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ABSTRACT
The energy cascade from large to small scales is a robust feature of
three-dimensional turbulence. In statistically steady turbulence, the
average dissipation is in equilibrium with the energy injected in the
system. A global quantity measuring the deviations from such a flux
equilibrium is the normalised dissipation rate Cε , corresponding to
the viscous dissipation, normalised by quantities associated with the
largest scales of the system. Recent investigations have pointed out
how this normalised dissipation rate varies in unsteady flows. We
focus on two test-cases to assess non-equilibrium in isotropic tur-
bulence. These cases are, respectively, turbulence in the presence
of a large-scale periodic forcing and turbulence with reversed initial
conditions. We show, using the Eddy-Damped Quasi-Normal Marko-
vian closure, that for turbulence in the presence of periodic forcing,
a Cε ∼ R−15/14

λ scaling is reproduced (Rλ indicating the Taylor-scale
Reynolds number) when the forcing-frequency is adjusted to be of
the order of the inverse of the integral time-scale. It is shown that
the spectrum can be decomposed into an equilibrium spectrum,
governed by Kolmogorov scaling in the inertial range, and a pertur-
bation spectrum, proportional to k−7/3, k being the wavenumber.
For reversed turbulence, a novel procedure is introduced to pre-
scribe initial conditions for the nonlinear transfer. Subsequently a
clear transient with a scaling Cε ∼ R−2

λ is observed in the dynamics.
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1. Introduction

1.1. Non-equilibrium and the normalised dissipation rate

One of the principle features of turbulence is itsmultiscale nature. In order to characterise a
turbulent flow one needs to describe the statistics resulting from the interaction of a large
number of scales. In most applications, where the knowledge of the detailed features of
individual scales is unimportant, it is useful to have a simple relation which connects the
dynamics of the different scales in a global way. This marks the importance of Taylor’s
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relation [1],

ε = Cε

U3

L
. (1)

In this relation ε is the dissipation rate of kinetic energy, in essence a small scale feature,
and U and L are characteristic velocity and lengthscales, associated with the large, energy
containing scales of the flow. This relation links therefore, by introducing a proportion-
ality parameter Cε , the dynamics of large and small scales. The quantity Cε ≡ εL/U3, or
normalised dissipation rate, can be considered the corner-stone of turbulence modeling
and the assumption that it is constant is implicitly used in the majority of turbulence mod-
els, since it allows to express the dissipation scales by the information at scale L. For this
constancy to hold, some kind of equilibrium must be assumed between the large and the
small scales. The notion of equilibrium is a delicate one in a non-equilibrium system such
as turbulence [2] and it is this notion of equilibrium, and its influence on the normalised
dissipation, that we will focus on.

Given its importance in turbulence modeling, it is not surprising that expression (1) has
received considerable attention. Early experimental results on its Reynolds number depen-
dence are reported by Sreenivasan [3] and it was shown that for high Reynolds numbers
Cε tends to a constant value of order unity. In the 2000s it was realised that the value of
Cε might not be universal and that L, U and ε should be carefully defined [4,5]. Even in
isotropic turbulence the value of Cε can vary and it was shown that statistically stationary
and freely decaying flows yield different values, which can be explained by the intrinsic
imbalance between large and small scales in freely decaying turbulence [6]. A link was also
found between the value of the normalised dissipation rate and the stagnation-points in a
flow [7].

The investigation of Cε revived after measurements [8–10] which showed that when
turbulence statistics are evaluated near a grid placed in a wind-tunnel, Cε is not constant,
but evolves as a function of the Taylor-scale Reynolds number (defined below), approx-
imately proportional to R−1

λ . Far enough beyond the grid, a constant value is found for
Cε [10], as classically expected. Note that these observations of non-constant normalised
dissipation persist at high enough values of the Reynolds number to discard low-Reynolds
number corrections as an explanation. The same relation (Cε ∼ R−n

λ , with n ≈ 1) was also
observed to describe fluctuations around a steady state in the very controlled framework
of periodic-box turbulence [11] and using a closure model [12].

No satisfactory explanation was obtained until it was shown that the non-equilibrium
dissipation scaling can be derived analytically [13] using an existing form of a non-
equilibrium correction to Kolmogorov’s energy spectrum [14], proportional to k−7/3, with
k the wavenumber. This showed that the observed non-equilibrium scaling of Cε is the
consequence of the shape of the perturbation spectrum. This yields for the normalised dis-
sipation rate a scaling proportional to R−15/14

λ , a functional form very close to, and given
the size of errorbars not easily distinguishable from the observedR−1

λ scaling in simulations
and experiments.

