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ABSTRACT 

Estimation of foliar traits through imaging spectroscopy is 

one of the current major challenge in remote sensing to 

monitor ecosystem functions. New spaceborne hyperspectral 

sensors are upcoming or already in activity. In this context, 

future estimation models are required to be robust to 

temporal variations (e.g. illumination and phenological 

conditions) and changes in vegetation geometry in order to 

cope with the wide variety of canopy observations. 

Our work is threefold. First, we analyze the direct radiative 

transfer model to highlight potentials of one-dimensional 

CNN (1D-CNN) to retrieve foliar traits. Secondly, we build 

a 1D-CNN inverse model and search for an optimal 

architecture. Finally, we test the retrieval performance of our 

1D-CNN on four oak species over four forest sites in 

California at different phenological stages during two years. 

Index Terms— Foliar traits, One-dimensional CNN, 

PROSPECT, DART, temperate forests, AVIRIS 

1. INTRODUCTION

Monitoring forest ecosystems at large scales has become a 

major challenge in ecology, which is needed to improve our 

understanding of forest resilience against the increased 

impact of global climate change. Forests provide ecosystem 

services and help regulating climate on both local and global 

scales. Past research in ecology defined foliar traits as 

indicators [1] of plant physiological processes 

(photosynthetic activity, biomass productivity and hydration 

status). Traits are related to the biochemical content of 

leaves in the canopy and they globally provide key 

information about tree and forest health status.  
Foliar traits alter the light reflected by the canopy by 

absorbing incident light in specific wavelengths. In recent 

decades, several studies demonstrated that imaging 

spectroscopy, also known as hyperspectral imaging is a 

powerful tool to retrieve foliar traits [2].  

Several hyperspectral spaceborne sensors are already in 

service or schedule for the next decade (e.g. PRISMA, 

EnMAP, CHIME, and SBG).  

Previous studies lead to several strategies to map foliar traits 

from imaging spectroscopy at pixel scale using the sensed 

reflectance shaped as a vector. While radiative transfer 

models (RTMs) simulate the direct physical process of 

canopy/light interactions, estimation strategies rely on 

building the inverse model of this physical process. Most 

promising strategies; called hybrid methods; build the 

inverse model with a machine learning regression algorithm 

(MLRA) trained on a set of RTM simulations. Applying the 

trained MLRA model on imaging spectroscopy data enables 

estimating foliar traits. Most studies focused on classical 

MLRA including artificial neural networks (ANN) or multi-

layer perceptron [3]. Simultaneously, convolutional neural 

networks (CNN) have emerged and have the ability to deal 

with complex supervised learning problems, such as image 

classification problems. However, to our knowledge, few 

studies have used it for vegetation analysis with 

spectroscopic data [4], [5]. 

Moreover, previous studies on hybrid methods lead to 

suitable estimation performances but present two drawback: 

foliar traits are estimated separately from specific spectral 

ranges and they were usually trained and evaluated on a 

single site at a specific date.   

In this work, we seek to estimate four foliar traits: 

concentrations of chlorophylls a and b (Cab), carotenoids 

(Cxc), equivalent water thickness (EWT), and Leaf Mass 

Area (LMA). The objective is to evaluate the performance 

of a new hybrid approach based on 1D-CNN and RTMs 

considering different forest sites, tree species and seasonal 

dates. We attempt to perform a joint estimation of the four 

foliar traits from the whole range 400 nm-2500 nm, which 

constitutes another original feature of our work.  

Section 2 describes the synthetic and real dataset used to 

further build and evaluate our estimation model. Section 3 

presents the method and Section 4 the results. Finally, we 

conclude our study in section 5. 



2. MATERIALS

Our validation measurements is a dataset containing 114 leaf 

samples collected over four oak species (Quercus 

Chrysolepsis (QUCH), Quercus Douglasii (QUDO), 

Quercus Kelloggii (QUKE), Quercus Wislizeni (QUWI)). 

Samples were collected on four study sites located on Sierra 

Nevada Mountains and its foothills, in California, with a 

latitude varying between 37° and 39°, an elevation gradient 

between 200 m and 1500 m above sea level and covering 

two ecosystem types (oak savanna, mixed conifer and 

broadleaf forests). 

Leaf collection occurred in 2013 and 2014 at 3 seasons of 

the year (spring, summer and fall) to cover the phenological 

evolution of the target species and were followed by 

laboratory analysis to measure foliar traits that will be used 

as reference. Hyperspectral images at 14m ground sampling 

distance of the study sites were acquired with AVIRIS-

Classic sensor close to all field sampling dates. Pixels 

related to field measurements and their spectra were 

extracted from AVIRIS images. 

