
HAL Id: hal-04271642
https://hal.science/hal-04271642v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affinity-aware resource provisioning for long-running
applications in shared clusters

Clément Mommessin, Renyu Yang, Natalia Shakhlevich, Xiaoyang Sun, Satish
Kumar, Junqing Xiao, Jie Xu

To cite this version:
Clément Mommessin, Renyu Yang, Natalia Shakhlevich, Xiaoyang Sun, Satish Kumar, et al.. Affinity-
aware resource provisioning for long-running applications in shared clusters. Journal of Parallel and
Distributed Computing, 2023, 177, pp.1-16. �10.1016/j.jpdc.2023.02.011�. �hal-04271642�

https://hal.science/hal-04271642v1
https://hal.archives-ouvertes.fr

Affinity-Aware Resource Provisioning for Long-Running

Applications in Shared Clusters

Clément Mommessin1, Renyu Yang1, Natalia V. Shakhlevich1, Xiaoyang Sun1,2, Satish
Kumar1, Junqing Xiao2, and Jie Xu1

1School of Computing, University of Leeds, UK
2Alibaba Group, China

Abstract

Resource provisioning plays a pivotal role in deter-
mining the right amount of infrastructure resource to
run applications and target the global decarboniza-
tion goal. A significant portion of production clus-
ters is now dedicated to long-running applications
(LRAs), which are typically in the form of microser-
vices and executed in the order of hours or even
months. It is therefore practically important to
plan ahead the placement of LRAs in a shared clus-
ter so that the number of compute nodes required
by them can be minimized to reduce carbon foot-
print and lower operational costs. Existing works on
LRA scheduling are often application-agnostic, with-
out particularly addressing the constraining require-
ments imposed by LRAs, such as co-location affinity
constraints and time-varying resource requirements.

In this paper, we present an affinity-aware resource
provisioning approach for deploying large-scale LRAs
in a shared cluster subject to multiple constraints,
with the objective of minimizing the number of
compute nodes in use. We investigate a broad range
of solution algorithms which fall into three main
categories: Application-Centric, Node-Centric, and
Multi-Node approaches, and tune them for typical
large-scale real-world scenarios. Experimental stud-
ies driven by the Alibaba Tianchi dataset show that
our algorithms can achieve competitive scheduling
effectiveness and running time, as compared with

the heuristics used by the latest work including
Medea and LraSched. Best results are obtained
by the Application-Centric algorithms, if the algo-
rithm’s running time is of primary concern, and by
Multi-Node algorithms, if the solution quality is of
primary concern.

Keywords: Resource Scheduling, Long-Running
Applications, Vector Bin Packing

1 Introduction

Resource provisioning in large-scale compute clusters
is of the utmost importance in IT infrastructure ca-
pacity management [43] and critical to the overall
stability and performance of a cluster [17]. It must
take into account the characteristics of workloads and
use cases in order to correctly size a cluster and min-
imize the cost of workload deployment. This is of
paramount importance in providing effective path-
ways to global decarbonization of cloud datacenters
that are among the world’s biggest power consumers.

Traditional workloads in clusters are data analytic
batch jobs [20, 41, 50] with short-lived tasks (in the
order of seconds). However, long-running applica-
tions (LRAs) – such as latency-sensitive databases,
user-facing services, streaming processing frame-
works, etc. – have now become another main
type of workloads supported by production clusters
(Google [45], Microsoft [23], Alibaba [34]). In partic-

1

ular, across six analytics clusters at Microsoft, each
comprising tens of thousands of machines, at least
10% of each cluster’s machines are used for LRAs and
two clusters are used exclusively for LRAs [23]. In Al-
ibaba, 94.2% of the total CPU capacity in a cluster is
allocated to LRAs [27]. In fact, microservice architec-
ture has been the key enabler to build up large-scale
IT infrastructures. Each individual microservice –
practically instantiated as an LRA that can be in-
dependently implemented, built and maintained – is
hosted in a long-lived container that usually executes
for a long time frame (from hours to months) either
for iterative computations in memory or for handling
web requests. An LRA often makes use of multiple
replicas of it to ensure low latency, fault tolerance,
and high availability [45, 16, 6].
While it is appealing to build up complex enter-

prise IT systems consisting of a very large num-
ber of LRAs, there are many challenges associated
with co-location, LRA multiplicity and heterogeneity.
In reservation-based infrastructure, LRAs typically
need to reserve multi-dimensional resources ahead
of their execution, and their resource usage usually
has strong temporal patterns. To optimize the per-
formance and resilience, an LRA has application-
specific placement preferences or exclusions when it
is co-located with other LRAs. For instance, some
LRAs are often required to be co-located to save net-
work bandwidth and reduce latency or to be sepa-
rately placed to reduce resource contention and per-
formance interference. The ever-increasing scale of
the number of new LRAs to be deployed (tens of
thousands) and the corresponding affinity relation-
ships further complicate resource reservation. In a
nutshell, a robust and scalable resource provisioning
scheme should tackle multi-dimensional temporal re-
source requests and LRA-level affinities, i.e., it should
address placement of identical replicas incurred by
each LRA, resolve replica conflicts stemming from
the affinity constraints, and handle efficiently large-
scale LRA deployment scenarios.
To the best of our knowledge, none of the exist-

ing studies to date addresses all these requirements
at the same time, although every single requirement
might have been considered. Most of the existing
work (e.g., [50, 45, 44, 42, 48]) is application-agnostic

and only focuses on node-related affinity, neglecting
inter-application affinity constraints. Kubernetes [6]
and Medea [23] address the application-related affin-
ity, but do not address the requirement of schedul-
ing all LRAs as a global optimization problem: Ku-
bernetes schedules one LRA replica (pod) at a de-
cision point, while Medea aims at runtime schedul-
ing of relatively small batches of LRAs periodically.
LraSched [13] only addresses the intra-application
affinity constraints. Additionally, the capability of
handling massive-scale scheduling problems of these
three solutions has not been fully investigated.