In a subsequent investigation [15] it was shown that in grid-turbulence, the regionwhere
this scaling is observed coincides with the part of the flow where the shear-layers, gener-
ated by the grid, are still present. Clearly, in this region, strong coherent structures exists.
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Therefore a rival explanation exists, which links the non-equilibrium scaling to the co-
existence of strong coherent structures with a less coherent background turbulence [16].
In the present investigation we show that in a statistical model of turbulence which does
not explicitly contain coherent structures, the non-equilibrium scaling is clearly observed.
We thereby show that coherent structures are not needed to explain the non-equilibrium
scaling.

1.2. Objectives and outline

There are two main questions that we will address in this manuscript. The first one is
whether we can reproduce the recent scaling relations of the normalised dissipation rate
using the Eddy-Damped Quasi-Normal Markovian (EDQNM) closure without invoking
any modification related to coherent structures. A major objective is to subtract from the
dynamics the spectrum associatedwith perturbations around equilibrium and to show that
this spectrum is proportional to k−7/3. We will consider the case of periodically forced
turbulence, since it is a well-controlled flow where the size of the fluctuations around
equilibrium can be manually adjusted.

The second question is whether we can reproduce the dynamics of turbulence with non-
trivial initial conditions using spectral closure. To address this questionwewill consider the
testcase of turbulence starting from reversed initial conditions. For this, a close evaluation
of the derivation of the EDQNM closure is needed, to determine how non-trivial initial
conditions can be taken into account in a consistent manner. Indeed, at present, the only
initial conditions which can be taken into account for simulations of developing turbulence
are Gaussian initial conditions, associated with zero triple correlations, and fully developed
initial conditions, associated with an established forward cascade.

In the following sectionwewill discuss the relationswhichwill be verified in this investi-
gation.We also discuss the EDQNMmodel which allows to do so. In Section 3 the results of
this investigation are presented for both periodically forced turbulence and freely evolving
turbulence, starting from reversed initial conditions. Section 4 concludes this manuscript.
In the appendix wewill outline the EDQNMclosure in a schematicmanner. This will allow
to determine where in the derivation the initial value of the triple correlations appears.

In this article we will explicitly show the dependence of wavenumber spectra on the
wavenumber. For brevity, time and space dependence will only be explicit when their
presence adds to clarity.

2. Scaling relations, test-cases andmethod

In the present investigation we will check the following relations,

Cε ∼ R−15/14
λ , (2)

for large-scale non-equilibrium and

Cε ∼ R−2
λ , (3)
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for the test-case of turbulence with reversed initial conditions [17]. In these relations the
Taylor-scale Reynolds number is defined as

Rλ =
√
20
3

K√
νε

, (4)

with K the kinetic energy. In expression (1) the quantity U is the RMS of the longitudi-
nal velocity fluctuations, so for an isotropic flow, U = √

2K/3. The integral lengthscale is
defined as

L = 3π
4K

∫
k−1E(k) dk, (5)

with E(k) the energy spectrum as a function of the wavenumber k.
The main tool chosen in the present investigation to investigate the scaling relations is

two-point closure theory, which we will discuss at the end of this section. We will now first
define the set-ups to assess these non-equilibrium scaling relations.

2.1. Large-scale non-equilibrium

Relation (2) was derived in the limit of small perturbations around a turbulence in equilib-
rium. With equilibrium we mean in this context that a statistically steady state is attained
where the energy injected in the flow is dissipated at the same rate. In such a flow at
large Reynolds numbers a spectrum is observed (for scales at wavenumbers larger than
the forcing-scale and smaller than the dissipation scale) of the form,

E(k, t) ∼ ε(t)2/3k−5/3, (6)

where the average dissipation ε is, in such a steady state, equal to the injection rate p and
energy flux. When large-scale perturbations are superposed on this system, a first-order
perturbation of the Kolmogorov-scaling yields a correction of the shape [14,18,19]

E1(k, t) ∼ ˙ε(t)ε(t)−2/3k−7/3. (7)

Using these two relations to compute the kinetic energy, dissipation and integral length-
scale lead then after some elementary algebra [13] in the limit of large Reynolds number
to expression (2). Whereas (2) is observed in several flows, the scaling of the perturba-
tion proportional to k−7/3 has only been approximately observed in DNS of moderate
Reynolds number turbulence [19]. Indeed, since E1 is subdominant for large k, E1 can be
only observed if the equilibrium part (6) is subtracted from the instantaneous spectra. This
procedure was recently also performed for the case of inhomogeneous turbulence [20].