We build a synthetic dataset to train and test our 1D-CNN 

model. Radiative transfer simulations are performed with a 

combination of the leaf-based PROSPECT [6] and the 3D 

canopy-based DART [7] RTMs. They both proved to be 

reliable to simulate leaf and canopy optical properties and to 

retrieve foliar traits after inversion. PROSPECT include the 

four foliar traits as parameter and a leaf structure parameter 

(N). At the canopy level, we use a standard forest 

representation (SFR) in DART [8]. The SFR model admit 

illumination parameters (sun zenith angle SZA, sun azimuth 

angle SAA), parameters related to the canopy geometry 

(canopy cover CC, leaf area index LAI, average leaf angle 

ALA) and soil reflectance. 

Table 1: Ranges of values used for latin hypercube 

generation 

Variable Min. value Max. value 

Cab (µg.cm-2) 0 140 

Cxc (µg.cm-2) 0 35 

EWT (cm) 0.001 0.055 

LMA (g.cm-2) 0.001 0.05 

N 1.0 3.0 

LAI (m2.m-2) 0.05 7.0 

ALA (°) 0 90 

CC (%) 10 100 

We simulated 29,000 reflectance spectra and saved 5000 

simulations selected randomly as test data. Illumination 

angles were chosen according to those of the 29 AVIRIS 

images for the four study sites. Other simulation inputs were 

generated through a latin hypercube sampling. Other model 

inputs include foliar traits but also canopy geometry 

parameters (CC, LAI, ALA) and several types of soil 

reflectance. For each AVIRIS image, 1000 cases were 

generated using the ranges of variation defined in Table 1. 

3. METHOD

This work is organized in three steps. First we perform 

sensitivity analysis to justify the use of 1D-CNN. Then we 

present the architecture of the 1D-CNN model and the 

calibration process of its parameters. Finally, we describe 

how we applied and evaluate the 1D-CNN performance to 

estimate foliar traits from AVIRIS spectra of the validation 

dataset.  

3.1. JUSTIFICATION OF 1D-CNN FOR HYBRID 

APPROACH 

Foliar traits rely on biochemical molecules that have 

wavelength specific absorption bands that influence the 

shape of the reflectance spectrum while all other parameters 

have wavelength independent influence on the entire optical 

domain. We made the hypothesis that specific features, 

sensitive to foliar traits, could be extracted from filters 

applied to reflectance spectra (such as wavelet filters).  

To evaluate our assumption we assess the relative impact of 

foliar traits on several reflectance features. We performed a 

variance-based sensitivity analysis [9] on the DART-

PROSPECT models combination. We compute with 

openturns python library [10] a Sobol indices experiment of 

size 1000 (leading to 13000 simulations). 

We perform at first the sensitivity analysis on the reflectance 

for each spectral band, then on a continuous wavelet 

transform (CWT) of the reflectance, and compared the 

results. 

3.2. 1D-CNN CALIBRATION 

Our 1D-CNN is based on a classical CNN architecture and 

includes: several one dimensional convolution layers (each 

time followed by an activation layer and a maxpooling 

layer), a flatten layer, several fully-connected layers. Inputs 

of the network are reflectance at 160 wavelength (one 

wavelength every 10 nm between 400 nm and 2500 nm 

except for water absorption bands between 1270-1450 nm 

and 1800-1980 nm) and 4 outputs (the 4 foliar traits of 

interest). 

This architecture involves at least five hyperparameters: 

number of convolutional layers, size of convolutional 

kernels, number of kernels, number of dense layer, and size 

of hidden layers. We explore different combination of 

hyperparameters with a TPE sampler [11] implemented in 

the Optuna library [12]. Additionally, the batch size and 

learning rate were parameters included in the TPE sampling. 

We trained our networks with a mean squared error loss 

during 50 epochs. Training our networks during 50 epochs 

was enough to reach convergence in the training process. 
TPE sampling is an adaptive sampling strategy and aims to 

reach the optimal hyperparameters that minimize the mean 

square error loss on test data. 



3.3. EVALUATION OF 1D-CNN PERFORMANCES 

Finally, with the validation dataset described in section 2, 

we estimate foliar traits from AVIRIS spectra with our 1D-

CNN. We assess the performances of our method using a 

root mean square error (RMSE) metric.  

4. RESULTS

4.1. JUSTIFICATION OF 1D-CNN FOR HYBRID 

APPROACH 

The sensitivity analysis shows: LMA explains up to 20% of 

the total reflectance variation in the near-infrared range; 

EWT at most 10% of the variance, around 1650 nm; Cab 

15% around 650 nm and 720 nm; and Cxc less than 5% in the 

500-550 nm range. In contrast, all the other parameters

explain at least 70% of the reflectance variations in the

optical domain.

