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Introduction

A classical topological inquiry in Morse Theory is how level sets of a gradient flow -∇f change as one passes through critical points of a function f : M → R. This is also addressed in Conley's index theory for a closed manifold M . The basic topological setting under investigation herein, is an n-dimensional compact connected oriented submanifold N ⊂ M with boundary ∂N = N + ∪ N -consisting of (e + + e -) connected boundary components, n ≥ 3, n odd. N is endowed with a flow Φ which has S as its maximal isolated invariant set with numerical Conley homology indices (h 0 , h 1 , . . . , h n-1 , h n ). Moreover, Φ enters transversally through e + boundary components N + i , i = 1, . . . e + , and exits transversally through the remaining e -boundary components N - i , i = 1, . . . e -. Some relevant questions are: what are the significant topological changes between the level sets N -and N + ?, how does this change depend on the dynamics of Φ, more precisely on (h 0 , h 1 , . . . , h n-1 , h n )?

Conley's index theory has provided a powerful topological tool for dynamical configurations S λ that share the same isolating neighborhood N , i.e., the same index pair, (N, N -), precisely because of its invariance under homotopy. A typical situation, for instance, is flow continuation, where the index pair is the same but the dynamics within N changes significantly.

One inquires whether (N, N + , N -) which has numerical Conley homology indices equal to (h 0 , h 1 , . . . , h n-1 , h n ) admits a flow φ t having precisely h j nondegenerate singularities of Morse index j, for j = 0, . . . n, such that N + and N -are precisely its entering and exiting sets? Henceforth, these flows possessing only nondegenerate singularities will be called Morse flows. The process of passing from Φ to φ is called a morsification of Φ. This is precisely what Figure 1 depicts. The picture on its left side represents an isolated invariant set S, labelled with h 1 = 3 in (N, N + , N -) and endowed with the flow Φ, whereas the pictures on the right side represent Morse flows φ ′ and φ having precisely 3 nondegenerate singularities of Morse index 1 in (N, N + , N -).

In fact, much work has been done in this direction combinatorially. In [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF][START_REF] Bertolim | Lyapunov graph continuation[END_REF][START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF], the above input data was codified, i.e., registered in an abstract Lyapunov graph, and its morsifiability was addressed. The novelty in the tools employed therein was the use of network flow theory. A morsification algorithm was translated into a system of linear equations whose feasibility was equivalent to that of a set of inequalities involving the input data, called the Poincaré-Hopf inequalities. This application of network flow theory to morsification problems turned out to be a powerful tool in providing constructive proofs, and recipes for the generation of all possible nonnegative integral solutions associated with this linear system of equations.

A gateway was open so that one could now ask questions in both realms allowing for the exploration of many topological problems that may be modeled as a network flow theoretical question. This marked a turning point in this type of investigation which we explore in this work.

In this paper, we address both a combinatorial continuation question via Lyapunov graphs, as well as the attainability of a preassigned level set in a given dynamical configuration, dubbed ground level set, subject to the minimality of the total number of singularities of a morsified flow using network flow theory.

The key concept in this paper is the introduction of componentwise morsification. This is an improvement of the results in [START_REF] Bertolim | Lyapunov graph continuation[END_REF], where the morsification was done considering the global differences of Betti numbers, B + -B -of the level sets N -and N + . Therein, there was no reference to the change in topology of each of the connected components that formed the level sets N -and N + , i.e., the Betti numbers of each component N - i , i = 1, . . . e -and N + i , i = 1, . . . e + respectively. The attainability of a ground level set in (N, N + , N -), given by its Betti numbers, is made possible by a morsification of an isolated invariant set S in N . Starting at the level set N -and moving, for example, in the opposite direction of the Morse flow, φ t , one obtains the Betti numbers of all the intermediary level sets between singularities of φ t . The homologically output.tex November 6, 2023 output.tex [START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF] connecting or disconnecting effect that singularities have on level sets is dependant on handle gluings. The different possibilities of gluings are registered in the variables h c j and h d j , which are the number of singularities of index j of connecting or disconnecting type, respectively.
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There are many possible morsifications and choices of using connecting and disconnecting singularities subject to boundary conditions and the initial dynamical invariants given by numerical Conley homology indices (h 0 , h 1 , . . . , h n-1 , h n ). This is transcribed in an associated morsification algorithm that distinguishes the effects of handle gluings as one passes each level set of the morsified flow in (N, N + , N -). The algorithm translates to a linear system of equations in the variables h c j and h d j , the h cd cw -system. This system is in turn modeled as a network-flow problem, which can then be studied and solved at leisure.

In an approach evocative of the one employed in [START_REF] Bertolim | Lyapunov graph continuation[END_REF], an algorithm which describes the componentwise morsification determines an h cd cw -system of linear equations. The equivalence between the existence of nonnegative integral solutions h cd cw to this system of linear equations and the feasibility of a new system of linear inequalities, the componentwise Poincaré-Hopf inequalities, involving the topological-dynamical input data set, is established.

In summary, the venue we chose to explore, via componentwise morsification, leads to this interesting topological phenomenon of the attainability or not of preassigned ground level sets. In particular, we aim our results at the attainability of a spherical ground level set, since the general case will follow from this one. The procedure of the attainability of a spherical ground level set through a componentwise morsification is depicted in Figure 2. Let us consider some other examples. There are Lyapunov graphs that are morsifiable but are such that a spherical ground level set is not attainable, as illustrated in Figure 3. There also exist Lyapunov graphs that are morsifiable and reach a spherical level set but not with a minimal number of singularities. Figure 4 illustrates the process of a Lyapunov output.tex November 6, 2023
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ground level set -→ Our interest in studying level sets and their attainability lies in understanding the topological features of the isolating neighborhood itself, in fact, analyzing different ways it can be decomposed into smaller and more elementary pieces which we refer to as Morse blocks. These Morse blocks can be glued together to reconstruct the isolating neighborhood. One can understand why these techniques for studying level sets have found numerous applications in Computer Science. By developing level-set data structures, applications in fields such as image processing, computer graphics, computational geometry, optimization, computational fluid dynamics, and computational biology have been obtained. In this sense, we hope that by addressing this question combinatorially, it may make it more suitable to the above applications.
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This paper is structured as follows. In Section 1, we provide motivational and retrospective material for the techniques we use herein. In Section 2, we present the main results and provide examples in dimension 3 and 5. In Section 3, the Componentwise Morsification Algorithm is presented, along with the linear system it produces. In sections 4 and 5, this linear system is modeled as a network-flow problem, and this latter problem is solved. In Section 6, the feasibility conditions for the solution of the componentwise Poincaré-Hopf
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Figure 4: A Lyapunov graph componentwise morsification where spherical ground level sets are attainable more than once with a number of singularities greater than or equal to the minimal number of singularities. inequalities are presented. Lastly, Section 7 will generalize the main results by allowing general ground level sets.

Motivational background

Let M be an n-dimensional, connected closed oriented manifold. We wish to explore the homotopical characteristics of a flow Φ : M × R → M having as backdrop, Conley index theory. Its invariance under homotopical deformations makes it an ideal tool to explore flow morsification.

In this theory, a compact set

N ⊂ M is an isolating neighborhood if inv(N, ϕ) = {x ∈ N | ϕ t (x) ⊂ N, ∀ t ∈ R} ⊂ int N . A compact set N is an isolating block if N -= {x ∈ N | ϕ [0,t) (x) ̸ ⊂ N, ∀t > 0} is closed and inv(N, ϕ) ⊂ int N . An invariant set S is called an isolated invariant set if it is a maximal invariant set in some isolating neighborhood N , that is, S = inv(N, ϕ).
On the other hand, Conley [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF] proved a fundamental theorem on the global behaviour of continuous flows. Namely, given a continuous flow Φ t : M → M , there exists a continuous Lyapunov function f : M → R associated with the flow with the property that it strictly decreases along the orbits outside the chain recurrent set R 3 , that is, if x / ∈ R then f (ϕ t (x)) <

3 A point x ∈ M is chain recurrent if given ε > 0 there exists an ε-chain from x to itself, i.e., there exists points

x = x 1 , x 2 , . . . , , x n-1 , x n = x and t(i) ≥ 1 such that d(ϕ t(i) (x i ), x i+1 ) < ε ∀ 1 ≤ i < n. A set of such output.tex
November 6, 2023 f (ϕ s (x)) for t > s and is constant on the chain recurrent components R of R.

A component R of the chain recurrent set, R, of the flow ϕ t , is an example of an invariant set. We work under the hypothesis that R is the finite union of isolated invariant sets R i .

If f is a Lyapunov function associated with a flow and c = f (R) then for ε > 0, the component of

f -1 [c -ε, c + ε] that contains R is an isolating neighborhood for R. Take (N, N -) = (f -1 [c -ε, c + ε], f -1 (c -ε))
as an index pair for R. In fact, one refers to this type of index pair as an isolating block. By construction the flow is transverse to the boundary, N -∪ N + where N -= f -1 (c -ε) and N + = f -1 = (c + ε). The Conley index is defined as the homotopy type of N/N -. Its homology is denoted by CH * (S) and its rank denoted by h * = rank CH * (S) referred to as numerical Conley homology indices. For more details see [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF].

A flow Φ : M × R → M is gradient-like with respect to a Lyapunov function f : M → R associated with it, that is f decreases along orbits outside of the chain recurrent set R = N i=1 R i , and is constant on the chain recurrent components R i . Hence, it is natural to define a digraph with orientation induced by the flow by the following equivalence relation on M : x ∼ f y if and only if x and y belong to the same connected component of a level set of f . One refers to M/ ∼ f as a Lyapunov graph. It is possible to choose f so that each component R i of the chain recurrent set R corresponds to a unique critical value c i . A point on M/ ∼ f is a vertex point if under the equivalence relation it corresponds to a level set containing a component R of R. Hence, one can label each vertex with the numerical Conley homology indices of R i , (h 0 (R i ), . . . , h n (R i )). All other points are edge points. Each edge represents a codimension one submanifold Q of M times an open bounded interval I, Q × I. In order to retain some topological information of Q × I, the edges will be labelled with the Betti numbers of Q, (β

0 (Q) = 1, β 1 (Q), . . . , β n-2 (Q), β n-1 (Q) = 1)
. See [START_REF] Franks | Nonsingular Smale flows on S 3[END_REF] and [START_REF] Ledesma | Homotopical dynamics for gradient-like flows, volume 10 of 34º Colóquio Brasileiro de Matemática[END_REF] for more details.