The ideal test-case to assess the correctness of expressions (2) and (7) seems to be
periodically forced turbulence [21–23], where we sustain a turbulent flow by an artificial
forcing term containing a steady part plus a periodic perturbation, leading to the energy
balance

dK(t)
dt

= p0(1 + A cos(ωt)) − ε(t). (8)

Periodically forced turbulence allows to consider arbitrarily small perturbations (A � 1)
and arbitrary frequencies ω. It is therefore the perfect framework to assess the −15/14
scaling prediction since its derivation is based on perturbations around an equilibrium
state.
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2.2. Rapid non-equilibrium in reversed turbulence

A second type of non-equilibrium scaling was recently discovered while investigating the
properties of time-reversed turbulence. It is well known that the Euler-equations are invari-
ant under a simultaneous reversal of the velocity u → −u and time t → −t (see [24] for
instance). This property of the Euler-equations was used in the past to assess subgrid-
models for large eddy simulation [25,26]. For the Euler-equations the consequence is that,
when in a flow the velocity is reversed in every point in space, the flow will evolve back-
wards in time until the initial condition is reached. The average direction of the energy
cascade is thus reversed, which is a logical consequence of the fact that the transfer of
energy is associated with triple velocity correlations, and all odd velocity correlations
change sign when the velocity changes its sign.

The presence of viscous dissipation breaks this symmetry property, but nevertheless,
reversing the velocity in Navier-Stokes turbulence does reverse the transfer, and the sym-
metry breaking by the viscous dissipation should not instantaneously affect the large scales.
In Ref. [17] it was shown that such a reversal of the velocity of Navier-Stokes turbulence
leads to a transfer which is heavily out-of-equilibrium giving rise to a new non-equilibrium
scaling Cε ∼ R−2

λ . Even though reversed turbulence is a rather artificial type of flow,
the same dissipation scaling is also observed in the early phase of development of cer-
tain other turbulent flows with backward energy transfer [27,28]. Clearly, this type of
non-equilibrium corresponds to fast variations of the dissipation rate.

Relation (3) can be explained when the small scales vary substantially, while the large
scales are almost stationary. Let us explicitly show the time-dependence of rapidly varying
quantities, and let us evaluate all other quantities at instant t = 0. We then have

Cε(t) ∼ ε(t)L(0)
K(0)3/2

= ε(0)L(0)
K(0)3/2

ε(t)
ε(0)

(9)

and

Rλ(t) ∼ K(0)√
νε(0)

√
ε(0)
ε(t)

(10)

we find directly that,

Cε(t)
Cε(0)

= ε(t)
ε(0)

and
Rλ(t)
Rλ(0)

=
√

ε(0)
ε(t)

(11)

so that

Cε(t) = (
Cε(0)Rλ(0)2

)
Rλ(t)−2. (12)

For this scaling to be observed the large scales (determining K and L) should evolve slowly
compared to the dissipation. In Ref. [17] such a system was analysed: time reversed tur-
bulence. The main interest to consider this type of flow is not to validate the R−2

λ scaling,
which was well explained, but to show that closure can reproduce it. The technical point is
that this necessitates to take into account non-trivial initial conditions, which is a novelty
for two-point closure approaches.



222 L. FANG ANDW. J.T. BOS

2.3. Two-point closure to evaluate non-equilibrium

Since we consider unsteady isotropic turbulence, the use of two-point closure seems a suit-
able approach. Indeed, closures are efficient tools to study isotropic turbulence and allow
to address directly ensemble averages at high Reynolds numbers. This is in particular con-
venient in time-dependent systems, where DNS need to be run for a substantial amount of
time, or even various simulations should be carried out, to get converged statistics. Further-
more the assumptions and limitations of closure are well known so that, if a closure allows
to reproduce a feature observed in DNS or experiment, we exactly knowwhich ingredients
should be taken into account to explain the phenomenon. Specifically, in the present study,
since we are interested in the assessment of a sub-dominant scaling to the energy spectrum,
it is valuable that the statisticswe consider correspond to perfectly isotropic system. Indeed,
thereby we can discard that observations are associated with anisotropy and inhomogene-
ity, effects which also induce subdominant corrections to the energy spectrum [20,29]. For
these different reasons, closure-approaches such as the EDQNM system have played an
important role in the study and understanding of turbulence since the 1970s [30–32].

We consider the evolution of the Lin-equation,

∂tE(k, t) = T(k, t) + P(k, t) − 2νk2E(k, t), (13)

where P(k, t) is a term representing the production of kinetic energy and the last term
represents viscous dissipation of energy. The first term on the righthand-side, T(k, t) is the
nonlinear transfer term, giving rise to the transfer of energy between different scales.

