the folded corner in addition to that of two lumped masses, which 214 

means the resonant peak is strongly related to the folded corner. If the folded mass has a small 215 

concentrated mass, i.e., 𝑚5 = 0.2 g, there will be the classical inertial amplification. In this case, 216 

there will be three resonance peaks before the bandgap as shown in Fig. 5(a); besides, the concentrated 217 

mass will induce an anti-resonant notch in the attenuation range. Comparing Fig. 6(b) - (d), regardless 218 

the presence or absence of the classical inertial amplification, the shapes of the deformation contours 219 

within the bandgap are similar. Notably, the entire mode includes the translation and rotation of other 220 

two lumped mass, and in addition, the folded corner shows the similar transverse as the classical 221 

inertial amplification [54, 72]. In other words, the geometrical form like the classical inertial 222 

amplification sub-structure is a key factor for the second resonant peak at 490 Hz; however, it does 223 

not determine the existence of the Thomson scattering-induced bandgap but can contribute to 224 

enhancing attenuation of the bandgap since its anti-resonant notch.  225 

 226 

Fig. 7. The deformation contours of the simplified 1D ISL at the resonance peak and within the 227 

bandgap. (a) Deformation contour of the resonance peak when the ligament is density free and 228 

concentrated mass 𝒎𝒂 is 0. (b) Deformation contour within the bandgap when the ligament is 229 

density free and 𝒎𝒂 is 0. (b) Deformation contour within the bandgap when the density of the 230 
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ligament is 1000 𝐤𝐠/𝐦𝟑 and 𝒎𝒂 is 0. (c) Deformation contour within the bandgap when the 231 

density of the ligament is 0 and 𝒎𝒂 is 0.2 g. 232 

For ISL, because the folded corner does not exist, the mode deformations become concise. Fig. 7(a) 233 

shows that the resonance peak originates from the second lumped mass and hardly involves the first 234 

concentrated mass and the significant transverse of the ligament. Even in the case of the concentrated 235 

mass or the homogenous ligament, the ligament has no obvious transverse as in SYL. Variously, when 236 

the ligament is homogenous, the two lumped masses will have rotation by deviating from their own 237 

geometric central axis. Luckly, these deformation differences have no influence on the starting 238 

frequency of the bandgap and the attenuation within the bandgap. Notably, as shown in Fig. 5(b), the 239 

concentrated mass and the densely ligament will bring about an extra resonance peak at high 240 

frequencies (Refer to Fig. 5(b)), thus truncating this Thomson scattering-induced bandgap. 241 

Overall, although SYL can make the realistic ligaments favorable to generate the anti-resonance peak, 242 

it cannot compensate its natural disadvantage that the resonance peaks raise the attenuation starting 243 

frequency. In particular, from the perspective in 500 Hz range, one can see that SYL has two or three 244 

resonance peaks in three cases. In the case of non-mass, the second resonant frequency of SYL is 495 245 

Hz. However, in the ISL, there is only one resonant frequency of 190 Hz. That is because the ligaments 246 

of the SYL have a folded corner, resulting in additional degrees of freedom and thus an additional 247 

resonance peak in the FRF. In contrast, the continuous ligament of ISL makes the lack of a resonance 248 

frequency, hence the attenuation starting frequency (190 Hz) is 61.6% lower than the one of the SYL 249 

(495 Hz). With increasing periodicity, the two lattices have a difference of about 65.7% in the starting 250 

frequency, which is consistent with the prediction (the bandgap frequency of ISL is 66% lower than 251 

that of SYL) of the band structures shown in Fig. 3, and thus verified the reasonableness of the model 252 

simplification. Detailly, as shown in Fig. 5(c) and Fig. 5(d), the effective attenuation of the ISL starts 253 

from 254 Hz and that of the SYL starts from 740 Hz if we take FRF = 106 as reference line. This is 254 

the reason why the bandgap of ISL predicted in band structure shown in Figs. 3 is about 66% lower 255 

than that of SYL.  256 
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4. Verification and Discussion 257 