In this work, we explore combinatorial venues that arise from abstract data without reference to a flow and its phase space, in order to tackle questions relating to their realizability and dynamical-topological properties. This data is organized and registered in an abstract Lyapunov graph.

An abstract Lyapunov graph is an oriented graph with no oriented cycles such that each vertex v is labelled with a list of non-negative integers {h 0 = r 0 , . . . , h n = r n }. Whenever h j = 0, it will be omitted from the list. Also, the labels (β 0 = 1, β 1 , . . . , β n-2 , β n-1 = 1) on each edge must be a collection of non-negative integers satisfying Poincaré duality and, if n -1 is even, then βn-1 2 is even. We can also define an abstract Lyapunov graph of Morse type which is, roughly speaking, an abstract Lyapunov graph with all vertices labelled with non-degenerate singularities, referred to as Morse singularities, i. e., h j = 1, for some j.

In [START_REF] Bertolim | Lyapunov graph continuation[END_REF], [START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF] and [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF], the authors show that an abstract Lyapunov graph can be continued to a Lyapunov graph of Morse type if and only if a collection of inequalities, called the Poincaré-Hopf inequalities, are satisfied. Since the writing of those articles, the expression continuation to a graph of Morse type has evolved to a pithier terminology, Lyapunov graph morsification. See [START_REF] Ledesma | Homotopical dynamics for gradient-like flows, volume 10 of 34º Colóquio Brasileiro de Matemática[END_REF]. However, the expression Lyapunov graph continuation is still of significance and remains in use whenever the end result is not a graph of Morse type.

points will be denoted by R and is called a chain recurrent set.
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Handle theory

We present a Morse theoretic approach, used previously in [START_REF] Bertolim | Lyapunov graph continuation[END_REF], for analyzing the changes to a manifold as handles are attached. This topological handle theory approach is necessary for the description of the algorithm presented in the next section. Morse-Smale flows on a smooth n-dimensional manifold M were considered together with handle decompositions associated with a Lyapunov function in [START_REF] Cruz | Gradient-like flows on high-dimensional manifolds[END_REF]. Thus, after the attachment to a collar of a closed n -1-manifold N -of an n-handle H of index j, corresponding to a nondegenerate singularity of Morse index j, one can consider the effect on the Betti numbers of the newly formed boundary

N + = ∂(H ∪ N -× I).
In other words, for n = 2i + 1, attaching an n-handle of index j, for j = 1 . . . n -1, to a collar of N -can produce one of the following effects if (H1) the j-th Betti number of the boundary N + is increased by 1 (or by 2 in the middle dimension i), and the handle will be said of type j-d (d standing for disconnecting);

(H2) the (j -1)-th Betti number of the boundary N + is decreased by 1 (or by 2, in the middle dimension i), and the handle will be said of type (j -1)-c (c standing for connecting).

Using these two possible topological effects, we determined in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] necessary and sufficient conditions for abstract Lyapunov graph morsification. These conditions will form a collection of inequalities called the Poincaré-Hopf inequalities which we discuss in the next section.

Observe that the two handle effects described above, (H1)-(H2), can be viewed in terms of graphs in the following way. A handle containing a singularity of index ℓ corresponds to a vertex on the graph L N labeled with h ℓ = 1, which can produce the two possible algebraic effects:

(G1) h ℓ = 1 is ℓ-d if it has the algebraic effect of increasing the corresponding β ℓ label on the incoming edge;

(G2) h ℓ = 1 is (ℓ -1)-c if it has the algebraic effect of decreasing the corresponding β ℓ-1 label on the incoming edge.

See the corresponding graphs in Figure 5.

Lyapunov graph morsification

In [START_REF] Bertolim | Lyapunov graph continuation[END_REF], [START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF] and [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF], an abstract Lyapunov semigraph, i.e., a vertex and its incident edges, was labelled with an abstract homological data. More specifically, labelled with

n, e + , e -, {h j } n j=0 , {B + j -B - j } n-1 2 j=1
without any reference to a specific manifold or flow. This information consists of an odd integer n, n ≥ 3, two positive integers e + and e -, and (n -1)/2 integers, denoted by the expressions B + j -B - j , for j = 1, . . . , (n-1)/2. We say that a manifold M and a Morse-Smale flow Φ on M satisfy the abstract homological data if the following conditions are satisfied: output.tex November 6, 2023 • the dimension of M is n;

β ℓ-1 (N + ) = β -1 β ℓ-1 (N -) = β h ℓ = 1 (ℓ -1)-c ℓ-d h ℓ = 1 β ℓ (N + ) = β + 1 β ℓ (N -) = β
• Φ enters M through e + connected boundary components N + i , i = 1, . . . e + and exits through the remaining e -connected boundary components N - i , i = 1, . . . e -; • if β j (N ) denotes the j-th Betti number of N , then we have, for the boundary components, and for all j = 1, . . . , (n -1)/2,

B + j -B - j = e + k=1 β j (N + k ) - e - k=1 β j (N - k ).
Consider the following example of a classical Lyapunov graph morsification in dimension 5 containing a singularity with numerical Conley homology indices given by (h 0 = 0, h 1 = 2, h 2 = 2, h 3 = 1, h 4 = 1, h 5 = 0). The components of the incoming and outgoing boundary components, N + and N -, are labeled with the Betti numbers (β 0 , β 1 , β 2 , β 3 , β 4 ), as illustrated in Figure 6. Note that since (β 0 , β 1 , β 2 , β 3 , β 4 ) satisfy Poincaré duality, β 1 = β 3 and since β 0 and β 4 represent the number of boundary components reflected by the number of edges, one needs only to label an edge by (β 1 , β 2 ) as in Figure 6.

It is important to note that Lyapunov graph morsification is possible if and only if the set of inequalities (1)-( 4), referred to as the classical Poincaré-Hopf inequalities, are satisfied. This will be discussed in more detail in Section 1.3.

Classical Poincaré-Hopf inequalities

The classical Poincaré-Hopf inequalities for an isolated invariant set S in an isolating block N with entering set for the flow N + and exiting set for the flow N -, are obtained by analysis of long exact sequences of (N, N + ) and (N, N -). This analysis can be found in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] in a more detailed exposition.

output.tex

November 6, 2023 We work under a duality condition that asserts that if (N, N -) is an index pair for the isolated invariant set S of a flow with numerical Conley homology indices equal to {h j }, then (N, N + ) is an index pair for the isolated invariant set S ′ of the reverse flow with numerical Conley homology indices equal to { hj = h n-j }.

0-c h 1 = 1 0-c h 1 = 1 1-c h 2 = 1 1-c h 2 = 1 2-c h 3 = 1 4-d h 4 = 1 β 1 = 5 β 2 = 4 β 1 = 4 β 2 = 4 β 1 = 3 β 2 = 4 β 1 = 3 β 2 = 2 β 1 = 1 β 2 = 2 β 1 = 2 β 2 = 2 β 1 = 2 β 2 = 0 β 1 = 2 β 2 = 0 β 1 = 1 β 2 = 2
Consider the long exact sequences for the pairs (N, N -) and (N, N + ), denoted by LESand LES+, respectively:

0 → H n (N -) in -→ H n (N ) pn -→ H n (N, N -) ∂n -→ H n-1 (N -) i n-1 --→ H n-1 (N ) p n-1 ---→ H n-1 (N, N -) ∂ n-1 ---→ • • • ∂ 2 -→ H 1 (N -) i 1 -→ H 1 (N ) p 1 -→ H 1 (N, N -) ∂ 1 -→ H 0 (N -) i 0 -→ H 0 (N ) p 0 -→ H 0 (N, N -) → 0 0 → H n (N + ) i ′ n -→ H n (N ) p ′ n -→ H n (N, N + ) ∂ ′ n -→ H n-1 (N + ) i ′ n-1 --→ H n-1 (N ) p ′ n-1 ---→ H n-1 (N, N + ) ∂ ′ n-1 ---→ • • • ∂ ′ 2 -→ H 1 (N + ) i ′ 1 -→ H 1 (N ) p ′ 1 -→ H 1 (N, N + ) ∂ ′ 1 -→ H 0 (N + ) i ′ 0 -→ H 0 (N ) p ′ 0 -→ H 0 (N, N + ) → 0
Throughout this analysis, the Conley duality condition on the indices is assumed.Denote rank H 0 (N -) = e -, rank H 0 (N + ) = e + and rank (H j (N ± )) = B ± j . By simultaneously analyzing the following pairs of maps

{[(p i , ∂ ′ i ) , (p ′ i , ∂ i )] , . . . [(p 2 , ∂ ′ 2 ) , (p ′ 2 , ∂ 2 )
]} , and analyzing p 1 and p ′ 1 , we obtain the classical Poincaré-Hopf inequalities in all its generality, where h j is the dimension of the homology Conley index and 

B - j = e - i=1 (β - j ) i , B + j = e + i=1 (β + j ) i ,
h j ≥ j-1 k=1 (-1) k+j (B + k -B - k )+(-1) j (e + -e -)+ j-1 k=0 (-1) k+j (h n-k -h k ) ≥ -h n-j , for j = 2, . . . , n 2 , ( 1 
)
h 1 ≥ h 0 -1 + e -, ( 2 
)
h n-1 ≥ h n -1 + e + , (3) 
                                     i-1 k=1 (-1) k (B + k -B - k ) + (-1) i B + i -B - i 2 + (e + -e -) + i j=0 (-1) j (h n-j -h j ) = 0. (4) 
In [START_REF] Bertolim | Lyapunov graph continuation[END_REF] the classical Poincaré-Hopf inequalities were shown to be necessary and sufficient conditions for the morsification of abstract Lyapunov graphs. This morsification was presented by means of a constructive algorithm, that describes the number of different types of vertices labelled with Morse singularities h j = 1 of type c or d that will replace v.

Each step of the algorithm imposes a series of restrictions described by linear equations. Thus, a linear system of equations whose solution is the number of different types of vertices h c j and h d j that are needed to substitute v in the morsification while keeping all the data on the incident edges unaltered. This morsification algorithm was translated into a system of linear equations system (5)-( 9) whose feasibility was linked to the satisfiability of the classical Poincaré-Hopf inequalities (1)-( 4) involving the input data.