For the case of large-scale non-equilibrium we force the largest scales of the system by
a forcing of the form

P(k, t) = p0(1 + A cos(ω(t))δ(k − k0). (14)

where the delta-pulse is associated with a narrow band in wavenumbers at k0 = 1. After a
transient, the response of the turbulence becomes periodic with the same frequency ω as
the forcing. During this periodic state, phase-averaged statistics are computed and instan-
taneous values of the integral quantities are reported. Since the transfer T(k, t) integrates
to zero and the viscous term to ε, integrating Equation (13) yields the energy balance (8).

To integrate Equation (13) the transfer term needs to be closed by a model since it
contains unknown triple correlation. In the EDQNM approximation the model is given
by,

T(k, t) =
∫∫

	

fkpq
kpq(t, t0)E(q, t)
(
E(p, t)
p2

− E(k, t)
k2

)
dp dq, (15)

with

fkpq = k2p2

q
(xy + z3), (16)

a pre-factor independent of time and Reynolds number. The integration domain 	 in the
p−q plane is such that triangles can be formed with sides k, p, q and x, y, z are the cosines
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of the angles of this triangle [33]. The triad-timescale is given by


kpq(t, t0) =
(
1 − (1 − α) exp[L′(3)

kpq,t(t0 − t)]
)

L′(3)
kpq,t

. (17)

with

L′(3)
kpq,t = L′(k, t) + L′(p, t) + L′(q, t) (18)

and

L′(k, t) = νk2 + λ

√∫ k

0
s2E(s, t) ds, (19)

λ being a model-constant, setting the Kolmogorov constant. Here we use λ = 0.5. The
technical novelty in the present investigation with respect to spectral modeling is that we
can, by changing the value of α, consider a certain number of specific different initial con-
ditions for the triple correlations. Here α can be a function of triad wavenumbers, but in
the present contribution we will consider the simplest cases of constant α. Expression (17)
is derived in the appendix, where it is shown that the initial transfer is associated with the
value of triple correlations at t0 when the evolution-equation for triple velocity correlations
is integrated from t0 to t. For forced steady or periodic turbulence this modification does
not change the results, since the influence of the termproportional toα vanishes for t 	 t0.

However at short times, in particular for the case of reversed initial conditions, this
parameter is essential to take into account the influence of the initial value of the triple
correlations on the transfer. Indeed, for this case, the forcing is set to zero and the tur-
bulence is left to decay freely. We start from a normally decaying case (i.e., α = 0) and
wait until Cε is quasi constant, which corresponds to fully developed triple correlations.
Subsequently we change α to consider reversed initial conditions.

3. Results

In this section we present the results of the two considered test-cases. First we show the
results for turbulence submitted to time-periodic forcing. Then we will show the case of
reversed initial conditions. In both cases we will focus on the non-equilibrium properties,
as characterised by the behavior of the normalised dissipation rate.

The closure implementation is basically unchanged over the decades and the code is
similar to the one described in [31,32,34] using a routine developed in Ref. [35]. The main
difference is that, whereas in the 1970s super-computing facilities were needed, the integra-
tion is now carried out at higher resolution and higher Reynolds numbers using a simple
laptop.

3.1. Spectral imbalance in periodically forced turbulence

We consider an isotropic turbulent flow, maintained by forcing protocol (14) contain-
ing both a steady and a periodic contribution. The spectral grid ranges from k = 1 to
kη ≈ 5 (with η = ν3/4ε−1/4) using typically 100-200 gridpoints, logarithmically spaced.
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Figure 1. Results for 〈Rλ〉 = 240, modulation amplitude A = 1 and ωT = 1. (a) Kolmogorov-
normalised energy spectra. The violet lines indicate Ẽ(k, t) ≡ E(k, t)ε−1/4ν−5/4 as a function of time.
The grey lines correspond to the absolute value of the energy spectra |Ẽ1(k, t)| ≡ |E1(k, t)|ε−1/4ν−5/4

associatedwith the temporal perturbation. Averaged spectra are shown in red. (b) Associated time-series
of K, ε, L during the statistically steady state.

CPU-time is approximately 1 minute per computation up to t = 100, on a regular desk-
top computer or laptop. The viscosity is first set at ν = 0.001 resulting in an average
Reynolds number of 〈Rλ〉 ≈ 240 but for larger values of the Reynolds number the dynam-
ics do not significantly change as we will illustrate. The value of the mean energy input
rate is set to p0 = 0.35. The values of A and ω determine the amplitude and frequency
of the modulation, respectively. For the modulation frequency first results are presented
for ωT = 0.5; 1; 2, with T = L/U ≈ 1. This corresponds to a modulation with a frequency
around the natural frequency of the turbulence.

