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The systematic study of morphings for non parametric shapes suffers from ambiguities in defining good general
morphings, such as the trade-off between plausibility and smoothness, above all under large topology changes.
In the recent years, only neural networks have offered a generic solution, using their latent space as a shape
prior. But these models are optimized for single shape reconstruction, giving little control on the generated
morphings. In this paper, we show how qualitatively similar results can be achieved when replacing neural
networks with a set of carefully crafted components: a style-content separation method via the fitting of a
Deformable Voxel Grid, a similarity metric adapted to the extracted content, and a formulation of morphings
as minimal paths in a graph. While forgoing the automatic learning of a generative model, we still achieve
similar morphing capabilities. We performed various evaluations, quantitative analysis on the robustness of our
proposed method and on the quality of the results, and demonstrate the usefulness of each component. Finally,
we provide guidance on how manual intervention can improve quality. This is indeed possible since, unlike

neural networks, each component in our method is interpretable.

1 Introduction

In the literature, the study of shape morphings typi-
cally follows one of two assumptions: (a) both shapes
have a shared connectivity, generally because they em-
body the same type of shape (e.g. human or animal
bodies), and the goal is to find a plausible movement
between two configurations; or (b) the two shapes are
considered in a vacuum, without external shape priors,
and the goal is to find a deformation from one to the
other, which minimizes a certain distortion criteria (e.g.
for pairs of arbitrary shapes).

Given the creative opportunities of morphing for
computer graphics, it is desirable to develop methods
with a wider applicability. In the recent years, genera-
tive neural networks such as auto encoders and GANs
have not only proven powerful to generate realistic
3D shapes, in various formats (voxels, pointclouds,
or meshes), but also offer a latent space amenable to
shape interpolations. By design, this learned represen-
tation provides a shape prior, constraining generated
shapes to be similar to the training set. However, they
are generally not built nor trained towards the end of
producing meaningful morphings. Rather, their mor-
phing capabilities appear as a mere byproduct of latent
space interpolation. Most works relying on them fo-
cus their efforts on the quality and expressivity of the

outputs, as they are generally mainly evaluated on the
reconstruction of known shapes.

These generative models benefit from their ability
to learn, without supervision, an invertible encoding
which brings similar shapes close together. We ex-
plore the possibility of achieving similar results with
traditional, explicit methods. Doing so, we simultane-
ously address the typical limitations of deep learning;
namely, the lack of interpretability, and the need for
expensive and powerful hardware capable of parallel
computing.

As a matter of fact, the present work stems from the
intuition that medium-sized datasets contain enough
shapes to express novel shapes as simple combina-
tions and deformations of the existing ones. As a
result, we seek to generate “good” morphings whose
intermediate states are existing shapes, up to a small
deformation. Moreover, we do not want to rely on any
class-specific parameterization.

To this end, we propose three interconnected com-
ponents:

1. a class-independent shape descriptor, relying on
a particular case of style and content separation,
which we named “cubifiction”;

2. a deformation metric compatible with this content
descriptor;



3. a graph-based framework for finding minimal-
energy shape morphings.

The first and second steps respectively provide
nodes and links to ultimately build a shape graph. It
can be seen as a discretized version of a latent space,
where the intermediate representation is not learned
but handcrafted in accordance with the strong symme-
tries found in certain shapes, such as chairs or tables.
As a matter of fact, our content descriptor derives from
a cubifiction of the shapes, which appears to consis-
tently locate the semantical parts of different shapes.

This is performed via the optimization of a De-
formable Voxel Grid (DVG), presented in Section [3]
Then, Section [ explains the construction of a graph
shape-space which encapsulates the similarities in
terms of shape content. We then present experimental
results and evaluations in Section[5] Finally, Section [6]
provides an extensive analysis of many design ele-
ments of our method, discussing the influence and
interactions of its different components.