More precisely, in odd dimension, it was shown in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] that: Proposition 1 The system ( 5)-( 9) has nonnegative integral solutions (h,

h c 1 , h d 1 , . . . , h c n-1 , h d n-1
) if and only if the classical Poincaré-Hopf inequalities ( 1)-( 4) are satisfied.

h c 1 = e --1, (5) 
h d n-1 = e + -1, (6) 
h j = h c j + h d j , j = 1, . . . , n -1 and j ̸ = n 2 , ( 7 
)
h d j -h c j+1 -h c n-j + h d n-j-1 = B + j -B - j , j = 1, . . . , n -2 2 , ( 8 
)                              h d i -h c i+1 = B + i -B - i 2 , if n = 2i + 1. (9) 

Main results

In Section 1.3, one easily verifies that the morsification algorithm takes into account exclusively the differences

B + j -B - j = e + k=1 β j (N + k ) - e - k=1 β j (N - k ),
output.tex November 6, 2023 for all j = 1, . . . , (n-1)/2. This means that, for any choice of β j (N + k ), on the incoming edges, as well as β j (N - k ), on the outgoing edges, that respect the above differences will produce the exact same solutions given by the network flow. See Figures 7 and8.

In conclusion, Lyapunov graph morsifications treated in [START_REF] Bertolim | Lyapunov graph continuation[END_REF], [START_REF] Bertolim | Poincaré-Hopf and Morse inequalities for Lyapunov graphs[END_REF] and [START_REF] Bertolim | Dynamical and topological aspects of Lyapunov graphs[END_REF] depend only on the global Betti number information of the labels on the incoming and outgoing edges, more specifically on the differences B + j -B - j . Hence, this is the reason we are not able to distinguish in terms of the morsified data between the two situations depicted in Figures 7 and8. The morsifications of both graphs are identical although the individual Betti numbers on the incident edges are not.

On the other hand, componentwise morsification distinguishes the examples in Figures 7 and8. By retaining the Betti number information on each incident edge at each step of the morsification algorithm, one keeps track of the variations of the Betti numbers componentwise. Moreover, with the aim of keeping a finer control on the changes in Betti numbers during the morsification, a new collection of inequalities, called the Poincaré-Hopf inequalities for componentwise morsification (in short, componentwise Poincaré-Hopf inequalities), is introduced in Section 6. They give necessary and sufficient conditions for the componentwise morsification of Lyapunov graphs.

• © d d d d d d d d h 1 = 2, h 2 = 2 β 1 = 2 β 1 = 2 β 1 = 2 • • • • © d d d d d d d d 2-d h 2 = 1 1-d h 1 = 1 1-c h 2 = 1 1-d h 1 = 1 β 1 = 4 β 1 = 2 β 1 = 4 β 1 = 2 β 1 = 2 β 1 = 2
It can be verified that both examples in Figures 7 and8 satisfy the componentwise Poincaré-Hopf inequalities and thus have componentwise morsifications as illustrated in Figures 9 and10. For n = 3, these inequalities reduce to the two equations ( 44) and (45). It is easy to see that the componentwise morsifications are different, i.e., the level sets in the morsification are not the same, although the number of singularities of type c and d are identical.

We prove the following three main results.

Theorem 1

The topological-dynamical data that satisfies the componentwise Poincaré-Hopf output.tex November 6, 2023 output.tex November 6, 2023 

• © d d d d d d d d h 1 = 2, h 2 = 2 β 1 = 2 β 1 = 4 β 1 = 0 • • • • © d d d d d d d d 2-d h 2 = 1 1-d h 1 = 1 1-c h 2 = 1 1-d h 1 = 1 β 1 = 4 β 1 = 2 β 1 = 4 β 1 = 2 β 1 = 4 β 1 = 0
• © d d d d d d d d h 1 = 2, h 2 = 2 β - 11 = 2 β + 12 = 2 β + 11 = 2 • • • • © d d d d d d d d 2-d h 2 = 1 1-d h 12 = 1 1-d h 11 = 1 1-c h 21 = 1 spherical ground level -→ β + 11 = 2 β + 12 = 2 β + 11 = 2 β 12 = 0 β 11 = 0 β 12 = 0 β - 11 = 2 β - 12 = 0 β + 12 = 2 β + 11 = 2
• © d d d d d d d d h 1 = 2, h 2 = 2 β - 11 = 2 β + 12 = 4 β + 11 = 0 • • • • © d d d d d d d d 2-d h 2 = 1 1-d h 12 = 1 1-d h 12 = 1 1-c h 21 = 1 spherical ground level -→ β + 11 = 0 β + 12 = 4 β + 11 = 0 β 12 = 2 β 11 = 0 β 12 = 0 β - 11 = 2 β - 12 = 0 β + 12 = 4 β + 11 = 0

inequalities (38)-(43) also satisfies the classical Poincaré-Hopf inequalities (1)-(4). In other words, every abstract Lyapunov graph which satisfies the componentwise Poincaré-Hopf inequalities also satisfies the classical Poincaré-Hopf inequalities.

In the next section, we prove the following local morsification theorem and its global version. Topologically speaking, this means that, in case of realization, the isolating block associated with this semigraph may contain a level which is an (n -1)-sphere.

Of course, if each vertex of an abstract Lyapunov graph satisfies the componentwise Poincaré-Hopf inequalities, Theorem 2 can be generalized in the following way.

Theorem 3 Every abstract Lyapunov graph L that satisfies the componentwise Poincaré-Hopf inequalities at each vertex can be componentwise morsified.

By no means is componentwise morsification unique. It is precisely the network flow circulations that will exhibit all possibilities. More on this will be said later in Section 5.
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Componentwise morsification in dimension 5

In order to better understand the morsification algorithm, what it entails and what it produces, consider the following example in dimension 5. For didactic purposes, let L v be a Lyapunov semigraph consisting of a vertex labelled with a singularity whose numerical Conley homology indices are given by h 0 = 0, h 1 = 4, h 2 = 4, h 3 = 4, h 4 = 4, h 5 = 0 and its incident edges. Each incoming and outgoing edge is labeled with Betti numbers

(β ± 0k , β ± 1k , β ± 2k , β ± 3k , β ± 4k ) e ± k=1
, as depicted in Figure 11, in which we assign concrete values to these numbers. Note that since

(β ± 0k , β ± 1k , β ± 2k , β ± 3k , β ± 4k ) e ± k=1
satisfy the Poincaré duality and since e ± k=1 β ± 0 and e ± k=1 β ± 4 represent the number of boundary components, we need only represent (β ± 1k , β ± 2k ) e ± k=1 in Figure 11. In Section 3, we will introduce a componentwise morsification algorithm that results in a linear system of equations, in the sense that the algorithm can be successfully executed if and only if this system admits a nonnegative integral solution. In fact, each nonnegative integral solution to this system characterizes a possible morsification. In Section 4, this system of equations is modeled as a network-flow problem. The study of the solutions to this network-flow problem lead to the componentwise Poincaré-Hopf inequalities.

In dimension 5, these inequalities are:

h 1 ≥ e --1 (10) e 
+ k=1 β + 1k ≥ h 1 -(e --1) (11) e - k=1 β - 2k 2 = h 3 - e + k=1 β + 1k + h 1 -(e --1) (12) 
h 4 ≥ e + -1 (13) e - k=1 β - 1k ≥ h 4 -(e + -1) (14) e + k=1 β + 2k 2 = h 2 - e - k=1 β - 1k + h 4 -(e + -1). (15) 
It is easy to verify that the abstract Lyapunov graph in Figure 11 satisfies the inequalities ( 10)-(15). Figure 12 depicts the network-flow that models the system of equations produced by the componentwise morsification algorithm for the Lyapunov semigraph in Figure 11. Notice that it is composed of two disjoint and independent sub-networks. The equations from the linear system produced by the algorithm can be obtained from the network. The labels on the arcs represent the variables (interpreted as flows along the arcs) associated therewith. Each node represents an equation, the label on each node is the constant that appears in the corresponding equation. Flow going into (resp., out of) a node is the sum of flows along arcs whose arrows point into (resp., out of) the node. The difference of these quantities must equal the constant associated with the node. For instance, the equation associated with node

h 1 is h 1 = h c 1 + h d 11 + h d 12 .
output.tex November 6, 2023 - (e --1) Concerning linear graphs (corresponding to e -= e + = 1), if the homological data satisfies the componentwise Poincaré-Hopf inequalities, the morsification is unique, as shown in Lemma 4. Figure 16 furnishes an example of a linear abstract Lyapunov graph. It corresponds to the following homological data:
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On the right of this figure we present the only morsification available to this linear graph.

As mentioned before, it is important to observe that thus far, componentwise morsification produces a level where β jk = 0, for all j = 1, . . . , n -2, k = 1, . . . , e ± . In the event of realization, this can be interpreted as a level containing at least one even-dimensional sphere.

The underlying idea in this paper is to describe under which conditions an abstract Lyapunov graph can be componentwise morsified as in Figure 13 or Figure 14. These conditions form a new collection of inequalities, the componentwise Poincaré-Hopf inequalities, described in Section 6, which are shown to be necessary and sufficient for the componentwise morsification to occur.

For now, all the proofs are done for zero Betti number ground level set. The exposition is clearer and more didactic with this simplification. In Section 7 the proofs are presented in the general case, i.e., the restriction that the Betti numbers of the ground level set are all zero is removed and ground level sets with arbitrary Betti numbers are considered.

Componentwise morsification algorithm

In this section, a Lyapunov semigraph componentwise morsification algorithm will be presented for a semigraph consisting of a vertex v labelled with a singularity whose numerical Conley homology indices are given by h 0 = h n = 0, n ≥ 3, n odd, and h j , j = 1, . . . , n -1, nonnegative integers and its e + positively and e -negatively incident edges. Recall that the vertex represents an isolated invariant set for a gradient-like flow on a manifold of dimension n. This algorithm will generate a linear system of equations whose nonnegative integral solutions are precisely the number of different (ℓ-d, ℓ-c) vertices of Morse type used in the morsification of the semigraph.

Lyapunov semigraph componentwise morsification algorithm

Let L v be a Lyapunov semigraph consisting of a vertex v labelled with a singularity whose numerical Conley homology indices are given by {h 1 , h 2 , . . . , h n-1 } and incoming edges laoutput.tex November 6, 2023 output.tex November 6, 2023 The first part of the algorithm consists in adjusting the incident edges of the semigraph. For this purpose we define two semigraphs G + and G -. The semigraph G + has the property that it has e + incoming edges and one outgoing edge. It will be formed using only singularities of index n -1 of type (n -1)-d. The semigraph G -has the property that it has e -outgoing edges and one incoming edge. It will be formed using only singularities of index 1 of type 0-c.
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The second part of the algorithm consists in joining the outgoing edge of G + to a linear semigraph L + formed by Morse type vertices labelled with h n-j,k = 1 and j < middle dimensions, k = 1, . . . , e + . Similarly, the incoming edge of G -will be joined to a linear semigraph L -formed by Morse type vertices labelled with h j,k = 1 and j < middle dimensions, k = 1, . . . , e -. As the singularities are inserted, recall that the variation of the labels on the edges is always considered in the opposite direction of the orientation of the semigraph.

