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Abstract. We attempt to formulate the simplest possible model mimicking turbulent

dynamics, such as quasi-cyclic behaviour (QCB), using only three variables. To this

end, we first conduct direct numerical simulations of three-dimensional flow driven

by the steady Taylor–Green forcing to find a similarity between a stable periodic

orbit (SPO) at a small Reynolds number (Re) and turbulent QCB at higher Re. A

close examination of the SPO allows the heuristic formulation of a three-equation

model, representing the evolution of Fourier modes in three distinct scales. The model

reproduces the continuous bifurcation from SPO to turbulence with QCB when Re

is varied. We also demonstrate that, by changing model parameters, the proposed

model exhibits a discontinuous transition from steady to chaotic solutions without

going through an SPO.

1. Introduction

The dynamics of turbulent flows is determined by the collective behaviour of a large

number of interacting modes. The very large number of triadic interactions between

these modes, even in moderately turbulent flows, prevent us from understanding the

global flow features through the direct analysis of the interactions [1, 2, 3]. To gain such

understanding, the complexity of the description needs to be drastically reduced.
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Systematic approaches for that purpose have been applied to turbulence research,

such as proper orthogonal decomposition (POD) [4, 5, 6] or Galerkin truncation [7].

For a list of the key publications in projection-based reduced-order modelling, see a

recent review article [8]. In these approaches, the complex dynamics are dissected by

projecting the Navier–Stokes equations on a low-dimensional basis of eigenfunctions.

A more heuristic approach to reduce complexity is the direct modelling of the

dynamics by a small number of variables retaining a number of constraints (such as

energy or helicity conservation). A well-known example of such an approach is the

development of shell models [9, 10], as first proposed by Obukhov [11]. This approach

bypasses the definition of the basis function by directly modelling the dynamics of an

ensemble of modes.

In the current study, we combine observations of direct numerical simulations (DNS)

and heuristic modelling. We assess the detailed dynamics of a numerical simulation and

investigate the interactions between small groups of Fourier modes. Inspired by the

form of the Navier–Stokes equations, we represent the full dynamics by an ODE system

of three interacting variables, yielding a sort of shell model with both dyadic and triadic

interactions between the groups of modes.

The turbulent flow we characterise is incompressible Navier–Stokes turbulence,

driven by a large-scale steady forcing in a spatially periodic domain. At low Reynolds

numbers, the considered flow becomes temporally periodic. We will show that, even for

this specific periodic flow, retaining the modes governing both energy and enstrophy

in the flow considered in the present investigation leads to a subset of several dozens

of complex-valued Fourier modes. This results in a system of an important number

of coupled ODE, which will not allow analytical treatment. Therefore, using a more

heuristic approach, we analyse the periodic flow, identify the key interactions between

scales, and formulate the simplest model which retains these interactions and the forcing

and dissipation mechanisms. This approach allows us to formulate a model containing

only three degrees of freedom, reproducing certain characteristics of the investigated

fluid flow. In particular, one feature we want to reproduce with our model is quasi-

cyclic behaviour (QCB).

A number of laminar and turbulent flows display QCB. An illustrative example

is vortex shedding behind an obstacle. For low Reynolds number (Re), the so-called

von Kármán vortex street behind a cylinder is perfectly periodic, which corresponds

to a stable periodic solution (SPO) in phase space. Even when the flow becomes fully

turbulent at higher Re, this periodicity is still present, though the stochastic nature

of turbulence motion prevents the system from being perfectly periodic. This close-to-

periodic motion, embedded in turbulent fluctuations, is what we will call QCB.

Another important example of QCB is the temporal behaviour of turbulent channel

flow, where a self-sustaining process governs the dynamics [12, 13, 14]. In particular, in

small channel flow domains (the so-called minimal flow unit), close to periodic behaviour

is observed (Fig. 6 of Ref. [15]). The simplified descriptions of this phenomenon are

specific to channel flow or the simplified case of Waleffe flow [16, 17, 18, 19, 20]. Non-
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trivial QCB was also observed [21] in a confined cylindrical flow between two counter-

rotating disks (the so-called von Kármán flow). Furthermore, QCB is observed in

periodic box flow with steady forcing [22, 23, 24]. These observations suggest that

such dynamics might be more general than wall-bounded flow or flow behind obstacles.

Moreover, a vast amount of recent research is dedicated to identifying unstable periodic

orbits (UPO) embedded in turbulent flows [25, 26, 27, 28, 29, 30, 31]. Recently, the

periodic orbit-aided reduced-order model was discussed [32].

In the present study, we construct a three-mode model which exhibits turbulent

QCB. Our strategy is as follows. First, we conduct DNS of turbulence in a periodic

cube to find an SPO at low Re, which resembles the turbulent QCB observed at higher

Re (see § 2). Secondly, in § 3, we construct a minimal model by carefully examining

nonlinear interactions in the SPO. Then, in § 4.1, we demonstrate that an SPO of

the model bifurcates to a chaotic solution that indeed shows QCB. In § 4.2, we also

demonstrate that another route, via subcritical transition, can be possible for another

set of model parameters to show the potential ability of the proposed model to be

extended to other types of turbulence.