2 Related Work

Deep learning and shape latent spaces

In this area, use cases typically include one of the fol-
lowing tasks: shape processing and data augmentation
(Park et al., 2017} [Fish et al., 2014; |Kalogerakis et al.
2012} |Haibin et al., 2015§ L1 et al., 2017), shape pre-
diction from 2D data (Shin et al., 2018} |Haibin et al.)
2015 (Wu et al., 2016; [Wang et al., 2018; [Fan et al.,
2016), shape completion (Allen et al., 2003 \Groueix
et al., 2018 [Park et al., 2019), and latent space explo-
ration (Tulsiani et al., 2017; Wu et al., 2016; L1 et al.)
2017; |Achlioptas et al., 2017; |Groscot et al., 2019;
Dubrovina et al., 2019)).

Over the past years, generative models, using ar-
chitectures inspired by Variational Auto Encoders
(Kingma and Welling, 2013)) and GANs (Goodfellow,
et al., 2014), have been used for shape morphing, via
linear interpolations in the latent space. Works can
represent shapes in various formats, such as point-
clouds (Q1 et al., 2016; |Q1 et al., 2017; |[Fan et al.)
20165 |Achlioptas et al., 2017} |Groscot et al., 2019),
voxels (Wu et al., 2016; [L1 et al., 2017; Dubrovina
et al., 2019), octrees (Tatarchenko et al., 2017)), or 4D
particle dynamics (Niemeyer et al., 2019).

Other works, focusing on the prediction of a 3D
shape from a given image, used more specific represen-
tations such as surface patches (Groueix et al., 2018))
or deformed ellipsoids (Wang et al., 2018), but they
do not appear to offer a direct way of producing shape
morphings. More recently, networks predicting im-

plicit functions (Park et al., 2019; [Hao et al., 2020)
appeared to allow smooth, arbitrary-topology meshes,
while being compatible with latent space interpola-
tions.

Deep learning approaches are based on the assump-
tion that learned descriptors, as opposed to handcrafted
ones, are better suited to capture the variability of natu-
ral signals. Moreover, generative models offer a latent
space amenable to the generation of new shapes. How-
ever, neural networks come with known limitations:
their lack of interpretability and their constraints to
converge to visually-pleasing results. As a matter of
fact, they typically require rich databases, powerful
GPUs, and suffer from long training times and difficult
parameters tuning. All this makes reproducing the re-
sults of deep learning based methods hard, even when
a portion of the code is public.

Our work takes quite an opposite view, exploring
the possibility of achieving similar results without any
neural network. We show in fact that we can obtain
the same capabilities offered by generative networks’
latent spaces, by carefully handcrafting and designing
every component. As a result, we already generate
satisfying results even with modest datasets (around
500 shapes), and because every component has a clear
meaning, one can easily improve the desired outcome
by manual intervention.

In a way, this work ultimately consists in investigat-
ing what remains once those applications are stripped
from neural networks, in order to better understand the
specificities they bring.

Morphing based on deformations

The problem of realistic shape morphing was tackled
by (Gao et al., 2013) for human and animal bodies,
interpreting a collection of shapes as a deformation
space. By establishing shape correspondences, they
obtain a shape distance allowing them to express mor-
phings as a minimal path among clusters of similar
body poses. We adopt a framework similar to theirs,
while focusing on shapes which have varied topolo-
gies and no natural parameterization, such as chairs
and sofas, such that a morphing cannot be interpreted
as a mere deformation. Our work can be seen as a
derivation of the same ideas, but adapted to different
modalities, typically addressed by deep learning meth-
ods.

As far as they are concerned, instead of relying
on geometric generative models, shape deformation
is another popular choice to generate realistic shapes
at a small cost, leveraging the similarity between ob-
jects belonging to the same class. To parameterize
these deformations, most approaches (Hanocka et al.]
2018} [Kurenkov et al., 2017) use the Free Form Defor-



mation (Sederberg and Parry, 1986), which arranges
control points on a regular volumetric grid, and then
uses cubic interpolation to distort the object as the
points move. The key differences with our model
are the following. First, they tackle different prob-
lems, such as partial shape alignment (Hanocka et al.]
2018) or shape reconstruction by deforming a tem-
plate (Kurenkov et al., 2017). Second, and most im-
portantly, their shape deformations are pair-specific,
trained to predict deformations between pairs ((A, B)
where A is deformed into B). On the contrary, our
model provides a consistent shape cubifiction, without
any learning, allowing to compare all shapes (in terms
of similarity measure); and we use this representation
to estimate minimal-energy morphings.