The third part of the algorithm consists in inserting the middle dimensional singularities, if there are any, and joining L + to L -if they have not already been joined in the previous part. Of course, all of this must be done, so that the weights on the last two edges to be joined coincide.

We will proceed to describe Lyapunov semigraph componentwise morsification algorithm. For simplicity, we develop our algorithm at the attainability of a spherical ground level set. The general case will follow from this one. See Section 7.

Let us consider a Lyapunov semigraph to be componentwise morsified as in Figure 17. Step 0 -Adjusting the incident edges: G -and G + .

(h 1 , h 2 , . . . , h n-1 ) (β - 0e -, . . . , β - (n-1)e -) (β - 01 , . . . , β - (n-1)1 ) (β + 0e + , . . . , β + (n-1)e + ) (β + 01 , . . . , β + (n-1)1 ) . . . . . .
Let h c 1 = e --1. By choosing this number of vertices labelled with 1-singularities, G -is formed with e -outgoing edges and one incoming edge. Similarly, let h d n-1 = e + -1, by choosing this number of vertices labelled with (n -1)-singularities, G + is formed with e + incoming edges and one outgoing edge. Singularities of type 0-c or of type (n -1)-d do not alter the β jk with 0 < j < n -1, k = 1, . . . , e ± , respectively. This type of singularity, 0-c, decreases e - k=1 β - 0k and by duality e - k=1 β - (n-1)k . Hence, the incoming edge of G -has

e - k=1 β - 0k = e - k=1 β - (n-1)k = 1 and (β - 1k , . . . , β - (n-2)k ) with k = {1, .
. . , e -}. See Figure 18. In order to adjust β - 11 and by duality β - (n-2)1 add a linear semigraph L - 1 to G -. This is done by inserting β - 11 vertices h 21 = 1 of type 1-c to G -. Hence, the label on the incoming edge of the last vertex of this type inserted will be β - 11 -h c 21 . Observe that the insertion of vertices h 21 = 1 of type 1-c will decrease β - 11 . Thus, after the insertion of β - In order to adjust β + 11 and by duality β + (n-2)1 add a linear semigraph L + 1 to G + . This is done by inserting β + (n-2)1 vertices h (n-2)1 = 1 of type (n -2)-d. After the insertion of these vertices the label on the outgoing edge of the last vertex of this type will be β

{1, (β - 11 , . . . , β - (n-2)1 ), (β - 12 , . . . , β - (n-2)2 ), . . . , (β - 1e -, . . . , β - (n-2)e -), 1} 0-c h 1 = 1 0-c h 1 = 1 u d d d d © u d d d d c . . . G -
11 vertices h 21 = 1 of type 1-c, G -∪ L - 1 is formed.
+ (n-2)1 -h d (n-2)1 .
After the insertion of these vertices the label on the outgoing edge of G + ∪ L + 1 will be 0. By duality the label β + 11 has been also modified to 0. Observe that we can get the same result by inserting B + 11 vertices h 11 = 1 of type 1-d to G + . After the insertion of these vertices we have modified β + 11 and by duality β + (n-2)1 . Since the insertion of any other type of vertex will not alter the first and the (n -2)-nd Betti number of the first component it is necessary that

β - 11 = h c 21 + h c (n-1)1 , β + 11 = h d 11 + h d (n-j-1) . ( 16 
)
If the above equality is true then by duality the following equality holds:

β - (n-2)1 = h c 21 + h c (n-1)1 , β + (n-2)1 = h d 11 + h d (n-j-1) .
Thus the labels of β ± 11 and β ± (n-2)1 have been adjusted and they are equal to zero. The incoming edge of G -∪ L - 1 has the following labels:

{1, (0, β - 21 , . . . , β This procedure is illustrated in Figure 19.

This process of adjusting β ± ℓ1 and B ± (n-ℓ-1)1 will be repeated in increasing order except in the middle dimensions. This will allowed the adjustment of the Betti numbers of the first component. The general procedure will be presented in the next step.

Step ℓ -The adjusting of β ℓ1 and by duality β (n-ℓ-1)1

At this point, it is assumed by induction that the adjustments of β j1 for j < ℓ and by duality β (n-j-1)1 for j < ℓ have been made in increasing order for j. Hence, several linear semigraphs have been added to G + forming at this point a semigraph In order to adjust β ℓ1 and by duality

G + ∪ ℓ-1 i=1 L + i whose
(n -2)-d h n-2,1 = 1 (n -2)-d h n-2,1 = 1 (n -2)-d h n-1,1 = 1 (n -2)-d h n-1,1 = 1 (n -1)-d h n-1 = 1 (n -1)-d h n-1 = 1 t t . . . © © t d d d d G -∪ L - 1 c . . . t . . . t t © d d d d t . . . c d d d d t 1-c h 21 = 1 1-c h 21 = 1 1-c h 21 = 1 1-c h 21 = 1 0-c h 1 = 1 0-c h 1 =
β (n-ℓ-1)1 insert β - ℓ1 vertices h (ℓ+1)1 = 1 of type ℓ-c to G -∪ ℓ-1 i=1 L - i .
Hence, the label on the incoming edge of the last vertex of this type inserted will be β - ℓ -h c ℓ . Observe that the insertion of vertices of type ℓ-c will decrease B - ℓ . Thus, after the insertion of these vertices h (ℓ+1)1 = 1 of type ℓ-c the label on the incoming edge of

G -∪ ℓ i=1
L - i will be 0. By duality the label β - (n-ℓ-1)1 has been modified to 0. Observe that we can have the same result if we insert L + i . Since the insertion of any other type of vertex will not alter the ℓ-th and the (n-ℓ-1)-th Betti number of the first component it is necessary that

β (n-ℓ-1)1 vertices h (n-ℓ)1 = 1 of type (n -ℓ -1)-c to G -∪ ℓ-1 i=1 L - i . Similarly, the insertion of β (n-ℓ-1)1 vertices h n-ℓ = 1 of type (n -ℓ)-d
β - ℓ1 = h c (ℓ+1)1 + h c (n-ℓ)1 , β + ℓ1 = h d ℓ1 + h d (n-ℓ-1)1 . ( 17 
)
If the above equality is true then by duality the following equality holds:

β - (n-ℓ-1)1 = h c (ℓ+1)1 + h c (n-ℓ)1 , β + (n-ℓ-1)1 = h d ℓ1 + h d (n-ℓ-1)1 .
The labels of β ℓ1 and β (n-ℓ-1)1 for 0 < ℓ < mid have all been adjusted for the first component. It remains to adjust the middle dimensional labels for the first component. This is done in the next step.

Middle dimensional componentwise morsification of the first component

At this point the adjustments of the labels at the middle dimensions must be made. Since n is odd, there is only one middle dimensional label β(n-1)1 To adjust

β - i1 insert β - i1 2 vertices h (i+1)1 = 1 of type i-c to the incoming edge of G -∪ i-1 j=1 L - j .
Hence, the label on the incoming edge of the last vertex inserted of this type is

β - i1 2 -h c i1
. Thus, after the insertion of these vertices β - i1 is modified to 0.

After the insertion of

β + i1 2 vertices h i1 = 1 of type i-d to the outgoing edge of G + ∪ i-1 j=1 L + j ,
the label on the outgoing edge of last vertex inserted is

β + i1 2 -h d i1 .
Thus, after the insertion of these vertices β + i1 is modified to 0. Moreover, it is necessary that

B - i1 2 = h c i+1 , B + i1 2 = h d i .
(18)

Since, the labels of the first component on the outgoing edge of one of the graphs now coincides entirely with the labels of the first component on the incoming edge of the other graph. By repeating all the steps described previously for each edge, the labels on the outgoing edge of one of the graphs will coincide entirely with the labels on the incoming edge of the other graph. Hence, the spherical ground level is attained and the two semigraphs can be joined to form a connected graph.

Throughout this section we have placed an order in the insertion of singularities of connecting type to better explain the algorithm. However, the order of this insertion is arbitrary. The net effect at the final stage is always the same.

Conclusion

Hence, at the end of the adjustments described previously, we obtain the h cd cw -system of linear equations, written below, in the variables

(h c 1 , (h d 1k ) 1≤k≤e + , (h c jk ) 1≤k≤e - 2≤j≤2i , (h c jk ) 1≤k≤e + 1≤j≤2i-1 , (h c 2i ) 1≤k≤e -, h d 2i
). The algorithm succeeds if and only if there is a nonnegative integral solution to this h cd cwsystem, so named in analogy with the linear system obtained by the Lyapunov semigraph morsification algorithm4 in [START_REF] Bertolim | Lyapunov graph continuation[END_REF].

e --1 = h c 1 , (19) e + -1 = h d n-1 , (20)        β - jk = h c j+1,k + h c n-j,k , j = 1, . . . , n -2 2 , k = 1, . . . , e -, ( 21 
)
β - ik 2 = h c i+1,k , k = 1, . . . , e - (22)        β + jk = h d jk + h d n-j-1,k , j = 1, . . . , n -2 2 , k = 1, . . . , e + , ( 23 
)                                                                          β + ik 2 = h d ik , k = 1, . . . , e + , ( 24 
)
h j = e - k=1 h c jk + e + k=1 h d jk , j = 2, . . . , n -2, ( 25 
)
h 1 = h c 1 + e + k=1 h d 1k , ( 26 
)
h n-1 = h d n-1 + e - k=1 h c n-1,k , (27) 
Summarizing, the componentwise morsification is done by means of the constructive algorithm developed in the last section. The algorithm determines the number of different types of vertices that will replace v. Each step of the algorithm imposes a series of restrictions described by linear equations, forming the linear systems (19) -( 22), whose solutions lists the number of different types of vertices which will substitute the vertex v in the componentwise morsification. So the possibility of morsification is translated to the existence of a nonnegative integral solution to the linear system (19)-( 27).

In the sequence, Sections 4 and 5 set up the stage for the attainment of the componentwise Poincaré-Hopf inequalities in Section 6. First, the system of equations ( 19)-( 27) is modeled as a network-flow problem and then a divide-and-conquer approach is adopted to find its solution. The network is split into three simple structures and the solution of each is obtained. At this point, necessary and sufficient conditions for the existence of nonnegative flows (integrality will come naturally) are obtained for each of these structures. Along the way, we obtain interesting results concerning special cases (e.g., linear graphs) and useful facts (e.g., upper bound on the number of solutions). Thus, when we arrive at the proof of Theorem 2 in Section 6, there is little left to do, we basiccally put together the facts amassed so far.

