
HAL Id: hal-04271645
https://hal.science/hal-04271645v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Dually Computable Cryptographic Accumulators and
Their Application to Attribute Based Encryption

Anaïs Barthoulot, Olivier Blazy, Sébastien Canard

To cite this version:
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard. Dually Computable Cryptographic Accumulators
and Their Application to Attribute Based Encryption. CANS 2023 - Cryptology and Network Security,
Oct 2023, Augusta, United States. pp.538-562, �10.1007/978-981-99-7563-1_24�. �hal-04271645�

https://hal.science/hal-04271645v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Dually Computable Cryptographic Accumulators and
Their Application to Attribute Based Encryption

Anaïs Barthoulot∗1,2, Olivier Blazy3, and Sébastien Canard4

1 Orange Innovation, Caen, France
2 Université de Limoges, XLim, France
3 École Polytechnique, Palaiseau, France

4 Télécom Paris, Palaiseau, France
anais.barthoulot@gmail.com, olivier.blazy@polytechnique.edu

sebastien.canard@telecom-paris.fr

Abstract. In 1993, Benaloh and De Mare introduced cryptographic accumulator,
a primitive that allows the representation of a set of values by a short object (the
accumulator) and offers the possibility to prove that some input values are in the
accumulator. For this purpose, so-called asymmetric accumulators require the cre-
ation of an additional cryptographic object, called a witness. Through the years,
several instantiations of accumulators were proposed either based on number the-
oretic assumptions, hash functions, bilinear pairings or more recently lattices. In
this work, we present the first instantiation of an asymmetric cryptographic ac-
cumulator that allows private computation of the accumulator but public witness
creation. This is obtained thanks to our unique combination of the pairing based
accumulator of Nguyen with dual pairing vector spaces. We moreover introduce
the new concept of dually computable cryptographic accumulators, in which we
offer two ways to compute the representation of a set: either privately (using a
dedicated secret key) or publicly (using only the scheme’s public key), while
there is a unique witness creation for both cases. All our constructions of accu-
mulators have constant size accumulated value and witness, and satisfy the accu-
mulator security property of collision resistance, meaning that it is not possible
to forge a witness for an element that is not in the accumulated set. As a second
contribution, we show how our new concept of dually computable cryptographic
accumulator can be used to build a Ciphertext Policy Attribute Based Encryp-
tion (CP-ABE). Our resulting scheme permits policies expressed as disjunctions
of conjunctions (without “NO” gates), and is adaptively secure in the standard
model. This is the first CP-ABE scheme having both constant-size user secret
keys and ciphertexts (i.e. independent of the number of attributes in the scheme,
or the policy size). For the first time, we provide a way to use cryptographic
accumulators for both key management and encryption process.

Keywords: Cryptographic accumulators · Attribute based encryption · Pairing ·
Dual pairing vector spaces

1 Introduction

Cryptographic accumulator. Cryptographic accumulators were introduced in 1993 by
Benaloh and De Mare [6] as a compact way to represent a set of elements, while permit-

ting to prove the membership for each element in the set. Since their introduction, lots
of new functionalities and properties were introduced and we refer interested readers to
the work of Derler et al. [14] for more details on cryptographic accumulators. In this
work, we focus on asymmetric accumulators, which are composed of four algorithms:
Gen, the generation algorithm that outputs a public key and a master secret key; Eval,
the evaluation algorithm that from a set of elements outputs the compact representation
of this set (which is called the “accumulator”); WitCreate, the witness creation algo-
rithm that creates a witness that an element is the set; Verify, the verification algorithm
that outputs 1 if the given witness proves that the element is indeed in the accumu-
lated set. If the algorithm Eval (resp. WitCreate) takes as input the master secret key
we say that the evaluation (resp. witness generation) is done privately, otherwise it is
done publicly. The main purpose of cryptographic accumulators is to produce accu-
mulators and witnesses that have constant size. Regarding security, there are several
properties but in this work we will consider the notion of collision resistance meaning
that given the accumulator public key it is hard for an adversary to find a set X and a
value y /∈ X and build a witness wity such that Verify(pkacc, accX ,wity) = 1, where
accX = Eval((skacc), pkacc,X).

Improving accumulator’s state of the art. Regarding the literature, one surprising
thing is that there is no accumulator with private evaluation and public witness gener-
ation: either both evaluation and witness creation are either public [28] or private [19],
or witness generation is private while evaluation is public [29]. As soon as the accumu-
lator has been secretly computed and publish, it could be relevant for some use cases to
consider the case where anyone can prove that one element is in the chosen set. In the
sequel, we show how this property can be used to construct encryption schemes from a
cryptographic accumulator. Therefore, we propose the first instantiation of such accu-
mulator, based on asymmetric pairings in prime order group and using dual pairing vec-
tor spaces. We also introduce the notion of dually computable accumulator, which per-
mits both a private (Eval) and a public (PublicEval) accumulator generation, such that
both accumulators are distinguishable. From a unique witness generation algorithm,
we add two associated verifications (Verify and PublicVerify respectively) to verify set
membership. Using our previous accumulator instantiation, we derive the first dually
computable accumulator scheme. We then show how such new concept can be used to
provide an efficient Attribute Based Encryption (ABE) scheme.

Attribute Based Encryption. ABE, introduced by Sahai and Waters in 2005 [34], is an
encryption scheme in which secret keys and ciphertexts are associated to some subset
of attributes, and decryption is possible if there exists a relation between the secret
key’s attributes and the ciphertext’s attributes. In more details, in a Ciphertext Policy
ABE (CP-ABE) the ciphertext is associated to an access policy while the secret key
is associated to a set of attributes. Decryption becomes possible if the set of attributes
satisfies the policy. There exist several ways to define an access policy in the literature:
through threshold structure [34], tree-based structure [21], boolean formulas [27], linear
secret sharing schemes [39], circuits [9], Regarding security, ABE schemes must
satisfy indistinguishability, meaning that an adversary who is given an encryption of
one of two messages he previously chose, cannot tell which message was encrypted.
The main aim of research in ABE is to build efficient schemes in terms of both time

2

and space complexities, while supporting complex access policies. Unfortunately, most
existing schemes propose ciphertexts with a size linear in the number of attributes in
the scheme [21,25,24], while some other constructions succeed in proposing constant
size ciphertext, but at the cost of quadratic-size user private key [4].

ABE from dually computable accumulators. In this paper, we propose a way to ob-
tain an ABE scheme for which both the ciphertext and the user secret key are con-
stant, while obtaining very good time complexities. For that, our idea is to use crypto-
graphic accumulators. Curiously, while the purpose of the latter is to make constant the
size of cryptographic objects, few attempts have been done to use them for encryption
schemes. Indeed, [18,2] propose broadcast encryption schemes that use (RSA based)
cryptographic accumulator, and more recently, Wang and Chow [37] present an iden-
tity based broadcast encryption scheme that uses a degenarated notion of accumulators.
However, [18,2] are using accumulators only to manage users’ secret key while [37]
is using their notion of accumulator for encryption only, whereas in our scheme, accu-
mulators are used for both secret keys and ciphertexts. Plus, (identity based) broadcast
encryption is one particular case of ABE, which makes our scheme more general.

To reach such objective of compactness, our idea is to employ our notion of du-
ally computable accumulators in the following manner: the secret key, computed by
the authority, corresponds to a privately computed accumulator of the users’ attributes
set, while the encryption corresponds to a one-time-pad with a mask derived from a
publicly computed accumulator of the access policy. Decryption is then possible if the
decryptor can demonstrate that the intersection of their accumulator and the one as-
sociated with the ciphertext is not empty, utilizing membership witnesses for both the
privately computed and the publicly computed accumulators. However, while it is rela-
tively straightforward to use accumulators to represent sets of attributes, understanding
how they can serve as a concise representation of access policies is more complex. In
this study, we introduce a way to represent monotone boolean formulas that is com-
patible with the use of accumulators, and then show how to employ dually computable
accumulators to obtain a compact, efficient and secure ABE.

Our contributions. As a summary, our work gives the three following contributions:

– a new accumulator scheme, based on [30]’s work. It is the first accumulator in
the literature that has private evaluation while having public witness creation. This
scheme is based on asymmetric pairings in prime order groups and dual pairing
vector spaces (DPVS) of dimension 2, and satisfies collision resistance under the
q-Strong Bilinear Diffie-Hellman assumption. This is the first construction of cryp-
tographic accumulators that uses DPVS. See Section 3;

– a new functionality of dually computable cryptographic accumulators, together
with an instantiation of a such accumulator, based on our first accumulator instan-
tiation. Details are given in Section 4;

– a new bounded CP-ABE scheme, with both constant size for ciphertexts and user
secret keys where access policies are monotone NC1 circuits. Our scheme moreover
gives very good time complexities, and is proven adaptively secure in the standard
model, under the standard SXDH assumption. See Section 5.

3

2 Preliminaries

This section introduces the notations, the building blocks and the security assumptions
used throughout this paper. Let “PPT” denote “probabilistic polynomial-time”. For ev-
ery finite set S, x ← S denotes a uniformly random element x from the set S. Vectors
are written with bold face lower case letters and matrices with bold face upper case
letters.

2.1 Cryptographic accumulators

In the following we present a simplified definition of accumulator, presenting only prop-
erties used in this work, for simplicity of reading. Refer to [14] for a complete definition
of cryptographic accumulators.

Definition 1. Static accumulator.[6,16,14] A static cryptographic accumulator scheme
is a tuple of efficient algorithms defined as follows:

– Gen(1κ, b): this algorithm takes as input a security parameter κ and a bound b ∈
N∪ {∞} such that if b ̸=∞ then the number of elements that can be accumulated
is bounded by b. It returns a key pair (skacc, pkacc), where skacc = ∅ if no trapdoor
exists and pkacc contains the parameter b.

– Eval((skacc,)pkacc,X): this algorithm takes as input the accumulator (secret key
skacc and) public key pkacc and a set X to be accumulated. It returns an accumula-
tor accX together with some auxiliary information aux.

– WitCreate((skacc,)pkacc,X , accX , aux, x): this algorithm takes as input the accu-
mulator (secret key skacc and) public key pkacc, an accumulator accX , the associ-
ated set X , auxiliary information aux, and an element x. It outputs a membership
witness witXx if x ∈ X , otherwise it outputs a reject symbol ⊥.

– Verify(pkacc, accX ,wit
X
x , x): this algorithm takes as input the accumulator public

key pkacc, an accumulator accX , a witness witXx and an element x. If witXx is correct
it returns 1, otherwise it returns 0.

Definition 2. If in the above definition x can be replaced by a set S, we say that the
accumulator supports subset queries. If any element in X can be present more than
once, and witnesses can be made to prove that the element is present a given number of
times in X , we say that the accumulator supports multisets setting.

Note 1. Sometimes witXx is simply written witx.

Informally, the correctness property says that for all honestly generated keys, all
honestly computed accumulators and witnesses, the Verify algorithm will always return
1.

Definition 3. Correctness of accumulators. A static accumulator is said to be correct
if for all security parameters κ, all integer b ∈ N ∪ {∞}, all set of values X , and all
element x such that x ∈ X :

Pr

 skacc, pkacc ← Gen(1κ, b), accX , aux← Eval((skacc,)pkacc,X),
witXx ←WitCreate((skacc,)pkacc,X , accX , aux, x) :

Verify(pkacc, accX ,witx, x) = 1

 = 1

4

Regarding security, we will only consider the following definition in this work.

Definition 4. Collision resistance. A static accumulator scheme is collision resistant,
if for all PPT adversaries A there is a negligible function ϵ(.) such that:

Pr

[
skacc, pkacc ← Gen(1κ, b),O ←

{
OE ,OW

}
, (X ,witx, x)← AO(pkacc) :

Verify(pkacc, accX ,witx, x) = 1 ∧ x /∈ X

]
≤ ϵ(κ),

where accX ← Eval((skacc,)pkacc,X) and A has oracle access to O, where OE and
OW that represent the oracles for the algorithms Eval and WitCreate. An adversary is
allowed to query it an arbitrary number of times.

2.2 Other Preliminaries

Definition 5. Asymmetric bilinear pairing groups. [12] Asymmetric bilinear groups
Γ = (p,G1,G2,GT , g1, g2, e) are tuple of prime p, cyclic (multiplicative) groups
G1,G2, GT (where G1 ̸= G2) of order p, g1 ̸= 1 ∈ G1, g2 ̸= 1 ∈ G2, and a
polynomial-time computable non-degenerate bilinear pairing e : G1 × G2 → GT , i.e.
e(gs1, g

t
2) = e(g1, g2)

st and e(g1, g2) ̸= 1.

Note 2. For any group element g ∈ G, and any vector v of size l ∈ N, we denote by gv

the vector (gv1 , · · · , gvl). Let u,v be two vectors of length l. Then by gu·v , we denote
the element gα, where α = u · v = u1 · v1 + u2 · v2 + · · · + ul · vl. Then we define
e(gv1 , g

u
2) :=

∏l
i=1 e(g

vi
1 , g

ui
2) = e(g1, g2)

v·u.

Definition 6. Dual pairing vector spaces (DPVS). [12] For a prime p and a fixed (con-
stant) dimension n, we choose two random bases B = (b1, · · · , bn) and B∗ = (b∗1, · · · ,
b∗n) of Znp , subject to the constraint that they are dual orthonormal, meaning that
bi · b∗j = 0 (mod p) whenever i ̸= j, and bi · b∗i = ψ (mod p) for all i, where ψ
is a uniformly random element of Zp. Here the elements of B,B∗ are vectors and · cor-
responds to the scalar product. We denote such algorithm as Dual(Znp). For generators

g1 ∈ G1 and g2 ∈ G2, we note that e(gbi
1 , g

b∗
j

2) = 1 whenever i ̸= j.

Note 3. In our constructions we will use the notation (D,D∗) to also denote dual or-
thonormal bases, as in our ABE security proof, we will handle more than one pair of
dual orthonormal bases at a time, and we think that a different notation will avoid con-
fusion. The notation (F,F∗) will also be used in the proof for dual orthonormal bases.

Definition 7. Characteristic Polynomial. [17,19]. A set X = {x1, · · · , xn} with ele-
ments xi ∈ Zp can be represented by a polynomial. The following polynomial ChX [z] =∏n
i=1(xi + Z) from Zp[Z], where Z is a formal variable, is called the characteristic

polynomial of X . In what follows, we will denote this polynomial simply by ChX and
its evaluation at a point y as ChX (y).

Definition 8. Elementary symmetric polynomial. The elementary symmetric polyno-
mial on n ∈ N variables {Xi} of degree k ≤ n is the polynomial σk(X1, · · · , Xn) =∑
1≤i1 ̸≤···̸≤ik≤n

Xi1 · · ·Xik . Notice that σ1(X1, · · · , XN) =
∑n
i=1Xi and σn is equal

to
∏n
i=1Xi.

5

Note 4. Let X = {X1, · · · , Xn}. Notice that ChX [Z], which is equals to
∏n
i=1(Xi +

Z) by definition, is also equals toZn+σ1(X1, · · · , Xn)Z
n−1+σ2(X1, · · · , Xn)Z

n−2+
· · ·+ σn(X1, · · · , Xn).