Figure 1: Results of the variance-based sensitivity 

analysis on canopy reflectance CWT for the four foliar 

traits (chlorophylls Cab, carotenoids Cxc, Equivalent 

Water Thickness (EWT), Leaf Mass Area (LMA)). 

Hatched rectangles represent atmospheric absorption 

bands. 

Foliar traits have significant influence on CWT outputs and 

even that a well-chosen filter can isolate the influence of a 

specific foliar trait. At a given wavelet scale, Cab or Cxc 

explain more that 50% of the filtered output in the visible 

range. Similarly, EWT and LMA affect more than 60% of 

the output variance in the infrared (Figure 1). This 

experiment demonstrates that a proper MLRA for inversion 

should be able to construct a representation of the 

hyperspectral signal robust to variation of the canopy 

geometry and illumination condition. In this frame, 1D-

CNNs are promising algorithms to create inverse models to 

assess canopy foliar biochemistry since the first layer of a 

CNN acts as a set of filters, and could indeed extract 

features from the shape of the spectra.  

4.2. 1D-CNN CALIBRATION 

We found that a learning rate between 5.10-4 and 7.10-4 leads 

to better results. Batch size was found optimal between 100 

and 250, although the choice of batch size had less 

significant impact on the results. The best architecture is the 

following: a single convolution layer (16 kernels of size 

115) and 3 dense layers (hidden layers of size 86 and 90).

Figure 2: Distribution of mean square error validation 

loss compared for number of convolution layers (left) 

and kernel size of first layer (right) 

More generally, our experiment highlights that one 

convolution layer is enough to extract features to retrieve 

foliar traits on simulated spectra (Figure 2: Distribution of 

mean square error validation loss compared for number of 

convolution layers (left) and kernel size of first layer 

(right)Figure 2). Moreover, better results were reached with 

architectures that include a single convolution layer with a 

kernel size greater than 100. 

This architecture revealed able to estimate properly the 

foliar traits on the synthetic dataset. Cab, EWT and LMA are 

correctly estimated (R2 above 0.9, and RMSE respectively 

10.5 µg.cm-2; 0.0042 cm; 0.0043 g.cm-2). Cxc is estimated 

with slightly less accuracy (R2: 0.85, RMSE: 3.74 µg.cm-2). 

4.3. EVALUATION OF 1D-CNN PERFORMANCES 

The range of estimated Cab is similar to the variation of 

measurements: between 10 to 60 µg.cm-2. The estimated Cab 

over all the sites and at every seasons leads to a Root Mean 

Square Error (RMSE) of 17.0 µg.cm-2. Compared to the 

RMSE obtained by  [13] over a Mediterranean forest  at one 

date (9 µg.cm-2) and [14] over a sparse forest of conifers 

(8.1 µg.cm-2), the performance degrades by a factor 2. 

Performances do not significantly depend on the season and 

the site. The QUKE species has the worst RMSE mainly due 

to the presence of more senescent leaves at fall. 

The range of estimated Cxc is 3 times wider than the range of 

measured values. This discrepancy is mainly due to two 

species from mixed broadleaf-conifer ecosystems (QUCH 

and QUKE). It is important to notice that Cxc and Cab are 

considered independent in the retrieval process. Global 

RMSE for Cxc is poor (12.20 µg.cm-2) but suitable 

considering only QUWI and QUDO species (3.8 µg.cm-2). 



For EWT, the variations ranges are similar for both 

estimated and measured values. But, EWT is overestimated 

with a mean bias of 0.01 cm and a RMSE of 0.011 cm. 

RMSE by species are similar. Performance remain poor 

compared to those obtained by [15] (0.0036 cm). 

For LMA, the variation ranges are similar, except for QUKE 

samples, which are overestimated (bias of 0.006 g.cm-2). The 

RMSE of 0.0056 is twice higher than the results obtained on 

one site by [16] (0.0020 g.cm-2) but equivalent to [13] 

(0.0053 g.cm-2). 

Figure 3: Estimated vs measured foliar traits values for 

validation data. 

5. CONCLUSIONS

We proposed to use a 1D-CNN in a hybrid approach to 

estimate four foliar traits over four sites during three 

seasons. We demonstrate that a single convolution layer with 

a large kernel is the proper architecture. However, such 

architecture computes the cross-correlation only on few 

points, thus it is similar to classical neural network 

architecture with only fully connected layer. Suitable 

performances are obtained to estimate Cab an LMA. On the 

contrary, EWT and Cxc are not well estimated but the 

performances highly depend on the species. Several 

potential source of errors can be identified: error on the field 

measurements, presence of multiple species in the 14m 

AVIRIS pixels, the simplified representation of forest mock-

up, and the independence of Cab and Cxc values in our 

retrieval process. Globally, the new proposed approach 

paves the way towards a global multi-ecosystem and multi-

temporal strategy to estimate foliar traits for forests. 
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