Network-flow model

Necessary and sufficient conditions for the existence of nonnegative integral solutions to the h cd cw -system may be easily obtained by constructing a network-flow model that represents the system. Multiply by -1 equations ( 19), ( 20), ( 21)-( 24). The altered equations are denoted output.tex November 6, 2023 by the prime symbol: (19 ′ ), (20 ′ ), (21 ′ )-(24 ′ ). After this multiplication, the column corresponding to variable h c 1 (resp., h d n-1 ) in the transformed linear system's coefficient matrix will contain exactly two nonzero entries: -1 in the row corresponding to equation (19 ′ ) (resp., (20 ′ ) and 1 in the row corresponding to equation (26) (resp., (27). For 1 ≤ k ≤ e -and 2 ≤ j ≤ n -1, the column corresponding to variable h c jk will contain exactly two nonzero entries: -1 in the row corresponding to the appropriate equation in (21 ′ ), if j ̸ = i or in the row corresponding to equation (22 ′ ), if j = i. For 1 ≤ k ≤ e + and 1 ≤ j ≤ n -2, the column corresponding to variable h d jk will contain exactly two nonzero entries: -1 in the row corresponding to the appropriate equation in (23 ′ ), if j ̸ = i or equation (24 ′ ), if j = i.

Therefore the coefficient matrix of the transformed linear system is the incidence matrix of a directed graph 5 . Each variable represents the flow along an arc, each row corresponds to a node of the directed graph. The constant on a given row (the right-hand-side element of that row in the linear system) is the constant associated with the node. Each arc is incident to two nodes, corresponding to the rows containing the nonzero entries of the column associated with the arc. An arc is incident into (resp., out of) the node corresponding to the row with the entry 1 (resp., -1). Thus each equation of the transformed system reads "flow into a node -flow out of the node equals the constant associated with the node". A positive constant means that the incoming flow must be larger than the outgoing one and that flow is being consumed in that node. Likewise, a negative value is interpreted as flow being produced at the node. Finding a nonnegative integral solution to the system is finding a nonnegative integral flow satisfying these flow balancing equations. Fortunately, if the node constants are integral and the network admits a feasible flow, i.e., there is a nonnegative flow satisfying the flow balancing equations, then the existence of a integral feasible flow is a given, see [START_REF] Ahuja | Network Flows: Theory, Applications and Algorithms[END_REF]. So it suffices to show that the networks admits a feasible flow.

Figures 20, 21 and 22 show the networks corresponding to n = 3, 5 and 7, respectively. The nodes corresponding to equations (21 ′ ) and(23 ′ ) have two outgoing arcs. The nodes corresponding to equations (19 ′ ), (20 ′ ), (22 ′ ) and(24 ′ ) have one outgoing arc. The node associated with h j , for j ̸ = 1 or n -1, have e + + e -incoming arcs. The node associated with h 1 (resp., h n-1 ) has 1 + e + (resp., 1 + e -) incoming arcs.

The networks may be seen as a graphical way of imparting the equations. They can be read from the drawing. For instance, the flow balance equation for node h 2 , in Figure 20, is "ingoing flow equals h 2 ", that is,

h d 2 + h c 21 + • • • + h c 2e -= h 2 . For node -β + 12 in Figure 21, the flow balance equation is -h d 12 -h d 32 = -β + 12 .
We may construct the network by going through the equations in a special order, that will sweep of the graphs constituting the network from left to right (for the planar embedding shown in Figures 20, 21 and22). To ease the presentation, we will assume this planar embedding is fixed throughout. In this scanning of the equations, the variables make up a thread that links the equations/nodes, and we simply follow this thread. Starting with equation (19 ′ ), the only variable in this equation is h c 1 , which only shows up again in equation ( 26). All the remaining variables in equation ( 26), h d 11 , . . . , h d 1e + , only show up in equations (23 ′ ), for j = 1 and k = 1, . . . , e + . Now comes the fact that considerably eases this task: the remaining variables in equations (23 ′ ), for j = 1 and k = 1, . . . , e + , namely h d n-2,1 , . . . , h d n-2,e + , appear again all together in equation ( 25), for j = n -2. So although the thread might 
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-(e --1) have momentarily split into e + separate threads, at the next step these threads are joined together. This phenomenon repeats itself as we go over the variables. For instance, the next set of variables are the remaining ones showing up in equation ( 25), for j = n -2, namely h c n-2,1 , . . . , h c n-2,e -. These variables appear in equations (21 ′ ), for j = n -(n -2 -1) + 1 = 2 and k = 1, . . . , e -. Although now we have e -threads to follow, represented by the remaining variables in equations (21 ′ ), for j = 2 and k = 1, . . . , e -, namely h c 31 , . . . , h c 3e -. These separate threads again come together in equation ( 25), for j = 3.

h 1 -β + 11 -β + 1e + -β + 12 h 5 -β - 21 -β - 2e - -β - 22 h 3 - β + 31 2 - β + 3e + 2 - β + 32 2 -(e + -1) h 6 -β - 11 -β - 1e - -β - 12 h 2 -β + 21 -β + 2e + -β + 22 h 4 - β - 31 2 - β - 3e - 2 - β - 32 2 h c
The sequence of nodes visited in this fashion may be schematically represented by

-(e --1), h 1 , {-β + 1k } + , h n-2 , {-β - 2k } -, h 3 , {-β + 3k } + , h n-4 , .
. . The superscript + (resp., -) on the right curly brace is shorthand for the range of k, the second subscript of β: k = 1, . . . , e + (resp., k = 1, . . . , e -).

It can be shown by induction that the indices of the sequence of node variables swept according to the aforementioned method follow the pattern exemplified above. Thus, the subsequence of β's will be

{-β + 1k } + , {β - 2k } -, {β + 3k } + , {β - 4k } -, {β + 5k } + , {β - 6k } -, .
. . , with the first subscript increasing by unitary increments and the superscript alternating between + and -. The h's subsequence will be

h 1 , h n-2 , h 3 , h n-4 , h 5 , h n-6 , . . .
Notice that all subscripts in the above subsequence are odd.

Since the range of the first subscript of the β's is limited by i, when either equations (22 ′ ), if i is even, or (24 ′ ), if i is odd, are reached. Notice that, once this last index is reached, there is no way to proceed, since each equation in (22 ′ ), if i is even, or in (24 ′ ), if i is odd, contains only one variable (the thread that was used to reach it), there is no new thread to follow and yet there are still many equations left to go through.

The graphs constructed with this sweep, for n = 3, 5 and 7, are shown at the bottom in Figures 20, 21 and 22, respectively. The unique arc h c 1 going out of node -(e --1) enters h 1 . The other remaining arcs going into h 1 come out from a host of β + nodes and these are in turn linked to the next h node by outgoing arcs. This forms a lozenge-shaped symmetric structure, with one node at each side and a central column, or spine, of nodes. There are two arcs going out from each node in the spine, one of them going into the node on the left and the other into the node on the right. This structure is repeated i -1 times. Each of the h nodes belongs simultaneously to two consecutive lozenge-shaped structures. One may view the rightmost set of nodes and arcs as a defective lozenge-shaped structure, missing the right node and the arcs that would go into it.

It so happens that, if we apply the same procedure as above, but starting with equation (20 ′ ), the sequence of nodes/equations visited will be

-(e + -1), h n-1 , {-β - 1k } -, h 2 , {-β + 2k } + , h n-3 , {-β - 3k } -, h 4 , . . . The β subsequence is follows the pattern {β - 1k } -, {β + 2k } + , {β - 3k } -, {β + 4k } + , {β - 5k } -, {β + 6k } + , . . .
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The last set of equations will be (22 ′ ), if i is odd, or in (24 ′ ), if i is even. The h node sequence is h n-1 , h 2 , h n-3 , h 4 , h n-5 , h 6 , . . . , so this time the even numbered h's are swept.

It is easy to see that all equations are covered by the two sequences. This ordered scanning of the equations produces two disjoint graphs of analogous structures, exemplified in Figures 20, 21 and 22. Figures 23 and 24 depict the networks for general n = 2i + 1 and i odd and even, respectively.

-(e --1)

h 1 -β + 11 -β + 1e + -β + 12 h n-2 • • • h i - β + i1 2 - β + ie + 2 - β + i2 2 -(e + -1) h n-1 -β - 11 -β - 1e - -β - 12 h 2 • • • h n-i - β - i1 2 - β - ie - 2 - β - i2 2 h c 1 h d 11 h d 12 h d 1e + . . . h d n-2,1 h d n-2,2 h d n-2,e + h d i1 h d i2 . . . h d ie + h d n -1 h c n-1,1 h c n-1,2 h c n-1,e - h c 21 h c 22 h c 2e - . . . h c n-i,1 h c n-i,2
. . . 

h c n-i,e -

Solving the network-flow problem

We seek necessary and sufficient conditions for the existence of nonnegative integral solutions to the linear system (19)-( 27) obtained by the morsification algorithm in section 3, for

n = 2i + 1, i ≥ 1.
Given the network-flow model obtained in the last section, finding a nonnegative integral solution to the linear system (19)-( 27) is equivalent to finding an integral feasible flow for output.tex November 6, 2023

-(e --1) h 1 -β + 11 -β + 1e + -β + 12 h n-2 • • • h n-i - β - i1 2 - β - ie - 2 - β - i2 2 -(e + -1) h n-1 -β - 11 -β - 1e - -β - 12 h 2 • • • h i - β + i1 2 - β + ie + 2 - β + i2 2 h c 1 h d 11 h d 12 h d 1e + . . . h d n-2,1 h d n-2,2 h d n-2,e + h c n-i,1 h c n-i,2
. . .

h c n-i,e - h d n-1 h c n-1,1 h c n-1,2 h c n-1,e - h c 21 h c 22 h c 2e - . . . h d i1 h d i2 . . . h c ie - Figure 24: Network for n = 2i + 1, i even.
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-(e --1) e --1 h 1 -(e --1) -β + 11 -β + 1e + -β + 12 h n-2 • • • h i - β + i1 2 - β + ie + 2 - β + i2 2 h c 1 h d 11 h d 12 h d 1e + . . . h d n-2,1 h d n-2,2 h d n-2,e + h d i1 h d i2 . . . h d ie + Figure 25: Splitting along node h 1 , for n = 2i + 1, i odd.
variables. By adding the redundant equation

e + k=1 h d n-2,k = -[h 1 -(e --1) - e + k=1 β + 1k ] = h n-2,1 ,
to the first system, it be viewed as modelling a network-flow problem. Figure 26 depicts the graphical effect of splitting the rightmost network of Figure 25

along h n-2 . The left "half" of node h n-2 is associated with the constant h n-2,1 = -(h 1 - (e --1) -e + k=1 β + 1k
), which is the negative of the sum of the constants associated with the other nodes in this subnetwork. The right half of the node h n-2 is associated with the constant h n-2 -h n-2,1 , so it is the sum of the constant h n-2 and the constant associated with the nodes to the left of h n-2,1 in the left subnetwork. Again we discard the left independent subnetwork and consider from now on the subnetwork remaining on the right.