Definition 9. Decisional Diffie-Hellman assumption in G1 (DDH1). [12] Given an
asymmetric bilinear pairing group Γ = (p,G1,G2,GT , g1, g2, e), we define the fol-
lowing distribution: a, b, c← Zp, D = (Γ, g1, g2, g

a
1 , g

b
2). We assume that for any PPT

algorithmA, AdvDDH1

A (λ) =
∣∣Pr [A(D, gab1)

]
− Pr

[
A(D, gab+c1)

]∣∣ is negligible in the
security parameter λ.

The dual of above assumption is Decisional Diffie-Hellman assumption in G2 (de-
noted as DDH2), which is identical to DDH1 with the roles of G1 and G2 reversed.

Definition 10. Symmetric External Diffie-Hellman (SXDH).[12] The SXDH assump-
tion holds if DDH problems are intractable in both G1 and G2.

Definition 11. q-strong Bilinear Diffie-Hellman (q-SBDH).[8] Let Γ = (p,G1,G2,GT ,
g1, g2, e) be a bilinear group. In Γ , the q-SBDH problem is stated as follows: given as

input a (2q+2)-tuple of elements (g1, gα1 , g
(α2)
1 , · · · , g(α

q)
1 , g2, g

α
2 , g

(α2)
2 , · · · , g(α

q)
2) ∈

Gq+1
1 ×Gq+1

2 , output a pair (γ, e(g1, g2)1/(α+γ)) ∈ Zp×GT for a freely chosen value
γ ∈ Zp \ {−α}. The q-SBDH assumption states that for any PPT adversary A , there
exists negligible function ϵ(.) such that

Pr
[
A(Γ, gα1 , g

(α2)
1 , · · · , g(α

q)
1 , gα2 , g

(α2)
2 , · · · , g(α

q)
2) = (γ, e(g1, g2)

1/(α+γ))
]
≤ ϵ

where the probability is over the random choice of generator g1 ∈ G1 and g2 ∈ G2,
the random choice of α ∈ Z∗

p, and the random bits consumed by A.

Note 5. The above definition is a slightly modified version of the original assumption
of [8]. Following the work of [35], our version can be reduced to the original one.

Definition 12. Decisional subspace assumption in G1 (DS1). [12] Given an asymmet-
ric bilinear group generator G(.), define the following distribution

Γ = (p,G1, G2,GT , g1, g2, e)← G(1κ), (B,B∗)← Dual(Znp), τ1, τ2, µ1, µ2 ← Zp,
u1 = g

µ1.b
∗
1+µ2.b

∗
k+1

2 , · · · ,uk = g
µ1.b

∗
k+µ2b

∗
2k

2 ,v1 = gτ1.b1
1 , · · · ,vk = gτ1.bk

1 ,

w1 = g
τ1.b1+τ2bk+1

1 , · · · ,wk = gτ1.bk+µ2b2k

1

and set ∆ = (Γ, g
b∗
1

2 , · · · , gb
∗
k

2 , g
b∗
2k+1

2 , · · · , gb
∗
n

2 , gb1
1 , · · · , g

bn
1 ,u1, · · · ,uk, µ2), where

k, n are fixed positive integers that satisfy 2k ≤ n. We assume that for any PPT algo-
rithm A, the following is negligible in 1κ.

AdvDS1A (κ) = |Pr [A(∆,v1, · · · ,vk) = 1]− Pr [A(∆,w1, · · · ,wk) = 1]|

Lemma 1. If the decisional Diffie Hellman assumption (DDH) in G1 holds, then the
decisional subspace assumption in G1 (DS1) also holds.

For the proof, refer to [12]. The decisional subspace assumption in G2 is defined
as identical to DS1 with the roles of G1 and G2 reversed. DS2 holds if DDH in G2

holds. The proof is done as for G1. Thus, DS1 and DS2 hold if SXDH hold.

6

3 A New Accumulator Scheme

We here present a new cryptographic accumulator scheme based on a unique combi-
nation of Nguyen’s accumulator [30] and dual pairing vector spaces. We also briefly
compare our scheme to the literature, concluding that this is the first cryptographic ac-
cumulator permitting a private evaluation and a public witness generation.

Intuition. In a bilinear environment, Nguyen’s accumulator for a set X is the element
accX = g

∏
x∈X (x+s)

1 where s is the secret key. A witness for an element x ∈ X is then

the object witx = g
∏

x∈X\{x}(x+s)

2 . Verification is done by checking that e(accX , g2) =
e(g

x
1 · gs1,witx). If only g1, g2 and gs1 are published, evaluation and witness genera-

tion are private. If the public key contains g1, gs1, · · · , gsq1 , g2, gs2, · · · , gsq2 , then both
evaluation and witness generation are public, using characteristic polynomials (see Def-
inition 7).

One basic idea to obtain a secret evaluation and a public witness generation is to
keep secret the elements in G1 for the evaluation and to publicly use the elements in G2

for the witness creation. But this does not work as we need to have gs1 for verification.
Our idea is hence to go in a Dual Pairing Vector Space (DPVS) setting, as introduced
above, in dimension n = 2. By playing with the bases d1,d

∗
1,d2 and d∗

2, we can keep
secret some elements and publish some others as follows:

– gd1
1 , gd1s

1 , · · · gd1s
q

1 are not publicly given since used for private evaluation;
– g

d∗
2

2 , g
d∗
2s

2 , · · · gd
∗
2s

q

2 are publicly used for witness creation; and
– g

d∗
1

2 , gd2
1 , gd2s

1 are publicly used for verification.

Thanks to that and the transformation from
∏
x∈X (x+ s) to

∑q
i=0 ais

i, using the char-
acteristic polynomial given in Definition 7, the above public elements are easily com-
putable from the knowledge of the successive powers of s in groups G1 or G2, as it is
done in Nguyen’s. We obtain our scheme below. To be exhaustive, the resulting com-
parison between our scheme and Nguyen’s is given in Table 1.

Table 1. Comparison between Nguyen’s accumulator and ours.

Operation Nguyen [30] Ours

Evaluation accX = g
∏

x∈X (x+s)

1 accX = g
d1

∏
x∈X (x+s)

1

Witness witx = g
∏

x∈X\{x}(x+s)

2 witx = g
d∗
2

∏
x∈X\{x}(x+s)

2 .

Verification e(accX , g2) = e(g
x
1 · gs1,witx) e(accX , g

d∗
1

2) = e(g
d2x
1 · gd2s

1 ,witx)

Regarding efficiency, notice that our scheme is slightly less efficient than Nguyen’s
scheme [30]. Indeed in the latter accumulators and witnesses are respectively composed
of one element of G1 and G2 while in our scheme they are respectively composed of
two elements of G1 and G2 . Regarding the number of pairing in verification, Nguyen’s
requires one pairing while our scheme requires two pairing.

7

Construction. Following the above intuition, our full scheme is presented in Figure 1.
In a nutshell, our construction is a static, bounded, and supports multisets and subsets
queries.

– Gen(1κ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p) to get D =

(d1,d2),D∗ = (d∗
1,d

∗
2). Let ψ ∈ Zp be the random such that d1 ·d∗

1 = d2 ·d∗
2 = ψ. Set

skacc = (s,D,D∗), pkacc =
(
Γ, gd2

1 , gd2s
1 , · · · , gd2s

q

1 , g
d∗
1

2 , g
d∗
2

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)
,

and return skacc, pkacc.
– Eval(skacc, pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accX = g

d1
∑q

i=0 ais
i

1 , and return accX .
– WitCreate(pkacc,X , accX , I): let {bi}i=0,··· ,q be the coefficients of the polynomial

ChX\I [Z] =
∏
x∈X\I(x+ Z). Compute witI = g

d∗
2

∑q
i=0 bis

i

2 , and return witI .
– Verify(pkacc, accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(accX , g

d∗
1

2) = e(g
d2

∑q
i=0 cis

i

1 ,witI), 0
otherwise.

Fig. 1. Our first accumulator scheme, with private evaluation and public witness generation.

Security. In short, the correctness comes from both (i) the one of Nguyen scheme (in-
deed, the same pairing equation is used), and (ii) the properties of DPVS (bi · b∗j = 0
(mod p) whenever i ̸= j, and bi · b∗i = ψ (mod p) for all i). More formally, we prove
the following theorem.

Theorem 1. Our accumulator scheme is correct.

Proof. Let X , I be two sets such that I ⊂ X . Let {ai, bi, ci}qi=0 be respectively the
coefficients of polynomials ChX [Z] =

∏
x∈X (x + Z), ChX\I [Z] =

∏
x∈X\I(x +

Z) and ChI [Z] =
∏
x∈I [Z](x + Z). Let accX ← Eval(skacc,X) and mwitI ←

WitCreate(pkacc,X , accX , I). We have that

e(g
d2

∑q
i=0 cis

i

1 ,mwitI) = e(g
d2

∑q
i=0 cis

i

1 , g
d∗
2

∑q
i=0 bis

i

2) = e(g1, g2)
ψ
∑q

i=0 cis
i·
∑q

i=0 bis
i

.

As I ⊂ X , then
∑q
i=0 cis

i ·
∑q
i=0 bis

i =
∑q
i=0 ais

i. Thus

e(g
d2

∑q
i=1 cis

i

1 ,mwitI) = e(g1, g2)
ψ
∑q

i=0 ais
i

= e(accX , g
d∗
1

2).

⊓⊔

Regarding security, we prove the following theorem.

Theorem 2. Our scheme satisfies collision resistance under q-SBDH assumption.

8

– On input 1κ, q ∈ N, C runs bilinear group generation to get Γ = (p,G1,G2,
GT , e, g1, g2) and chooses α← Z∗

p. It sends Γ, gα1 , · · · , gα
q

1 , gα2 , · · · , gα
q

2 to A.
– A runs Dual(Z2

p) to get D = (d1,d2) and D∗ = (d∗
1,d

∗
2) such that

d1 · d∗
1 = d2 · d∗

2 = ψ, where ψ ∈ Zp. Then it sets pkacc =(
Γ, gd2

1 , gd2α
1 , · · · , gd2α

q

1 , g
d∗
1

2 , g
d∗
2

2 , g
d∗
2α

2 , · · · , gd
∗
2α

q

2

)
and sends it to B.

– B makes an accumulator query: it chooses set X and sends it to A. The latter uses its
knowledge of d1 to return to B accX = g

d1ChX (α)
1 . This step can be repeat an unbounded

number of times.
– At some point, B answers with X , x,witx where x /∈ X and witx is a membership

witness of x for set X .
– A returns to C (x, e(g1, (witd2

x)1/ψr · (g−Q(α)
2)1/r)) as its answer to break the assump-

tion.

Fig. 2. Construction of q-SBDH adversary from collision resistance adversary.

Proof. We prove the contrapositive. Let C be the q-SBDH challenger, B an adversary
against collision resistance of the accumulator, that wins with non-negligible advantage.
We build, in Figure 2, A an adversary against the q-SBDH assumption, using B.

Let us see that the solution output byA is correct. As x /∈ X , there exist polynomial
Q[Z] and integer r such that ChX [Z] = Q[Z](x + Z) + r. As witx is a membership
witness, we have that e(gd2(x+α)

1 ,witx) = e(accX , g
d∗
1

2).

Therefore, we have that e(gd2(x+α)
1 ,witx) = e(g1, g2)

ψ(α+x)Q(α)+ψr and

(e(g1, (wit
d2
x)1/ψr · (g−Q(α)

2)1/r))(α+x)

= e(g1, g2)
(α+x)Q(α)

r +1 · (g1, g2)
−(α+x)Q(α)

r

= e(g1, g2)

Notice that A knows d2, ψ and r and can compute g−Q(α)
2 from the challenge tuple.

Thus, x, e(g1, (witd2
x)1/ψr · (g−Q(α)

2)1/r) is a solution to the q-SBDH problem.

As A breaks the assumption when B breaks the collision resistance of the accumu-
lator, we have that A’s advantage is equal to B’s advantage, meaning that A breaks the
q-SBDH assumption with non-negligible advantage.

⊓⊔

Comparison. Our accumulator is the first to propose a private evaluation while having
a public witness generation. Indeed, we compare in Table 2 for the four families of
accumulators instantiations how evaluation and witness creation are done. The only
exception could be a construction given by Zhang et al. in [40]. More precisely, the
studied primitive is called an Expressive Set Accumulator and is presented with private
evaluation and some kind of public witness creation: their scheme does not have a
WitCreate algorithm but a Query that takes as input some sets along with a set operation

9

query, and returns the result of the query along with a proof of correctness. However, as
stated in their work, in their construction the evaluation can actually be done only with
the public key.

Table 2. Comparison of evaluation and witness creation according to the type of accumulator
instantiation.

Type Evaluation Witness Generation
Hash based Public Public

Public Public
Lattices Public Private

Number Theoretic Public Public 1

Pairing based Public Public
Private Private

Ours Private Public

Having both private evaluation and public witness creation helps us build an en-
cryption scheme where the accumulator is used as a secret key computed by an author-
ity, from which user can derive some information (the witness) for decryption. More-
over, accumulators can satisfy a lot of additional properties: universal, dynamic, asyn-
chronous, . . . and verify a lot of security properties: undeniability, indistinguishability,
. . . (see e.g., [14]). The above construction focuses on static accumulators that satisfy
collision resistance, and in this work, we do not consider those additional features and
security properties. We leave as an open problem the modifications to satisfy other
properties of accumulators. The only exception is when accumulators are used in the
context of authenticated set operations [33,28,19]. See Appendix E for more details on
sets operations. Regarding pairing-based accumulators, we refer the interested reader to
several works such as [5,13,10,1,14,19] among others.

In the next section, we present our main new functionality, namely dually com-
putable accumulator, and show how to transform the above construction into a new one
that satisfies it.

4 Dually Computable Cryptographic Accumulators

In this section, we introduce a new kind of cryptographic accumulator that we call
dually computable accumulator. In such case, there are two separate evaluation algo-
rithms that give two different outputs: the first one (Eval) uses the accumulator secret
key while the second one (PublicEval) uses solely the public key. Using the unique
unmodified witness generation algorithm, we also define two different verification al-
gorithms, one for each type of accumulator. Following the work done in the previous

1 Secret key can be given for witness generation in order to improve efficiency. Creation is still
possible without it.

10

section, we focus on accumulator schemes that have private evaluation and public wit-
ness generation. We start by formally defining dually computable accumulators, then
we present an instantiation.

4.1 Definitions

Definition 13. Dually computable accumulator. Starting from a static accumulator
Acc = (Gen,Eval,WitCreate,Verify), we say that Acc is dually computable if it also
provides two algorithms PublicEval, PublicVerify such that:

– PublicEval(pkacc,X): it takes as input the accumulator public key pkacc and a set
X . It outputs an accumulator accpX of X and auxiliary information auxp.

– PublicVerify(pkacc, accpX ,witpx, x): it takes as input the accumulator public key
pkacc, a publicly computed accumulator accpX of X , an element x, a witness witpx
for x, computed from WitCreate(pkacc,X , accpX , auxp, x). It outputs 1 if witpx is
a membership witness and x ∈ X , 0 otherwise.

A dually computable accumulator must satisfy four properties: correctness, colli-
sion resistance, distinguishability and correctness of duality.