More recently, (Zheng et al., 2020) showed how
to reconstruct shapes by deforming an implicit tem-
plate, predicted by a neural network, giving shape
correspondences and deformations. In our method, we
can see the cubifiction step as a template deformation,
where the template is the unit cube, and where the
deformation is not learned but computed. We try to
achieve similar results, in surface quality and inter-
polation smoothness, but without the constraints and
limitations of deep learning as explained above.

Parametric and statistical shapes descriptors

Describing a shape class by a given set of param-
eters (also referred to as a dictionary) is a funda-
mental operation for applications such as classifica-
tion, model retrieval, or similarity search. Some ap-
proaches (Kalogerakis et al., 2012; [Haibin et al., 2015))
learn probabilistic distributions of shapes from the
properties of their semantical parts, or even from the
relations between parts simplified into simpler geo-
metric primitives (Tulsiani et al., 2017). Others learn
explicit parameterizations, typically possible on shapes
representing body poses (Allen et al., 2003)).

Our method relies on shape cubifiction, serving as a
shape descriptor which, while being class-independent,
is more adapted to shapes having strong reflection sym-
metries. The key difference with these other methods
is twofold. First, we show how traversing the space of
plausible shapes does not require statistical inference
but can be expressed as a minimal-path problem in
a graph, whose structure captures the geometric rela-
tions between existing shapes. Second, our descriptor
is invertible, which allows us to generate new shapes
(for the intermediate states of morphings), without any
neural network.

Figure 1: Optimization of DVGs at progressive resolutions r
(constant number of steps per ).

Deformable Voxel Grids

Our cubifiction relies on Deformable Voxel Grids
(Groscot, 2021} \Groscot and Cohen, 2022), a model in-
spired by the Topological Active Volume (TAV) from
(Barreira et al., 2003)), which is a volumetric exten-
sion of active contours (Kass et al., 1988 |(Cohen.
1991)). The unfamiliar reader can think of active con-
tours as parametric curves which minimize a given
energy, typically used for segmenting objects in im-
ages (Hemalatha et al., 2018). In the case of DVGs, the
energy ensures that after an initialization as a regular
voxel grid around the input shape, the grid is optimized
until it tightly and smoothly embraces the shape (see

Figure/I).

3 Invertible cubifiction via DVGs

The purpose of cubifiction is to offer a consistent rep-
resentation basis for several shapes belonging to the
same class (e.g. chair or car): the same semantical
parts of different objects tend to occupy the same re-
gion of the cube, allowing for easier shape compar-
isons (see how we define a distance between cubified
shapes in Section[d). In order to do so, we optimize a
DVG and interpret it as a smooth deformation of the
unit cube R3 adapted to a given shape S, and apply the
inverse deformation to S.

3.1 Forward DVG projection

For a given DVG cell ¢, a point g inside can be ex-
pressed by its local coordinates, a triplet in [0, 1]3:

€ 10,17 s.t. fo(d,7,W) = ¢ 40
where p1,p2, ..., pg are the positions of the eight
vertices of c. The interpolator f, can be linear or

i, v, W
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(a) Bilinear interpola- (b) DVG-voxel correspon-
tion dence

Figure 2: A natural way of setting grid coordinates on a
quadrilateral is via bilinear interpolation, which maps reg-
ular subdivisons of [0, 1]% onto the quad cell (left to right).
Determining the local coordinates of a given point within
the cell corresponds to inverting this interpolation (right to
left). The same is done for registering a point inside a DVG,
but in 3D, with the inversion of a trilinear interpolation.

smooth (we use, respectively, a trilinear szri and a Thin
Plate Spline p};” interpolators). Both can be defined

by matching the control points V? of a regular cube to
V, those of a given DVG.