We report results for two amplitudes. The former, A = 1 represents modulation of the
energy input with fluctuations of the order of the mean input rate, whereas the second
value, A = 0.1 allows to consider the modulation as a small periodic perturbation upon
the steady flow. A detailed investigation of periodically forced turbulence, in particular its
amplitude response, was carried out using the same set-up [23].

In Figure 1(a) we show the kinetic energy spectrum for different time-instants for the
case A = 1 and ωT = 1. The average Reynolds number is large enough to observe the
beginning of an inertial range with a scaling proportional to k−5/3.

The spectra are time-averaged over a cycle of the forcing for every value of kη (note
that a linear interpolation is used to transpose the spectra from a k-grid to a kη-grid), to
obtain the equilibrium spectrum. This equilibrium spectrum is shown in red. Only at small
kη values the instantaneous spectra can be visually distinguished from the average in this
representation.

Subtracting the equilibrium spectrum from the instantaneous energy spectra yields the
perturbation spectrum (see also [20]). This spectrum is a highly fluctuating quantity, since
it can be both positive andnegative.Nevertheless, the average of the absolute value allows to
show the onset of the k−7/3 spectrum, in agreement with the theoretical prediction (7) and
confirming the low Reynolds observations (Rλ ≈ 120 − 140) in DNS [19]. Note that the
scaling range is not well developed here and the wavenumber dependence not perfectly
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Figure 2. Parametric plot of Cε as function of Rλ during the statistically steady state at 〈Rλ〉 = 240. (a)
Modulation amplitude A = 1. (b) Modulation amplitude A = 0.1.

proportional to −7/3. This will be further examined at higher values of the Reynolds
number below.

In Figure 1(b) we show the temporal signals of the main quantities for the case ofA = 1
and ωT = 1, normalised by their time-averaged values. A phase-shift is observed between
the different quantities. For a detailed analysis and explanation of the origin of these phase
shiftswe refer to [23]. Results for the spectra forA = 0.1 are very similar and are not shown.

From these three quantities K, ε, L we can compute the normalised dissipation rate Cε

and the Reynolds number. The parametric plot of these quantities is shown in Figure 2
for different amplitudes and frequencies. Both quantities are normalised by their time-
averages. The value for the average normalised dissipation rate is 〈Cε〉 = 0.42.

The results for amplitude A = 1 and A = 0.1 are shown in Figure 2(a-b) respectively.
The qualitative behavior is fairly similar with all plots being approximately alignedwith the
theoretical R−15/14

λ scaling. These results are also consistent with the DNS results of Ref.
[11] where the modulation is not imposed, but is a natural consequence of the turbulent
dynamics. The amplitudes of the excursions around the average values are determined by
the amplitude of the modulation, as is illustrated by comparing the two plots in Figure 2(a-
b). Also the amplitudes in these parametric plots decrease for higher frequencies, which is
a consequence of the exact frequency dependence of the amplitudes of the different quan-
tities [23]. A persistent feature for all plots is the elliptic shape of the curves. This feature
needs further examination.

It is interesting to assess how robust the dissipation scaling is as a function of the mod-
ulation frequency. At high frequencies ωT 	 1 the variations of the integral quantities
become infinitesimally small. In this limit only the forced mode is affected by the mod-
ulation [23]. In this limit the dissipation scaling is not expected to hold, since it assumes
a broad-band perturbation spectrum and not a spectrum restricted to the forced modes
only. In this limit the perturbations do therefore vanish and should not necessarily satisfy
the −15/14 scaling.

At very low frequencies ωT � 1, the turbulence behaves in a quasi-static manner and
the perturbation spectrum should become infinitesimally small. However, the slowly vary-
ing integral scales should lead to a slowly varying Reynolds number. In this limit the value
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Figure 3. Scaling of the exponent n in the relation Cε ∼ R−n
λ as a function of themodulation frequency

during the statistically steady state at 〈Rλ〉 = 240 and modulation amplitude A = 1. The dashed line
represents the value 15/14. The inset shows the data in double-logarithmic representation.

of Cε should therefore remain constant, while Rλ varies. The exponent n in Cε ∼ R−n
λ

should thus go to zero.
We have systematically changed the frequency in the range ωT ∈ [0.01, 20] and the

results of the exponent n is shown in Figure 3. The exponent is determined as a best fit
of a power law to the data during the steady-state. The low frequency ‘quasi-static’ limit
n = 0 is observed. At high frequencies, in the ‘rapid-distortion’ limitωT 	 1 the exponent
drops from the theoretical scaling towards a value close to 0.5. The range of frequencies
where the theoretical value is approached is situated around ωT = 1.