The problem we study is to minimize the num-
ber of compute nodes required for accommodating
LRAs in a shared cluster, subject to a set of strict
resource and affinity constraints. We formulate the
problem as an ILP and develop a new system model
that can be considered as a generalization of the com-
binatorial optimization problems of Vector Bin Pack-
ing and Bin Packing with Conflicts [18]. Considering
the diversity of real-world scenarios that gives rise
to instances with a variety of characteristics, a fast
heuristic, successful for one scenario, may perform
poorly on another. This motivates us to develop
an algorithm suite that can be used by practition-
ers for selecting the best performing heuristics that
best fit the specific needs of a given scheduling sce-
nario. To illustrate the capabilities of the suite, we
perform experiments on instances generated from the
Alibaba Tianchi dataset [2] and compare the win-
ning approaches from our suite with the best per-
forming published algorithms: two heuristics from
Medea [23], namely TagPopularity and NodeCandi-
date, as well as a heuristic based on the Fitness mea-
sure introduced in LraSched [13]. A high-level sum-
mary of the most successful algorithms in our toolkit
and those published in the literature is presented in
Fig. 3, Section 5.

Our suite consists of three groups of algorithms:
Application-Centric, Node-Centric and the Multi-
Node approaches. The first two algorithm groups
stem from the state-of-the-art research on Vector Bin
Packing and Bin Packing with Conflicts [18]. The
third algorithm group is particularly successful in the
presence of LRA replicas and associated affinity re-
strictions. While Application-Centric algorithms are

2

recommended when the computation time is required
to be as small as possible, the Multi-Node algorithms
deliver solutions of best quality (within only 0.3% de-
viation from the lower bound), with a larger running
time. Node-Centric Algorithms place themselves in
between, offering a trade-off between solution quality
and time to find a solution.

To summarize, the main contributions of this paper
are as follows:

• Formulating a resource provisioning problem
to address temporal resource requests and
application-level affinity constraints (§3);

• Devising an algorithm suite to provide adaptable
solutions to a variety of real-world scenarios (§4);

• Selecting, via extensive computational experi-
ments, a collection of best performing algorithms
that can effectively handle large-scale LRA de-
ployment (§5), focused on the use-case of the Al-
ibaba Tianchi dataset [2];

• Elaborating algorithm recommendations provid-
ing a trade off between computation time and so-
lution quality when confronted with different sce-
narios (§6).

Our findings can serve as the basis for practitioners
and researchers for optimizing the resource provision-
ing and capacity planning to handle large-scale LRA
placement in different scenarios.

2 Background and Motivation

2.1 Microservice and Long-running
Applications

Cloud services and enterprise IT systems have been
experiencing a major shift from monolithic applica-
tions that encompass the whole functionality within
a software package (e.g., the full-stack LAMP appli-
cation) to thousands of loosely-coupled microservices
that can be independently built and maintained. Ac-
cording to Statista survey [8], in 2021, 85% of respon-
dents from large organizations with 5, 000 or more

employees stated that they had been using microser-
vices in their software development environments.

As a key enabler, microservice architecture is par-
ticularly supportive to build extensible and loosely-
coupled systems at scale. Enterprise microservices
can be considered as an important and widely popu-
lar types of long-running applications (LRAs). They
are typically hosted in long-lived containers that
can run for hours, or even months, and consist of
a diverse mix of applications from web servers to
databases. Such applications are long-standing, user-
facing and interactive services, working in “request-
and-response” manner to serve user requests. Repre-
sentative examples of LRAs include streaming pro-
cessing frameworks (Storm [9], Flink [3], Kafka
streams [5]), latency-sensitive database applications
(HBase [4] and MongoDB [7]), and data-intensive in-
memory computing frameworks (Spark [49], Tensor-
flow [10]).

2.2 Resource Provisioning

LRAs need to be deployed into on-premises or cloud
infrastructure. Resource provisioning – one of the key
elements in capacity management [43] – plays a piv-
otal role in determining the initial amount of infras-
tructure capacity (required resources) that can run
a collection of applications. Particularly, for a ho-
mogeneous computing cluster where each node has
the same hardware and the same operating system,
infrastructure capacity can be regarded as the num-
ber of compute nodes (bare metal servers or virtual
machines in a virtualized cloud cluster).

Most large-scale infrastructure managers [45, 34,
15] adopt reservation-based resource requests and re-
source allocations, i.e., application users or develop-
ers are required to specify the number of resources re-
quired (CPU cores, RAM, GPUs, etc.) at the submis-
sion of the applications. To reduce carbon footprint
and lower operational costs, one simple yet preva-
lent task of resource provisioning is to minimize the
number of nodes capable of handling the reservation
requests of a given set of LRAs. The plan-ahead be-
fore LRA deployment and execution is of major im-
portance to IT administrators to facilitate a better
understanding of resource requirement and to resize

3

the infrastructure configuration in an economical and
environmental-friendly manner.