Then, an affine transformation maps the cell to its
correct location within the whole DVG grid system

(see Figure [2b).
3.2 Backward DVG projection

We suppose the signed distance field (SDF) of shape
S is given. Each cell of V is subdivided into smaller
subcells, and the value of the SDF is queried at the
locations of each subcell centroid, which naturally
have (u,v,w) coordinates, coming from the index-
ing of V: vertex index (i, j,k) has local coordinates
(u,v,w) = (17, -, %), The cubified SDF can be
used in two ways.

Shape cubifiction and reconstruction: Using
marching cubes (Lorensen and Cline, 1987)), we obtain
C, the mesh of the cubified shape, where the precision
of the geometry is limited by the grid resolution of the
DVG and the number of cell subdivisions. The original
shape can be recovered by projecting C into V using
the spline projector p};S. This operation is important
because it gives the baseline shape representation ca-
pacity for the morphings we generate: as a matter of
fact, our morphings are done in V-space and C-space
separately, and use the p,‘;s projector to effectively cre-
ate the intermediate shapes. The intuition is that the
DVG separates style and configuration, respectively
into C and V. This way, we find morphings that min-
imize the amount of displaced mass to transfer style
(C), while the deformation abilities of the grid allow
to interpolate the configurations V.

Figure [] shows examples of such cubifictions and
reconstructions using both py . and py,.

Content descriptor: We can extract the volume indi-
cator function 1g by thresholding the SDF. Its average
value is binned within each DVG cell, in order to ob-
tain an 7> voxel image which serves as a shape content
descriptor. Each cell value, between O and 1, repre-
sents the proportion of the cell which intersects the
shape. This descriptor allows to regroup models by
similarity in order to build a shape graph, as explained
in the following Section.

4 Graph-based shape space

After all shapes of a dataset are consistently cubified,
we propose to discretize the global shape space in the
form of a weighted graph, whose edges derive from
a similarity measure between cubified shapes. This
graph formalizes the notion of shape morphing, as
a morphing from shape A to B will correspond to a
minimal path from node Aj to Ap. This choice is
motivated by the fact that for a large enough shape
dataset, most intermediate steps of a morphing are
close to existing shapes.

This is why we explore the possibility of discrete
morphings, restricted to known shapes, effectively
bypassing the necessity to learn how to sample new
shapes; while imposing them a minimal energy crite-
ria.

We first present a general framework for shape
morphings as minimal paths in a shape graph, for any
arbitrary shape embedding. Then, we show how it can
be used with cubified shapes and how our invertible
cubifiction actually allows to easily extrapolate the
discrete morphings to continuous ones.

4.1 Morphings as minimal paths

In this part, we consider the problem of morphings
with shape priors, that is to say, morphings such that
intermediate states are plausible. We operate under
the minimal assumption that the shape prior is given
by a finite set of exemplars, S = {S1,---, Sy}, where
the shapes are given in an arbitrary embedding. A
morphing corresponds to a sequence of shapes from
S, but we want a metric to evaluate the quality of a
morphing. In order to do so, we impose a cost (or an
energy) to a morphing:

k—1
EM=(S1,--,8)) = Y E(Si,Siv1) ()
i=1

Where E(S;,S;) is the energy of the transition S; —
S;. Such energies can be evaluated as paths length in a
weighted graph G defined by:



* nodes {Al,- -, Ny}, corresponding to the shapes
in S;

* positive weighted edges {w; ;} where w;; can be
interpreted as a similarity between shapes S; and S ;.
By convention, an absent edge (i, j) is equivalent
to wjj = oo.

We call a morphing A — B minimal if it is achieved
by a shortest path in G from Aj to Ap. In order to
consider symmetric morphings (i.e. equal to the time-
reversed morphing), we assume G in an undirected
graph, i.e, Vi, j,w; j = wj;.