One could argue that this range is relatively small.However, it should be realised that this
is themost important range of frequencies. Indeed, inmost flowswe cannot simply decom-
pose the flow into a mean-forcing plus a modulation, since both are in general generated
by the same physical effects. The turbulence does then act as a whole and the time-scale
on which it acts is the integral frequency. Furthermore, it was shown experimentally that
to affect the turbulence, and in particular its dissipation rate, the most efficient stirring
frequency is associated with the integral timescale [36]. The frequency ωT ≈ 1 is thus
the important reference case for all natural evolving turbulent flows, such as wake, grid
or jet-flows, and this is where the dissipation scaling (2) holds. Stirring turbulence at a
length scale with a modulation frequency which is too distinct from the typical turbulent
timescale associated with that length scale is not efficient. This is clearly illustrated in [23],
where it is shown that for high frequencies the response of the kinetic energy and dissipa-
tion decays rapidly. If one wants to stir or affect the turbulence at a more rapid timescale,
one needs not act only on the large scales but also at the small, more rapidly evolving scales.
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Figure 4. (a) Parametric plot of Cε as function of Rλ during the statistically steady state comparing
〈Rλ〉 = 240 and 2400. Modulation amplitude A = 1, ωT = 1. (b) Energy spectra at 〈Rλ〉 = 2400. Kol-
mogorov normalised energy spectra Ẽ(k, t) ≡ E(k, t)ε−1/4ν−5/4 as a function of time and absolute
value of the energy spectra Ẽ1(k, t) ≡ E1(k, t)ε−1/4ν−5/4 associated with the temporal perturbation.
Averaged spectra are shown in red. (c) Compensated plots km〈Ẽ1(k, t)〉 for three values ofm.

This is exactly the case in reversed turbulence (considered in the next section), where not
only the large scales are affected but also directly the rapidly evolving dissipation-scales.

A remaining question is whether the results change at higher values of the Reynolds
number. In order to assess this, we have carried out a numerical integration at a value of an
order of magnitude larger, i.e. at Rλ ≈ 2400. In Figure 4(a) we compare the Cε(Rλ) plots at
Rλ = 240 and 2400. It is observed that the results practically collapse. This illustrates that
the results are governed by the large energy containing scales, as anticipated [13].

Furthermore, in Figure 4(b) we show the energy-spectra E(k, t) as a function of time. As
for the Rλ = 240 results, we observe that in Kolmogorov-units these spectra almost per-
fectly collapse at high values of k. Again substracting this equilibrium spectrum from the
energy spectra yields an estimate for the spectrum E1(k, t) associated with the perturba-
tion. The k−7/3 scaling is observed over a wavenumber interval spanning more than two
decades. To more precisely determine the powerlaw dependence, we show in Figure 4(c)
compensated spectra. It is observed that the powerlaw exponent is close to −7/3 in the
inertial range. However, near the forcing scale the spectrum is significantly steeper.
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Figure 5. (a) EDQNM results for the evolution of kinetic energy spectra. (b) Evolution of the nonlinear
transfer spectrum. The arrows in each figure denotes the time direction.

The conclusion of this part is that in periodically forced turbulence the theoretically
predicted scaling for the normalised dissipation rate is observed for stirring frequencies
around the frequency of the most energetic structures of turbulence, which is the natu-
ral frequency on which most global features of a flow evolve. When the stirring frequency
deviates far enough from the integral frequency, the scaling does also change, as expected.
An additional conclusion is that no coherent structures need to be present to produce
the non-equilibrium scaling. Furthermore, the non-equilibrium spectra is shown to scale
proportional to k−7/3, in agreement with theory.

3.2. Rapid non-equilibrium in reversed turbulence

We now turn to the results for freely evolving turbulence where the transfer is reversed.
The turbulence starts from Gaussian initial conditions and is left to decay. Once a self-
similar decay is observed with a close to constant normalised dissipation rate, the transfer
is reversed by setting α = −1 in expression (17). At this time the Reynolds number isRλ =
253.

The energy spectra at several time instants are shown in Figure 5. During a short time-
interval, the velocity reversal leads to a backward energy transfer, that is, decrease of small-
scale energy and increase of large-scale energy.

The associated energy transfer spectra at the same time-instants are shown in
Figure 5(b). It is observed that initially T(k) is positive at lower wavenumbers while neg-
ative at higher wavenumbers, indicating a reversed transfer. This evolves gradually to a
forward transfer. The important observation in this figure is therefore that we can repro-
duce reversed turbulence using EDQNM, which opens the way to study the effect of
non-trivial initial conditions for the energy transfer using EDQNM.