Suppose we continue in this vein, splitting along the next "original" h node, creating two independent subnetworks and systems. Each time we split, the subnetwork remaining on the right bears the same structure of the one previous to the split. Thus, this operation may be applied to h n-2 , h 3 , h n-4 , . . ., with the last split occurring at node h i (resp., h n-i ), if i is odd (resp., i is even). Figure 27 depicts this last split for the i-odd case.

Using induction we may obtain the expressions in Table 1 for the constant associated with node h ℓ2 generated by the splitting operations. Recall that ℓ assumes only odd values, since we are decomposing the network with the nodes in (28).

The same procedure may be applied to the network corresponding to the scanning of the nodes in the sequence

-(e + -1), h n-1 , {-β - 1k } -, h 2 , {-β + 2k } + , h n-3 , {-β - 3k } -, h 4 , . . .
Again we may split along even numbered nodes h n-1 , h 2 , h n-3 , h 4 , . . ., in this order, obtaining similar subnetworks and systems. Table 2 lists the expressions for the right half h ℓ2 of the split node h ℓ .
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h 1 -(e --1) -β + 11 -β + 1e + -β + 12 h n-2,1 h n-2,2 -β - 21 -β - 2e - -β - 22 h 3 • • • h i - β + i1 2 - β + ie + 2 - β + i2 2 h d 11 h d 12 h d 1e + . . . h d n-2,1 h d n-2,2 h d n-2,e + h c n-2,1 h c n-2,2 h c n-2,e - . . . h c 31 h c 32 h c 3e - h d i1 h d i2 . . . h d ie + h n-2,1 = -h 1 -(e --1) - e + k=1 β + 1k h n-2,2 = h n-2 -h n-2,1 = -(e --1) + h 1 + h n-2 - e + k=1 β + 1k
Figure 26: Splitting remaining network along node h n-2 , for n = 2i + 1, i odd. -(e --1) +

h n-i+1,2 -β - i-1,1 -β - i-1,e - -β - i-1,2 h i1 h i2 - β + i1 2 - β + ie + 2 - β + i2 2 h c n-i+1,1 h c n-i+1,2 h c n-i+1,e - . . . h c i1 h c i2 h c ie - h d i1 h d i2 . . . h d ie + h i1 = -h n-i+1,2 - e - k=1 β - i-1,k h i2 = h i -h i1 = -(e --1) + (i-1)/2 j=1 (h 2j-1 + h n-2j ) + h i - (i-1)/2 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k
(ℓ-1)/2 j=1 (h 2j-1 + h n-2j ) + h ℓ - (ℓ-1)/2 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k
If ℓ > i:

-(e --1) +

(n-ℓ)/2 j=1 (h 2j-1 + h n-2j ) - (n-ℓ)/2-1 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k - e + k=1 β + n-ℓ-1,k
Table 1: Expressions for h ℓ2 , ℓ odd.

If ℓ ≤ i:

-(e + -1) + ℓ/2 j=1 (h 2j + h n-2j+1 ) - ℓ/2-1 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k - e - k=1 β - ℓ-1,k
If ℓ > i:

-

(e + -1) + (n-ℓ-1)/2 j=1 (h 2j + h n-2j+1 ) + h ℓ - (n-ℓ-1)/2 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k
Table 2: Expressions for h ℓ2 , ℓ even.

Solution of each component

The decomposition described in the last section creates three types of network flow problem, depicted in Figure 28. Each is simple to solve and to establish necessary and sufficient conditions for nonnegative integral solutions. We will use the fact that all constants associated with nodes are integral, because that will be the case for the networks obtained in the previous section, since all the original data e -, e + , h, β -, β + are integral and nonnegative and the new constants are partial sums of the original data. Type (1) network has the unique solution w = a. As long as a is integral and nonnegative, w will also be. In our case, this is always true, since either a = e --1 or a = e + -1.

Type ( 2) is a transportation problem, see [START_REF] Ahuja | Network Flows: Theory, Applications and Algorithms[END_REF], i.e., the graph is bipartite, the node set may be partitioned into two sets, one containing the supply nodes (associated with nonpositive constants, where flow is produced) and the other one containing the demand nodes (associated with nonnegative constants, where flow is consumed), and there is an arc from each supply node to each demand node, and no other. Here the supply nodes are the middle nodes, and the remaining two nodes are the demand nodes. By construction, the vector c will always be nonnegative (either c = β - j or c = β + j , for some j). The necessary and sufficient conditions for the existence of solutions in this instance are that the demands are nonnegative: If these conditions are satisfied, an obvious nonnegative solution is x j = b • c j / j c j , y j = (-b + j c j )c j / j c j , for j = 1, . . . , k. And if there is a nonnegative solution and the constants associated with the nodes are integral, then there are nonnegative integral solutions. In fact, there are know rules for producing such solutions, such as the Northwest corner rule, see [START_REF] Dantzig | Linear Programming 1[END_REF].

b ≥ 0, (29) 
This graph has (k -1)k/2 cycles 7 . They are all of length 4, and contain two of the supply nodes and the two demand nodes, for example, we have the cycle b, x 1 , -c 1 , y 1 , -b + j c j , y 2 , -c 2 , x 2 , b. They are useful to transition between solutions. To pass flow α along a cycle is to assign flow α to forward arcs and flow -α to backward arcs, with respect to the orientation of the cycle, and zero flow to the remaining arcs. For our example, it would mean to assign x 1 = -α, y 1 = α, y 2 = -α and x 2 = α, and zero elsewhere. The circulation thus obtained, by passing flow through a cycle, is called elementary, since its support is minimal. Since flow in equals flow out for circulations, adding a circulation to a solution will not violate the flow conservation equations. To transition between nonnegative solutions one need only take care to limit the circulation so as not to let any flow become negative. In fact, the difference between any two solutions may be expressed as a sum of elementary circulations.

Incidentally, if k = 1, the type (2) graph reduces to the path b, x 1 , c 1 , y 1 , -b + c 1 , and the corresponding network-flow problem has the unique solution x 1 = b, y 1 = -b + c 1 . This solution will be nonnegative if (29)-(30) are satisfied. This leads to the following lemma.

Lemma 4

If e + = e -= 1, then, if feasible, the h cd cw -system admits only one solution.

Proof. If e + = e -= 1, then the number of middle nodes in the type (2) components, obtained in the decomposition of the original network, is 1. But these are the only components that might admit multiple solutions. Instead, these components of type (2), reduce to a two arc path and admit only one solution. The unique solution of the overall system is obtained by combining the solutions of the several components. □

7 Path whose endpoints coincide.
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For general k, an easy upper bound for the number of solutions is b+k-1 k-1 , which is the number of nonnegative integral solutions to x 1 + • • • + x k = b. Notice that any solution to the type (2) network satisfies this equation, but some solutions to this equation might not satisfy x j ≤ c j , a necessary condition for the solutions to the type (2) problem.

The type (3) network correspond to a very simple linear system. The equations associated whit nodes -e 1 , . . . , -e m imply z j = e j , for j = 1, . . . , m. The last equation, associated with node d, reads j z j = d. Thus this system is either determinate, if d = j e j (in which case the solution will be nonnegative, as long as e ≥ 0), or impossible. Since in our case we always have e ≥ 0 and integral, the necessary and sufficient condition for existence of (the unique) nonnegative integral solution is

d = m j=1 e j . ( 31 
)
Since networks of type ( 1) and ( 3) admit only one solution, an upper bound to the number of solutions to the whole problem is

i j=1 h 2j-1,2 + e + -1 e + -1 • h 2j-1,2 + e --1 e --1 h i2 + e + -1 e + -1 • h i+1,2 + e --1 e --1 , if i is odd,                              i j=1 h 2j-1,2 + e + -1 e + -1 • h 2j-1,2 + e --1 e --1 h i2 + e --1 e --1 • h i+1,2 + e + -1 e + -1
, if i is even.

Example

In this section, we go back to the dimension 5 example presented in Section 2.1. It concerns the possible componentwise morsifications of the Lyapunov semigraph in Figure 31. The system of equations produced by the application of the componentwise morsification algorithm to this semigraph can be modeled as the network-flow problem depicted in Figure 12. Two nonnegative integral flows for this network are shown in the network in Figure 15, corresponding to the morsifications shown in Figures 13 and14. We show how to use the circulations in the network to obtain all possible nonnegative integral flows. Since the network in Figure 12 is constituted by two independent sub-networks, each may be explored independently. We start with the top sub-network in Figure 12. This network contains three cycles, which give rise to three circulations, circ 1 , circ 2 and circ 3 , as depicted in Figure 29.
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-(e + -1) h 4 -β - 11 -β - 13 -β - 12 h 2 - β + 21 2 - β + 22 2
support of circulation circ 1 :

(h c 21 , h c 22 , h c 41 , h c 42 ) = (-1, 1, 1, -1) -(e + -1) h 4 -β - 11 -β - 13 -β - 12 h 2 - β + 21 2 - β + 22 2
support of circulation circ 2 :

(h c 21 , h c 23 , h c 41 , h c 43 ) = (-1, 1, 1, -1) 
-(e + -1)

h 4 -β - 11 -β - 13 -β - 12 h 2 - β + 21 2 - β + 22 2
support of circulation circ 3 :

(h c 22 , h c 23 , h c 42 , h c 43 ) = (-1, 1, 1, -1)
Figure 29: Cycles and corresponding circulations in network in Figure 12 starting with node -(e + -1).
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The possible triples (h c 41 , h c 42 , h c 43 ) adding to 3 are:

  0 0 3   ,   0 3 0   ,   3 0 0   ,   0 1 2   ,   0 2 1   ,   1 0 2   ,   2 0 1   ,   1 2 0   ,   2 1 0   ,   1 1 1   .
Triples in red are not allowed, since they violate either h c 42 ≤ β - 12 = 2 or h c 43 ≤ β - 13 = 1. 

h d 22 = 1 h d 4 = 1 Transitions flow 1 0 2 1 3 0 0 flow 2 1 1 1 2 1 0 flow 1 -circ 1 flow 3 2 0 1 1 2 0 flow 2 -circ 1 = flow 1 -2 circ 1 flow 4 1 2 0 2 0 1 flow 3 -circ 3 = flow 1 -circ 2 flow 5 2 1 0 1 1 1 flow 4 -circ 1 flow 6 3 0 0 0 2 1 flow 4 -2 circ 1
Table 3: Nonnegative integral solutions to the network-flow problem at the top of Figure 12.