4.2 Graph of cubified shapes

We can apply the previous formalism to the space of
cubified shapes. We propose a metric between shapes
cubified via a DVG (according to the method described
in Section 3)), which interprets as an approximate trans-
port cost.

We first compute the volumetric DVG descriptor
(see @), where each cell of the DVG is attributed a
value between 0 and 1, corresponding to the proportion
of the cell which is occupied by the shape. This pro-
vides a voxel image of a cubified shape. With a DVG
resolution » = 8, this leads to a representation space
with 8 = 512 dimensions, enough for the curse of
dimensionality to prevent Euclidian distances from be-
ing meaningful. This naive approach does not leverage
the proximity of the cells, which is why we propose a
method based on the morphological dilation operator.

Atypical models detection and removal

A preliminary step is to exclude models for which the
aforementioned volumetric descriptor is inadequate,
that is to say, when the density of presence inside the
cells is not homogeneous. To detect such models, we
simply compute and sum all the inner-cell standard
deviations of the discrete 1 obtained in Section[3.2]
Figure 3| shows the most adequate and inadequate mod-
els for the chair dataset: unsurprisingly, sofas and
armchairs, which admit blocky cubifictions, are the
most adequate models; while chairs with many intri-
cate details are the least. Because our descriptor, and
the subsequent similarity metric, are blind to these er-
rors, removing these inadequate shapes from the graph
shape space prevents them from appearing in shape
morphings.

Similarity metric

Using the cross structuring element, real-valued di-
lation allows to add a one-voxel margin to a shape.
Thus, the added voxels all correspond to cells whose

Adequate models

\ A 4 4 % k %
Figure 3: Examples of adequate and inadequate models, with

respect to our volumetric descriptor which averages density
of presence within 8 x 8 x 8 DVG cells.

Inadequate models

L, distance to the shape is !/r. We can define a forward
similarity metric DA® from descriptor A to B, which
penalizes the mass of B located outside the dilation of
A:

DB = min(dilation(A) — B,0)
DPA = min(dilation(B) — A,0) 3)
d(A,B) = ID*P||; + D"y

Note that for all locations outside of dilation(A),
the penalty imposed by || DA8||; is the same as the L,
voxel distance. Thus, for dissimilar models (e.g., if B
is mostly located outside of dilation(A)), this metric
d becomes less interpretable, because of the curse of
dimensionality. We use this metric to build a shape
graph @G, after all pairwise distances are evaluated.
In general, each shape is connected to its k-nearest
neighbors. However, the linking rules can vary for
several reasons:

* Certain shapes may be particularly different from
the rest of the dataset. In order to prevent them
from being considered in morphings, we trim off
links whose weights are above a threshold 7,,.

* To ensure that the final graph G is made of only
one connected component, we can also decide to
keep at least ki, connections for every node, even
if their weights are above 7T,,.

The impact of such trade-offs is discussed in Sec-
tion

4.3 Continuous morphings

To find a minimal path in G, we use Dijkstra’s algo-
rithm. The returned length corresponds to the energy
of the minimal morphing, while the sequence of nodes
provides a discrete morphing. Thanks to our invertible
cubifiction, this shape sequence can be prolonged to a
continuous morphing, by interpolating separately the
style and content (V,C) of each shape. For the control
points positions V, the interpolation is trivial and can
just be linear; as for the interpolation of content values,
we also propose linear interpolation. More precisely,



we interpolate the cubified SDFs, and generate the
geometry with marching cubes.

Because each edge in the path has a known length,
the continuous path can be parameterized by arc length
(see Discussion [6.6). For an arbitrary number of
frames, whose positions are equally spaced along the
path, this grants more interpolation frames in between
less similar shapes, which are the most likely to have
topology changes.