The next question we ask is whether we confirm the non-equilibrium scaling (3). We
plot the associated quantities in Figure 6 and show that indeed, the−2 scaling is very clearly
observed. In this early stage of the simulation, the Reynolds number increases, since the
large scale structures change slowly (leading to quasi constant kinetic energy K and inte-
gral lengthscale L) but small scales change rapidly (leading to unsteady dissipation ε). Then
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Figure 6. Relation between Cε and Reλ, by usingmodified EDQNMwith reversed initial field. The arrow
in each figure denotes the time direction.

Figure 7. (a) Initial nonlinear transfer spectra for different EDQNM cases. The vertical arrow indicates
the increase of α from−1.5 to 1.5 respectively. (b) Relation between Cε and Reλ, for the cases illustrated
in (a).

after a transition stage, the flow field is self-organised and freely decays with quasi con-
stant Cε . This thus provides evidence that the observations in [17] are robust enough to be
reproduced using spectral closure theory.

To somewhat further investigate the influence of initial conditions on the dissipation-
rate scaling, we perform a parametric study where we vary in expression (17) for the
triad-timescale the value of the parameter α in the range α ∈ [−1.5, 1.5]. Several values
of α are associated with specific physical situations: α = −1 corresponds to reversed tur-
bulence,α = 0 toGaussian (zero triple correlation) velocitymodes andα = 1 to developed
turbulence. Initial energy transfer spectra are shown in Figure 7(a). All cases share the same
energy spectrum with different initial transfers. Specifially, the transfer T∞(k) marked in
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Figure 7(a) corresponds to the transfer predicted by traditional EDQNM procedures at
the long-time limit. In Figure 7(b) it is observed that all parametric plots start at the same
position for t = 0. At long times they all tend to the asymptotic value Cε ≈ 1.1. The case
with α = 1 starts directly on this asymptotic value.

All other cases evolve initially along the R−2
λ relation. Themaximum deviation from the

asymptotic value is importantly influenced by the value of α, with all values α < 1 leading
to negative deviations and the α > 1 case leading to a positive deviation. All these sys-
tems are thus affected at the small scales and confirm the R−2

λ small scale non-equilibrium
relation.

4. Conclusion

We have focused in this work on temporal fluctuations of the normalised dissipation
rate. We have shown that the dissipation-rate scaling relations Equations (2) and (3) are
observable in two-point closure simulations of isotropic turbulence. For the case of peri-
odically forced turbulence, the parametric plots (Rλ(t),Cε(t) show an elliptic shape with a
longer-axis proportional to R−15/14

λ .
This shows that coherent structures are no prerequisite to have these types of non-

equilibrium turbulence. Also, we report on the first high Reynolds number confirmation
of a k−7/3 spectrum associated with unsteady perturbations around equilibrium, confirm-
ing theoretical arguments and low Reynolds number DNS results [19]. Furthermore, we
showed that non-trivial initial conditions for triple correlations can be specified in the
framework of the EDQNM closure. Thereby reversed turbulence can be investigated by
closure.

Even though we stressed that all these observations are reminiscent of situations where
the turbulence is out of equilibrium, we should admit thatCε remains a rather robust quan-
tity. In all the flows considered here, be it forced by a large-amplitude periodic energy input,
or starting from reversed initial conditions, the value of Cε remains bounded. Indeed, for
the periodically forced cases, the value of Cε varies between 0.2 < Cε < 0.6, whereas in
the freely evolving case its value varies between 0.6 and 1.2. This relative robustness is cer-
tainly reassuring for the use of turbulence models which heavily rely on the approximate
constant value of the normalised dissipation. It will depend on the application whether the
amount of non-equilibrium should be taken into account. For flows exhibiting large val-
ues of the non-equilibrium, 2−equation models might be not precise enough and models
using more degrees of freedom should be preferred [15,37,38].
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Appendix. The EDQNM closure with particular focus on time dependence

The derivation of the EDQNM model is now quite standard [24,39,40]. We will recall the deriva-
tion in symbolic notation here focusing on particular on the time-dependence of damping terms
and the memory of initial conditions. Before introducing symbolic notation, we show the Fourier-
representation of Navier-Stokes turbulence and the resulting unclosed equations for second order
correlations. These are for the Navier-Stokes equations,

∂tui(k, t) = −L(k, t)ui(k, t)

− ikjPim(k)
∫

δ(k − p − q)uj(p, t)um(q, t) dp dq, (A1)

with
Pim(k) = (

δim − kikm/k2
)

(A2)
and the term L(k, t) is

L(k, t) = νk2 − F(k, t). (A3)
Here ν is the kinematic viscosity and F(k, t) determines the shape of the forcing spectrum.Multiply-
ing by ui(−k, t) and averaging yields for the velocity-auto-correlation, U(k, t) = 〈ui(k, t)ui(−k, t)〉,