2.3 Problem Scope and Challenges

While runtime LRA scheduling is well addressed by
cluster schedulers [45, 48, 35, 29], this work focuses on
addressing a planning problem for resource provision-
ing as we envisage the importance of pre-execution
planning to the cost reduction of infrastructure man-
agement. The resource planner aims to work out the
best option for deploying the LRAs ahead of their
execution, given that all information of LRAs to be
submitted is foreknown, to ensure a predictable LRA
execution.
We highlight challenging requirements for the plan-

ning problem we address in this paper.

• [R1] Multi-dimensional and time-varying
resource requirements. LRAs usually require
resources of different types (CPU cores, mem-
ory, disk, etc.). Additionally, LRAs experience
a noticeable temporal resource dynamicity over
time. Fig. 1 illustrates the dynamicity of CPU
and memory usage of multiple co-located LRAs
over 12 hours, observed from the Alibaba Clus-
ter Trace [1]. Such dynamicity can be cap-
tured through history-based profiling as most
LRA workloads run in a recurring manner and
have strong temporal pattern [19], which helps
to unlock the potential of accurate requirement
models and workload co-location in large-scale
clusters [34, 27, 15]. The owner of an LRA typ-
ically needs to determine the resource demands
(e.g., through extracting resource skyline based
on the resource requirement model) and translate
the temporal requirement into resource reserva-
tion.

• [R2] Application-level affinity constraints.
Affinity constraints encompass placement prefer-
ences or exclusions between LRAs. While node-
related affinity specifies which nodes an LRA is
eligible to be placed on, application-level affin-
ity specifies how many replicas of an LRA can
be placed jointly given the co-located LRAs

on a node. These constraints are completely
application-specific. For example, data produc-
ing and data consuming applications could be co-
located on the same node for sharing intermedi-
ate data to save network bandwidth and reduce
network latency. To avoid excessive performance
interference, latency-sensitive streaming applica-
tions should not be co-located on the same node.
However, for some LRAs, it is reasonable to co-
locate their replicas within the same available
zone, which would help to ease service manage-
ment, reduce the cost of synchronization or data
communication between applications. Running
applications without satisfying such constraints
would lead to unexpected application slowdown
or system turbulence. Such affinity requirements
are usually specified in the configuration (e.g., in
a YAML/JSON file) to flag LRA-specific perfor-
mance preferences and QoS requirements, before
the deployment requests are submitted to the in-
frastructure manager.

• [R3] Large-scale LRA deployment. Launch-
ing tens of thousands of LRAs has now become
the norm rather than the exception for cloud ser-
vice providers in the face of new cluster initial-
ization. This increases the management complex-
ity of deploying large-scale LRAs. Each LRA has
its own specific deployment and resource require-
ments (e.g., CPU cores, RAM and persistent stor-
age). Therefore, the infrastructure manager needs
to be robust and scalable enough to make (near-
)optimal decisions, incorporating in the planning
a huge number of resource and affinity require-
ments, in the initial deployment stage.

The existing works only partially solve the above
research challenges. Unlike runtime LRA scheduling,
that aims to achieve low scheduling latency (in the
order of seconds or milliseconds), the main task of
pre-execution planning is to precisely place the LRAs
and to determine the amount of required resources in
the IT infrastructure while satisfying all sophisticated
specific constraints of applications.

Obviously, for the resource planner, it is worth
trading the planning time for solution quality. This

4

0 20 40 60 80 100 120 140

10

20

30

40

50

60

U
se

d
Pc

t.
of

 th
e

R
eq

ue
st

ed
 C

PU
(%

)

LRA 1
LRA 2
LRA 3
LRA 4

Time points (every 5 mins)

(a) CPU usage

0 20 40 60 80 100 120 140

20

30

40

50

60

U
se

d
Pc

t.
of

 th
e

R
eq

ue
st

ed
 M

em
(%

)

 Time points (every 5 mins)

(b) Memory usage

Figure 1: CPU and memory temporal usage over 12 hours of four anonymous LRAs in Alibaba cluster trace

trade-off in the planning procedure is particularly
pivotal as low-quality LRA placement may incur ex-
cessive cost in LRA re-scheduling and container mi-
gration, which is expensive due to the huge amount
of state and disk data to migrate over the network
and unacceptable service downtime. We believe an
optimization-based plan-ahead is a necessary and
promising means for effective resource provisioning.
Our work aims at integrating the above requirements
into a holistic system model, and developing a suite
of algorithms able to solve the resource provisioning
problem and adapt to different scenarios.

3 System Model and Problem
Formulation

3.1 System Model

Our system consists of compute nodes, which form the
setN , and LRAs, which form the set L. Additionally,
there are affinity restrictions for some pairs of LRAs
from L.

Compute nodes are identical and their resources
are characterized by d dimensions. In our basic
model, there are two types of resources, the number
of CPU cores C1 and the number of units of memory
C2. It can be extended to take into account such
characteristics as the size of disk storage or Last-
Level Cache, the memory bandwidth, the number

of GPU, etc. In general, according to [R1] of the
model, a node has d dimensions, with resource ca-
pacities C1, C2, . . . , Cd.

LRAs differ in a number of parameters. In accor-
dance with [R2], each LRA consists of a given num-
ber of replicas that run from time 0 to infinity (or to
a given time limit common for all LRAs). An LRA
i ∈ L has a given size sih (i.e., resource requirement)
in dimension h, 1 ≤ h ≤ d, and that value is the
same for all replicas of that LRA. For example, for
the basic model, si1 and si2 are the number of CPU
cores and the number of units of memory needed by
each replica of LRA i.