Definition 14. Correctness of dually computable accumulator. A dually computable
accumulator is said to be correct if for all security parameters κ, all integer b ∈ N ∪
{∞}, all set of values X and all element x such that x ∈ X

Pr

skacc, pkacc ← Gen(1κ, b),
accX , aux← Eval(skacc, pkacc,X),

accpX , auxp← PublicEval(pkacc,X),
witx ←WitCreate(pkacc,X , accX , aux, x)

witpx ←WitCreate(pkacc,X , accpX , auxp, x) :
Verify(pkacc, accX ,witx, x) = 1

∧PublicVerify(pkacc, accpX ,witpx, x) = 1

= 1

Definition 15. Collision resistance. A dually computable accumulator is collision re-
sistant, if for all PPT adversaries A there is a negligible function ϵ(.) such that:

Pr

 (skacc, pkacc)← Gen(1κ, b), (witx, x)← AOE

(pkacc) :
(Verify(pkacc, accX ,witx, x) = 1 ∧ x /∈ X)

∨(PublicVerify(pkacc, accpX ,witx, x) = 1 ∧ x /∈ X)

 ≤ ϵ(κ),
where accX ← Eval(skacc, pkacc,X), accpX ← PublicEval(pkacc,X) andA has oracle
access toOE that represents the oracle for the algorithm Eval. An adversary is allowed
to query it an arbitrary number of times and can run PublicEval,WitCreate as the two
algorithms only use the accumulator public key, that is known by the adversary.

Definition 16. Distinguishability. A dually computable accumulator satisfies distin-
guishability, if for any security parameter κ and integer b ∈ N ∪ {∞}, any keys
(skacc, pkacc) generated by Gen(1κ, b), and any set X , accX ← Eval(skacc, pkacc,X)
and accpX ← PublicEval(pkacc,X) are distinguishable.

11

The last property states that a witness computed for a privately (resp. publicly)
computed accumulator as input of the WitCreate algorithm must pass the PublicVerify
(resp. Verify) algorithm, with publicly (resp. privately) computed accumulator for the
same set as the privately (resp. publicly) computed accumulator.

Definition 17. Correctness of duality. A dually computable accumulator is said to sat-
isfy correctness of duality if for all security parameters κ, all integer b ∈ N ∪ {∞}, all
set of values X and all value x such that x ∈ X

Pr

skacc, pkacc ← Gen(1κ, b),
accX , aux← Eval(skacc, pkacc,X),

accpX , auxp← PublicEval(pkacc,X),
witx ←WitCreate(pkacc,X , accX , aux, x)

witpx ←WitCreate(pkacc,X , accpX , auxp, x) :
(PublicVerify(pkacc, accpX ,witx, x) = 1)
∧(Verify(pkacc, accX ,witpx, x) = 1)

= 1

4.2 Our First Dually Computable Cryptographic Accumulator

We now present our instantiation of a dually computable cryptographic accumulator.
We also present some variants in the next section (for our construction of an ABE), and
in Appendix B. We consider that the version we propose in this section is the simplest
and more efficient one, but the others, as we will see, can be used for different other
contexts.

Intuition. Using our previous accumulator instantiation (see Section 3), we can ob-
tain a dually computable accumulator scheme by adding gd

∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

q

2 to the
public key. Then, the public evaluation corresponds to the generation of accpX =

g
d∗
1

∏
x∈X (x+s)

2 . With the description of Eval as in the previous scheme, we directly
obtain what we need. Moreover, the two accumulators are easily distinguishable as the
secretly computed one is two elements in G1 while the publicly generated one is two
elements in G2.
From those two accumulators, and the witness as generated in our first accumulator

scheme (i.e., witx = g
d∗
2

∏
x∈X\{x}(x+s)

2), we are able to provide two very close ver-
ification equations. In fact, we remark that we obtain a sort of symmetry between
the two accumulators, as e(accX , g

d∗
1

2) = e(gd1
1 , accpX), which two are equals to

e(g
d2x
1 · gd2s

1 ,witx), which is computable from the knowledge of the witness2.

Construction. In Figure 3, we present the full description of our first dually computable
scheme, from the above intuition, and using again the characteristic polynomial (see
Definition 7).

Security. We can now focus on the security of our construction, by providing the fol-
lowing full theorem.

2 We could have also chosen to define PublicEval such that it returns gd
∗
2ais

i

2 , and PublicVerify
such that the left part of the equation is e(gd2

1 , accp).

12

– Gen(1κ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p) to get D =

(d1,d2),D∗ = (d∗
1,d

∗
2). Let ψ ∈ Zp be the random such that d1 · d∗

1 = d2 · d∗
2 = ψ.

Set skacc = (s,D,D∗),

pkacc =

(
Γ, gd1

1 , gd2
1 , gd2s

1 , · · · , gd2s
q

1 , g
d∗
1

2 ,

g
d∗
1s

2 , · · · , gd
∗
1s

q

2 , g
d∗
2

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)
.

Return skacc, pkacc.
– Eval(skacc, pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accX = g

d1
∑q

i=0 ais
i

1 , and return accX .
– PublicEval(pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accpX = g

d∗
1

∑q
i=0 ais

i

2 , and return accpX .
– WitCreate(pkacc,X , accX/accpX , I): let {bi}i=0,··· ,q be the coefficients of the poly-

nomial ChX\I [Z] =
∏
x∈X\I(x + Z). Compute witI = witpI = g

d∗
2

∑q
i=0 bis

i

2 , and
return witI .

– Verify(pkacc, accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(accX , g

d∗
1

2) = e(g
d2

∑q
i=0 cis

i

1 ,witI), 0
otherwise.

– PublicVerify(pkacc, accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polyno-

mial ChI [Z] =
∏
x∈I(x+ Z) and return 1 if e(gd1

1 , accpX) = e(g
d2

∑q
i=0 cis

i

1 ,witI),
0 otherwise.

Fig. 3. Our first dually computable accumulator scheme.

Theorem 3. Our scheme is correct, collision resistant under q-SBDH assumption, and
satisfies both distinguishability and correctness of duality.

Proof. Correctness and collision resistance (for privately and publicly computed accu-
mulators) can be done as for our cryptographic accumulator in Section 3. Indeed, the
algorithms Eval,WitCreate and Verify are not changed compare to what we provided
in Figure 1. For the publicly computed part, the proof still holds. The only modification
is that e(accX , g

d∗
1

2) and e(accX , g
d∗
1

2) are replaced by e(gd1
1 , accX) and e(gd1

1 , accX)
respectively.

Additionally, our accumulator satisfies distinguishability as a privately computed
accumulator is composed of an element in G1 while a publicly computed accumulator
is an element in G2. In fact, in a bilinear environment, we know that there are efficient
algorithms for computing group operations, evaluating the bilinear map, deciding mem-
bership of the groups, deciding equality of group elements and sampling generators of
the groups (see e.g., [22]).

13

Correctness of duality is satisfied as we have one unique witness and, as explained
above, we have a symmetry between the two accumulators:

e(accX , g
d∗
1

2)︸ ︷︷ ︸
from Eval

= e(g
d2

∑q
i=0 cis

i

1 ,witI)︸ ︷︷ ︸
from WitCreate

= e(gd1
1 , accpX)︸ ︷︷ ︸

from PublicEval

.

Thus, the proof for accX is exactly the same than in Theorem 1. For accpX the proof
can proceed as in Theorem 1 by replacing accX and Verify by accpX and PublicVerify.

⊓⊔

5 Application of Dually Computable Accumulator: Attribute
Based Encryption

In this section, our purpose is to show how we can transform our new notion of dually
computable cryptographic accumulator to design Attribute Based Encryption (ABE).
More precisely, first showing that due to security reasons, it cannot directly be used to
obtain an ABE, and then show how to transform it into a dually computable accumulator
that can be used to obtain the first Ciphertext Policy ABE (CP-ABE) for monotone NC1

circuits with both constant size for ciphertexts and secret keys.
We start by formally presenting the notion of ABE, then we explain briefly the intuitions
of our construction. Finally we present our scheme and compare it to existing ones.

5.1 Security Definitions for ABE

We start by formally introducing attribute based encryption scheme and the related
security notions. In this work we will focus on bounded attribute based encryption
schemes, meaning that during the setup phase a bound in the number of attributes al-
lowed in the scheme is given and keys and ciphertexts can be created for an arbitrarily
number of attributes at the condition that this number is lower than the bound.

Definition 18. Bounded (ciphertext policy) attribute based encryption. [34,20] A ci-
phertext policy attribute based encryption scheme consists of four algorithms:

– Setup(1κ, q)→ (pk,msk): the setup algorithm takes as input a security parameter
κ and an integer q which represent the bound of the number of attributes, and
outputs a master public key pk and a master secret key msk.

– KeyGen(pk,msk, Υ) → skΥ : the key generation algorithm takes as input the mas-
ter public key pk, the master secret key msk, and a key attribute Υ and outputs a
private key skΥ .

– Encrypt(pk, Π,m ∈ M) → ct: the encryption algorithm takes as input a master
public key pk, an access policy Π , and a message m and outputs a ciphertext ctΠ .

– Decrypt(pk, skΥ , Υ, ctΠ , Π) → m or ⊥: the decryption algorithm takes as in-
put the master public key pk, a private key skΥ along with the associated set of
attributes Υ , a ciphertext ctΠ and its associated access policy Π . It outputs the
message m if Υ satisfies Π or reject symbol ⊥ otherwise.

14

Informally, Correctness of ABE states that for every security parameter, every bound
in the number of attributes, every honestly generated secret and public keys, every hon-
estly generated key for any attributes set Υ , every honestly generated ciphertext for any
policy Π , such that Υ satisfies Π , the decryption algorithm always returns 1.

Definition 19. Correctness of ABE. A CP-ABE scheme is correct if for all security
parameter κ ∈ N, all integer q that represents the bound in the number of attributes, all
attributes set Υ and all access policy Π such that Υ satisfies Π and for all messages m,

Pr

(pk,msk)← Setup(1κ, q)
skΥ ← KeyGen(pk,msk, Υ)
ctΠ ← Encrypt(pk, Π,m)

Decrypt(pk, skΥ , Υ, ctΠ , Π) = m

 = 1

where the probability is taken over the coins of Setup,KeyGen, and Encrypt.

Definition 20. Adaptive indistinguishability security. (Ada-IND) A (CP-)ABE scheme
is said to satisfy adaptive indistinguishability security if for all PPT adversary A, there
exists a negligible function ϵ(.) such that AdvAda−INDA (1κ) ≤ ϵ(κ) where AdvAda−INDA
(1κ) is the advantage ofA to win the security game presented in Figure 4, and is defined

as AdvAda−INDA (1κ) =
∣∣∣Pr [b′ = b

]
− 1

2

∣∣∣. Let C be the challenger.

1. Setup phase: on input 1κ, q, C samples (pk,msk)← Setup(1κ, q) and gives pk to A.
2. Query phase: during the game, A makes the following queries, in an arbitrary order. A

can make unbounded many key queries, but can make only single challenge query.
(a) Key Queries: A chooses an attributes set Υ and sends it to C who replies with

skΥ ← KeyGen(pk,msk, Υ).
(b) Challenge Query: at some point,A submits a pair of equal length messages m0,m1

and the challenge access policyΠ∗ to C. The latter samples a random bit b← {0, 1}
and replies to A with ctΠ∗ ← Encrypt(pk, Π∗,mb).

We require that Υ does not satisfy Π∗ in order to avoid trivial attacks, for any queried Υ .
3. Output phase: A outputs a guess bit b

′
s the output of the experiment.

Fig. 4. Adaptive indistinguishability security game.

We define the advantage AdvAda−INDA (1κ) of A in the game as

AdvAda−INDA (1κ) =

∣∣∣∣Pr [b′ = b
]
− 1

2

∣∣∣∣ .
5.2 ABE from Dualy Computable Accumulator: Intuition

Basic idea. As said previously, having both private evaluation and public witness cre-
ation permits us to transform a cryptographic accumulator into an encryption scheme.

15

More precisely, in our CP-ABE, the user secret key is a privately computed accumu-
lator accX = g

d1
∏

x∈X (x+s)

1 , where X is a representation of the user’s attributes. In
parallel, the ciphertext is a one-time-pad between the message m and a mask H that is
computed using a publicly computable accumulator accpY , where Y is a representation
of the access policy. However, with the dually computable accumulator of the previous
section as given in Figure 3, this construction is not efficient and secure. We here give
only a summary of all the changes we have to make on the accumulator scheme, and
we detail them in Appendix A. Before going into those details, we first explain how we
can define X and Y . In the sequel let Q = 2q − 1, where q ∈ N is the bound on the
number of attributes in the ABE.

Representation of boolean formulas and attributes with cryptographic accumula-
tors. In our ABE, access policies are expressed as disjunctions of conjunctions (DNF),
without “NO” gates. Hence, a policy could be noted Π = π1 ∨ π2 ∨ · · · ∨ πl, where
l ∈ N, and πi is a conjunction of attributes. Let Yi be the set of attributes present in
clause πi, for i = 1, · · · , l. Our idea is to define Y as the set {H(Yi)}li=1, where H
is a hash function that takes as input a set of elements and returns an element in Zp,
for a prime p. During the encryption process, we create the accumulator accpY using
PublicEval (see below).
For a set Υ of attributes for a given user, we create X as the set of hash values (usingH)
of all non-empty subsets of Υ 3. During the key generation process, the authority hence
creates the accumulator accX using Eval.

Encryption and decryption. For a given user, if her set of attributes Υ satisfies the
policy Π , it means that there exists a non-empty subset of Υ that corresponds to a
clause πi inΠ . AsH is deterministic, it follows that one element, called ξ in the sequel,
is present in both accumulators: accX (the one corresponding to the non-empty subsets
of Υ) and accpY (the one that corresponds to Π). Based on that, we propose that during
the encryption process, the mask H is computed using the public verification equation
PublicVerify, as e(gd1

1 , accpY)
α, where α is some randomness.

During decryption, a user having a valid set of attributes precisely knows both the clause
πi and the element in Υ that match together. The next step is then for the user to generate
a witness for such element, and thanks to the verification algorithms, retrieve H and
then the message. But as both accumulators are not related to the same sets, we cannot
directly use the properties of a dually computable accumulator. The user hence needs
to compute two witnesses (one for each accumulator), and we need to find a way to
combine them appropriately for the decryption to work.

Managing the randomness α and a constant-size ciphertext. The first problem we
need to solve is that the element for which the witnesses need to be computed is only
known during decryption time, and that we should manage the randomness α. A trivial

solution could consist in given as many gαd
∗
2s

k

2 as necessary to permit the user com-
puting all the possible witnesses. But this option obviously results in (at least) a linear
ciphertext. To reach a constant-size ciphertext, we need a way to “anticipate” witnesses
during encryption.

3 It follows that if |Υ | = k, then |X | = 2k − 1.

16

Here, our trick is to use a specificity of accumulators based on Nguyen’s construction,
that is the fact that accumulators and witnesses are constructed with the coefficients of
polynomials of the form Ch[Z] =

∏q
i=1(xi + Z). Yet, we know that elementary sym-

metric polynomials for q variables appear in Ch[Z] (see Definition 8 and Note 4) and
that the coefficient of lowest degree is equal to σq =

∏q
i=1 xi. We decide to accumu-

late in the secret key accumulator a public value, denoted x0, which is not related to
any user attribute, hence having no impact on the decryption capability. From the above
observation, we know that x0 will always be a factor of Ch[Z]’s lowest degree coeffi-
cient, no matter the element for which the witness is generated and the user attributes.
We proceed similarly for the access policy, introducing the public value y0 that will be
attached to the witness corresponding to the public accumulator. To give the user the
possibility to introduce α in the decryption process we then give in the ciphertext the
value α(x0 + y0).
But this trick necessitates us to modify the way we have computed the witness in our
construction in Section 4 so that we can manage the values x0 and y0 independently
of the other. For that, for a subset I in X , the witness is now divided into two parts:

witI = (W1,W2) where W1 = gd1b0
1 and W2 = g

d∗
2

∑q
i=1 bis

i

2 . This intermediate
accumulator is presented in Figure 6, in Appendix B. Again, we proceed similarly for
the publicly computable accumulator with witness witpI = (W ′

1,W
′
2).