For a given sequence of style-content separated
shapes ((V1,C1), ..., (Vk,Cr)), and their corresponding
edge lengths L = (112, .y lllc(—l) in G, we can formalize
the continuous morphing using a time parameter ¢t €
[0,1]:

fit+1,F=s.(1)
V=>1-1t)-Vi+t-V; 4)

() = plos (1 =1)-Ci+7-Ciy1)

Where s;,(¢) is the discrete arc lenth parameteri-
zation function, returning the indices (i,i+ 1) of the
edge nodes and the local time parameter 7. Note that
the interpolation on V is straight from V; to Vj: the
graph G is only used for interpolating the content C.

The same framework can be used to morph be-
tween new, unknown shapes, by embedding them into
graph G, following all the steps: DVG optimization,
shape cubifiction, links creation to connect these new
shapes to the already-existing graph.

5 Results

We conducted our experiments using shapes from the
ShapeNet (Chang et al., 2015) dataset; more specifi-
cally using 500 from the chair category and 200 from
the car category. Because the continuous morphings
require all shapes to be closed manifolds, and for fair
comparisons against (Kleineberg et al., 2020) which
preprocesses shapes the same way, we first converted
them into manifolds using the same method as (Park]
et al., 2019). We then sampled [ = 4096 points to be
used as the DVG input pointclouds.

5.1 Shape morphings

To produce shape morphings, we randomly picked
pairs of nodes in G, and applied the method explained
in Section[4.3] Following Equation (@), each morphing
consists in a sequence of triplets (V,C,y). While we
are typically only interested in the final geometry y,
observing V and C provides, along with the found
minimal path in G, an explanation for the generated
geometries. We show such triplets in Figure[3]

5.2 Robustness to misalignment

We assume all our shapes are consistently aligned,
as standard among generative models. However, be-
ing a deformable model, we tested the ability of the
DVG to converge to the correct configuration when
the input shape has been rotated. Given the hierarchi-
cal subdivisions and the centrality of the first levels
(see discussion in Section E]) we compared the de-
termined first level for two conditions: ground truth
alignment, and noisy alignment (rotation with random
Euler angles, according to AL(0,6 = 0.2rad ~ 12°)).
For fairness, we kept a constant number of gradient
descent steps. The error is then measured as the Eu-
clidean distance between the control points of the two
grids, ||GT — pred||2. Figure|6b|shows an example of
a misaligned grid

We also estimated, for any given 7,
Eg,,. <1, (|| GT — pred||2), the empirical expectancy on
datasets where the maximum angular error is smaller
than a threshold 7g (see plot in Figure[6a). We observe
that it increases at a reasonably low pace, confirming
the advantages of a deformable model. As for high
angular errors (more than 30°), the predicted grid can
be flipped: a control point which should be at the top
is now located on the side. For a single shape, this
is not a problem. However, on a whole dataset, this
would break the consistent cubifiction we require to
build our similarity measure.

5.3 Qualitative analysis: comparison
with deep learning

In our work, one of the main objectives was to produce
results comparable in quality to those obtained via
deep learning. We chose to compare our results to the
adversarial neural network developed by (Kleineberg
et al., 2020), as it also relies on an SDF representation,
and has published the weights of a pre-trained network,
allowing us to produce new morphings.

For fair comparisons, we adopted the following
methodology:

* We kept our graph G untouched, built from the
same 500 chair examples as in the previous experi-
ments;

* We first generated baseline morphings as latent
space interpolations between random codes corre-
sponding to chairs (about 4k examples);

¢ For each of these morphings, we extracted the first
and last states: these provided query shapes that
we embedded in G (as explained in SectionF.3) in
order to generate our morphings;
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Figure 4: (Zoom in to see details) Qualitative results for shape reconstruction via DVGs: estimating V for each shape allows to
cubify it (C), and this can be reprojected into V by a trilinear PKi or a spline pg)s projector (see , the latter yielding smoother

surfaces. The cubified shapes are color-coded by assigning a value in [0, 1]3 to an RGB color.

* To match the surface quality of (Kleineberg et al.!
[2020), we decreased the resolution of our SDFs be-
fore the mesh reconstruction via marching cubes.