 258 
Fig. 8. (a) Schematic of the finite SYL and ISL. In order to denote the details of the ligaments, 259 

the lumped masses of the top layer are set to be transparent. (b) Experimental configuration 260 

photograph. (c) numerical and experimental results of ISL. (d) Numerical and experimental 261 

results of SYL. The shaded areas indicate the numerical bandgaps. 262 

To validate the bandgaps predicted in the band structures, the finite-period structures of SYL (Fig. 263 

8(a)) and ISL (Fig. 8(b)) are investigated numerically and experimentally. In simulation, two domain 264 

point probes located at the center of the additional plates are applied to acquire the input and output 265 

acceleration. The entire structure is free except the input end where a harmonic force is applied. It is 266 

notable that the out-of-plane motion of the finite period structure is free in stand of restrained as in the 267 

calculation of the band structure, because we cannot realize this ideal condition in experiment. The 268 

harmonic excitation signal sweeps from 100 Hz to 4000 Hz with the resolution of 5 Hz. As illustrated 269 

in Fig. 8(a), the extra additional plates are designed to connect the shaker (Modelshop K2007E01) and 270 
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sensors (PCB 353B15). The foam is used to support and level samples, as well as isolate the vibration 271 

from the optical test platform.  272 

Fig. 8(c) and Fig. 8(d) show the numerical and experimental results of the ISL and SYL. For ISL, 273 

experiment and simulation denote that the bandgap appears from 600Hz to 2700Hz, while the one of 274 

the SYL starts at about 1900 Hz. Overall, the experimental measurements corroborate the numerical 275 

transmission results. Due to the manufacturing errors and the random factors in the experiment, the 276 

results shift towards high frequency compared to the simulation, such as the starting attenuation 277 

frequency in Fig. 8(c).  278 

 279 

Fig. 9. (a) Deformation contour of ISL at 2130 Hz. (b) The variation in geometry of ISL to 280 

eliminate resonant peaks within 1700 Hz - 2200 Hz. (c) FRFs of original (red line) and improved 281 

(blue line) ISL 282 

In Fig. 8(d), there are two obvious peaks at 785 Hz and 1180 Hz and a bunch of weak resonance peaks 283 

in 1700 Hz - 2200 Hz, thus breaking the bandgap continuity. In order to find the cause of the resonance 284 
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peaks in 1700 Hz – 2200 Hz, Fig. 9(c) shows the deformation contour at 2130 Hz, which reveals an 285 

out-of-plane mode. In short, the excitation in 𝑥𝑜𝑦 plane actives the out-of-plane mode. Theoretically, 286 

the out-of-plane mode should be suppressed to be consistent with the boundaries of band-structure 287 

calculation. However, it is easy to implement in simulation but hard in experiment. In fact, the out-of-288 

plane modes can be avoided by the structure design even if in practice we do not provide extra force 289 

on the surface of the sample to prevent its out-of-plane motion. As in the gyroscope principle, the 290 

relative angular momentum (the ratio of the rotational inertia of lumped mass to that of the circle with 291 

𝑑") is small due to the small dimensional ratio of 𝑑! to 𝑑#, and thus leads to the dynamic stability of 292 

the lumped mass in the 𝑥𝑜𝑦 plane. Therefore, by increasing the difference between 𝑑! and 𝑑# (as 293 

shown in Fig. 9(b)), these unfavorable resonance peaks can be effectively inhibited such as illustrated 294 

in Fig. 9(c). This is the reason for the shape of the additional lumped mass denoted in Fig. 1(b). 295 