2. Observation of Quasi-cyclic behaviour

To illustrate the features we want to reproduce and guide the formulation of a minimal

model reproducing these features, we conduct numerical simulations of both turbulent

and temporally periodic flows with the same type of forcing. More precisely, we conduct

DNS of three-dimensional incompressible flow governed by the Navier–Stokes equations,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f , (1)

with a steady forcing of the two-dimensional Taylor–Green type [22, 23, 24],

f = (−f0 sinx cos y, f0 cosx sin y, 0), (2)

and the continuity equation, ∇·u = 0. Here, u, p, and f are the velocity, pressure, and

forcing fields, respectively. The forcing amplitude f0 is set to unity. The only control

parameter is the kinematic viscosity ν. We employ a pseudo-spectral method in a (2π)3

periodic box. See Appendix A for details of the DNS. We define the Reynolds number

and the characteristic timescale of large-scale flow as

Re ≡
√
f0

|kf |3/2ν
and T ≡ 1√

|kf |f0
= 0.840, (3)

respectively. Here, kf = (±1,±1, 0) is the wavevector of the forcing (2).

Figure 1 shows the temporal evolution of the energy input rate P (t) ≡ ⟨f · u⟩
against the energy dissipation rate ϵ(t) given by ν

〈
|ω|2

〉
for various Reynolds numbers.

Here, ⟨·⟩ denotes the spatial average and ω ≡ ∇× u.
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Figure 1. (a) Parametric plots of the instantaneous values of the energy dissipation

rate ϵ(t) and the energy input rate P (t) for the turbulent flow at Re = 29.7 for 50T

[See Fig. B1 (b) in Appendix B]. (b) Phase-averaged values ⟨P ⟩phase and ⟨ϵ⟩phase at

Re = 29.7 [same as in (a)] for 20T . (c) Parametric plots of the phase averaged values

⟨P ⟩phase and ⟨ϵ⟩phase at four different values of Re (29.7, 11.9, 8.49, and 6.61). Note

that the orbit in panel (b) at Re = 29.7 is re-plotted in panel (c). (d) The SPO at

Re = 5.83 is shown with a coloured line. Note that this orbit is also shown in panel

(c). The gap between two consecutive dots corresponds to 5T for all panels. In panels

(a), (b), and (d), the time evolves from dark to light colours. Four black cross symbols

in panel (d) denote the instances shown in Fig. 2.

Figure 1 (a) shows the turbulent time series, where the time-averaged Taylor scale-

based Reynolds number ⟨Reλ⟩t is about 90. Note that ⟨·⟩t denotes the time average. We

also show the snapshot of this flow in Fig. B1 (a) in Appendix B. The time series exhibits

QCB in a counter-clockwise direction behind the chaotic fluctuations. This time delay

between the large- and small-scale representatives (i.e. P (t) and ϵ(t)) reflects the causal

nature of the energy cascade.

We apply a phase average to the complex time series of P (t) and ϵ(t) conditioned

on the local maxima of P (t) in order to extract smooth, time-delayed oscillations shown

in Fig. 1 (b). See Appendix B for the detailed procedure. We denote the phase-averaged

quantities by ⟨·⟩phase. These results suggest that the QCB of turbulent flow driven by
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the steady body force (2) is robust. Such QCB is also shown in Fig. 12 of Ref. [23] for

two different forcing types at even higher Re. The physical origin of QCB is rooted in

the energy cascading process from larger to smaller scales. Since the coherent structures

at these scales are composed of a large number of Fourier modes, to describe the QCB

in terms of Fourier modes, we need to understand the underlying nonlinear interactions

among them. However, identifying the direct cause of QCB from tens of thousands of

excited Fourier modes seems illusory. Thus, we decrease Re to reduce the complexity of

the flow.

In Fig. 1 (c), we show the phase-averaged plots of the parametric time series of P (t)

and ϵ(t) for four different values of Re. The change in the shape of the parametric plots

is gradual, suggesting that the quasi-cyclic orbit in the turbulent flow is continuously

connected to an SPO at Re ≈ 5.83, which is also shown in Fig. 1 (d) for comparison.

As will be shown in Fig. 2 below, the SPO at Re = 5.83 is not the laminar solution of

the system which corresponds to a purely two-dimensional structure resulting from a

balance between viscous stress and the forcing (2). We emphasise that this SPO plays

a key role in constructing our model.

We find that the amplitude and the period of the periodic and quasi-cyclic flows

monotonically increase when we decrease Re from 29.7 to 5.83. This does not prove

that the dynamics are identical, but the turbulent QCB and periodic flow seem to share

the same driving mechanism. Note that in high-Reynolds-number turbulence beyond

Re = 30, the amplitude and period seem to saturate to values of the same order as in

Fig. 1 (b) (See Fig. 12 of Ref. [23]).