Auxiliary information in the ciphertext. From the previous issue, we now know that
the ciphertext should include a first auxiliary information to permit decryption: aux1 =

g
d1α(x0+y0)
1 . At this step, we also need to give aux2 = g

−αd∗
1

2 with the ciphertext, so
that the Verify algorithm, on input such value and the secretly computed accumulator
now includes the randomness α.

But from aux1 and
{
g
d∗
1s

i

2

}Q
i=0

, anyone can compute e(gd1(x0+y0)
1 , accpY) = Hx0+y0 .

As x0, y0 are publicly known, this permits to recover H and hence the message. To
avoid that, our idea is to split α into two randoms α1, α2, and modify the auxiliary
information accordingly, as aux1 = g

d1α2(x0+y0)
1 and aux2 = g

−α1α2d
∗
1

2 . For the same
reason as above, we cannot directly include α1 and need to find another trick.
Indeed, we use the same “anticipation” trick that we used for the witnesses. More pre-
cisely, we add an additional public value z0 in both accumulators. The consequence is
that, at the time of decryption, the users obtains that the element ξ and the value z0 are
both in the two accumulators. Hence, in the verification process, we necessarily have
the term s2+ s(z0+ ξ)+ z0ξ which can be divided in two parts: s2+ sz0 and s+ z0. It
follows that during encryption, we additionally give the terms ele1 = g

α1d1(z0+s)
2 and

ele2 = g
α1d1(z0s+s

2)
2 that are associated to aux1 using a pairing during the decryption

process. This indirectly brings α1 to aux1 without revealing it.

We now have fully treated the case of W1 and W ′
1 but we also need to add the

randomness (α1, α2) to W2 and W ′
2. To solve that we simply need to add two new

auxiliary information: ele3 = g
α1α2d2(z0s+s

2)
1 and ele4 = g

α1α2d2(z0+s)
1 .

Managing the dual system encryption framework. To prove the security of our ABE,
we need to use the dual system encryption framework [38]. In a nutshell, during the se-

17

curity proof, such technique introduces the notion of semi-functional (SF) keys and
ciphertexts, which should be indistinguishable from normal keys and ciphertexts. Such
new elements behave exactly the same as their normal counterparts, except that no
semi-functional key can decrypt an SF ciphertext. During the security proof, the simu-
lator changes all the keys issued to the adversary into SF ones, and make the challenge
answer to the adversary an SF ciphertext. This way, the adversary cannot extract any
information from the challenge ciphertext: it has no advantage.

To manage semi-functional ciphertexts and secret keys in our own proof, we need
to increase by one the dimension of the DPVS. More precisely, we rely on the Deci-
sional Subspace assumptions in G1 (DS1) and in G2 (DS2) [12] (which hold if SXDH
holds), which necessitate to guess between gτ1di

1 (resp. gτ1d
∗
i

2) and gτ1di+τ2di+k

1 (resp.

g
τ1d

∗
i +τ2d

∗
i+k

2) for i = 1, · · · , k, where k ∈ N is one parameter of the assumption, and
τ1, τ2 ∈ Zp are random elements chosen by the challenger. To avoid disturbance with
the base used in the accumulator, we will not use d1 to bring SF space. Instead we
consider d2 in the secret key and d∗

2 in aux2. More precisely, we generate two randoms
r, z ∈ Zp and generate r · d2 and z · d∗

2 to have the same semi-functional part in the ci-
phertext than the one we have in the secret key. The randoms r and z are used to match
the assumptions in which d2 (resp. d∗

2) are randomized (by τ1). But this results in an ad-
ditional term e(g1, g2)

ψrzα1α2 during decryption. To avoid this, we need to introduce a
new dimension in the DPVS, and then (d3,d3

∗). It follows that the secret accumulator

becomes accX = g
d1

∑Q
i=0 ais

i+r(d2−γd3)
1 and aux2 = g

−d1
∗α+z(γd∗

2+d∗
3)

2 . This results
in our second intermediate accumulator scheme, presented in Figure 7 in Appendix B.

Managing the third bases. There is one last change we need to do in our accumulator.
Indeed, in the last part of the CP-ABE security proof, we need to randomize the dual or-
thonormal bases (D,D∗) to new bases (F,F∗), so that with the latter, the adversary has
no more possibility to win the game. This modification implies that we need to express
d1 as f1 + ηf5, which means that any element having d1 in the exponent will have a
SF part when expressed in bases (F,F∗). It results that the elements aux1 and gd1

1 used
in H have now a SF part, while we defined a SF ciphertext such that only aux2 contains
the SF components.

Our idea here is then to replace d1 by d3 in the witness creation: hence, the wit-
ness element W1 goes from gd1b0

1 to gd3b0
1 . To keep the orthonormality of the DPVS,

we also replace d∗
1 by d∗

3 in the public evaluation of the accumulator and the publicly

computed accumulator goes from g
d∗
1

∑Q
i=0mis

i

2 to gd
∗
3

∑Q
i=0mis

i

2 . We then change aux1
to gd3(x0+y0)

1 , ele1 = g
α1d

∗
3(z0s+s

2)
2 , and ele2 = g

α1d
∗
3(z0+s)

2 . This gives us the final
dually computable accumulator that we use to design our CP-ABE, fully given in Ap-
pendix B (see Figure 8). For our CP-ABE we will use DS1 and DS2 with parameter
k = 2 and n = 2k = 6, and so DPVS of dimension 6.

18

5.3 Our CP-ABE Scheme

The resulting CP-ABE is fully given in Figure 5. As said above, it permits to manage
access policies expressed as disjunctions of conjunctions without “NO” gates. For sake
of clarity, we highlight the underlying dually computable accumulator scheme with col-
ors as follows: the privately computed accumulator is in green, the publicly computed
accumulator is in blue, the anticipation of the first element of the witnesses is in orange,
the second parts of the witnesses are in purple and the anticipation of the intersection
of both sets is in red.

Theorem 4. Our ciphertext policy attribute based encryption scheme is correct.

Proof.

e(auxδδ
′

1 , ele1 · eleξ2)

= e((g
α2d3(x0+y0)
1)δδ

′

, g
α1d

∗
3(z0s+s

2)
2 · (gα1d

∗
3(z0+s)

2)ξ)

= e(g
α2d3δδ

′
(x0+y0)

1 , g
αd∗

3(s
2+s(z0+ξ)+z0ξ)

2)

= e(g1, g2)
ψα1α2(s

2+s(z0+ξ)+z0ξ)c0δ
′

· e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)t0δ

e(ele3 · eleξ4,W δ
′

2 ·W
′δ
2)

= e(g
α1α2d2(z0s+s

2)
1 · (gα1α2d2(z0+s)

1)ξ, (g
d∗
2

∑Q
i=1 cis

i

2)δ
′

· (gd
∗
2

∑Q
i=1 tis

i

2)δ)

= e(g
α1α2d2(s

2+s(z0+ξ)+z0ξ)
1 , g

d∗
2δ

′ ∑Q
i=1 cis

i+d∗
2δ

∑Q
i=1 tis

i

2)

= e(g1, g2)
ψα1α2(s

2+s(z0+ξ)+z0ξ)δ
′ ∑Q

i=1 cis
i

·e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

∑Q
i=1 tis

i

Therefore

e(auxδδ
′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2)

= e(g1, g2)
ψα1α2(s

2+s(z0+ξ)+z0ξ)δ
′ ∑Q

i=0 cis
i

·e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

∑Q
i=0 tis

i

If ξ belongs to X and ξ belongs to Y , then

e(auxδδ
′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2)

= e(g1, g2)
ψα1α2δ

′ ∑Q
i=0 ais

i · e(g1, g2)ψα1α2δ
∑Q

i=0mis
i

The last pairing is equal to

e(accX , aux2)
δ
′

= e(g
d1

∑Q
i=0 ais

i+r(d2−γd3)
1 , g

−d∗
1α1α2+z(γd

∗
2+d∗

3)
2)δ

′

= e(g1, g2)
−α1α2ψ

∑Q
i=0 ais

iδ
′

· e(g1, g2)rzγψ · e(g1, g2)−rzγψ

= e(g1, g2)
−α1α2ψ

∑Q
i=0 ais

iδ
′

19

– Setup(1λ, 1q): generate bilinear group Γ = (G1,G2,GT , p, e, g1, g2), dual pairing vec-
tor spaces (D,D∗) ← Dual(Z6

p) such that D = (d1, · · · ,d6), D∗ = (d∗
1, · · · ,d∗

6)
and di · d∗

i = ψ, for i = 1, · · · , 6 and ψ ∈ Zp. Also choose γ, s, x0, y0, z0 ← Zp
and a hash function H that takes as input an attributes set and outputs an element of

Zp \ {γ, s, x0, y0, z0}. Set Q = 2q − 1, msk =

(
γ, s, g

d∗
2

2 ,
{
gd1s

i

1

}Q
i=0

,
{
gd3s

i

1

}Q
i=1

)
and

pk =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
Q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)
.

Return msk, pk.
– KeyGen(pk,msk, Υ): let k ∈ N be the number of attributes in Υ . Compute
p1, · · · , p2k−1 all the non-empty subsets of Υ and set X = {H(pi)}2

k−1
i=1 ∪ {x0, z0}.

Compute {ai}i=0,··· ,Q the coefficients of the polynomial ChX [Z] = (x0 + Z) · (z0 +

Z) ·
∏2k−1
i=1 (H(pi) + Z). Pick r ← Zp and set

skΥ = accX = g
d1

∑Q
i=0 ais

i+r(d2−γd3)

1 .

– Encrypt(pk, Π,m): let Π = π1 ∨ π2 ∨ · · · ∨ πl be the access policy, where l ∈ N is
the number of clauses in the policy, and πi for i = 1, · · · , l is a conjunction of attributes.
Define Yi for i = 1, · · · , l as the set of attributes associated to clause πi and Y =
∪li=1H(Yi) ∪ {y0, z0}. Let {mi}Qi=0 be the coefficients of polynomial ChY [Z].

• Mask computation: choose z, α1, α2 ← Zp and define accpY = g
d∗
3

∑Q
i=0mis

i

2 and
H = e(gd3

1 , accpY)
α1α2 .

• Auxiliary information computation: aux1 = g
α2d3(x0+y0)
1 and aux2 =

g
−d∗

1α1α2+z(γd
∗
2+d∗

3)
2 .

• Anticipation of the element computation: ele1 = g
α1d

∗
3(z0s+s

2)
2 , ele2 =

g
α1d

∗
3(z0+s)

2 , ele3 = g
α1α2d2(z0s+s

2)
1 , and ele4 = g

α1α2d2(z0+s)
1 .

Set ctΠ = (ele1, ele2, ele3, ele4, aux1, aux2,m ·H) and return ctΠ .

– Decrypt(pk, skΥ , Υ, ctΠ , Π): find pj∗ (for j∗ ∈
{
1, · · · , 2k − 1

}
) the non-empty subset

of Υ that satisfies Π (if no such subset exists, then return reject symbol ⊥). It means that
there exist j ∈ [1, · · · , l] such that Yj = pj∗ and H(Yj) = H(pj∗) = ξ. Let {ci}Qi=0

be the coefficients of the polynomial ChX [Z]/((z0 + Z)(ξ + Z)). Let {ti}Qi=0 be the
coefficients of the polynomial ChY [Z]/((z0 + Z)(ξ + Z)). Find δ, δ

′
∈ Zp such that

c0 = x0δ and t0 = y0δ
′
. Set W2 = g

d∗
2

∑Q
i=1 cis

i

2 , W
′
2 = g

d∗
2

∑Q
i=1 tis

i

2 and compute

m ·H(
e(auxδδ

′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2) · e(accX , aux2)δ

′
)δ−1

to get m or ⊥.

Fig. 5. Our CP-ABE scheme.

20

so multiplying it with e(auxδδ
′

1 , ele1 · eleξ2) · e(ele3 · ele
ξ
4,W

δ
′

2 ·W
′δ
2) gives e(g1,

g2)
ψα1α2δ

∑Q
i=0mis

i

. As we know δ we can recover the mask of the message and then
the message. Therefore, the scheme is correct. ⊓⊔

The adaptive indistinguishability is given by the following theorem.

Theorem 5. Our ABE satisfies adaptive indistinguishability under SXDH assumption.

To prove the security of our scheme, we prove that the encryption of challenge
message is indistinguishable from the encryption of a random message. To do so, we
use a sequence of games (our proof is inspired of Chen et al. [12]’s IBE security proof)
and Water’s dual system encryption framework [38]. Let Nq ∈ N be the number of
secret keys that the adversary is allowed to query.4

– GameReal is the original security game, as presented in Figure 4.
– Game0 is the same as GameReal except that the challenge ciphertext is a semi-

functional ciphertext.
– Gamei for i = 1, · · · , Nq is the same as Game0 except that the first i keys are

semi-functional.
– GameFinal is the same as GameNq

except that the challenge ciphertext is an en-
cryption of a random message.

Now we define semi-functional (SF) keys and ciphertexts. Let t5, t6, z5, z6 ← Zp.

– a semi-functional key for Υ , sk(SF)
Υ , is computed from normal key skΥ as sk(SF)

Υ =

skΥ · g
t5d

+
5 t6d6

1 = g
d1

∑Q
i=0 ais

i+r(d2−γd3)+t5d5+t6d6

1

– a semi-functional ciphertext for Π , ct(SF)
Π , is computed as a normal ciphertext ctΠ

except that aux(SF)
2 = aux2 · g

z5d
∗
5+z6d

∗
6

2 .

Notice that normal keys can decrypt SF ciphertexts, and normal ciphertexts can be
decrypted by SF keys. However, decryption of a SF ciphertext by a SF key leads to an
additional term: 1/e(g1, g2)(t5z5ψ+t6z6ψ)δ

−1

.

Intuition of the proof. The proof is using the two assumptions DS1 and DS2 that hold
if SXDH holds, and is done as follows.

First we prove that if there exists an adversary that can distinguish GameReal from
Game0 we can build an adversary that breaks the DS2 assumption with parameters
k = 3 and n = 6. To do so the main idea is to use the assumption’s challenge to build
the challenge ciphertext. Depending on the value of the challenge we will either obtain
a normal form ciphertext or a semi-functional form one.

Then we prove that if there exists an adversary that can distinguish Gamej−1 from
Gamej for j = 1, · · · , Nq we can build an adversary that breaks the DS1 assumption
with k = 3 and n = 6. The idea is to use the assumption’s challenge to build the j-
th key. Thus, depending on the value of the challenge we will either obtain a normal

4 As the number of attributes in the scheme is bounded, so is the number of keys that an adver-
sary can query.

21

form key or a semi-functional form one. To build the challenge ciphertext, we use the
assumption’s parameters to obtain a semi-functional ciphertext.