 296 

 297 
Fig. 10. Deformation contour of ISL at (a)785 Hz, (c) 1180 Hz. The ligament deformation details 298 

at (b)785 Hz, (d) 1180 Hz. 299 
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In Fig. 8(d), the two peaks at 785 Hz and 1180 Hz show almost no attenuation. To find the cause of 300 

these resonance peaks, the deformation contours of the entire finite structure at 785 Hz and 1180 Hz 301 

are drawn in Fig. 10(a) and Fig. 10(c); Fig. 10(b) and Fig. 10(d) show the deformations of the ligaments 302 

for more details. One can see the obvious local deformation of the additional plates and the global 303 

rotation in the lumped masses attached with the additional plates rather than the ligaments. It seems to 304 

indicate that these two peaks are strictly related to the additional plates and the lumped masses but it’s 305 

not completely accurate. Therefore, we did the further discussion below. 306 

 307 
Fig. 11. (a) FRF of finite structure with rigid additional plates. (b) Deformation contour of the 308 

peak 1 and peak 2 in Fig. 11(a). (c) FRF of finite structure with rigid additional plates whose 309 

movements along x-axis and z-axis are constrained. (d) Deformation contour of the peak 1 and 310 

peak 2 in Fig. 11(c). The arrows in the deformation contours mean the surface deformation 311 

direction. 312 

As illustrated in Fig. 11(a), when the additional plates are rigid to avoid the local deformation of the 313 

additional plates, the peaks still exist. In Fig. 11(b), the black frame is the original positions of the 314 
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period structure. Taking its original position as the reference, one can find that both deformations 315 

include the translation along the 𝑦-axis and rotation around 𝑧-axis of the lumped masses. Besides, 316 

peak 2 is not only related to the shear movement (the motion along 𝑥 direction) of the additional 317 

plates, but also to the shear movement of the lumped masses. Therefore, we restrict additional plates 318 

from moving on 𝑦-axis and 𝑧-axis. Nevertheless, these peaks still exist and do not change in the 319 

frequency and value, as shown in Fig. 11(c). The arrows in Fig. 11(d) reveal that, these two peaks still 320 

mainly depend on the resonance modes of the lumped mass. The motion restriction for the additional 321 

plates does not change the resonance mode of the first peak, and different from the first resonance 322 

peak, the second peak involves the vibration of more lumped masses. In other words, the boundary 323 

conditions on the additional plates are not the kay factor to determine these two resonance peaks.  324 

 325 

Fig. 12. Parameter discussion about geometrical dimension 𝒅𝟐 of ISL. (a) The influence of 𝒅𝟐 326 

on the first bandgap width of ISL. (b) The influence of 𝒅𝟐 on the peak 1 and peak 2 of ISL. 327 

Please refer to Appendix S1 to find the variation principle of 𝒅𝟐. 328 

It is worth noting that the resonance modes corresponding to these two peaks are asymmetric in the 329 

𝑥𝑜𝑦 plane. This is due to the fact that ISL is asymmetry, which leads to unequal contributions of the 330 

input wave to the connected ligaments on both sides. It is to be expected that the asymmetry will get 331 

smaller and smaller with the decrease of 𝑑". However, as illustrated by Fig. 12, when 𝑑" = 4 mm,  332 

the width of the bandgap drops rapidly to almost close. Nevertheless, these two peaks are still greater 333 

than	 106. Briefly, it is undesirable to completely eliminate this asymmetry, because the asymmetry is 334 

the critical condition to produce the motion coupling of the lumped mass and motion coupling is 335 

fundamental condition for Thomson scattering-induced bandgap. If decreasing 𝑑" continuously, the 336 
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asymmetry will gradually go forward to symmetry, and then ISL will evolve to BRL. Consequently, 337 

the Thomson scattering-induced bandgap will disappear.  338 

Generally, the equivalent stiffness and density of the system are two underlying factors on the 339 

resonance peaks. Within all geometrical parameters, increasing lattice constant can modify the length 340 

of the ligaments and thus control equivalent stiffness; varying the density of the lumped masses can 341 

manipulate the equivalent density of the system independently. In order to control a single variable, 342 

the lattice constant changes or the density changes while all other parameters remain constant (Please 343 

refer to Appendix S1 to find the variation principle of the lattice constant). Fig. 13 shows the results 344 