In the basic model, we assume that the sizes of
LRAs do not change over time. If several replicas of
LRAs are allocated to the same node, then the total
size of allocated replicas in each dimension cannot
exceed the node capacity in that dimension. Thus d
capacity constraints should be satisfied for each node.

In the enhanced model, the profiles of LRAs may
change over time. They are approximated via piece-
wise constant functions. If the timeline is split into T
epochs (for example, T unit-time intervals), so that
within one epoch resource requirements of LRAs do
not change, then the original d-dimensional problem,
with d resource types, is converted into the problem
of d′ dimensions:

d′ = T × d.

Fig. 2 illustrates allocation of three LRAs to one

5

Figure 2: Allocation of three-dimensional LRAs to
one node taking into account changing resource re-
quirements over T epochs

compute node. Each LRA has specific resource re-
quirements for d = 3 resource types: memory, CPU
and disc space. If application requirements are static,
then it is sufficient to consider only one fragment of
Fig. 2: one three-dimensional cube for a node, with
LRAs placed inside it without overlaps in each dimen-
sion. If application requirements change in T time in-
tervals, then the memory, CPU and disk constraints
should be considered for each time interval. For the
instance considered in Fig. 2, there is one node and
T snapshots of that node, with the same three LRAs
allocated to the node in each of the T snapshots. The
resource requirements of the LRAs change, but the
overall capacity of the node is not exceeded.

Affinity restrictions are defined for pairs of
LRAs which replicas can be jointly co-located to the
same node, but with some limits, or for pairs of in-
compatible LRAs, which cannot be co-located. If
LRA i is restrictive to LRA j, then there is an in-
teger affinity value aij which sets up an upper bound
on the maximum number of replicas of j that can be
co-located on a node where at least one replica of i
is allocated. Thus [R2] of the model is character-
ized by the set of affinity restrictions, represented as
a directed graph where vertices correspond to LRAs
and arcs (i, j) correspond to affinity restrictions as-
sociated with the values aij .

3.2 Problem Formulation

In a feasible solution to the resource provisioning
problem, all replicas of all LRAs in the given set L
should be allocated to a subset of N , without violat-

ing affinity restrictions and node capacities in each of
the d dimensions (or, in general, d′ dimensions). The
objective is to minimize the total number of nodes in
use.

We introduce an Integer Linear Programming
(ILP) formulation for the resource provisioning
problem with constant resource demands. Recall
that for the time-varying resource demands, the d-
dimensional problem is converted into d′-dimensional
problem, d′ = Td, which implies that d is replaced
by d′ in the ILP formulation.

We use the following notations:

L for the set of LRAs,
Ri for the set of replicas of an application i ∈ L,
N for the set of nodes,
A for the set of pairs (i, j) of applications which

have affinity restrictions aij ,
sih for the size of resource h required by a replica

of application i ∈ L, in dimension h, 1 ≤ h ≤ d,
Ch for the capacity of each node in dimension h,

1 ≤ h ≤ d,
aij for the affinity restriction imposed by

application i (how many replicas of j can be
co-located together with a replica of i).

The decision variables take 0 – 1 values:

xirn is equal to 1 if the rth replica of application i
is allocated to node n,

yn is equal to 1 if node n is activated and
accommodates some replica(s),

zin is equal to 1 if at least one replica of
application i is allocated to node n.

Additionally, we compute constants νi for the max-
imum number of replicas of application i which can
be allocated to one node, regardless of affinity restric-
tions from other applications:

νi = min

{
min

1≤h≤d

{⌊
Ch

sih

⌋}
, |Ri|

}
. (1)

Here |Ri| is the total number of replicas of applica-
tion i and ⌊Ch/sih⌋ is the limitation associated with
dimension h if replicas of application i are allocated
to a node. For example, in the basic model with

6

two resource types per node, the ratios ⌊C1/si1⌋ and
⌊C2/si2⌋ are related to the CPU and memory limita-
tions for replicas of LRA i. In the enhanced model
with time-varying profiles, each dimension 1 ≤ h ≤
Td gives rise to a resource restriction in the corre-
sponding epoch.

The problem of allocating the replicas of all LRAs
to the minimum number of compute nodes without
exceeding node capacities and violating affinity re-
strictions of LRAs is modelled as the following ILP:

min
∑
n∈N

yn (2a)

s.t.
∑
n∈N

xirn = 1, i ∈ L, r ∈ Ri, (2b)∑
i∈L

sih
∑
r∈Ri

xirn ≤ Chyn,

n ∈ N , 1 ≤ h ≤ d, (2c)∑
r∈Ri

xirn ≤ νizin, i ∈ L, n ∈ N , (2d)

zin ≤
∑
r∈Ri

xirn, i ∈ L, n ∈ N , (2e)

∑
r∈Rj

xjrn ≤ aijzin + νj(1− zin),

(i, j) ∈ A, n ∈ N , (2f)

xirn, yn, zin ∈ {0, 1},
i ∈ L, r ∈ Ri, n ∈ N . (2g)

Objective function (2a) is the total number of acti-
vated nodes. Constraint (2b) ensures that all replicas
of all applications are allocated, while constraint (2c)
ensures that the capacity of each node is not ex-
ceeded in each dimension. The variables yn and zin
are linked to xirn by (2c)-(2e), and constraint (2f)
guarantees that affinity restrictions are observed.