The second network in Figure 12, starting with node -(e --1), has the unique cycle containing arcs h d 11 , h d 12 , h d 32 , h d 31 , which are thus the support of the only circulation, named circ. This is depicted in Figure 30. Its solutions are listed in Table 4. Notice that, in this case, the upper bound on the number of possible solutions is reached.

-(e --1) 

h 1 -β + 11 -β + 12 h 3 - β - 21 2 - β - 23 2 - β - 22 2 support of circulation circ: (h d 11 , h d 12 , h d 31 , h d 32 ) = (1, -1, -1, 1)
= 0 h c 32 = 1 h c 33 = 1 h c 1 = 2 Transitions flow 1 2 0 0 2 flow 2 1 1 1 1 flow 1 -circ flow 3 0 2 2 0 flow 2 -circ 1 = flow 1 -2 circ

Componentwise Poincaré-Hopf inequalities

In this section, the Theorem 2 is proved, by establishing the correspondence between the linear systems ( 19)-( 27) obtained from the morsification algorithms in Section 3 and the componentwise Poincaré-Hopf inequalities (36)-( 43) so called in analogy with the inequalities obtained in [START_REF] Bertolim | Lyapunov graph continuation[END_REF] to furnish similar conditions for the global morsification algorithm. 8This is achieved in two steps. First we put together in (32)-( 35) the necessary and sufficient conditions, for the existence of nonnegative flows, obtained by the several individual components into which the networks were split. Then we replace the expressions for h ℓ2 in the inequalities (32)-( 35) with the appropriate formulas in Tables 1 and2 to obtain the componentwise Poincaré-Hopf inequalities.

Each of the two networks in Figure 23 or Figure 24 gives rise to one component of type (1), i -1 components of type (2) and one component of type (3). Since we have two inequalities for each type (2) component and one equality for each type (3) components, we will have in total 4(i -1) inequalities and two equalities. The necessary and sufficient conditions for the existence of nonnegative integral solutions are

0 ≤ h ℓ2 ≤ e + k=1 β + ℓk , for ℓ = 1, . . . , i -1 (32) 0 ≤ h ℓ2 ≤ e - k=1 β - n-ℓ,k , for ℓ = i + 2, . . . , n -1, (33) 
                                     e + k=1 β + ik 2 = h i2 , ( 34 
) e - k=1 β - ik 2 = h i+1,2 . ( 35 
)
Inserting the appropriate expressions for h ℓ2 from Tables 1 and2 

≤ -(e --1) + (ℓ-1)/2 j=1 (h 2j-1 + h n-2j ) + h ℓ - (ℓ-1)/2 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k ≤ e + k=1 β + ℓk , for 1 ≤ ℓ < i (36) 0 ≤ -(e --1) + (n-ℓ)/2 j=1 (h 2j-1 + h n-2j ) - (n-ℓ)/2-1 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k - e + k=1 β + n-ℓ-1,k ≤ e - k=1 β - n-ℓ,k , for i + 1 < ℓ ≤ n -1 (37) If ℓ is even 0 ≤ -(e + -1) + ℓ/2 j=1 (h 2j + h n-2j+1 ) - ℓ/2-1 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k - e - k=1 β - ℓ-1,k ≤ e + k=1 β + ℓk , for 1 ≤ ℓ < i (38) 0 ≤ -(e + -1) + (n-ℓ-1)/2 j=1 (h 2j + h n-2j+1 ) + h ℓ - (n-ℓ-1)/2 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k ≤ e - k=1 β - n-ℓ,k , for i + 1 < ℓ ≤ n -1 (39) 
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If i is odd

e + k=1 β + ik 2 = -(e --1) + (i-1)/2 j=1 (h 2j-1 + h n-2j ) + h i - (i-1)/2 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k , ( 40 
) e - k=1 β - ik 2 = -(e + -1) + (i-1)/2 j=1 (h 2j + h n-2j+1 ) + h i+1 - (i-1)/2 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k , ( 41 
) If i is even e + k=1 β + ik 2 = -(e + -1) + i/2 j=1 (h 2j + h n-2j+1 ) - i/2-1 j=1 e - k=1 β - 2j-1,k + e + k=1 β + 2j,k - e - k=1 β - i-1,k , ( 42 
) e - k=1 β - ik 2 = -(e --1) + i/2 j=1 (h 2j-1 + h n-2j ) - i/2-1 j=1 e + k=1 β + 2j-1,k + e - k=1 β - 2j,k - e + k=1 β + i,k (43) 
When n = 3, the componentwise Poincaré-Hopf inequalities reduce to the following equations:

h 1 -(e --1) - e + k=1 β + 1k 2 = 0, (44) 
h 2 -(e + -1) - e - k=1 β - 1k 2 = 0, (45) 
which are in fact satisfied by the graphs in Figures 7 and8.
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Proof of Theorem 1

In [START_REF] Bertolim | Lyapunov graph continuation[END_REF] it was established that a Lyapunov graph carrying dynamical-topological data may be morsified if and only if the h cd -system (46)-(50), included below for convenience and also obtained by a morsification algorithm, has a nonnegative integral solution. This, in turn, is possible if and only if this dynamical-topological data satisfies the Poincaré-Hopf inequalities (1)-( 4). Hence, an equivalence between solutions of these linear systems and the inequalities was established that proved very useful, serving at times as a bridge to forge new equivalences between, for instance, the Poincaré-Hopf inequalities and the Morse inequalities. See [START_REF] Bertolim | Poincaré-Hopf inequalities[END_REF].

h c 1 = e --1, (46) 
h d n-1 = e + -1, (47) 
h c j + h d j = h j , for j = 1, . . . , n -1, (48) 
                       h d j -h c j+1 -h c n-j + h d n-j-1 = B + j -B - j , for j = 1, . . . , i -1, (49) 
h d i -h c i+1 = B + i -B - i 2 . ( 50 
)
Now this bridge will be used to show that the componentwise Poincaré-Hopf inequalities imply the classical Poincaré-Hopf inequalities. Namely, we show that a nonnegative integral solution hcd cw to the h cd cw -system ( 19)-( 27) can be mapped to a nonnegative integral solution ĥcd to the h cd -system. Let Clearly, if hcd cw is nonnegative and integral, so is hcd . The fact that hcd cw satisfies (19),(20), (25), ( 26) and ( 27), implies that ĥcd satisfies (46), (47) and (48). Now we verify that (49) is satisfied by ĥcd . For j ∈ {1, . . . , i -1}, we have: 

+ i -B - i 2 , ( 52 
)
where the last equality follows from the fact that hcd cw satisfies ( 22) and (24). Therefore, ĥcd satisfies (50).

Thus ĥcd is a nonnegative integral solution of the h cd -system, which concludes the proof. □ This demonstration inspires yet another observation regarding the possible relationships between solutions to the h cd -system and the h cd cw -system. If we merge the nodes in the middle column of each lozenge-shaped subnetwork into one single node whose constant is the sum of the constants of the nodes that were merged, we are left with multiple arcs between this central node and the left and right node of the lozenge-shaped subnetwork. For instance, if the middle nodes were {-β + jk } + , the multiple arcs h d j1 , . . . , h je + on the left go from the new nodek β + jk to h j and the multiple arcs h d n-j-1,1 , . . . , h n-j-1,e + go from the new nodek β + jk to h n-j-1 . Suppose now that we merge the arcs in each set into a single arcs. That would mean, for the instance exemplified, merging h d j1 , . . . , h je + into the new arc h d j and merging h d n-j-1,1 , . . . , h n-j-1,e + into the new arc h d n-j-1 . Algebraically these operations correspond to summing the equations associated with the middle nodes and the replacing the sum of the variables corresponding to the multiple arcs with a new variable. The network thus obtained by applying these operations to the network-flow model of section 4 consists of two paths, one going from -(e --1) to k β + ik (resp.,k β - ik ), if i is odd (resp., even) and the other going to -(e + -1) to k β - ik (resp.,k β + ik ), if i is odd (resp., even). But a network-flow problem on a path has a unique solution.

This means that all solutions h cd cw to the nework-flow model of section 4 lead to the same ĥcd solution to the h cd -system.

Generalization for any other minimal ground level

In Section 3, a componentwise morsification algorithm was developed. This constructive algorithm, in order to avoid repetitions and facilitate the comprehension, was developed to attain spherical level sets, i.e., a minimal level composed of β jk = 0 for all j = 1, . . . , n -2 and for all component k.

One can easily generalize the specific level we wish to attain, by considering any positive integer numbers a jk , β ± jk ≥ a jk + 1, and aiming for minimal level composed of β jk = a jk for all j = 1, . . . , n -2 and for all component k.

Let us start by considering an example in dimension 5. Suppose that we have the semigraph in Figure 31 and that the minimum ground level to be attainable is: The componentwise Poincaré-Hopf inequalities must be adapted to reflect this new ground level. The trick is to replace β ± jk by β± jk = β ± jk -a jk in the inequalities ( 10) -(15) as follows: In order to achieve this more general version, the steps of the algorithm developed in Section 3 are adapted as follows: the zero levels are replaced by a jk and the equations (21), ( 22), ( 23) and (24) of the h cd cw -system become output.tex November 6, 2023 

h 1 ≥ e --1 (53) 

Figure 1 :

 1 Figure 1: Morsification of a degenerate singularity of Φ with numerical Conley index h 1 = 3.

  h 21 = 1 1-c h 22 = 1 spherical ground level set -→ 1-d h 11 = 1 β 11 = 2 β 12 = 2 β 11 = 0 β 12 = 2 β 11 = 0 β 12 = 0 β 11 = 2 β 12 = 0 β 1 = 2 β 1 = 2

Figure 2 :

 2 Figure 2: Lyapunov graph componentwise morsification and the attainability of a spherical ground level set with a minimum number of singularities.