Finally, we prove that GameNq
is computationally indistinguishable from GameFinal,

with a change of dual orthonormal bases. Doing so, we randomized the coefficient of
d1 in the aux2 term of the ciphertext, thereby severing its link with the blinding factor.
That gives us the encryption of a random message.

In the following, the advantage of a PPT adversaryA to win a game Game, is written
AdvGame

A . Here is the proof of Theorem 5.

Proof. Lemma 2. If there exists a PPT algorithmA such that AdvGameReal

A −AdvGame0
A

is non-negligible, then there exists a PPT algorithm B with non-negligible advantage
against assumption DS2 with k = 3 and n = 6.

Proof. INIT:B is given∆ = (Γ, gb1
1 , g

b2
1 , g

b3
1 , g

b∗
1

2 , g
b∗
2

2 , g
b∗
3

2 , g
b∗
4

2 , g
b∗
5

2 , g
b∗
6

2 , u1, u2, u3, µ2)

along with t1, t2, t3. B must decide if t1, t2, t3 are distributed as gτ1b
∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 or
g
τ1b

∗
1+τ2b

∗
4

2 , g
τ1b

∗
2+τ2b

∗
5

2 , g
τ1b

∗
3+τ2b

∗
6

2 .

SETUP: B first chooses a random invertible matrix A ∈ Z3×3
p . It implicitly sets dual

orthonormal bases D,D∗ to: d∗
1 = b∗1,d∗

2 = b∗2, d∗
3 = b∗3, (d∗

4,d
∗
5,d

∗
6) = (b∗4, b

∗
5, b

∗
6) ·

A, d1 = b1, d2 = b2, d3 = b3, (d4,d5,d6) = (b4, b5, b6) · (A−1)⊤.

We note that D,D∗ are properly distributed and reveal no information about A.
Notice also that B cannot produce gd4

1 , gd5
1 , gd6

1 , but these will not be needed to create
normal keys. B chooses random values γ, s, x0, y0, z0 ∈ Zp and a hash functionH that
takes as input attributes set and outputs an element of Zp \ {γ, s, x0, y0, z0}.A is given
the public key

pk =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
Q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)

The master key is msk =

(
γ, s, g

d∗
2

2 ,
{
gd1s

i

1

}Q
i=0

,
{
gd3s

i

1

}Q
i=1

)
.

KEY QUERY: msk is known to B, which allows B to respond to all of A’s key
queries by calling the normal key generation algorithm.

CHALLENGE: A sends to B a challenge policy Π∗ and two challenge messages
m0,m1. B chooses a random bit b ∈ {0, 1} and encrypts mb under Π∗ as follows:
z, α1, α2 ← Zp and

accpY = g
b∗
3

Q∑
i=0

mis
i

2 H = e(gb3
1 , accpY)

α1α2

aux1 = g
α2b3(x0+y0)
1 aux2 = g

−b∗
1α1α2

2 · tγ2 · t3
ele1 = g

α1b
∗
3(z0s+s

2)
2 ele2 = g

α1b
∗
3(z0+s)

2

ele3 = g
α1α2b2(z0s+s

2)
1 ele4 = g

α1α2b2(z0+s)
1

22

where Y = {H(Yi)}li=1∪{y0, z0}, and Yi for i = 1, · · · , l is a set that contains the ele-
ments of the clause π∗

i . It gives the ciphertext ct∗ = (ele1, ele2, ele3, ele4, aux1, aux2,m·
H) to A.

– If (t1, t2, t3) = (g
τ1b

∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2), we have a normal ciphertext with randomness
z = τ1.

accpY = g
d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 , accpY)

α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2+τ1(γd

∗
2+d∗

3)
2 · tγ2 · t3

ele1 = g
α1d

∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s

2)
1 ele4 = g

α1α2d2(z0+s)
1

Thus B has properly simulated GameReal.

– If (t1, t2, t3) = (g
τ1b

∗
1+τ2b

∗
4

2 , g
τ1b

∗
2+τ2b

∗
5

2 , g
τ1b

∗
3+τ2b

∗
6

2), then we have that aux2 is
equal to g−d∗

1α1α2+τ1(γd
∗
2+d∗

3)+τ2γb
∗
5+τ2b

∗
6

2 .

This ciphertext has an additional term with coefficients in bases b∗5, b
∗
6, which form

the vector τ2(γ, 1). To compute coefficients in the bases (d∗
5,d

∗
6) we multiply the ma-

trix A−1 by the transpose of this vector. Since A is random, these new coefficients are
uniformly random. Thus, in this case, the ciphertext is SF (with coefficients in the base
D) and B has properly simulated Game0. This allows B to leverage A’s non-negligible
difference in advantage between GameReal and Game0 to achieve a non-negligible ad-
vantage against DS2. ⊓⊔

Lemma 3. If there exists a PPT algorithmA such that AdvGamej−1

A −AdvGamej
A (for j =

1, · · · , Nq) is non-negligible, then there exists a PPT algorithm B with non-negligible
advantage against assumption DS1 with k = 3 and n = 6.

Proof. INIT:B is given∆ = (Γ, g
b∗
1

2 , g
b∗
2

2 , g
b∗
3

2 , gb1
1 , g

b2
1 , g

b3
1 , g

b4
1 , g

b5
1 , g

b5
1 , u1, u2, u3, µ2)

along with t1, t2, t3, distributed either as gτ1b1
1 , gτ1b2

1 , gτ1b3
1 or gτ1b1+τ2b3

1 , gτ1b2+τ2b4
1 ,

gτ1b3+τ2b6
1 .

SETUP: B chooses a random invertible matrix A ∈ Z3×3
q . Then it implicitly sets

dual orthonormal bases D,D∗ to: d∗
1 = b∗1, d∗

2 = b∗2, d∗
3 = b∗3 (d∗

4,d
∗
5,d

∗
6) =

(b∗4, b
∗
5, b

∗
6) ·A, d1 = b∗1, d∗

2 = b∗2, d∗
3 = b∗3, (d4,d5,d6) = (b4, b5, b6) · (A−1)⊤.

We note that D,D∗ are properly distributed and reveal no information about A. B
chooses random values γ, s, x0, y0, z0 ∈ Zp and a hash function H that takes as input
attributes set and outputs an element of Zp \{γ, s, x0, y0, z0}.A is given the public key

pk =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
Q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)

23

The master key is msk =

(
γ, s, g

d∗
2

2 ,
{
gd1s

i

1

}Q
i=0

,
{
gd3s

i

1

}Q
i=1

)
.

KEY QUERY: B knows msk and gd5
1 , gd6

1 , thus can easily call the key generation
algorithm or produce semi-functional keys. It allows B to answer to allA’s key queries.

– To answer the first j-1 key queries that A makes, B runs the semi-functional key
generation algorithm to produce semi-functional keys.

– To answer to the j-th key query for Υ j , B responds with:

skΥ j = g
b1

Q∑
i=0

ais
i

1 · t2 · t−γ3

where {ai}Qi=0 are the coefficients of polynomial ChX [Z] andX =
{
H(pji)

}2k−1

i=1
∪

{x0, z0}, k ∈ N is the size of Υ j and
{
pji

}2k−1

i=1
are all the non-empty parties of

Υ j .
• If t1, t2, t3 = gτ1b1

1 , gτ1b2
1 , gτ1b3

1 , then skΥ j is a normal key with random-

ness r = τ1: skΥ j = g
d1

Q∑
i=0

ais
i+τ1(d2−γd3)

1 . Thus B has properly simulated
Gamej−1.

• If t1, t2, t3 = gτ1b1+τ2b3
1 , gτ1b2+τ2b4

1 , gτ1b3+τ2b6
1 , then we have that skΥ j is

equal to g
d1

Q∑
i=0

ais
i+τ1(d2−γd3)+τ2(b4−γb6)

1 .
– For the remaining key queries, B runs the normal key generation algorithm.

CHALLENGE: At some point, A sends to B two challenge messages m0,m1 and a
challenge policy Π∗ = π∗

1 ∨ · · · ∨ π∗
l . B chooses a random bit b ∈ {0, 1} and encrypts

mb under Π∗ as follows: z, α1, α2 ← Zp and

accpY = g
b∗
3

Q∑
i=0

mis
i

2 H = e(gb3
1 , accpY)

α1α2

aux1 = g
α2b3(x0+y0)
1 aux2 = g

−b∗
1α1α2

2 · uγ2 · u3
ele1 = g

α1b
∗
3(z0s+s

2)
2 ele2 = g

α1b
∗
3(z0+s)

2

ele3 = g
α1α2b2(z0s+s

2)
1 ele4 = g

α1α2b2(z0+s)
1

which is equal to

accpY = g
d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 , accpY)

α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2

2 · uγ2 · u3
ele1 = g

α1d
∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s

2)
1 ele4 = g

α1α2d2(z0+s)
1

24

where Y = {H(Yi)}li=1 ∪ {y0, z0}, and Yi for i = 1, · · · , l is a set that contains
the elements of the clause π∗

i .

Suppose that B decides not to be honest, and find the nature of the j-th key by her-
self. To do so, she creates a SF ciphertext for a policy Π such that Υ j satisfies Π . She
tries to decrypt it with skΥ j to learn if skΥ j is a normal or a SF key (a normal key will
decrypt correctly while a SF key will with high probability fail to decrypt). Let’s see
that by construction even if skΥ j is SF it will decrypt correctly.

Suppose that t1, t2, t3 = gτ1b1+τ2b3
1 , gτ1b2+τ2b4

1 , gτ1b3+τ2b6
1 . During decryption, B

computes e(skΥ j , aux2) which is equal to

e

(
g
b1

∑Q
i=0 ais

i+τ1b2+τ2d5+γ(−τ1b3−τ2d6)
1 , g

−b∗
1αα2+γ(µ1b

∗
2+µ2b

∗
5)+µ1b

∗
3+µ2b

∗
6

2

)
This can be decomposed as

e

(
g
b1

∑Q
i=0 ais

i

1 , g
−b∗

1αα2

2

)
· e
(
gτ1b2
1 , g

γµ1b
∗
2

2

)
· e
(
gτ2b5
1 , g

γµ2b
∗
5

2

)
·e
(
g−γτ1b3

1 , g
µ1b

∗
3

2

)
· e
(
g−γτ2b6

1 , g
µ2b

∗
6

2

)
thanks to dual pairing vector spaces properties.

As Π is satisfied by Υ j , the first pairing will cancel itself with the rest of the veri-
fication equation. And by construction, the four others cancel with each other. Thus, it
will decrypt, and B will have no information about the j-th key’s nature.

Note 6. Notice that in order to create an SF ciphertext, B must use elements u2 and u3
of the assumption, as she does not know g

d∗
5

2 and gd
∗
6

2 .

In the authorized case, Υ j does not satisfy Π∗. Let us see that when t1, t2, t3 =
gτ1b1+τ2b3
1 , gτ1b2+τ2b4

1 , gτ1b3+τ2b6
1 , the extra coefficients in bases (b∗5, b

∗
6) of the ci-

phertext and the extra coefficients in bases (b5, b6) of the key are distributed as random
vectors in the spans of (d∗

5,d
∗
6) and (d5,d6) respectively. To express them in bases

(d∗
5,d

∗
6) and (d5,d6) respectively, we multiply them by A−1 and A⊤ respectively.

Since the distribution of everything given toA except for the j-th key and the challenge
ciphertext is independent of the random matrix A and Υ j does not satisfy Π∗, we can
conclude that these coefficients are uniformly random. Thus, B has properly simulated
Gamej in this case.

If t1, t2, t3 = gτ1b1
1 , gτ1b2

1 , gτ1b3
1 then the coefficients of the semi-functional part of

the ciphertext are uniformly random. Thus, B has properly simulated Gamej−1 in this
case. Therefore, B can leverage A’s non-negligible difference in advantage between
these games to obtain a non-negligible advantage against DS1. ⊓⊔

Lemma 4. For any PPT adversary A, AdvGameFinal

A ≤ Adv
GameNq

A .

25

We prove this lemma, by randomizing the coefficient of d∗
1 in the aux2 term of the

ciphertext, thereby severing its link with the blinding factor.

Proof. We pick η ∈ Zp and define new dual orthonormal bases F = (f1, · · · ,f6) and
F∗ = (f∗

1, · · · ,f
∗
6) as follows:

f∗
1 = d∗

1, f∗
2 = d∗

2, f
∗
3 = d∗

3, f
∗
4 = d∗

4, f
∗
5 = ηd∗

1 + d∗
5, f

∗
6 = d∗

6

f1 = d1 − ηd5, f2 = d2, f3 = d3, f4 = d4, f5 = d5, f6 = d6

It is easy to see that F and F∗ are also dual orthonormal, and are distributed the
same as D and D∗.

Then, the public key, challenge ciphertext, and queried secret keys in GameNq are
expressed over bases D and D∗:

pk =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
Q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)

ctΠ =

accpY = g

d∗
3

Q∑
i=0

mis
i

2 H = e(gd3
1 , g

d∗
3

Q∑
i=0

mis
i

2)α1α2

aux1 = g
α2d3(x0+y0)
1 aux2 = g

−d∗
1α1α2+z(γd

∗
2+d∗

3)+z5d
∗
5+z6d

∗
6

2

ele1 = g
α1d

∗
3(z0s+s

2)
2 ele2 = g

α1d
∗
3(z0+s)

2

ele3 = g
α1α2d2(z0s+s

2)
1 ele4 = g

α1α2d2(z0+s)
1

{skΥ j}j∈[Nq]
=

accX · g
tj5d5+t

j
6d6

1 = g
d1

Q∑
i=0

ajis
i+rj(d2−γd3)+t

j
5d5+t

j
6d6

1

j∈[Nq]

Then we can express them over bases F,F∗ as:

pk =

(
Γ, g

f3
1 , g

f2
1 , g

f2s
1 , · · · , gf2s

Q

1 , g
f∗

1
2 , g

f∗
1s

2 , · · · , gf
∗
1s

Q

2 , g
f∗

2γ
2 ,

g
f∗

2s
2 , · · · , gf

∗
2s

Q

2 , g
f∗

3
2 , g

f∗
3s

2 , · · · , gf
∗
3s

Q

2 ,H, x0, y0, z0

)

ctΠ =

accpY = g

f∗
3

Q∑
i=0

mis
i

2 H = e(g
f3
1 , g

f∗
3

Q∑
i=0

mis
i

2)α1α2

aux1 = g
α2f3(x0+y0)
1 aux2 = g

−f∗
1α

′
+z(γf∗

2+f∗
3)+z5f

∗
5+z6f

∗
6

2

ele1 = g
α1f

∗
3(z0s+s

2)
2 ele2 = g

α1f
∗
3(z0+s)

2

ele3 = g
α1α2f2(z0s+s

2)
1 ele4 = g

α1α2f2(z0+s)
1

{skΥ j}j∈[Nq]
=

accX · g
tj

′
5 f5+t

j
6f6

1 = g
f1

Q∑
i=0

ajis
i+rj(d2−γd3)+t

j′
5 f5+t

j
6f6

1

j∈[Nq]

where α
′
= α1α2 − z5η,

{
t
′j
5 = tj5 + η

Q∑
i=0

ajis
i

}
j∈[Nq]

, which are all uniformly

distributed.