The resource provisioning problem is NP-hard, as
it generalizes the combinatorial optimization prob-
lems of Vector Bin Packing and Bin Packing with
Conflicts [18]: the Vector Bin Packing problem oc-
curs when each LRA consists of a single replica and
there are no affinity restrictions; the Bin Packing with
Conflicts occurs when d = 1, each LRA consists of

a single replica, and affinity values aij between two
conflicting LRAs are restricted to 0.

As we will discuss in §5.1, the presented ILP is
capable of solving medium size instances, with up
to 2, 000 two-dimensional LRAs. In what follows we
elaborate a broad range of heuristic methods capa-
ble of solving effectively and efficiently LRA schedul-
ing problems typical for real-world massive-scale sys-
tems.

4 Our Algorithm Suite

This section presents an overview of the approaches
(§4.1) and implementation details for a range of al-
gorithms (§4.2 to §4.4). We then discuss the worst-
case time complexities of the algorithms (§4.5) and
how the algorithms published in the literature and
adopted by the existing schedulers fit into our frame-
work (§4.6).

4.1 Overview

The heuristics described in this section stem from the
vast body of research on the Bin Packing Problem
and its enhanced versions. The methods distinguish
in how they order the set of applications L, the set
of nodes N or the set of application-node pairs. The
choice of the most promising prioritization rules de-
pends on the scenarios to which the method is applied
and on the datasets.

All methods consider only feasible allocations of
application replicas to the nodes, so that the node
capacities are not exceeded for each of the d resource
types in each of the T epochs, and the affinity
restrictions for the applications already allocated are
observed. By allocating replicas to the nodes in a
feasible fashion we guarantee that requirements [R1]-
[R2] are satisfied. To handle requirement [R3] we
strive to achieve fast running times for our heuristics.

Application-Centric approach. This approach
considers the applications one by one in accordance
with their ordering in L. For a current application,
it selects the first feasible node in the ordered list
N and allocates the maximum number of replicas

7

Algorithm 1 Application-Centric approach

1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: Select i ∈ L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: Set n← n+1, N ← N ∪{n} and activate

node n
7: Select n∗ ∈ N , feasible for i, using a prede-

fined rule
8: Allocate the maximum number of replicas of

i to n∗

9: Remove i from L

to that node. It then selects the next feasible node
from N to continue allocation of the replicas of the
current application. After all replicas of the current
application are allocated, the algorithm proceeds
with the next application in L, etc. The rules for
ordering L and N are formulated in §4.2, using the
state-of-the-art findings in the body of research on
Bin Packing and Vector Bin Packing [18, 36, 39]. Al-
gorithm 1 outlines the pseudo-code of this approach.

Node-Centric approach. This approach considers
the nodes one by one in accordance with their num-
bering in list N . For a current node, the algorithm
selects from the list of non-allocated applications the
one which is feasible for the current node and has
the largest application-node score. The maximum
number of replicas of that application are allocated
to the node. If the node is not fully packed, then the
application-node scores are recalculated, taking into
account the residual capacity of the current node,
and the application delivering the highest score is
used for loading the node. The process continues
until no feasible application for the current node can
be found on the list L. The algorithm then proceeds
with the next node in the list, etc. The scoring
rules are formulated in §4.3, using the findings in
the body of research on the Vector Bin Packing
problem [39]. Algorithm 2 outlines the pseudo-code
of this approach.

Algorithm 2 Node-Centric approach

1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: if no i ∈ L is feasible for n then
4: Set n ← n + 1, N ← N ∪ {n} and activate

node n
5: Select i∗ ∈ L which is feasible for n and delivers

the maximum score
6: Allocate the maximum number of replicas of i∗

to n
7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

Multi-Node approach. This approach aims to
overcome the myopic nature of the Application-
Centric and Node-Centric algorithms. A large set
of nodes is activated directly at start, and best allo-
cation options are selected across the whole pool of
nodes. The algorithm either finds a feasible solution
or declares a failure, if the number of activated nodes
is too small to accommodate all applications. The
proposed approach requires that the desired number
of nodes is specified as part of the input. The search
for a feasible solution with the minimum number of
nodes is arranged by calling the algorithm repeatedly
with different trial values for the number of nodes, ei-
ther via binary search, or with the trial value decre-
mented in steps.

We distinguish between the following two version
of the Multi-Node approach, whose pseudo-codes are
given as Algorithms 3 and 4.

• The Multi-Node approach with Replica
Spreading is the adaptation of the Application-
Centric approach. LRAs are also considered one
by one, but instead of allocating the maximum
number of replicas of a current application to the
highest priority node, only one replica is allo-
cated. Node priorities are updated every time a
replica is allocated, increasing the chances that
replicas of one LRA are assigned to different
nodes – a major point of difference compared to
the standard Application-Centric method. With
replicas spread over a large pool of activated
nodes, there is more flexibility for selecting com-

8

Algorithm 3 Multi-Node approach with Replica
Spreading

1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: Select i ∈ L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: declare a failure and break
7: Select n∗ ∈ N , feasible for i, using a prede-

fined rule
8: Allocate one replica of i to n∗

9: Remove i from L

Algorithm 4 Multi-Node approach with
Application-Node Matching

1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: if no pair (i, n) is feasible (i ∈ L, n ∈ N) then
4: declare a failure and break
5: Select a feasible pair (i∗, n∗) which delivers the

maximum score
6: Allocate one replica of i∗ to n∗

7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

patible LRAs for future co-location: affinity con-
straints aij become less restrictive if a small num-
ber of replicas of i and j are allocated to the same
node.