Figure [7] presents some comparative results, se-
lected for their representativity. Here are our observa-
tions for each of the five shown examples:

1. These shapes happened to have a direct link when
embedded in G: the morphing entirely comes from
the DVG.

2. While the morphing of the seat is visually pleasing,
the SDF interpolation is responsible for a hole in
the leg (frames 4—10).

3. The armrests removal looks less pleasing, but on
the flip side, the progressive rounding of the back
is more natural.

4. Most of the artifacts (frames 7-12) come from the
short-circuit effect, discussed in[6.3]

5. Apart from similar surface artifacts, it exempli-
fies the impact of our minimal paths for chair-to-
armchair morphings. Indeed, they appear to fa-
vor transitions which add thin armrests halfway
through.

When watched as videos, our morphings also ap-
pear generally less smooth. This is due to our SDF

interpolations: when new mass appears within the 1-
voxel margin, it can look sudden, and then less pleasant
to the eye. Despite these imperfections, we found it
pretty remarkable to achieve such results while only
relying on a much smaller dataset. It would indeed
seem hard, if not impossible, to train a neural network
with such limited data.

6 Discussion

Our overall method comprises many components, each
requiring design choices which influence the quality
of the results. Because the systematic analysis of gen-
eral shape morphing (for non-parametric shapes) is
still uncharted territory, we presented quantitative and
qualitative results where each component is designed
in the minimally-viable way. However, our system
admits many local improvements.

Hence the following observations and suggestions,
noted from our experiments.

6.1 Importance of the first hierarchical
levels

While (Groscot and Cohen, 2022)) establishes the im-
portance of the progressive refinement of DVGs, our
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Figure 5: (Zoom in to see details) Examples of morphings generated with our method. Rows (a), (b), and (c) respectively
correspond to the interpolation of cubes C, final shapes, and DVG grids V.

experiments further emphasize the greater importance
of the first levels. If the second level is unfrozen before
the first level has correctly converged, the misalign-
ment of the cube edge with the dominant features of
the shape will remain. This problem can arise when
optimizing a batch of DVGs on many shapes, with a
constant number of epochs per level. To prevent this
from happening, one has to make sure the first level
has enough time to converge on all the training shapes,
or resort to an adaptive gradient descent scheme.

6.2 Manual edition of a DVG

In a real use case scenario, a determined DVG can
be manually corrected. For instance, it can easily be
symmetrized — by averaging with its symmetric. This
could be useful for shape reconstructions and mor-
phings, to ensure that the generated geometries are
indeed symmetric. All the results we show did not

resort to any manual correction, in order to exhibit the
bare abilities of our model. Yet it would be interesting,
for future work, to investigate the usefulness of ad-hoc
post-processing.

6.3 Graph connectivity

The quality of the morphings generated by our method
depends on the graph building procedure, and more
specifically, the node linking rule. Ordinarily, these
graphs can be built obeying either a k-nearest neighbor
condition, or a distance threshold condition. By design,
our metric becomes less interpretable as the estimated
distance increases. This is why we need to impose a
distance threshold criteria. Doing so, the graph can
however have several connected components, limiting
the ability to interpolate between shapes of distinct
modes (say, between an office chair and a sofa).

In practice, finding threshold values can be hard,
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given the non-uniform distribution of pairwise dis-
tances (for instance, we observed that the distances
between many sofas are disproportionately small). To
mitigate the potential mistakes, we build the k-nearest
neighbor graph with three constraints, in decreasing
priority: for node i,

1. kizkmin
2. kiSkmax
3. Vj(—)i,d(S,’,Sj) <1y

6.4 Volumetric descriptor sensitivity and
specificity

In order to preserve fine information in the volumetric
descriptor, we decided to average the indicator func-
tion 1g within each DVG cell, instead of keeping all
cells where it is non null (which would correspond to
a classical voxelization). However, the values can be
small, and have a negligible influence on the similar-
ity measure, even where there is non-negligible mass.
Take the example of a half cube within a DVG cell, its
average presence density is 12> = 1/8 = 0.125. This is
why we propose to apply the cubic root as a contrast
function to increase sensitivity to low values — before
feeding the descriptors to the similarity metric d(A, B).