of the parameter discussion about density and lattice constant. From Fig. 13(a), one can see that the 345 

suppression for these two resonance peaks isn’t absolutely better with the increase of the density. For 346 

peak 1, regardless the density variation, it still exceeds 𝟏𝟎𝟎; but for peak 2, there seems to be a great 347 

value when density is 3000 to 5000 𝐤𝐠/𝐦𝟑. Fortunately, Fig. 13(b) reveals that both peaks will show 348 

attenuation when the lattice constant is larger than 100 mm. In short, the combination adjustment for 349 

equivalent stiffness and equivalent density can indeed be a strategy to suppress these two unfavorable 350 

resonance peaks. Therefore, as denoted by the case in Fig. 14, through increasing the lattice constant 351 

and the asymmetry of the ISL unit cell for modifying stiffness, and increasing the dimension of lumped 352 

masses for adjusting equivalent density of the unit cell, we can weaken the performance of these two 353 

peaks in the FRF. (Please refer to Appendix S2 to find the geometrical details). 354 

 355 

Fig. 13. Parameter discussion about the influence of (a) the lattice constant variation and (b) the 356 

density of the lumped masses on peak 1 and peak 2. All other geometries keep constant when the 357 
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lattice constant changes. Please refer to Appendix S1 to find the variation principle of the lattice 358 

constant.  359 

 360 
Fig. 14. FRF of finite structure with lattice constant 𝒂 = 𝟏𝟐𝟎 mm. In numerical calculation, the 361 

additional plates have an elastic modulus of 1.6e13 Pa and “density free” indicates that the 362 

density of the additional plates is 0 while the one of the rest components in finite structure is 1000 363 

𝐤𝐠/𝐦𝟑. Compared to the ISL mentioned in Fig. 1, the altered dimensions of the unit cell can be 364 

found in table 1 attached to Appendix S2. Other conditions are keeping constant. 365 

 366 

5. Conclusion 367 

In summary, this study has reported an isotactic chiral phononic crystal with a Thomson scattering-368 

induced bandgap for a low-frequency and broad bandgap. The band structures of the classical Bragg 369 

scattering, sydiotactic, and isotactic lattices have been numerically calculated and compared together 370 

to elucidate the novelty of the isotactic chiral phononic crystals. The band structures and FRFs of 371 

simplified one-dimensional ISL and SYL have been compared to find the cause of the bandgap 372 

difference in ISL and SYL. Then the finite period structures have been designed, manufactured, and 373 

tested for the transmission, to verify the bandgap prediction in the band structure. Based on above 374 

study, the following conclusion can be drawn. 375 

Distinct from previous studies in which the sydiotactic phononic crystals are considered as a more 376 

superior way to realize low-frequency and broad bandgaps than isotactic phononic crystals [57, 61, 74, 377 

75], we have verified that although both ISL and SYL have the motion coupling which is one of the 378 

way to achieve the inertial amplification [60], the lack of the mirror symmetry makes the ISL having 379 

one less degree of freedom than SYL and hence there is less a resonant peak than SYL. As a result, 380 
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the bandgap starting frequency of ISL is lower by 66% than that of SYL. In addition, the relative width 381 

of the bandgap of up to 129% can be guaranteed. This research has illustrated that the condition of 382 

having alternating arrangement orientations between neighboring atoms is not indispensable for 383 

bandgap formation. These variances between the SYL and ISL do not depend on altering the lattice 384 

constant, equivalent stiffness, and static equivalent density of the system. The consequent radically 385 

unusual behaviors may make this design strategy attractive in all the fields where vibrations play a 386 

crucial role, such as for instance civil, aerospace and mechanical engineering. 387 

Appendix S1 388 

 389 
Fig. S1. The variation principle of (a-c) the diameter 𝑑" and (d-f) the lattice constant.  390 

Appendix S2 391 

Table 1. Dimensions of ISL in Fig. 13 392 

Parameter 𝑎 𝑑! 𝑑" 𝑑# 

Dimension 120 50 30 25 
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