In Fig. 2, we visualise the periodic flow (i.e. SPO) discussed in Fig. 1 (d), similar

to the three-dimensional periodic solution reported in [24, Fig. 5]. We distinguish four

large-scale columnar vortices associated with the Taylor–Green force (2) and counter-

rotating pairs of smaller vortices perpendicular to them. Note that we do not perform

low-pass filtering [See Fig. B1 (a) of Appendix B] since there is no significant scale

separation in the periodic flow. Nevertheless, we can observe a one-step energy cascading

process from the four large-scale columnar vortices to smaller-scale lateral vortices. More

concretely, we observe only large-scale vortices at t = T0 [Fig. 2 (a)], then the energy

cascade starts to create smaller-scale vortices [Fig. 2 (b), t = T0+9.42T ], while the large-

scale vortices get weaker [Fig. 2 (c), t = T0+17.0T ]. Afterwards, the energy dissipation

dominates to weaken smaller-scale vortices, and then the entire system becomes calm

[Fig. 2 (d), t = T0 + 19.3T ]. When small-scale vortices disappear, energy input by the

external force exceeds dissipation to reestablish the large-scale vortices, and the system

returns to the initial state [Fig. 2 (a)]. We emphasise that this periodic behaviour is

similar to turbulent QPB observed at higher Re (Fig. B1 of Appendix B and Figs. 12-17

of Ref. [23]). This similarity manifests itself in the continuous change between the SPO

and turbulence seen in Fig. 1.

In the next section, we analyse the SPO to unveil the essential physics behind

QCB. Even though we have not rigorously shown the connection between the SPO and

turbulence, we hope to obtain new insights into QCB in Navier–Stokes flow by dissecting
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Figure 2. Visualisation of vortical structures of the SPO (at Re = 5.83) at four

instances with isosurface of |ω| = 5. See Fig. 1 (d) for the corresponding instances.

the SPO.

3. Three-equation model

3.1. Construction of the model

Our objective is to construct the simplest possible model capable of reproducing QCB

while retaining a close connection with the structure of the Navier–Stokes equations (1).

For this purpose, we recall that in a Fourier representation of (1), the individual modes

qi for the ith wavevector ki are governed by [33, 34],(
∂

∂t
+ ν|ki|2

)
qi =

∑
j,m

Aijmqjqm + fi, (4)

where fi is the forcing applied to the ith mode, and Aijm are the coupling constants

resulting from the advection and pressure terms of (1). The nonlinear term associated

with triad interactions rapidly yields an overwhelming complexity when the number of

retained modes increases. Even in our SPO, a large number of modes are dynamically

active. In order to develop an analytically tractable model, we use a coarse-graining
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approach where we group subsets of Fourier modes and represent each group by a single

variable, leading to a sort of shell-model [11, 10].

The shells or groups used in our model are not regrouping modes as a function of

scale using a rigorous criterion but as a function of the type of nonlinear interactions

and energetic content. Indeed, we investigate the Fourier decomposition of the SPO to

find that only Fourier modes with wavevectors (kx, ky, kz) of

(±1,±1, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±2), (±1,±1,±2), (±2, 0,±2), and (0,±2,±2)

(5)

are responsible for 98% of its energy. See Appendix C for details of these energetic

modes. Figure 3 (a) illustrates that the time evolution of the kinetic energy is closely

reproduced, retaining only these modes.

A close inspection of the seven modes shows that all the nonlinear interactions

involve the forced mode and two of the six other modes (See Fig. C1 in Appendix

C). In the following, X ∈ R denotes the characteristic velocity of the forced modes

k = (±1,±1, 0) and Y ∈ R corresponds to that of the remaining modes in (5). At

this point, we suppose that there are only these two classes of modes and that we

represent each class by a single, real variable. Furthermore, we assume (4) to govern

the interaction of these two variables, X and Y , yielding,

dX

dt
= −AY 2 − νK2

XX + F,

dY

dt
= +AXY − νK2

Y Y,

(6)

with a coefficient A > 0, typical wavenumbers Kα > 0 with α ∈ {X, Y }, and a steady

force F > 0. The first term on the RHS of each equation represents the nonlinear

coupling between X and Y . This interaction conserves the global energy, (X2 + Y 2)/2.

Note that since we model the triadic nonlinear term of (4) by regrouping the modes into

two families (See Fig. C1 in Appendix C), the resulting interactions which appear in the

model (6) are dyadic. For notation, we employ both X and Y as the principal variables

of our model and as subscripts to denote quantities associated with these variables.

An extensive parameter scan of the two-equation model shows that the model

always converges to a steady solution, and we do not observe an SPO or QCB. In fact,

linear stability analysis of the fixed points of (6) shows that there are only stable steady

solutions (See Appendix D). Thus, retaining only this simple interaction between the

forced and most energetic modes seems insufficient to reproduce QCB via supercritical

bifurcations. Results of the parameter scan further suggest that the subcritical route to

QCB is not present either.

The additional ingredient for QCB turns out to be a small-scale representative and

its associated triad interaction terms. Figure 3 (a) shows the time series of energy

E(t) and energy dissipation rate ϵ(t) in the SPO along with partial energy EX+Y ≡〈
|uX |2

〉
/2+

〈
|uY |2

〉
/2 and partial energy dissipation rate ϵX+Y ≡ ν

(〈
|ωX |2

〉
+
〈
|ωY |2

〉)
contained by the forced and primary modes. While the energy is almost entirely
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Figure 3. (a) Time series of energy E(t) and energy dissipation rate ϵ(t) computed

from all modes (solid lines) and those of the forced plus the primary energetic modes,

denoted by (·)X+Y (dashed lines). (b) Schematic of three different scales: “forced”,