We also performed experiments where the resolu-
tion of the volumetric descriptor is r = 16, effectively
halving the one-voxel margin tolerance. With this in-
creased specificity, neighbors are more similar than
before; but dissimilar models are further away than be-
fore. This led to discrete morphings which all contain

many intermediate steps. Overall, the generated mor-
phings were unpleasantly convoluted. We then settled
for r = 8 as it appeared to be the best compromise, on
our chair dataset.

6.5 Misleadingly low similarity and
short circuits

Models whose topology is not adequately represented
by our metric are, as explained in Section 2] not
included in the graph. More precisely, we exclude the
20% most inadequate models.

But some models, not excluded from previous con-
siderations, can badly influence the quality of mor-
phings: those which display sharp surface features,
not captured by our descriptor. They are typically not
amongst the most adequate models, but still passed
the aforementioned 20% threshold. Such a situation is
depicted in Figure[§] rows (a).

Another interesting phenomenon appears when a
pair of unwanted models hijacks many morphings. If
they are each connected to distinct regions of G, they
provide a short circuit to many minimal paths.

This is the case for models at locations (1a,11)
and (1a,12). They indeed appeared in many of our
randomly generated morphings, creating unwanted
surface artifacts. We show, in rows (b), that manually
discarding these undesired models and short circuits
can enhance the quality of the outputs. However, we
kept all the other morphings we show in this paper
untouched, in order to exhibit the results without any
manual intervention.
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6.6 Metric and arc-length
parameterization

Because our similarity measure d(A, B) only penalizes
difference in shapes beyond a one-voxel margin, many
pairs of shapes have a low distance, sometimes even
null. This is due to the fact that the dataset contains
many redundant shapes, with similar content C (for
instance, many chairs resembling the model on Fig-
ure[7)at (1a,0). Contrary to the previous discussion[6.5]
(on misleadingly low similarity), this is the case where
similarities ought to be low. Conversely, for dissimilar
shapes, the edge length can be disproportionately large,
accounting for most of the total path length.

Since the discrete paths make continuous morph-
ings by arc-length parameterization, this issue can lead
to unpleasing morphings. It could have ben addressed
in two ways:

1. Regrouping, like (Gao et al., 2013)), cliques of
interconnected shapes; and allowing at most one
representative of a clique within a morphing;

2. Applying a non-linear transformation on the path
length, before the generation of the continuous
morphing.

We opted for the second option as it is the simplest
and provides the baseline we are aiming for. We apply
the function x — 1 + \/?c where the square root rebal-
ances low and high values, and the constant 1 corrects
for the almost-null edge lengths.

7 Conclusion

The idea presented in this paper is, essentially, to con-
nect shapes similar in content, so that morphing be-
tween them is “simple”: the DVG cubifiction trick
makes such a simple formulation of morphings pos-
sible. As we have shown, performing a simple linear
interpolation on cubified SDFs already generates qual-
itatively pleasing morphings, therefore establishing a
strong baseline. More complex approaches, based for
instance on optimal-transport, could probably yield
better results. Yet, we produced results qualitatively
similar to the state-of-the-art deep learning methods,
while relying on limited data.

Even if our DVG shape parameterization is not spe-
cific to any class, we restricted our analysis to chairs,
because of the challenges posed by their varied topolo-
gies, and also showed initial results on cars. Moreover,
their strong reflection symmetries are compatible with
cubifiction.

For future work, we would like to investigate the
use of this model on shape categories displaying less

symmetries. It would also be interesting to reproduce
these results at a larger scale, say with the complete
chair subset of ShapeNet, or even when adding other
categories to the same graph: would we find different
shape types separated in different clusters?

Finally, we could bridge the gap between our
method and neural networks. Indeed, the SDFs in-
terpolations are inherently limited and may not be able
to fully capture shape priors, even in a large scale ap-
plication. In this case, a generative model, trained
only on cubified shapes for instance, could provide an
interesting solution.
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