Figure 3 :

 3 Figure 3: A Lyapunov graph componentwise morsification where a spherical ground level set is unattainable.

Figure 5 :

 5 Figure 5: Two possible algebraic effects in odd dimension.

Figure 6 :

 6 Figure 6: Lyapunov graph morsification in dimension 5.

Figure 7 :

 7 Figure 7: An abstract Lyapunov graph satisfying the classical Poincaré-Hopf inequalities on the left and its morsification on the right.

Figure 8 :

 8 Figure 8: An abstract Lyapunov graph satisfying the classical Poincaré-Hopf inequalities on the left and its morsification on the right.

Figure 9 :

 9 Figure 9: An abstract Lyapunov graph satisfying the componentwise Poincaré-Hopf inequalities and its componentwise morsification.

Figure 10 :

 10 Figure 10: An abstract Lyapunov graph satisfying the componentwise Poincaré-Hopf inequalities and its componentwise morsification.

Theorem 2 A

 2 Lyapunov semigraph L v with the homological data n, h ℓ , e + , e -, β + jk , β - jk , k = 1, . . . , e ± , j = 1, . . . , ⌊(n -1)/2⌋, ℓ = 1, . . . , n -1 can be componentwise morsified if and only if the componentwise Poincaré-Hopf inequalities are satisfied by such data.

Figure 11 :

 11 Figure 11: A Lyapunov semigraph to be morsified.

Figure 12 :

 12 Figure 12: Network modeling the system of equations obtained by applying the morsification algorithm to the Lyapunov semigraph in Figure 11.

Figure 13 :

 13 Figure 13: A Lyapunov graph componentwise morsification of the semigraph in Figure 11.

Figure 14 :Figure 15 :

 1415 Figure 14: Another Lyapunov graph componentwise morsification of the semigraph in Figure 11.

Figure 16 :

 16 Figure 16: Linear abstract Lyapunov graph componentwise morsification.

Figure 17

 17 Figure 17: A Lyapunov semigraph to be morsified.

Figure 18 :Step 1 -

 181 Figure 18: Outgoing edges morsified.Similarly, the semigraph G + is formed with h d n-1 = e + -1 vertices labelled with (n -1)-singularities. This graph will have e + incoming edges and one outgoing edge. These singularities do not alter β jk , 0 < j < n -1, k = 1, . . . , e + . The outgoing edge of G + will be labelled with e + j=1 β + 0j = e + j=1 β + (n-1)j = 1 and (β + 1k , . . . , β + (n-2)k ) with k = {1, . . . , e + }.

  will produce an outgoing edge labelled with β + (n-ℓ-1)1 -h d n-ℓ and will form G + ∪ ℓ i=1 L + i and the labels on its outgoing edge is 0. By duality the label β + ℓ1 has been modified to 0. Observe that we can have the same result if we insert β ℓ1 vertices h ℓ1 = 1 of type ℓ-d to G + ∪ ℓ i=1

Figure 20 :

 20 Figure 20: Network for n = 3.

Figure 21 :

 21 Figure 21: Network for n = 5.

Figure 22 :

 22 Figure 22: Network for n = 7.

Figure 23 :

 23 Figure 23: Network for n = 2i + 1, i odd.

Figure 27 :

 27 Figure 27: Last split for i odd.

Figure 28 :

 28 Figure 28: Three types of components generated with splittings.

h 42 = h 4 -

 4 (e + -1) = 4 -(2 -1) = 3, an upper bound to the number of solutions to the network at the top of Figure 12 is simply the number of nonnegative integral solutions to the equation h 42 = h c 41 + h c 42 + h c 43 , given by h 42 + e --1 e -

Figure 30 :

 30 Figure 30: Cycle and corresponding circulation in network in Figure 12 starting with node -(e --1).

for j = 2 ,

 2 . . . , n -1,                            ĥd j = e + k=1 hd jk , for j = 1, . . . , n -2, ĥd n-1 = hd n-1 .

  the last equality follows from the fact that hcd cw satisfies (21) and (23). Thus ĥcd satisfies (49).

[• h 1 = 2 , h 2 = 3 , h 3 = 3 , h 4 Figure 31 :

 122333431 Figure 31: A Lyapunov semigraph to be morsified for which the minimum ground level to be attained is: [(a 11 , a 21 ), (a 12 , a 22 ), (a 13 , a 23 )] = [(2, 0), (1, 0), (1, 0)].

≥ h 1 -≥ h 4 -+h 4 -

 144 (e --1) (e + -1) (e + -1). (58) It is easy to see that the data of the example of Figure31satisfies the inequalities (53)-(58).

  Figure 32 depicts a possible componentwise morsification for which the minimum ground level attained is the desired [(a 11 , a 21 ), (a 12 , a 22 ), (a 13 , a 23 )] = [(2, 0), (1, 0), (1, 0)].

Figure 32 :

 32 Figure 32: A Lyapunov graph componentwise morsification of Figure 31 for the required minimal level ground [(a 11 , a 21 ), (a 12 , a 22 ), (a 13 , a 23 )] = [(2, 0), (1, 0), (1, 0)].

  vertices h (n-1)1 = 1 of type (n -2)-c to G -. The insertion of these vertices will decrease β - (n-2)1 and by duality β - 11 . The label of the outgoing edge of G + is labelled with

	inserting β -(n-2)1 {1, (β + 11 , . . . , β + (n-2)1 ), (β + 12 , . . . , β + (n-2)2 ), . . . , (β + 1e + , . . . , β + (n-2)e + ), 1}.
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The label β - 11 on the incoming edge of G -∪ L - 1 will be 0. By duality the label β - (n-2)1 has been also modified to 0. Observe that we can get the same result by

  At this point there are two semigraphs G -∪

	Let n = 2i + 1. i-1	L -j with incoming edge
		j=1
	labelled with	
	{1, (0, 0, . . . , 0, β -i1 , 0, . . . , 0), (β -12 , . . . , β -(n-2)2 ), . . . , (β -1e -, . . . , β -(n-2)e -), 1}
	i-1	
	and G + ∪	L + j with outgoing edge labelled with
	j=1	
	{1, (0, 0, . . . , 0, β + i1 , 0, . . . , 0), (β + 12 , . . . , β + (n-2)2 ), . . . , (β + 1e + , . . . , β + (n-2)e + ), 1}.
		.
		2
	output.tex	November 6, 2023

  Table 3 presents all possible solutions and the last column shows examples of how we can move among them by adding the appropriate combination of circulations. Since the values of variables h d 4 , h d 21 and h d 22 don't change, they are "factored" in the table, to make it more readable.

	Solution h c 21 h c 22 h c 23 h c 41 h c 42 h c 43	h d 21 = 0

  Therefore the network for this data, which is constituted by both networks, of Figures29 and 30, has in total 6 • 3 = 18 solutions.

	Solution h d 11 h d 12 h d 31 h d 32	h c 31
	output.tex	November 6, 2023

Table 4 :

 4 Nonnegative integral solutions to the network-flow problem at the bottom of Figure 12.

In[START_REF] Bertolim | Lyapunov graph continuation[END_REF], this algorithm was referred to as the explosion algorithm.output.texNovember 6, 2023

Since we will be dealing exclusively with directed graphs, this adjective will be dropped from now on.output.tex November

[START_REF] Conley | Isolated invariant sets and the Morse index[END_REF] 2023 

Note that in[START_REF] Bertolim | Lyapunov graph continuation[END_REF] this algorithm was referred as global continuation algorithm.output.texNovember 6, 2023
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the network-flow model corresponding to (19 ′ )-(24 ′ ), ( 25)-( 27). Since all node constants are integral, this reduces to finding a feasible flow, see [START_REF] Ahuja | Network Flows: Theory, Applications and Algorithms[END_REF]. Furthermore, since each network is composed of two disjoint subnetworks of similar structure, it suffices to show how to construct a feasible flow for one of them.

Consider the network-flow model obtained by visiting the nodes

This network is depicted at the bottom of Figure 23 (resp., Figure 24) if i is odd (resp., i is even). We will show that this flow problem may be decomposed into i + 1 independent network-flow problems, thereby simplifying the acquiring of necessary and sufficient conditions for feasiblity.

Decomposition of network-flow problem

The decomposition is accomplished by splitting the network along the h nodes. Notice that the deletion of any h node, and the arcs incident thereto, disconnects the newtork, in the sense that there are no paths 6 between the nodes to the left and the nodes to the right of the deleted node. For instance, the removal of h 1 isolates node -(e --1) from nodes

The algebraic operation that effects the split along this node is a simple elementary operation on the equations associated with the sequence (28), which describes the network-flow model under consideration. Add equation (19 ′ ) to equation (26), henceforth denoted by ( 26). In the new (and equivalent) linear system, variable h c 1 shows up exclusively in equation (19 ′ ). Thus thus linear system may be split into two independent linear systems. Furthermore, the linear system constituted by equation (19 ′ ) my be transformed into a network-flow model by adding the redundant equation (19). Figure 25 translates this algebraic split into its network equivalent, for the case where i is odd. Notice that the parity of i doesn't affect the region suffering the split, it is reflected only on the rightmost part of the network.

The left network obtained with the splitting has the unique solution h c 1 = e --1. This solution is obviously integral and nonnegative. From now on, discard this network and the corresponding system. Continue with the remaining network, on the right of Figure 25. Consider the leftmost lozenge-shaped subnetwork of this remaining network. Add the equations corresponding to all nodes in this subnetwork to the left of node h n-2 , to the equation associated with node h n-2 . Since all arcs in this subnetwork have both endpoints in these nodes, the columns corresponding to h d 11 , . . . , h d 1e+ , h d n-2,1 , . . . , h d n-2,e + will contain zeros in the row associated with the updated equation for node h n-2 . That means that, after the operation, the resulting system will consist of two independent linear systems. The first one containing rows associated with ( 26) and (23 ′ ), for j = 1 and k = 1, . . . , e + , and variables h d 1k and h d n-2,k , for k = 1, . . . , e + . The second system contains the remaining equations and 6 A path from node j to node k in a graph is as alternating sequence of nodes and arcs, such that the first and last nodes are j and k, respectively, and each arc in the sequence is incident to its previous and following nodes in the sequence, and there is no repetition of nodes. Thus a path from node -(e --1) to node h n-2 in Figure 23 is -(e 
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The model in Section 4 and the various proofs concerning its relationship with the componentwise morsification algorithm remain valid if we replace β ± jk with β± jk , where

Concerning the proof in Section 6, one must guarantee that the aggregate solution ĥcd obtained from the componentwise solution hcd cw still satisfies equations (51) and (52). But this is easily seen, since the various a jk will cancel out in the differences β+ jk -βjk , for the various j, k.