“primary”, and “secondary”. We visualise |ω| distributions of typical Fourier modes in

each scale. The forced scale corresponds to kf = (±1,±1, 0). In the primary scale, we

visualise k = (0, 0,±2) and (0,±2,±2) modes. For the secondary scale, we visualise

k = (±3,±1, 0) and (±2,±2,±2) modes for example. Note that the contributions

of modes with all the possible sign combinations (±kx,±ky,±kz) are gathered in the

visualisations. Triangles denote triad interactions between different scales. For details

of interactions between the forced and primary scales, see Fig. C1 in Appendix C.

contained in EX+Y , there is a visible difference between the full and partial energy

dissipation rates. This reveals that the rest of the Fourier modes contribute significantly

to the dynamics of the energy dissipation, representing the small scales. We denote the

ensemble of these residual modes by Z. The essential nonlinear interactions of Z form

triads with one mode of the Y -ensemble and another mode from either the Z-ensemble

or the forced mode X. These observations lead to a refined three-equation model,

dX

dt
= −A1Y

2 + A3Y Z − νK2
XX + F,

dY

dt
= +A1XY − A2Z

2 + A4XZ − νK2
Y Y, (7)

dZ

dt
= + A2Y Z − (A3 + A4)XY − νK2

ZZ,

which is represented by a schematic in Fig. 3 (b). Here, A1, A2 > 0 and A3, A4 ∈ R are

triad coefficients which retain the discrete Navier–Stokes structure (4). We choose the
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signs and the values of the triad coefficients such that the detailed balance holds in the

energy transfer between the three scales. The signs of A1 and A2 are defined so that

energy cascades towards small scales: from X to Y and Y to Z. This two-step energy

cascade (for A3 = A4 = 0) is similar to the Obukhov two-stage cascade model [11].

The triads with coefficients A3 and A4 represent the “non-local” interactions involving

all three scales. Note that this system is different from, but is of the same level of

complexity, as the well-known Lorenz [35] or Rössler models [36, 37]. An important

difference is that each variable denotes a Fourier mode in the Lorenz model, while in

our model, it represents a group of modes.

3.2. Determination of the parameters

The model (7) is a simplified representation of the SPO, where all Fourier modes are

sorted into three scales; the forced mode X, the energetic modes Y directly draining

energy from X through the A1 interaction, and the small scale modes Z which couple

through the local direct cascade interaction A2 with Y . There are also scale non-local

interactions represented by A3 and A4. Even though such a representation of the flow

discards details of the actual flow obtained by the DNS, we will fit the model parameters

to the DNS data to assess how the model can reproduce actual flow properties.

We can fit six out of eight model constants in (7) by comparing them to the DNS

of the periodic flow: Ai with i = 1, 2, 3, 4, K2
α, where α ∈ {X, Y, Z}, and F . To do so,

we use the energy equations associated with (7),

dEX

dt
= TX − ϵX + P,

dEY

dt
= TY − ϵY , (8)

dEZ

dt
= TZ − ϵZ .

Here, Eα ≡ α2/2 is the energy,

TX ≡ −A1XY 2 + A3XY Z,

TY ≡ +A1XY 2 − A2Y Z2 + A4XY Z, (9)

TZ ≡ + A2Y Z2 − (A3 + A4)XY Z.

are the energy transfer terms, ϵα ≡ 2νK2
αEα is the energy dissipation rate, and P ≡ FX

is the energy input rate. The model parameters are determined by their corresponding

quantities of the SPO obtained by DNS. The resulting values are

A1 = 0.4, A2 = 4, F = 0.7, K2
X = 2, K2

Y = 5, andK2
Z = 15. (10)

We describe the parameter determination procedure in Appendix E. The energy flux

coefficients A1 and A2 are determined by the energy transfer terms Tα in (9) while

ignoring the nonlocal coefficients A3 and A4 (E.4-E.5). The forcing coefficient F
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is evaluated by P and the X-scale energy EX (E.1). The squared characteristic

wavenumber K2
α is set by Eα and ϵα in each scale (E.2). Note that KX =

√
2 of

the model parameter can be related to |kf | =
√
2 of the forcing (2) of the DNS. We

remark here that our parameter choice (10) supports the energy cascade picture with

TX(t) < 0: the forced scale X transfers its energy to smaller scales (Y, Z) on average.

And TY (t), TZ(t) > 0 means that the smaller scales receive energy from the larger

scales. The undetermined parameters of the model are the scale non-local interaction

coefficients A3 and A4, which can be freely chosen. The only control parameter is

Re ≡ 1/ν. We numerically integrate the model with a fourth-order Runge-Kutta scheme

and ∆t = 0.01 starting from random initial conditions. See Ref. [38] for the solver

information. Our numerical simulations seem to indicate that no periodic solutions

exist without the complete non-local interactions: A3 = 0, A4 = 0, or A3 + A4 = 0.

Conversely, periodic behaviour is observed for a wide range of values when A3 ̸= 0,

A4 ̸= 0, and A3 + A4 ̸= 0. This observation emphasises the importance of non-local

triad interactions for periodic behaviour.