26

In other words, the coefficient α1α2 of d∗
1 in the aux2 term of the challenge cipher-

text is changed to random coefficient α
′ ∈ Zp of f∗

1, thus the challenge ciphertext can
be viewed as a semi-functional encryption of a random message in GT . Moreover, the
coefficients

{
tj

′

5

}
j∈[Nq]

of f5 in the
{
sk

(SF)
Υ j

}
j∈[Nq]

are uniformly distributed since{
tj5

}
of d5 are all independent random values. Thus

(
pk, ct

(SF)
Π ,

{
sk

(SF)
Υ j

}
i∈[Nq]

)
expressed over bases F and F∗ is properly distributed as

(
pk, ct

(SF)
ΠR

,
{
sk

(SF)
Υ j

}
i∈[Nq]

)
in GameFinal.

In the adversary’s view, both (D,D∗) and (F,F∗) are consistent with the same pub-
lic parameters. Therefore, the challenge ciphertext and queried secret keys above can
be expressed as keys and ciphertext in two ways, in GameNq over bases (D,D∗) and in
GameFinal over bases (F,F∗). Thus, GameQ and GameFinal are statistically indistin-
guishable. ⊓⊔

Lemma 5. For any adversary A, AdvGameFinal

A (λ) = 0.

Proof. The value of β is independent of the adversary’s view in GameFinal. Hence,
AdvGameFinal

A (λ) = 0. ⊓⊔

Combining Lemmas 2 to 5 we prove Theorem 5. ⊓⊔

5.4 Comparison

It is known that monotone boolean formulas can be put under DNF form, where the
latter represents the minterm of the formula, i.e. a minimal set of variables which, if
assigned the value 1, forces the formula to take the value 1 regardless of the values as-
signed to the remaining variables [15]. For more details on the transformation of mono-
tone boolean formulas into DNF and its probable efficiency loss we refer the interested
reader to [7,36]. It is also known that the circuit complexity class monotone NC1 is
captured by monotone boolean formulas of log-depth and fan-in two [23]. Therefore,
our CP-ABE can directly deal with monotone NC1 circuits. We present in Table 3 a
comparison of (bounded) CP-ABE scheme for monotone NC1 circuits, based on pair-
ings5. All schemes in this table overpass the one-use restriction on attributes, which
imposes that each attribute is only present once in the access policy. All schemes are
single authority, and secure in the standard model.

As we can see our scheme is the first one to obtain constant size for both ciphertexts
and secret keys. However, this is done at the cost of the public key size, which become
exponential. This drawback comes from the fact that for accumulating user’s attributes
set we are running the hash function H on each non-empty subset of this set. Doing
so we obtain an easy way to check if an attributes set verifies an access policy: if it

5 Some works are expressing their monotone boolean formula through Linear Secret Sharing
Scheme (LSSS) matrix, see [26] for more details on this transformation.

27

Table 3. Comparison of CP-ABE schemes for monotone NC1 circuits, based on pairings. Here q
is the bound on the number of attributes in the scheme, and l is the number of rows in the access
matrix when the policy is expressed with LSSS matrix.

Schemes |pk| |ct| |sk| Adaptive Security Assumption Group Order Pairing
[39] O(q) O(l) O(q) × Non Static Prime Symmetric
[24] O(q) O(l) O(q)

√
Static Composite Symmetric

[27] O(q) O(l) O(q)
√

Non Static Prime Symmetric
[23] O(q) O(q) O(l)

√
Static Prime Asymmetric

Our O(2q) O(1) O(1)
√

Static Prime Asymmetric

does, one of non-empty subsets of the set is equal to one clause of the access policy.
We argue that the size of the public key is less important than the size of the other
parameters, as it can easily be stored on-line. Additionally, while the sets (and access
policies) representation might be scary at first glance, this is not an issue in practice
as (i) it is not necessary to keep all elements in memory and (ii) for each decryption,
only the useful part will have to be computed again. Finding another way to accumulate
attributes sets and access policies in order to have efficient membership verification
may lead to a more efficient CP-ABE, with shorter public key size. Also notice that
our scheme is dealing with DNF access policies which have small expressiveness. We
leave as an open problem to reduce the size of the public key in our scheme and also to
modify it so that it can deal with fine-grained access policies. We also leave as an open
problem the case of unbounded ABE schemes [3,11], and the case of non-monotonic
access formulas [31,32], even if we give some intuitions about it in Appendix D. In
Appendix C, we also show how the above construction can be transformed into a Key
Policy ABE (KP-ABE), in which the secret key is attached to the access policy and the
ciphertext is given by a set of attributes.

6 Conclusion

In this work, we improved the state of the art of cryptographic accumulator schemes
by proposing a new scheme that has private evaluation while having public generation.
This scheme is the first (as far as we know) accumulator that uses dual pairing vector
spaces. We also introduced the new notion of dually computable cryptographic accumu-
lators, allowing two ways to evaluate an accumulator: either privately or publicly. We
instantiate a dually computable accumulator for our first scheme. Furthermore, we built
a new CP-ABE scheme, that deals with monotone NC1 circuits. This is the first scheme
in the literature that has both constant size ciphertexts and users secret keys. We achieve
such compactness by using cryptographic accumulators for both key management and
encryption. Unfortunately, as our construction strongly relies on the fact that Nguyen’s
accumulator uses polynomial representation of sets, we cannot generalized our idea.
Hence, we leave as an open problem the way to generically transform a cryptographic
accumulator into an (attribute-based) encryption scheme.

28

Acknowledgments We would like to thank anonymous reviewers for their helpful
discussions and valuable comments. Part of this work has received funding from the
French National Research Agency (ANR) under PRESTO project number ANR-19-
CE39-0011-01, and the Banque Publique d’Investissement under the VisioConfiance
project.

References

1. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-prove revocation. In: Sadeghi,
A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 189–196. Springer, Heidelberg (Apr 2013).
https://doi.org/10.1007/978-3-642-39884-1_15

2. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (Dec 2002).
https://doi.org/10.1007/3-540-36178-2_27

3. Attrapadung, N.: Dual system encryption framework in prime-order groups via computa-
tional pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 591–623. Springer, Heidelberg (Dec 2016). https://doi.org/10.
1007/978-3-662-53890-6_20

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryp-
tion with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (Mar 2011). https:
//doi.org/10.1007/978-3-642-19379-8_6

5. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumulator. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (Feb 2007).
https://doi.org/10.1007/11967668_12

6. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital sinatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT’93. LNCS,
vol. 765, pp. 274–285. Springer, Heidelberg (May 1994). https://doi.org/10.
1007/3-540-48285-7_24

7. Blais, E., Håstad, J., Servedio, R.A., Tan, L.Y.: On DNF approximators for monotone
Boolean functions. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014, Part I. LNCS, vol. 8572, pp. 235–246. Springer, Heidelberg (Jul 2014). https:
//doi.org/10.1007/978-3-662-43948-7_20

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in
bilinear groups. Journal of Cryptology 21(2), 149–177 (Apr 2008). https://doi.org/
10.1007/s00145-007-9005-7

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 533–556. Springer, Heidelberg (May 2014). https://doi.org/10.
1007/978-3-642-55220-5_30

10. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (Mar 2009). https://doi.org/
10.1007/978-3-642-00468-1_27

11. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion,
revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820,
pp. 503–534. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78381-9_19

29

https://doi.org/10.1007/978-3-642-39884-1_15
https://doi.org/10.1007/978-3-642-39884-1_15
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/11967668_12
https://doi.org/10.1007/11967668_12
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19

12. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) PAIRING 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (May 2013). https://doi.org/10.
1007/978-3-642-36334-4_8

13. Damgard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accu-
mulators. Cryptology ePrint Archive, Report 2008/538 (2008), http://eprint.iacr.
org/2008/538

14. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional
properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS,
vol. 9048, pp. 127–144. Springer, Heidelberg (Apr 2015). https://doi.org/10.
1007/978-3-319-16715-2_7

15. Elbassioni, K., Makino, K., Rauf, I.: On the readability of monotone boolean formulae. Jour-
nal of Combinatorial Optimization p. 293–304 (2011)

16. Fazio, N., Nicolosi, A.: Cryptographic accumulators: Definitions, constructions and applica-
tions (2002)

17. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (May 2004). https://doi.org/10.1007/978-3-540-24676-3_1

18. Gentry, C., Ramzan, Z.: RSA accumulator based broadcast encryption. In: Zhang, K., Zheng,
Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (Sep 2004)

19. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.: Zero-
knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6_3

20. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based en-
cryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Hei-
delberg (Jul 2008). https://doi.org/10.1007/978-3-540-70583-3_47

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S.
(eds.) ACM CCS 2006. pp. 89–98. ACM Press (Oct / Nov 2006). https://doi.org/
10.1145/1180405.1180418, available as Cryptology ePrint Archive Report 2006/309

22. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg
(May 2016). https://doi.org/10.1007/978-3-662-49896-5_11

23. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 3–33. Springer,
Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17653-2_1

24. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional en-
cryption: Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (May / Jun
2010). https://doi.org/10.1007/978-3-642-13190-5_4

25. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private keys. In:
2010 IEEE Symposium on Security and Privacy. pp. 273–285. IEEE Computer Society Press
(May 2010). https://doi.org/10.1109/SP.2010.23

26. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20465-4_31

27. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.

30

https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2008/538
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1109/SP.2010.23
https://doi.org/10.1109/SP.2010.23
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31

LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (Aug 2012). https://doi.org/
10.1007/978-3-642-32009-5_12

28. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From polynomial
commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis,
I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–
30:14. Schloss Dagstuhl (Jul 2016). https://doi.org/10.4230/LIPIcs.ICALP.
2016.30

29. Mahabir, J., Reihaneh, S.N.: Compact accumulator using lattices. International Conference
on Security, Privacy, and Applied Cryptography Engineering (2015)

30. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (Feb 2005). https:
//doi.org/10.1007/978-3-540-30574-3_19

31. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 191–208. Springer, Heidelberg (Aug 2010). https://doi.org/10.
1007/978-3-642-14623-7_11

32. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based
encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 349–366. Springer, Heidelberg (Dec 2012). https://doi.org/10.1007/
978-3-642-34961-4_22

33. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_6

34. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (May 2005). https:
//doi.org/10.1007/11426639_27

35. Tanaka, N., Saito, T.: On the q-Strong Diffie-Hellman problem. IACR Cryptol. ePrint Arch.
2010, 215 (2010)

36. Venema, M., Alpár, G., Hoepman, J.H.: Systematizing core properties of pairing-based
attribute-based encryption to uncover remaining challenges in enforcing access control in
practice. Designs CoDes and Cryptography 91(1), 165–220 (Jan 2023). https://doi.
org/10.1007/s10623-022-01093-5

37. Wang, X., Chow, S.S.M.: Cross-domain access control encryption: Arbitrary-policy,
constant-size, efficient. In: 2021 IEEE Symposium on Security and Privacy. pp. 748–761.
IEEE Computer Society Press (May 2021). https://doi.org/10.1109/SP40001.
2021.00023

38. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (Aug 2009). https://doi.org/10.1007/978-3-642-03356-8_36

39. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (Mar 2011). https://doi.
org/10.1007/978-3-642-19379-8_4

40. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accumulator. pp.
158–173 (04 2017). https://doi.org/10.1109/EuroSP.2017.35

31

https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1109/EuroSP.2017.35
https://doi.org/10.1109/EuroSP.2017.35

Supplementary material

A More Details on Our CP-ABE Construction

A.1 Intuition of our CP-ABE Construction

Our idea is to use our dually computable accumulator to construct a CP-ABE. Let q ∈ N
be the bound on the number of attributes in our scheme and Q = 2q − 1. Let Υ be the
user attributes set of size k ∈ N with k ≤ q, p1, · · · p2k−1 be all non-empty parties

of Υ . Set X = {H(pi)}2
k−1
i=1 and let {ai}qi=0 be the coefficients of the polynomial

ChX [Z] =
∏2k−1
i=0 (H(pi) + Z). Let Π = π1 ∨ π2 ∨ · · · ∨ πl be the access policy

composed of l ∈ N clauses, Yi be the set of elements present in clause πi for i =
1, · · · l. Set Y = ∪li=1H(Yi) and let {mi}qi=0 be the coefficients of the polynomial
ChY [Z] =

∏l
i=0(H(Yi) + Z). Our scheme works as follows:

– KeyGen: the user secret key is a privately computed accumulator of the set X :

accX = g
d1

∑Q
i=0 ais

i

1 .

– Encrypt: the message is hidden with e(gd1
1 , g

d∗
1

∑Q
i=0mis

i

2)α where gd
∗
1

∑Q
i=0mis

i

2 =
accpY a publicly computed accumulator of the access policy set Y and α a random.

– Decrypt: we need to be able to reconstruct ψα
∑Q
i=0mis

i in exponent of e(g1, g2).

Let πj be the clause in Π that is satisfied by Υ , where j ∈ [l]. Let pj∗ be the non-empty
party of Υ that satisfies Π , for j∗ ∈ [2k − 1]. ThenH(Yj) = H(pj∗) and we write this
element ξ for simplicity.

However, in this construction, this there is nothing that links the ciphertext to the
user secret key: anyone can choose to create a witness for one clause of the policy,
even if he does not have this clause, as witness creation is public. To avoid this, we
need to force user to also prove that the clause is in his accumulator. Let witYξ ,wit

X
ξ be

membership witnesses for ξ and respectively Y , and X . For verification, we compute
A = e(witYξ , (g

d∗
2α

2)ξ · gd
∗
2sα

2) and B = e(witXξ , (g
d∗
2α

2)ξ · gd
∗
2sα

2). Multiplying A and B
gives us

e(witYξ · wit
X
ξ , (g

d∗
2α

2)ξ · gd
∗
2sα

2)

thanks to bilinear pairing properties. To prove simultaneously that ξ is in both accumu-
lators, we need to “force” the decryptor to compute e(A ·B, (gd

∗
2α

2)ξ · gd
∗
2sα

2) instead of
e(A, (g

d∗
2α

2)ξ · gd
∗
2sα

2) · (B, (gd
∗
2α

2)ξ · gd
∗
2sα

2).

An easy way to do that is to give with the ciphertext (A·B)α instead of gd
∗
2α

2 , g
d∗
2sα

2 .
But this implies to know witnesses during encryption whereas they are only known dur-
ing decryption. Our idea is then to “anticipate” the witnesses or at least a part of them.

From Definition 8 and Note 4 we know that for any set S = {s1, · · · , sT }, its poly-
nomial representation

∏T
i=1(s+Z) is actually composed of the elementary symmetric

polynomials for T variables: σ0 = 1, σ1 = s1 + s2 + · · · sT , · · · , σT =
∏T
i=1 si. In-

deed,
∏T
i=1(s+Z) = σ0Z

T +σ1Z
T−1+ · · ·σT . Thus, if we know one element s̃ of S,

we know that s̃ is a factor of σT . We use this idea to anticipate a part of both witnesses

1

for element ξ.

Let {ci}Qi=0 be the coefficients of ChX\{ξ}[Z] and {ti}Qi=0 are the coefficients of
ChY\{ξ}[Z]. Our first idea is to separate coefficients c0 and t0 of the others. Thus, in
our accumulator a witness that ξ = H(pj∗) is accumulated in accX is now equal to

(gd1c0
1 , g

d∗
2

∑Q
i=1 cis

i

2) and a witness that ξ = H(Yj) is accumulated in accpY is now

equal to (gd1t0
1 , g

d∗
2

∑Q
i=1 tis

i

2). This gives us our first intermediate accumulator, pre-
sented in Figure 6 of Appendix B.