• The Multi-Node approach with
Application-Node Matching is the adap-
tation of the Node-Centric approach. At each
step the score for every feasible application-node
pair is computed, and the pair with the highest
score is selected for extending a partial solution.
One replica of the selected application is allocated
to the corresponding node, and the scores are
recalculated to define the next most promising
application-node pair. This approach is more
flexible than the original Node-Centric approach:
it benefits from a larger freedom for selecting
the most promising application-node pairs, with
potentially better utilized resources as a result.

4.2 Application-Centric Algorithms

At the core of the Application-Centric algorithms are
the priority rules for ordering the list of applications
L and the list of nodes N . Based on the best per-
forming algorithms known for Bin Packing, there are
three widely accepted possible orderings for the nodes
N and two orderings for the applications L.
For N , the nodes can be considered (a) in the acti-

vation order, (b) in the increasing order of a priority
index, or (c) in the decreasing order of a priority in-
dex. For L, the applications can be considered (1) in
the order of their numbering, or (2) in the decreasing
order of a priority index. The priority indices can be
defined in multiple ways for the multi-dimensional
problem. In the remainder of this section, we de-
scribe the rules for calculating the priority indices of
applications, denoted by size measures and used for
ordering (2) of list L, and the rules for calculating the
priority indices of nodes, denoted by residual capacity
measures and used for ordering (b) or (c) of list N .

Depending on how the rules for N are combined
with the rules for L, the resulting algorithms are
classified as (1a) First Fit (FF), (1b) Best Fit (BF),
(1c) Worst Fit (WF), (2a) First Fit Decreasing
(FFD), (2b) Best Fit Decreasing (BFD) and (2c)
Worst Fit Decreasing (WFD).

Applications’ priority indices. In the presence
of resource requirement in multiple dimensions, one
most significant dimension can be used for prioritiz-
ing the applications. If no dominant dimension ex-
ists, as in the case of the Alibaba Tianchi dataset [2],
there is a need to compute a combined size measure
si for each application i ∈ L and to use it as a prior-
ity index. Introducing a single measure allows us to
address efficiently the issues related to requirement
[R1].

When dealing with non-comparable sizes sih of
LRAs, such as the number of CPU cores and memory,
the values should be normalized to satisfy s′ih ∈ [0, 1],
which is achieved by setting s′ih = sih

Ch
in each dimen-

sion h, 1 ≤ h ≤ d. With the normalized sizes s′ih of
LRAs, the node capacities are set to C ′

h = 1. In what
follows, we assume that the preprocessing has been
done and the normalized values are calculated. For

9

Table 1: Application-Centric size measures si for ap-
plications i ∈ L
Average si =

1
d

∑d
h=1 sih

Max si = max1≤h≤d{sih}
Average with
exponential weight

[39] si =
∑d

h=1 e
εDh · sih

Surrogate [14] si =
∑d

h=1 λhsih

Extended Sum [13] si =
∑d

h=1
|Ri|
Wh

sih

simplicity, we drop the prime in the notation.
The two natural combined measures are Average

and Max, whose corresponding expressions are stated
in the first two lines of Table 1.
The remaining measures use the following nota-

tions:

Wh =
∑

i∈L |Ri| sih for the total demand of all
LRAs in dimension h,

Dh = Wh∑
i∈L|Ri| for the average demand of all

LRAs in dimension h,

λh = Wh∑d
k=1 Wk

for the normalized demand of

all LRAs in dimension h.

The Average measure with exponential weight is
one of the best performing measures in experiments
on Vector Bin Packing, performed by Panigrahy et
al. [39]. It is computed as the weighted sum of sih-
values, with exponential weights depending on aver-
age demands Dh. Parameter ε is a small number
selected appropriately for scaling.
The Surrogate measure is a natural extension of the

2-dimensional measure of Caprara and Toth [14]. It
is computed as the weighted sum of sih-values, with
the normalized demands λh used for weights.
Finally, the Extended Sum is an adaptation of the

measure used in LraSched [13]. For application i, it
is defined as the sum, over all dimensions h, of the
demands of all replicas of that application |Ri|sih in
dimension h normalized by the total demand Wh of
all applications in that dimension.
Prior research in the area of Bin Packing with

Conflicts has discovered the benefits of combining

the demand-based measure si with the conflict-based
measure, which takes into account the criticality of
an application in terms of interference [37]. Gener-
alizing these ideas to affinity restrictions [R2] of our
model, we define the hybrid demand-affinity measure
as the weighted sum of the demand-based measure si
and the affinity-based measure δi:

s̃i = α
si
s
+ (1− α)

δi

δ
. (3)

Here si is computed via one of the expressions
from Table 1, δi is the total number of applications
linked with application i in the affinity graph, while
α ∈ [0, 1] is chosen to give a higher priority to
application demands or to interference. Scaling is
performed for handling incomparable parameters,
dividing by s and δ, the average values of si and δi,
respectively.

Nodes’ residual capacities. The key character-
istics of a partly loaded node n ∈ N are resid-
ual capacities Cnh, maintained for all dimensions
h = 1, 2, . . . , d. They are computed as original node
capacities Ch minus the total size of allocated replicas
for the same dimension h. In the presence of resid-
ual capacities in multiple dimensions, there is a need
to compute a single residual capacity measure Cn for
each node n ∈ N and to use it as a priority index.