3.3. Comparison between the model and the DNS result

Figure 4 compares the SPO obtained by the model and the DNS. Figure 4 (a) shows the

time series of the model with the parameters (10) and (A3, A4) = (0.5,−0.95). Since

the definitions of Re are different in the model and DNS, we have chosen a Reynolds

number in the model, which allows qualitatively reproducing the DNS results. We

compute two quantities. One is EX−X0 ≡ (X −X0)
2/2, which is the fluctuating energy

of the forced mode around the laminar base flow X0 ≡ F Re /K2
X . The other quantity

EY+Z ≡ Y 2/2 + Z2/2 is the energy of the rest of the modes. We compare them to

the corresponding quantities in the DNS of the SPO [Fig. 4 (b)], where the base flow

is u0 ≡ f/2ν|kf |2, the forced-mode fluctuating energy is EX−X0 ≡
〈
|uX − u0|2

〉
/2,

and EY+Z is defined by the energy possessed by the non-forced modes. We can observe

similar periodic behaviour of EX−X0 and EY+Z in the model (7) and in the SPO driven by

the steady forcing (2). In particular, there are predator-prey-like exponential growth and

decay in both systems. Although fast oscillations are observed in the model but not in

the DNS, a close analysis (See Appendix C) of the DNS of the SPO reveals the presence

of rapid oscillations in specific Fourier modes. These oscillations are compensated by

modes that display the same energy oscillations with an opposite phase and do not

appear in Fig. 4 (b). We stress that this SPO is independent of the exact amplitude of

the initial conditions because the present model is a dissipative system.

4. Dynamics of the model

4.1. Bifurcation from SPO to chaos with QCB

We observe a chaotic state of the model by varying Re from 14.05 to 14.1 while keeping

the model parameters as in Fig. 4 (a). Figure 5 (a) shows the orbits in phase space
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Figure 4. Time series of fluctuating energy EX−X0
(t) of the forced scale and

residual energy EY+Z(t) of periodic solutions of (a) model (7) at Re = 14.05 and (b)

the Navier–Stokes equations (1) at Re = 5.83. Parameters of the model are (10) and

(A3, A4) = (0.5,−0.95). Note that time in panel (b) is normalised by T .

for both the periodic (at Re = 14.05) and chaotic (at Re = 14.1) cases. The chaotic

solution remains close to the SPO as it shows chaotic QCB and is permanent as in the

turbulence investigated in § 2. Thus, the same model reproduces SPO and chaotic QCB.

Incidentally, the SPO resembles a Shilnikov homoclinic orbit [39]. We also plot a simpler

periodic orbit at Re = 12.5 in this figure. It is almost two-dimensional as opposed to the

complex three-dimensional periodic and chaotic orbits, suggesting a possible connection

with a two-dimensional periodic orbit in the same forcing configuration [24, Fig. 4].

However, we do not focus on this orbit as it is not directly connected to a chaotic one.

To further assess the behaviour of the system, we draw the bifurcation diagram in

Fig. 5 (b) with the same parameter set as in Fig. 4 (a) and Fig. 5 (a). We observe a

supercritical transition from periodic to chaotic solutions at a critical Reynolds number

Recr ∈ [14.060, 14.061] [inset of Fig. 5 (b)], and, as observed in Fig. 5 (a), the chaotic

orbit remains close to the SPO. We note that the solution becomes periodic again when

we further increase Re beyond the range of Fig. 5 (b), probably because the model

contains only a small number of degrees of freedom. The inset of Fig. 5 (b) shows that
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Figure 5. (a) Simple periodic (Re = 12.50), complex periodic (Re = 14.05)

[Fig. 4 (a)], and chaotic (Re = 14.1) orbits of the model (7). The parameters are

the same as in Fig. 4 (a). The chaotic orbit is tracked over 100 periods. The arrow

indicates the direction of the orbit. (b) Bifurcation diagram of the model with changing

Re for the same parameters as in Fig. 4 (a). We plot the local extrema of Y . We

have determined the periodicity by Poincaré analysis. The black vertical dotted line

corresponds to Re = 12.50 used in panel (a). Inset: close-up in the range shown

by the red rectangle in the main plot. The red vertical dashed line corresponds to

Re = 14.05 used for panel (a) and Fig. 4 (a). For both panels, black, purple, orange,

and yellow data denote steady, simple periodic, complex periodic, and chaotic solutions,

respectively.
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Figure 6. (a) Time series of (X,Y, Z) of the model (7) with parameters (10) and

(A3, A4) = (0.4,−0.5) at Re = 32. A random initial condition is used. (b) The

bifurcation diagram for the same parameter set. The red vertical dashed line denotes

Re = 32, which is used for Fig. 6 (a). Inset: close-up of the diagram in the range

shown by the red rectangle in the main plot.

there is a hysteresis in the range Re ∈ [13.82, 14.03], below Recr, which corresponds

to a subcritical bifurcation from a periodic solution to another periodic solution shown

in Fig. 4 (a). The appearance of the multiplicity of local extrema corresponds to the

spiralling behaviour of the orbit in phase space. Thus, although the bifurcations from

the trivial steady solution to the SPO are rather complicated, that from the SPO to

chaos with QCB is simple. Although there is no clear scenario for the route to turbulence

with QCB, the present model results may give us a hint to describe the route in real

turbulence.

4.2. Subcritical bifurcation to chaos

Since it is well known that, in some cases, turbulence appears via a subcritical transition,

here we demonstrate that our model also expresses such a route to chaos. We stress

that we cannot use the strategy above to determine the model parameters since there
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Figure 7. (a) Survival probability PRe(t) of the transient chaos of the model (7)

evaluated from 10,000 samples for each Re. The parameter set is the same as in Fig. 6.