But the values c0 and t0 depend on X \ {ξ} and Y \ {ξ} respectively. While Y is
known during encryption, X and ξ are only known during decryption. Therefore, we
cannot anticipate c0 and t0 during decryption.

To solve this, we choose two values x0, y0 that do not correspond to an output ofH
and add them to the sets X and Y respectively. As x0, y0 /∈ Im(H), we know that x0
and y0 will always be in sets X \ {ξ} and Y \ {ξ} respectively. Thus, x0 is a factor of
c0 while y0 is a factor of t0. Therefore, we can anticipate a part of the first element of
both witnesses with gd1x0

1 for the witness associated to accX and gd1y0
1 for the witness

associated to accpY .

Now that we can anticipate a part of the witnesses, we can combine them by setting
aux1 = g

d1α(x0+y0)
1 . Let δ, δ

′ ∈ N such that c0 = x0δ and t0 = y0δ
′
. We can compute

e(auxδδ01 , (g
d∗
1

2)ξ · gd
∗
1s

2)

= e((g
d1α(x0+y0)
1)δδ

′

, g
d∗
1(ξ+s)

2)

= e(g
d1αδδ

′
(x0+y0)

1 , g
d∗
1(s+ξ)

2)

= e(g1, g2)
ψαδ

′
c0(s+ξ) · e(g1, g2)ψαδt0(s+ξ)

As the verification that ξ ∈ X will give e(g1, g2)ψα
∑Q

i=0 ais
i

(if ξ is indeed in the
set) we have to give in encryption the auxiliary information aux2 = g

−αd∗
1

2 to remove
this extra term and recover the mask. As we can see aux2 will work only with privately
computed accumulator, and will be used for the verification of membership in the ac-
cumulator of the secret key.

We now have to compute the rest of witness such that it is randomized by α. The
trivial solution is to give gαd

∗
2s

2 , · · · , gαd
∗
2s

Q

2 but this will result in a linear size for the
ciphertext. Thus, it seems more efficient to give gαd2(s+ξ)

1 . But as ξ is unknown at
the time of encryption, we have to give gαd2s

1 and gαd2
1 . With the latter it is possible

to cheat: with gd
∗
2

2 , g
d∗
2s

2 , · · · gd
∗
2s

Q

2 we can compute gd
∗
2

∑Q
i=0mis

i

2 and recover the mask.

Our idea to avoid this is to anticipate the value of ξ. We do as we did to anticipate
c0 and t0. We choose another value z0 that is not in Im(H) that we add in X and Y .

2

Then z0 is an element accumulated in both accX (the secret key) and accpY (used in
the mask of the message). During decryption, we prove the membership of {ξ, z0}, and
thus we need the polynomial Z2 + Z(ξ + z0) + ξ · z0 = Z2 + Zz0 + ξ(Z + z0).
Therefore, we give with the ciphertext the auxiliary information ele3 = g

αd2(z0s+s
2)

1

and ele4 = g
αd2(z0+s)
1 . As s is secret, there is no way to cheat.

Unfortunately, as is, the scheme is not secure. Indeed, from aux1 = g
d1α(x0+y0)
1 and{

g
d∗
1s

i

2

}Q
i=0

, anyone can compute (e(g1, g2)ψα
∑Q

i=0mis
i

)x0+y0 . As x0, y0 are publicly

known, anyone can recover e(g1, g2)ψα
∑Q

i=0mis
i

= H and thus the message.

To correct this we set: α = α1 · α2 for α1, α2 two randoms, aux1 = g
d1α2(x0+y0)
1 ,

ele3 = g
α1α2d2(z0s+s

2)
1 , ele4 = g

α1α2d2(z0+s)
1 , and aux2 = g

−α1α2d
∗
1

2 . To have correct-
ness during membership verification, we need more auxiliary information (ele1, ele2)

are equal to (g
d∗
1α1(z0s+s

2)
2 , g

d∗
1α1(z0+s)

2).

Unfortunately, we were not able to prove security of the build CP-ABE. Therefore,
we add to modify the underlying accumulator, as we explain in the next subsection.

A.2 Adding Security to Our ABE Scheme

Here we first present the transformation from our first intermediate accumulator to our
second intermediate accumulator, then to our last accumulator, which is the one we
need to use in our CP-ABE construction.

As already said, we will prove adaptive security of our scheme with the dual system
encryption framework, and the decisional subspace assumption in G1 and G2, as it
relies on the hidden subspaces of dual pairing vector spaces. We recall that our CP-ABE

secret key for attributes sets Υ is equal to accX = g
d1

∑Q
i=0 ais

i

1 and in the ciphertext
we provide aux2 = g

−α1α2d
∗
1

2 , where α1, α2 ← Zp. We now have to define semi-
functional keys and ciphertexts, that will be used in the security proof. To do so, we
need to double the dimension of DPVS used: we now have D = (d1,d2,d3,d4) and
D∗ = (d∗

1,d
∗
2,d

∗
3,d

∗
4), where d3,d4,d

∗
3,d

∗
4 will be used for semi-functional space.

Thus, trivially we can define for a secret key skΥ and ciphertext auxiliary information
aux2 their semi-functional forms as:

sk
(SF)
Υ = skΥ · gd3t3

1 and aux
(SF)
2 = aux2 · g

d∗
3z3

2 for t3, z3 ← Zp

When using the DS2 assumption to change challenge ciphertext from normal form
to semi-functional, we will use the element T1, which is equal either to gτ1d

∗
1

2 or to
g
τd∗

1+τ2d
∗
3

2 , to build either aux2 or aux(SF)
2 . However, the random τ1 will have to appear

in other parts of the ciphertext as e(accX , aux2) = e(accX , g
d∗
1

2)τ1 thus for membership
verification we have to be able to reconstruct τ1

∑q
i=0 ais

i. And as τ1 is only given in
exponent of the assumption’s challenge we do not know it and will not be able to use it

3

for other parts of the ciphertext, especially because in the ciphertext there are elements
of G1 and we only have τ1 as exponent of an element of G2.

Thus, we have to change the way we define semi-functional keys and ciphertexts.
Let us now define normal and semi-functional keys and ciphertexts as follows:

skΥ = g
d1

∑q
i=0 ais

i+z2d2

1 , aux2 = g
rd∗

1+t2d
∗
2

2

sk
(SF)
Υ = g

d1
∑q

i=0 ais
i+z2d2+z4d4

1 , aux
(SF)
2 = g

rd∗
1+t2d

∗
2+t4d

∗
4

2

where z2, z4, t2, t4 ← Zp. We easily notice that during membership verification be-
tween a normal key and a normal ciphertext, we have an extra term e(g1, g2)

ψz2t2 . To
remove this extra term, we can add in the key g−d2t2

1 and in the ciphertext gd
∗
2z2

2 .
But as we add an element to normal keys and one to normal ciphertexts, we have to mod-
ify the semi-functional keys and ciphertext by adding them g−d2t2−d4t4

1 and gd
∗
2z2+d∗

4z4
2

respectively. Notice that we keep the same randoms as coefficients of d4 and d∗
4 in both

parts of the semi-functional key and ciphertext (as the assumption’s challenge gives us
only one coefficient for d4,d

∗
4 and if we randomized it for the second part of SF keys

and ciphertext, again we will not be able to remove the extra term). But doing so we
obtain that a semi-functional key always decrypt a semi-functional ciphertext, which
should not be possible.

To fix this issue, we can define normal keys and ciphertexts as follows:

skΥ = g
d1

∑q
i=0 ais

i+(d1−d2)
1 , aux2 = g

rd∗
1+(d∗

1+d∗
2)

2 .

With this definition, we obtain in the accumulator verification e(g1, g2)ψγ ·e(g1, g2)−ψγ ,
as we wanted. But we also obtain e(g1, g2)ψγ

∑q
i=0 ais

i

, and extra term we cannot re-
move.

At this point, our idea is to increase the dimension of the used DPVS of the accu-
mulator to 3 (and thus 6 for the ABE to have semi-functional spaces). Then, we define
normal and semi-functional keys and ciphertexts as:

skΥ = g
d1

∑q
i=0 ais

i+(d2−d3)
1 , aux2 = g

rd∗
1+(d∗

2+d∗
3)

2

sk
(SF)
Υ = g

d1
∑q

i=0 ais
i+(d2−d3)+z5d5+z6d6

1 , aux
(SF)
2 = g

rd∗
1+(d∗

2+d∗
3)+t5d

∗
5+t6d

∗
6

2

where z5, z6, t5, t6 ← Zp. Decryption of a normal ciphertext by a normal or SK key
will work as no extra term will be in the result and decryption of a SF ciphertext by a
normal key will also work. However, decryption of a SF ciphertext by a SK key will not
work as it has an extra term: e(g1, g2)ψ(t5z5+t6z6)6.

Though there is one problem when defining keys and ciphertexts like this. In the
security proof, we use the challenge of DS2 assumption T2, T3 to build the challenge

6 This idea is inspired by the IBE of [12].

4

ciphertext. (T2, T3) are either equals to (g
τ1d

∗
2

2 , g
τ1d

∗
3

2) or to (g
τ1d

∗
2+τ2d

∗
5

2 , g
τ1d

∗
3+τ2d

∗
6

2).
We set aux2 = g

−α1α2d
∗
1

2 ·T2 ·T3. In the both case, we have that d∗
2,d

∗
3 are randomized

by τ1. Thus we need to define aux2 = g
rd∗

1+z(d
∗
2+d∗

3)
2 for z ← Zp. As the same goes

when using the challenge of DS1 assumption to build the challenge key, we have to de-

fine skΥ = g
d1

∑q
i=0 ais

i+r(d2−d3)
1 for r ← Zp. We carry these modifications in sk

(SF)
Υ

and aux
(SF)
2 .

But notice that with way of building the challenge ciphertext, when T2, T3 are equals
to gτ1d

∗
2+τ2d

∗
5

2 , g
τ1d

∗
3+τ2d

∗
6

2 we have that t5 = t6 = τ2 (and the same goes for the chal-
lenge key where z5 = z6 = τ2). Thus, we do not obtain an SF ciphertext (or SF key).
To solve this issue we actually randomized d3 in the keys and d∗

2 in the ciphertext, with
the same random. Therefore, we define normal and SF keys and ciphertext as follows:

skΥ = g
d1

∑q
i=0 ais

i+(d2−γd3)
1 , sk

(SF)
Υ = g

d1
∑q

i=0 ais
i+(d2−γd3)+z5d5+z6d6

1

aux2 = g
rd∗

1+(γd∗
2+d∗

3)
2 , aux

(SF)
2 = g

rd∗
1+(γd∗

2+d∗
3)+t5d

∗
5+t6d

∗
6

2

This gives us our second accumulator, presented in Figure 7, in Appendix B.

Finally, to conclude our security proof, we will do a change of bases from (D,D∗) to
(F,F∗). By the way we define it, we obtain f1 = d1−ηd5 where η ← Zp. It means that
each part of the ciphertext that uses d1 will have a semi-functional part in bases F, and
our ciphertext will no longer be a correct SF ciphertext. Indeed, we defined (and we need
for the other parts of the proof) a SF ciphertext as being a normal ciphertext with only
element aux2 having a semi-functional part. Therefore, we need to replace d1 by d3 in
ciphertexts to avoid this issue. As in our CP-ABE the anticipation of the first element of
the membership witness, aux1 uses d1, we modify our accumulator so that W1 has in
exponent d3. This gives us our last accumulator, presented in Figure 8, in Appendix 6.
Plus, as in the CP-ABE ciphertext the mask of the message is e(gd1

1 , accpY), we have
to change the way to publicly computed accumulators: we now use

{
b∗3s

i
}q
i=0

instead

of
{
b∗1s

i
}q
i=0

. We do not include gd
∗
2γ+d∗

3
2 in the publicly computed accumulator we do

not need a semi-functional form of it. That gives us our second accumulator scheme,
presented in Figure 8. We also change elements ele1, ele2 in our CP-ABE ciphertext:
we replace d∗

1 by d∗
3 to keep correctness.

B Intermediates Accumulator Schemes

In this section, we present the intermediates accumulators that helped us move from our
first dually computable accumulator, presented in Figure 3, to the dually computable
accumulator that we use in our CP-ABE construction.

B.1 First Intermediate Accumulator: Dividing Witnesses

In Figure 6 we present our first intermediate accumulator. It is the first step of upgrading
our first accumulator (like explained in Section 5.2 and Appendix A). This accumulator

5

is the same as the accumulator of Figure 3 except that witnesses are now divided in two
parts and thus gd

∗
2

2 is no longer need in the public key.

– Gen(1κ, q): run a bilinear group generation algorithm to get Γ = (p,G1,G2,
GT , e, g1, g2). Then choose a random s ← Z∗

p, and run Dual(Z2
p) to get D =

(d1,d2),D∗ = (d∗
1,d

∗
2). Let ψ ∈ Zp be the random such that d1 · d∗

1 = d2 · d∗
2 = ψ.

Set skacc = (s,D,D∗),

pkacc =

(
Γ, gd1

1 , gd2
1 , gd2s

1 , · · · , gd2s
q

1 , g
d∗
1

2 ,

g
d∗
1s

2 , · · · , gd
∗
1s

q

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)
.

Return skacc, pkacc.

– Eval(skacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial ChX [Z] =∏
x∈X (Z + x). Then compute accX = g

d1
∑q

i=0 ais
i

1 , and return accX .

– PublicEval(pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accpX = g

d∗
1

∑q
i=0 ais

i

2 , and return accpX .

– WitCreate(pkacc,X , accX/accpX , I): let {bi}i=0,··· ,q be the coefficients of the polyno-

mial ChX\I [Z] =
∏
x∈X\I(x + Z). Compute W1 = gd1b0

1 and W2 = g
d∗
2

∑q
i=1 bis

i

2 ,
and return witI = witpI = (W1,W2).

– Verify(pkacc, accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I(x + Z) and the return 1 if e(accX , g

d∗
1

2) = e(W1, g
d∗
1

∑q
i=0 cis

i

2) ·

e(g
d2

∑q
i=0 cis

i

1 ,W2), 0 otherwise.

– PublicVerify(pkacc, accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polyno-

mial ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(gd1

1 , accpX) = e(W1, g
d∗
1

∑q
i=0 cis

i

2) ·

e(g
d2

∑q
i=0 cis

i

1 ,W2), 0 otherwise.

Fig. 6. The first intermediate accumulator scheme.

B.2 Second Intermediate Accumulator: Increasing DPVS Dimension

In Figure 7 we present our second intermediate accumulator. This accumulator is the
based on the previous one, presented in Figure 6, except that we increased the DPVS di-
mension from 2 to 3. We also modified Eval, WitCreate and Verify algorithm in the fol-
lowing manner: we added elements of bases d∗

2,d
∗
3 into the accumulator and elements

of bases d2,d3 into the membership verification. Public key of the scheme was changed
accordingly to the algorithms changes. The changes are explained in Section 5.2 and
detailed in Appendix A.