For each application size measure si from Table 1,
we similarly define the corresponding node measure
Cn. To this end, we replace in each formulae the size
sih of application i in dimension h by the residual
capacity Cnh of the node n in the same dimension,
and adjust calculation of Wh, Dh, λh accordingly.
In all calculations we replace |Ri| by 1, so that
|Ri|sih representing the demand of application i in
dimension h is replaced by Cnh, the residual capacity
of node n in dimension h, and

∑
i∈L |Ri| representing

the total number of all replicas is replaced by |N |,
the total number of activated nodes.

4.3 Node-Centric Algorithms

For the Node-Centric approach, the application-node
score for application i and node n, denoted by ξin,

10

Table 2: Bin-Centric scores ξin for applications i ∈ L
and nodes n ∈ N
DotProduct [39] ξin =

∑d
h=1 sihCnh

L2Norm [39] ξin = −
∑d

h=1

(
Cnh − sih

)2
Fitness [13] ξin =

∑d
h=1

sih
Wh
· Cnh∑

k∈N Ckh

TightFill ξin =
∑d

h=1
sih
Cnh

is computed only for a feasible application node pair.
The higher the score, the more beneficial it is to al-
locate replicas of application i to node n, which is
currently being packed.

We explore in our algorithms the known best-
performing scores, together with a newly proposed
score, denoted by TightFill, as shown in Table 2.

All four scores select for a current node n the ap-
plication which uses the d resources of the node to
the highest extent.

• In the DotProduct score this is achieved by prior-
itizing the dimensions for which node n has the
largest capacity. An application with highest de-
mands in those dimensions is considered as the
best choice.

• In the L2Norm score, the expression is negative
so that the smallest positive value indicates the
best application for node n. The preferred appli-
cation minimizes the difference between its size
and residual capacity of the node measured via
the L2 norm.

• In the Fitness score, the application demands sih
are normalized with respect to Wh, the total de-
mand of all applications in dimension h, and the
node capacities Cnh are normalized with respect
to the total free capacity of all nodes in dimension
h, 1 ≤ h ≤ n.

• The TightFill score is a counterpart of DotProd-
uct which ensures the tightest usage of the node
residual capacity.

4.4 Multi-Node Algorithms

Recall that multi-node algorithms require a target
number of nodes as part of the input. The search
for a feasible solution with the minimum number of
nodes is arranged by calling the algorithm repeatedly
with different trial values for the number of nodes,
either via binary search or with the trial value
decremented in steps.

Multi-Node Algorithms with Replica Spread-
ing. These algorithms use the same principles as
the Application-Centric algorithms, but with the
aim of replica spreading across the whole pool of
activated nodes, reducing this way the restrictions
imposed by the affinity constraints aij . Among
the six Application-Centric algorithms discussed in
Section 4.2, only Worst Fit and Worst Fit Decreasing
produce different solutions if n nodes are activated at
start rather than being activated one by one on the
fly. Indeed, after allocating a replica to a node, that
node is placed further down in the list, and in the
next step another node is selected to allocate next
replica, thus enabling replica spreading over multiple
nodes. The remaining Application-Centric algo-
rithms, First Fit, First Fit Decreasing, Best Fit and
Best Fit Decreasing, do not change their behavior if
a pool of nodes is activated at start. For this reason,
we create only two algorithms by combining the
Multi-Node and the Application-Centric approaches,
with the shortcut names SpreadWF and SpreadWFD.

Multi-Node Algorithms with Application-
Node Matching. These algorithms use the same
principles as the Node-Centric algorithms, but on a
pool of n activated nodes rather than on single nodes
considered one by one. Each time, the most appropri-
ate application-node pair is selected among all pos-
sible pairs of unallocated applications and non-fully
packed nodes by using the scores defined in §4.3 for
the Node-Centric approach, and a single replica is al-
located. It is expected that the replicas of an appli-
cation are spread broadly across the nodes pool, with
less restrictions caused by the affinity constraints.

11

Table 3: Algorithms’ time complexity. L is the num-
ber of applications, R is the total number of all repli-
cas of all applications, n is the given (target) number
of nodes

Application-Centric O(R2L)

Node-Centric O(RL2)

Multi-Node with Replica Spreading
and n nodes

O(RLn)

Multi-Node with Application-Node
Matching and n nodes

O(RL2n)

4.5 Time Complexity of Algorithms

The three introduced approaches, Application-
Centric, Node-Centric and Multi-Node, provide the
foundation to build a wide range of heuristics. The
choice of a specific method, together with the most
appropriate measures or scores, depends on special
features of scenarios and datasets, and on limitations
on algorithms’ running times. Analytical estimates
of running times are provided in Table 3. Clearly, for
large-size datasets, the Multi-Node algorithms with
Application-Node Matching may become unaccept-
ably slow. Note that the actual performance of the
algorithms may differ from the theoretical estimates
since the worst-case analysis takes into account very
rare scenarios. For example, in the analysis we as-
sume that the number of activated nodes is O(R),
which is a highly pessimistic estimate. Similarly, in
the absence of more accurate information, we assume
that there can be up to O(R) replicas in a single
node in the worst case. Both assumptions affect the
time complexity of the most frequent step of any al-
gorithm, the feasibility check. Note also that the run-
ning time estimates for the Multi-Node approach are
made for a single call with a fixed n given as the
trial number of nodes. These estimates have to be
multiplied by the total number of calls made by the
decrementing method, or by the binary search, to get
the time complexity of the overall procedure.

The choice of the size measure (Table 1) for si
should take into account not only its impact on the
running time, but also the nature of the dataset.