Dashed line denotes exponential fitting by (11) using 0.01 ≤ PRe(t) ≤ 0.9. (b) The

escape rate 1/τ as a function of Re. The dashed line denotes the exponential fitting

by (12).

is no SPO in such a system. Instead, by varying the undetermined parameters of the

model, we observe transient chaos at (A3, A4) = (0.4,−0.5) as shown in Fig. 6 (a).

The corresponding bifurcation diagram in Fig. 6 (b) shows a subcritical bifurcation

between steady and chaotic solutions around Re ≈ 32.3. There are bi-stable states for

33 ≲ Re(≲ 35) of steady and chaotic solutions. The inset of Fig. 6 (b) shows that there

are multiple windows of periodic solutions in the chaotic regime, probably due to the

limited number of degrees of freedom of the model (7).

The transient behaviour in Fig. 6 (a) reminds us of the sudden relaminarisation

observed in a linearly forced turbulence [40], turbulent Kolmogorov flow [41], pipe

flow [42], and even in the Lorenz system [43, 44]. We evaluate the survival probability

PRe(t), representing how likely the solution remains in a chaotic regime at a given time

t, to investigate this phenomenon. To evaluate PRe(t), we identify the relaminarisation

time tr by the first time when the local maxima of oscillating energy EY−Y0 ≡
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(Y − Y0)
2/2 becomes smaller than a threshold δ = 1 × 10−3. Here, Y0 is the stable

and steady solution. Then, the probability PRe(t) for given t can be evaluated by the

ratio of a number of samples with tr < t against the number of the whole sample. We

plot PRe(t) in Fig. 7 (a) to find that an exponential scaling,

PRe(t) ∝ exp

[
− t

τ(Re)

]
, (11)

fits the data. The characteristic time scale τ in Fig. 7 (b) also displays an exponential

scaling,

τ(Re) ∝ exp[aRe], (12)

against Re. Although the scaling (11) of PRe(t) is consistent with the observations in

the previous studies [40], the exponential scaling (12) of τ(Re) differs from a super-

exponential behaviour observed in Ref. [40]. This qualitative difference may also be

caused by the minimal number of degrees of freedom in the model.

Note that the Taylor–Green forcing (2) in the DNS does not permit such a

transition since the laminar base flow u0 ≡ f/2ν|kf |2 is linearly unstable. However,

the steady Kolmogorov forcing with a linearly stable laminar base flow exhibits sudden

relaminarisations [41]. Thus, we can speculate that the model can reflect different forcing

set-ups applied to the Navier–Stokes equations by varying the parameters (A3, A4).

5. Conclusion

The present investigation attempts to construct a minimal model of turbulence with

quasi-cyclic behaviour (QCB) in a steady-force driven flow while keeping the structure

of the Navier–Stokes equations. First, through the DNS of Navier–Stokes turbulence,

we show that QCB in high-Re turbulence is continuously connected to an SPO at small

Re by extracting the intrinsic periodicity of QCB via a phase averaging technique (§ 2).

Next, we conduct a mode-by-mode analysis of the SPO to identify the flow’s forced,

primary energetic, and secondary scales. We propose the three-equation model (7)

describing the evolution of such three distinct scales (§ 3.1). By adjusting the model

parameters, we observe that the model reproduces an SPO similar to that of the

DNS (§ 3.2). We emphasise that scale non-local nonlinear interactions (interactions

involving three separate scales) are mandatory for reproducing these dynamics. Then,

we conduct a bifurcation analysis to show that the model also exhibits chaotic QCB via

a supercritical bifurcation, which is continuously connected to the SPO (§ 4.1). Thus,

we conclude that the proposed model reproduces turbulent QCB and its relation to an

SPO using a minimum number of degrees of freedom.

Further analysis of the model by varying the undetermined parameters yields

transient chaos with sudden relaminarisation, which is also observed in turbulent flow

with different forcing set-ups (§ 4.2). Thus, we speculate that the present model can be

a minimal model for certain features of turbulence.
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An outstanding open question is how QCB survives in spatially extended flows.

How will the global dynamics change when the forcing is applied to scales smaller than

the domain size? In other words, how will the modes larger than the forced scale alter

QCB turbulence, and how can we model it? Investigating the relation between space

and scale locality and temporal dynamics of turbulence is left for further research.
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Appendix

Appendix A. Direct Numerical Simulations

This appendix describes the detail of the DNS condition. We use an in-house parallelised

code [45] to conduct DNS. It employs a pseudo-spectral method with the 2/3 dealiasing

rule for spatial discretisation and the Adams–Bashforth scheme in the time domain.

The initial condition is generated in Fourier space by Rogallo’s method [46].

We perform DNS in a (2π)3 triply periodic box. We focus on two distinct flows:

three-dimensional periodic and turbulent. The SPO is obtained by the DNS with 643

Fourier modes by adjusting the viscosity to ν = 0.102. This corresponds to the value of

the Reynolds number (3) of Re = 5.83. We use 1283 Fourier modes to simulate turbulent

flow at ν = 0.02 (Re = 29.7). For the phase averaging procedure (See Appendix B), we

use the time series in the interval 1.28 × 103 ≤ t ≤ 1.04 × 104 to guarantee statistical

convergence. Note that we discard the transient part from the analysis. This interval is

approximately 1.08× 104T with T defined in (3).