6

– Gen(1κ, q): run a bilinear group generation algorithm to get Γ =
(p,G1,G2,GT , e, g1, g2). Then choose randoms s, γ ← Z∗

p, and run Dual(Z3
p) to

get D = (d1,d2,d3),D∗ = (d∗
1,d

∗
2,d

∗
3). Let ψ ∈ Zp be the random such that

d1 · d∗
1 = d2 · d∗

2 = d3 · d∗
3 = ψ. Set skacc = (s, γ,D,D∗),

pkacc =

(
Γ, gd1

1 , gd2
1 , gd2s

1 , · · · , gd2s
q

1 , g
d∗
1

2 , g
d∗
1s

2 ,

· · · , gd
∗
1s

q

2 , g
d∗
2γ

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2 , g
d∗
3

2

)
.

Return skacc, pkacc.

– Eval(skacc, pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial
ChX [Z] =

∏
x∈X (Z + x). Then pick r ← Zp and compute accX =

g
d1

∑q
i=0 ais

i+r(d2−γd3)

1 , and return accX .

– PublicEval(pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accX = g

d∗
1

∑q
i=0 ais

i

2 , and return accX .

– WitCreate(pkacc,X , accX/accpX , I): let {bi}i=0,··· ,q be the coefficients of the polyno-

mial ChX\I [Z] =
∏
x∈X\I(x + Z). Compute W1 = gd1b0

1 and W2 = g
d∗
2

∑q
i=1 bis

i

2 ,
and return witI = witpI = (W1,W2).

– Verify(pkacc, accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(accX , g

d∗
1

2 · gd
∗
2γ

2 · gd
∗
3

2) =

e(W1, g
d∗
1

∑q
i=0 cis

i

2) · e(gd2
∑q

i=0 cis
i

1 ,W2), 0 otherwise.
– PublicVerify(pkacc, accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polyno-

mial ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(gd1

1 , accpX) = e(W1, g
d∗
1

∑q
i=0 cis

i

2) ·

e(g
d2

∑q
i=0 cis

i

1 ,W2), 0 otherwise.

Fig. 7. The second intermediate accumulator scheme.

B.3 The dually Computable Accumulator Used in Our CP-ABE

Theorem 6. These three dually computable accumulator schemes are correct, and sat-
isfies collision resistance under the q-SBDH assumption, distinguishability and cor-
rectness of duality.

Proofs of correctness and security (for publicly and privately computed accumula-
tors) can be done as proofs of Theorems 1 and 2 respectively. For distinguishabality and
correctness of duality we use the same arguments as the ones in Section 4 for our dually
computable accumulator of Figure 3.

C Our KP-ABE Scheme

In this section we present a KP-ABE scheme, which is built as our CP-ABE of Sec-
tion 5, and we compare it to existing schemes. Our KP-ABE is presented in Figure 9.

7

– Gen(1κ, q): run a bilinear group generation algorithm to get Γ =
(p,G1,G2,GT , e, g1, g2). Then choose randoms s, γ ← Z∗

p, and run Dual(Z3
p) to

get D = (d1,d2,d3),D∗ = (d∗
1,d

∗
2,d

∗
3). Let ψ ∈ Zp be the random such that

d1 · d∗
1 = d2 · d∗

2 = d3 · d∗
3 = ψ. Set skacc = (s, γ,D,D∗),

pkacc =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

q

2 ,

g
d∗
2γ

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

q

2

)
,

and return skacc, pkacc.

– Eval(skacc, pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial
ChX [Z] =

∏
x∈X (Z + x). Then pick r ← Zp and compute accX =

g
d1

∑q
i=0 ais

i+r(d2−γd3)

1 , and return accX .

– PublicEval(pkacc,X): compute the coefficients {ai}i=0,··· ,q of the polynomial

ChX [Z] =
∏
x∈X (Z + x). Then compute accX = g

d∗
3

∑q
i=0 ais

i

2 , and return accpX .

– WitCreate(pkacc,X , accX/accpX , I): let {bi}i=0,··· ,q be the coefficients of the polyno-

mial ChX\I [Z] =
∏
x∈X\I(x + Z). Compute W1 = gd3b0

1 and W2 = g
d∗
2

∑q
i=1 bis

i

2 ,
and return witI = witpI = (W1,W2).

– Verify(pkacc, accX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polynomial

ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(accX , g

d∗
1

2 · gd
∗
2γ

2 · gd
∗
3

2) =

e(W1, g
d∗
3

∑q
i=0 cis

i

2) · e(gd2
∑q

i=0 cis
i

1 ,W2), 0 otherwise.

– PublicVerify(pkacc, accpX ,witI , I): let {ci}i=0,··· ,q be the coefficients of the polyno-

mial ChI [Z] =
∏
x∈I(x + Z) and return 1 if e(gd3

1 , accX) = e(W1, g
d∗
3

∑q
i=0 cis

i

2) ·

e(g
d2

∑q
i=0 cis

i

1 ,W2), 0 otherwise.

Fig. 8. The dually computable accumulator used in our CP-ABE scheme.

Theorem 7. Our scheme is correct and satisfies adaptive indistinguishability under
SXDH.

Correctness and security proofs of our KP-ABE can be done as for our CP-ABE.

In Table 4 we compare our KP-ABE with other KP-ABE schemes. All schemes are
for single authority, secure in the standard model, bounded and in the pairing settings.

As we notice for our CP-ABE, there exist schemes that are unbounded or deal with
non-monotonic access policies. We leave as an open problem to modify our KP-ABE
to achieve such properties.

8

– Setup(λ, 1q): generate bilinear group Γ = (G1,G2,GT , p, e, g1, g2), dual pairing vec-
tor spaces (D,D∗) ← Dual(Z6

p) such that D = (d1, · · · ,d6), D∗ = (d∗
1, · · · ,d∗

6)
and di · d∗

i = ψ, for i = 1, · · · , 6 and ψ ∈ Zp. Also choose γ, s, x0, y0, z0 ← Zp
and a hash function H that takes as input an attributes set and outputs an element of

Zp \ {γ, s, x0, y0, z0}. Set Q = 2q − 1, msk =

(
γ, s, g

d∗
2

2 ,
{
gd1s

i

1

}Q
i=0

,
{
gd3s

i

1

}Q
i=1

)
and

pk =

(
Γ, gd3

1 , gd2
1 , gd2s

1 , · · · , gd2s
Q

1 , g
d∗
1

2 , g
d∗
1s

2 , · · · , gd
∗
1s

Q

2 , g
d∗
2γ

2 ,

g
d∗
2s

2 , · · · , gd
∗
2s

Q

2 , g
d∗
3

2 , g
d∗
3s

2 , · · · , gd
∗
3s

Q

2 ,H, x0, y0, z0

)
.

Return msk, pk.
– KeyGen(pk,msk, Π): let Π = π1 ∨ π2 ∨ · · · ∨ πl be the access policy, where l ∈

N is the number of clauses in the policy, and πi for i = 1, · · · , l is a conjunction of
attributes. Define Yi for i = 1, · · · , l as the set of attributes associated to clause πi and
Y = ∪li=1H(Yi) ∪ {y0, z0}. Let {mi}Qi=0 be the coefficients of polynomial ChY [Z].

Pick r ← Zp and set skΠ = accY = g
d1

Q∑
i=0

mis
i+r(d2−γd3)

1

– Encrypt(pk, Υ,m): let k ∈ N be the number of attributes in Υ . Compute p1, · · · , p2k−1

all the non-empty parties of Υ and set X = {H(pi)}2
k−1
i=1 ∪ {x0, z0}. Compute

{ai}i=0,··· ,Q the coefficients of the polynomial ChX [Z] = (x0 + Z) · (z0 + Z) ·
2k−1∏
i=1

(H(pi) + Z). Choose z, α1, α2 ← Zp and do

• Mask computation: define accp
X=g

d∗
3

2

Q∑
i=0

aisi
and H = e(gd3

1 , accpX)α1α2 .

• Anticipation fo the witnesses and auxiliary information computation: set aux1 =

g
α2d3(x0+y0)
1 and aux2 = g

−d∗
1α1α2+z(γd

∗
2+d∗

3)
2 .

• Anticipation of the element computation: set ele1 = g
α1d

∗
3(z0s+s

2)
2 , ele2 =

g
α1d

∗
3(z0+s)

2 , ele3 = g
α1α2d2(z0s+s

2)
1 and ele4 = g

α1α2d2(z0+s)
1

Set ctΥ = (ele1, ele2, ele3, ele4, aux1, aux2,m ·H) and return ctΥ .

– Decrypt(pk, skΠ , Π, ctΥ , Υ): Find pj∗ (for j∗ ∈
{
1, · · · , 2k − 1

}
) such that Υ satisfies

Π (if no party exists, then return reject symbol⊥). It means that there exist j ∈ [1, · · · , l]
such that pj∗ = Yj and H(pj∗) = H(Yj) = ζ. Let {ci}Qi=0 be the coefficients of the
polynomial ChX [Z]/(z0+Z)(ζ+Z)). Let {ti}Qi=0 be the coefficients of the polynomial
ChY [Z]/((z0 + Z)(ζ + Z)). Find δ, δ

′
∈ Zp such that c0 = x0δ and t0 = y0δ

′
. Set

W2 = g
d∗
2

Q∑
i=1

cis
i

2 , W
′
2 = g

d∗
2

Q∑
i=1

tis
i

2 and compute

m ·H(
e(auxδδ

′

1 , ele1 · eleζ3) · e(ele2 · ele
ζ
4,W

δ
′

2 ·W
′δ
2) · e(accX , aux2)δ

′
)δ−1

to get m or ⊥.

Fig. 9. Our KP ABE scheme.

9

Table 4. Comparison of KP-ABE schemes for monotone NC1 circuits, based on pairings. Here q
is the bound on the number of attributes in the scheme, and l is the number of rows in the access
matrix when the policy is expressed with LSSS matrix. “Sec.” means “security”.

Schemes |pk| |ct| |sk| Sec. Adaptive Assumption One-Use Group Order Pairing
[21] O(q) O(l) O(q) × Static Yes Prime Symmetric
[24] O(q) O(q) O(l)

√
Static No Composite Symmetric

[27] O(q) O(q) O(l)
√

Non Static No Prime Symmetric
[23] O(n) O(n) O(l)

√
Static No Prime Asymmetric

Our O(2q) O(1) O(1)
√

Static No Prime Asymmetric

D Non-Monotonic Access Policy

To improve our CP-ABE scheme so that it deals with “NO” gates, we might need to
use universal accumulators. A universal accumulator scheme provides both member-
ship and non-membership proofs. We might use non-membership proofs to deal with
“NO” gates. The dually computable feature can easily be defined for universal accumu-
lator schemes. However, we were not able to construct such schemes. Our accumulator
of Figure 1 can be made universal, following [19]’s idea for non-membership proofs:
the use of Bezout’s coefficients. Using Extended Euclidean algorithm, compute poly-
nomials q1[Z], q2[Z] such that ChX [Z]q1[Z] + ChI [Z]q2[Z] = 1 (at the condition that
I ∩ X = ∅ otherwise the gcd of their associate polynomials is not equal to 1). Then,
set W1 = g

d1q1(s)
2 and W2 = g

d2q2(s)
2 . However, when universal, our accumulator is no

longer dually computable: in the non-membership verification, we have e(accX ,W1).
Therefore, as accX is replaced by accpX which is composed of two elements of G2, the
pairing with W1 cannot work. To keep it working, we would have to modify the wit-
ness, and thus we would no longer satisfies correctness of duality. Plus, the modification
requires the use of private elements.

E Sets Operations

In this section we show that our accumulator presented in Figure 1, in Section 3, can
be used for sets operations. Indeed, our above accumulator construction can deal with
subset queries, meaning that he can provide short (constant size) witness for the inter-
section, the union and the set difference of two accumulators.

Subset. As we already saw in Section 3, our accumulator of Figure 1 can deal with
subset queries, meaning that he can provide short (constant size) witness that a given
set is a subset of another set.

Union. Our dually computable accumulator in Figure 3 can provide constant size proof

of sets union. LetX1,X2 be two sets and accX1 ← Eval(skacc, pkacc,X1) = g
d1

∑q
i=0 ais

i

1 ,

accpX2
= g

d∗
1

∑q
i=0 bis

i

2 . Compute accpX1∪X2
= g

d2
∑q

i=0 cis
i

1 and aux = g
d∗
2

∑q
i=0 eis

i

2

where {ci, ei}qi=0 are respectively the coefficients of polynomials
∏
x∈X1∪X2

(x + Z)
and

∏
x∈{X1⊎X2}\{X1∪X2}(x+ Z). We have that (accX1

, accpX2
, accpX1∪X2

, aux) is a

10

constant size witness of union: verification is done by checking if e(accpX1∪X2
, aux) is

equal to e(accX1
, accpX2

).

However, this is only working when the intersection of two sets is queried, it does
not hold for more than two sets. For more than two sets, we can apply [19]’s methodol-
ogy with either our first accumulator (Figure 1) or our dually computable accumulator
(Figure 3): first we prove that each set is a subset of the union, then we prove that the
intersection is a subset of the multiset union (i.e. ⊎).

– For the first step, we compute a (publicly computable) accumulator of the union of
the sets and create a subset witness for each of the sets.

– For the second step, we compute a (public accumulator) of the multiset union of
the sets, then we create a subset witness for each set and the multiset union.

Intersection. With our accumulators (dually computable or not) we can do as in [19] to
prove that a set is the intersection of two given sets: first we prove that the intersection
is a subset of all the sets, then the completeness of the intersection (i.e. all elements of
the intersection are in the answer).

– For the first step, we compute an (public) accumulator of the intersection, then
create a subset witness to prove that the intersection is a subset of all sets.

– For the second step, we compute for each set a (public) accumulator of the set minus
the intersection of the sets, and then we find with Extended Euclidean algorithm the
Bezout’s coefficients that proves that the gcd of the new sets is 1.

Set Difference. To prove that a set correspond to the set difference of two sets given as
input, there are two ways to do: as in [33] or as in [19] depending on the privacy we
want to reach. Let X ,S be two sets such that S ⊂ X and D = X \ S . Notice that both
our accumulator of Figure 1 and our dually computable of Figure 3 can be used.

To do as in [33], we first prove that D is a subset of X , then we prove that the inter-
section of X and X \ D is equal to X ∩ S.

[19] does the same, but combine it with a non-interactive zero knowledge protocol.

Comparison.

– In terms of sets operations, our accumulator can deal with subset, union, intersec-
tion and set difference, as in [33] and [19]. [40] deals with more operations but is
less efficient.

– Making our accumulator dynamic will lead to dynamic sets operations verification,
as in [33] and [19] or [40]. We leave this as an open problem, such as batch updates
(updating witnesses after that several elements have been added or removed from
teh accumulator).

– Our scheme is quite similar to [19], therefore following the latter’s idea we may
be able to make our accumulator satisfy zero-knowledge and then obtain privacy
preserving sets operations verification.

11

– [28] establish the following open problem: “Construct a pairing-based accumula-
tor supporting set operations with constant-size witnesses achieving security un-
der simple assumptions.” They partially answer it with their accumulator dealing
with subset queries. The key word in their problem is “simple assumption” which
means “static assumptions”. Our accumulator is secure under a non-static assump-
tion, therefore we do not answer their problem.

– Finally, notice that [33] and [19] combine their accumulators with an accumulation
tree to protect the integrity of the evaluated values.

12

	Dually Computable Cryptographic Accumulators and Their Application to Attribute Based Encryption