∂tU(k, t) = −[L(k, t) + L(−k, t)]U(k, t)

− iPijm
∫

δ(k − p − q)〈uj(p, t)um(q, t)ui(−k, t)〉 dp dq. (A4)

with Pijm(k) = kjPim(k) + kmPij(k). Similarly, an equation can be derived for the triple correlations
on the RHS of Equation (A4).
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We write these equations in symbolic notation,

∂u
∂t

= −L(1)u + F(1)[uu] (A5)

∂〈uu〉
∂t

= −L(2)〈uu〉 + F(2)[〈uuu〉] (A6)

∂〈uuu〉
∂t

= −L(3)〈uuu〉 + F(3)[〈uuuu〉] (A7)

where all indices, integrals and time and wave-vector dependencies are omitted. Equations (A5)
and (A6) are symbolic representations of Equations (A1) and (A4), respectively.

Classically, the next step is invoking the quasi-normal assumption, where all fourth-order cor-
relations are expressed as a function of second order correlations. This is represented by 〈uuuu〉 →
�〈uu〉〈uu〉. The procedure is called quasi-Normal, since in a fully normal system, the triple cor-
relations would also be Gaussian and thereby zero. To improve upon the performance of the
quasi-Normal closure, eddy damping is added to the linear term of the triple correlations,

L(3) → L(3) + η(k) + η(p) + η(q) ≡ L′(3), (A8)

yielding

∂〈uuu〉
∂t

= −L′(3)〈uuu〉 + F(3)[�〈uu〉〈uu〉]. (A9)

Equation (A9) can be integrated, yielding

〈uuu〉 = exp
(

−
∫ t

t0
L′(3)(t′) dt′

)

×
[∫ t

t0

{
exp

(∫ t′

t0
L′(3)(t′′) dt′′

)
F(3)[�〈uu〉(t′)〈uu〉(t′)]

}
dt′ + 〈uuu〉0

]
, (A10)

where 〈uuu〉0 appears as an integration constant, determined by the initial conditions of the triple
correlations. The last step in the EDQNM approximation allowing to obtain a simple closed expres-
sion for the evolution of the triple correlations is theMarkovianization. This procedure assumes that
the triple correlations are the quantities which are most rapidly varying in time. Assuming L′ and
〈uu〉, which both depend on time t, constant compared to the exponential, the expression becomes

〈uuu〉 = exp[−L′(3)t]
[∫ t

t0
exp[L′(3)t′] dt′F(3)[�〈uu〉(t)〈uu〉(t)] + 〈uuu〉0

]
. (A11)

We can integrate the last expression to find.

〈uuu〉 = 
′F(3)[�〈uu〉〈uu〉] + 〈uuu〉0 exp[−L′(3)t], (A12)

with


′ =
(
1 − exp[L′(3)(t0 − t)]

)
L′(3) . (A13)

The important point for the present investigation is the presence of the last term in (A12), resulting
from the integration constant 〈uuu〉0. The EDQNM closure can thus not be integrated as long as the
initial value of the triple correlations is unknown. Determining this quantity is not straightforward
since it corresponds to a correlation among three Fourier modes. Experimentally determining this
correlation seems excessively complicated. The common procedure in most closure investigations
of freely evolving turbulence is therefore to add an assumption on the initial conditions. There are
two obvious choices. The first one is to assume that the initial conditions are Gaussian, assuming
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zero value 〈uuu〉0 = 0. The second choice is to assume that the initial field is fully developed, so that

〈uuu〉0 = exp[L′(3)t0]
L′(3) F(3)[�〈uu〉〈uu〉]. (A14)

This particular choice leads to the expression for the triple correlations,

〈uuu〉 = 
F(3)[�〈uu〉〈uu〉], (A15)

with


 = 1
L′(3) . (A16)

A third choice for the triple correlations, which is of particular interest for the present study, consists
in assuming the flow developed, but with reversed initial conditions, this would correspond to

〈uuu〉0 = −exp[L′(3)t0]
L′(3) F(3)[�〈uu〉〈uu〉], (A17)

leading to the triple correlation time,


 =
(
1 − 2 exp[L′(3)(t0 − t)]

)
L′(3) . (A18)

We can generalise these three possibilities by the following expression:


 =
(
1 − (1 − α) exp[L′(3)(t0 − t)]

)
L′(3) . (A19)

However these possibilities are not exhaustive since we have assumed here that the initial transfer
is proportional to the developed transfer at every wavenumber. A more general expression can be
imagined if other cases need to be considered, but expression (A19) is sufficiently general for the
present investigation.
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