Appendix B. Detailed procedure of the phase averaging

This appendix explains the detailed procedure of the phase averaging shown in Fig. 1 (b).

We first describe the flow observed at Re = 29.7 (Reλ is about 90) in Fig. B1.

Figure B1 (a) shows isosurfaces of |ω| capturing small-scale structures, whereas the

forcing-induced columnar vortices emerge by visualising the isosurfaces of |ω<|. Here,

ω< ≡ ∇ × u<, which is obtained by applying a low-pass filter to the velocity field,

defined as u<(x) ≡
∫
drG(r/r0)u(x+ r) with G being the Gaussian function. We set

r0 = 2. Figure B1 (b) shows the temporal evolution of the energy input rate P (t) and

the energy dissipation rate ϵ(t). Both time signals exhibit significant fluctuations with

a clear time-delayed correlation. See Fig. 1 (a) for the 2D projection of the same time

series.

To conduct the phase-averaging, first, we pick up the local maxima of P (t)

[Fig. B2 (a)] with the following two criteria: (i) It must be larger than ⟨P ⟩t + σ(P )

where ⟨·⟩t and σ(·) denote the time average and the standard deviation, respectively.

The horizontal pink line indicates this value in Fig. B2 (a). (ii) The temporal gap

between two consecutive local maxima must be larger than τmax/2 where τmax is the

time for the second peak of the autocorrelation function of P (note that the first peak is

at τ = 0). We denote the identified local maximum of P (t) and the corresponding time

by P0 and t0, respectively. Second, the segments of the time series of P (t) around the

local maximum P0 are overlapped, as shown in Fig. B2 (b). We normalise the segments

by P0 to avoid overestimation due to huge intermittent peaks. Third, we compute the

average over the overlapped and normalised time series to obtain the phase averaged

time series ⟨P ⟩phase shown in Fig. B2 (c).

We apply a similar procedure to ϵ(t). However, the time is shifted for t0, and ϵ(t)
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Figure B1. (a) A snapshot of the turbulent flow at Re = 29.7 (Reλ ≈ 90). Isosurfaces

of |ω| = 20 (blue) and low-pass filtered |ω<| = 4 (red) are visualised. (b) Time series

of energy input rate P (t) and energy dissipation rate ϵ(t) of the same flow. The red

rectangle denotes the time interval examined in Fig. 1 (a).

is normalised by P0 so that we can evaluate the time delay and the relative amplitude

difference between the two quantities. The pink vertical dashed line shows the time

delay in Fig. B2 (c), which is 2.80T . Figure 1 (b) is a parametric plot of Fig. B2 (c).

Appendix C. Primary energetic modes of the periodic flow

This appendix shows the detailed behaviour of the seven most energetic modes.

Figure C1 shows |ω| distributions of these seven modes. Triangles indicate combinations

of different modes where energy transfer via triad interactions is possible. Figure C1

also compares isosurfaces of |ω| of the sum of these seven primary energetic modes and

that of all modes. We find similar principal structures: the large columnar vortices and

the small counter-rotating pairs of vortices. Here, we denote the velocity field consisting

of the forced mode by uX and the other six primary energetic modes by uY . The

corresponding vorticity fields are denoted by ωX and ωY , respectively.



Minimal model of quasi-cyclic behaviour in turbulence driven by Taylor–Green forcing20

10000 10100 10200 10300 10400
t/T

0.75

1.00

1.25

1.50

1.75

P

(a)

−10 −5 0 5 10
(t− t0)/T

0.4

0.6

0.8

1.0

1.2

1.4

P
/P

0

(b)

−10 −5 0 5 10
(t− t0)/T

0.7

0.8

0.9

1.0

1.1 〈P 〉phase

〈ε〉phase

(c)

Figure B2. (a) Time series of P (t) with its local maxima P0 denoted by dots.

The pink horizontal line corresponds to the threshold of the magnitude ⟨P ⟩t + σ(P ).

(b) Overlapped segments of the time series of P (t) around t0 and normalised by P0.

(c) Phase averaged time series of P (t) and ϵ(t). Shaded region represents ⟨f⟩t ± σ(f)

where f is P (t) or ϵ(t). The pink vertical dashed line indicates the maximum of ⟨ϵ⟩phase,
denoting the average time delay between P (t) and ϵ(t).
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Figure C1. Schematic of forced (centre) plus six primary energetic (surrounding)

Fourier modes in the SPO at Re = 5.83. Visualisations show distributions of |ω|
at the same instance. The three-digit numbers on the visualisations indicate three

components of wavevector kxkykz. Note that all the possible sign combinations

(±kx,±ky,±kz) are gathered. Triangles denote the possible triad interactions. On

top, we compare the isosurfaces of |ωX + ωY | with |ω| of the full flow. Here, ωX and

ωY denote the vorticity of the forced and the primary energetic modes, respectively.

We plot the time series of the energy of the forced and six primary modes of the SPO

at Re = 5.83 in Fig. C2. Although the energy E110(t) of the forced mode dominates,

which is approximately equal to the total energy E(t), we observe a distinctive difference

between E(t) and E110(t) when the primary scale energies are excited. By summing up

the contributions of these seven modes, we obtain EX+Y shown in Fig. 3 (a). We also

note that there are fast oscillations in E100(t) and E010(t). However, these two modes

are compensated with each other, and such rapid dynamics are not visible in EX+Y (t)

[Fig. 3 (a)]. This observation explains why there are no fast oscillations in the time

series shown in Fig. 4 (b).
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Figure C2. Time series of energy of the forced and six primary energetic modes in

the SPO. Ekxkykz
denotes the energy summed-up for the wavevectors (±kx,±ky,±kz).

Total energy E(t) is also shown for reference.

Appendix D. Linear stability analysis of the two-equation model

In this appendix, we show the results of the linear stability analysis of the fixed points

of (6). There are two kinds of fixed points: namely,

X1 =

(
F

νK2
X

, 0

)
and X2 =

(
νK2

Y

A
,± 1

A

√
AF − ν2K2

XK
2
Y

)
, (D.1)

where X ≡ (X,Y ). Note that the fixed points X2 exist only for ν <
√
AF/KXKY .

The perturbation (x, y) in the vicinity of the fixed points (X,Y ) obeys

dx

dt
= −A

(
Y

2
+ 2Y y

)
− νK2

X

(
X + x

)
+ F, (D.2)

dx

dt
= +A

(
X Y +Xy + xY

)
− νK2

Y

(
Y + y

)
, (D.3)

where we have neglected second-order terms x2, y2, and xy. The Jacobian matrix is

then expressed as

J =

(
−νK2

X −2AY

AY AX − νK2
Y

)
, (D.4)

whose eigenvalues are

λ = −1

2

[
−AX + ν

(
K2

X +K2
Y

)]
± 1

2

√[
AX + ν(K2

X −K2
Y )
]2 − 8A2Y

2
. (D.5)

The eigenvalues for X1 are

λ
(X1)
1 = −νK2

X , λ
(X1)
2 =

AF

νK2
X

− νK2
Y , (D.6)
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Figure E1. Time series of (a) forcing coefficient F (t) and (b) scale coefficients K2
α(t)

in the DNS of the SPO.

which are both negative for ν >
√
AF/KXKY . Therefore, X1 is stable for ν >√

AF/KXKY , and a pitchfork bifurcation takes place at ν =
√
AF/KXKY . Then, for

ν <
√
AF/KXKY , X2 exists, which is stable irrespective of ν because the eigenvalues

are

λ
(X2)
1,2 = −νK2

X

2
±
√

−8AF + ν2K2
X(1 + 8K2

Y )

2
. (D.7)

Appendix E. Detailed procedure of the parameter fitting

This appendix discusses the detailed procedure of the parameter fitting (10) of the three-

equation model (7). Figure E1 (a) shows the time evolution of the forcing coefficient

defined by

F (t) ≡ P√
2EX

. (E.1)

We estimate the model parameter F = 0.7, since the time average ⟨F (t)⟩t = 0.696.

The periodic drops of F (t) are associated with a phase-desynchronisation between the

forcing and the forcing-induced velocity field, uX .
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Figure E2. Time series of (a) energy transfer terms Tα(t) and (b) transfer coefficients

Ai(t) in the DNS of the SPO.

We also compute the scale factors

K2
α(t) ≡

ϵα
2νEα

(α ∈ {X, Y, Z}). (E.2)

Figure E1 (b) shows their temporal evolutions. The forced scale factor K2
X(t) = 2 is

constant, since it corresponds to kf = (±1,±1, 0) mode. On the other hand, K2
Y (t) and

K2
Z(t) fluctuate, reflecting the competition of different Fourier modes in these scales.

We estimate the model parameters by K2
Y = 5 and K2

Z = 15, since ⟨K2
Y (t)⟩t = 4.97 and

⟨K2
Z(t)⟩t = 15.4, respectively.

To obtain rough estimates of the scale local coefficients A1 and A2, we compute the

average energy transfer rate from X to Y and Y to Z while ignoring the scale non-local

interactions by setting A3 = A4 = 0. In this way, the energy transfer terms (9) of the

energy equation (8) of the model are approximated by

TX(t) ≈ −A1XY 2,

TY (t) ≈ +A1XY 2 − A2Y Z2, (E.3)

TZ(t) ≈ + A2Y Z2.
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Figure E2 (a) shows their time series by the DNS of the SPO. TX(t) < 0 supports the

energy cascade picture; the forced scale X is transferring energy to smaller scales (Y, Z)

on average. Similarly, TY (t), TZ(t) > 0 means that these smaller scales receive energy

from the larger scales. We then evaluate the time-dependent coefficients,

A1(t) ≈ − TX

XY 2
= − 1

2
√
2

TX√
EXEY

, (E.4)

A2(t) ≈
TZ

Y Z2
=

1

2
√
2

TZ√
EYEZ

. (E.5)

Again, we neglect the scale non-local interactions (A3 = A4 = 0) in these expressions.

The result is shown in Fig. E2 (b), and we estimate A1 = 0.4 and A2 = 4 as the

model parameters from the time-averaged values ⟨A1(t)⟩t = 0.440 and ⟨A1(t)⟩t = 4.04,

respectively.

The above argument allows us to determine the model parameters in (10). The

non-local interaction coefficients A3 and A4 are left to be determined. In § 3.2, we vary

these two parameters to investigate the model properties.
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