In the presence of a dominating (bottleneck) re-
source type h∗, 1 ≤ h∗ ≤ d, which plays the criti-
cal role in application allocation, computing of the
measure si can be simplified by using si = sih∗ in-
stead. For Application-Centric approaches, incorpo-
rating the hybrid size measure of Eq. (3) on top of one
of the standard measures from Table 1 can be ben-
eficial if affinity constraints are very restrictive, so
that many pairs of applications are in conflict. Note
that Eq. (3) does not affect the asymptotic worst-case
time complexity, but may slow down the algorithms’
performance on large datasets.

4.6 Classification of Existing Sched-
ulers

We conclude this section by outlining the published
approaches used for scheduling LRAs with affinity re-
strictions, which will serve as baselines in the experi-
ments: two heuristics of Medea [23] and one heuristic
of LraSched [13].

The TagPopularity (Medea-TP) heuristic is Appli-
cation Centric. It allocates applications one by one,
starting with those having the highest interference.
This heuristic can be classified as FFD with size mea-
sure si = δi, the special case of Eq. (3) with α = 0.

NodeCandidates (Medea-NC) is another version
of the Application-Centric approach, with si-
parameters representing the total number of available
nodes in the system which can accommodate a replica
of i, observing capacity and affinity restrictions:

si =
∑
n∈N

ζin. (4)

Here ζin = 1 if a replica of application i can be al-
located to node n without violating affinity restric-
tions, and ζin = 0, otherwise. Applications are allo-
cated one by one, starting with the most restrictive
ones, i.e., those having the lowest sizes si computed
by Eq. (4), and sizes of the remaining applications
are re-computed after each allocation step.

LraSched [13] uses a two-phase approach. The
first phase aims at maximizing the number of fully
allocated LRAs and resource utilization of the given
restricted pool of available nodes. The second phase

12

aims at minimizing the number of new nodes used to
allocate remaining LRAs. The second phase employs
a Node-Centric algorithm with the Fitness score.
We denote the algorithm of this second phase by
LRASched-Fitness.

5 Performance Evaluation

All algorithm codes, scripts for generating the
instances, as well as additional figures, are publicly
available at https://github.com/DSSGroup-Leeds/

LRA-binpacking-expe.

5.1 Experimental Settings

Simulation configuration and instance gener-
ation. As the pre-execution planning is indepen-
dent from the runtime execution of LRAs, we adopt
simulation-based evaluation to validate the efficacy
of different algorithms on a single machine equipped
with one Intel Xeon Gold 6138 CPU and 64 GB of
memory. We simulate different scales of LRA sub-
mission and evaluate how our algorithms succeed in
LRA allocation onto a mocked compute cluster with
identical nodes comprising 64 CPU cores and 128 GB
of memory.
Our aim is to examine several sets of instances,

each set with common features and related to a spe-
cific scenario, and to select the winning algorithms
from our suite. The instances stem from the dataset
published by the Alibaba Tianchi Platform [2]. The
original dataset contains the data for 9, 338 LRAs
with a total of 68, 224 replicas and 24, 078 affinity re-
strictions. Each LRA has resource requests in two
dimensions: CPU cores and memory. LRA resource
profiles change over time, with recordings known for
98 time sampling points.
We study two scenarios: one with different den-

sities of affinity restrictions and another one with
different numbers of LRAs. Our aim is to evaluate
the impact of these characteristics on the solution
quality and the running times of the proposed algo-
rithms. Each scenario is subdivided into two sets
of instances depending on whether LRA resource re-
quests are constant or change over time. Each set

contains a total of 90 instances:

• three types of affinity graphs (arbitrary, normal,
threshold),

• three values of one of the varied parameters (affin-
ity density or the number of LRAs),

• 10 instances for each combination.

A summary of the generated instances is presented
in Table 4.

In the instances with varied affinity density, repre-
sented in the second column of Table 4, the number
of LRAs |L| is the same as in the original Alibaba
dataset [2], while the number of affinity restrictions,
measured as affinity density, is different. The affinity
density ∆ is defined as the average number of affin-
ity restrictions per LRA divided by the total num-
ber of LRAs. For example, affinity density of 10%
means that each LRA has affinity restrictions with
10% of other LRAs on average. Note that in the
original Alibaba dataset, the affinity density is lower
than 0.05%. We select higher density values for ex-
periments to investigate the impact of affinity restric-
tions on the solution quality and algorithms’ running
times. For each LRA, the number of replicas per ap-
plication |Ri| and resource requirements sih are kept
unchanged, as in the original Alibaba dataset.

In the instances with varied number of LRAs, rep-
resented in the third column of Table 4, the affinity
density is fixed to the same value (0.5%), while the
number of LRAs |L| is different. We select larger
instances compared to the Alibaba dataset [2] to ex-
plore the capabilities of the algorithms for optimizing
the performance of massive scale systems. The val-
ues for the number of replicas |Ri| and resource re-
quirements sih are defined using the same probability
distributions as in the original Alibaba dataset.

For any type of instance, affinity values aij were
generated following the same probability distribution
as in the original Alibaba dataset.

Consider now the three approaches to graph gener-
ation, given number |L| of vertices and expected den-
sity ∆. The method for generating arbitrary graphs
is described by Sadykov and Vanderbeck [40]. The
method for generating threshold graphs is described
by Gendreau et al. [24] and elaborated further by

13

https://github.com/DSSGroup-Leeds/LRA-binpacking-expe
https://github.com/DSSGroup-Leeds/LRA-binpacking-expe

Table 4: Summary of generated instances

Scenario Varied affinity density Varied number of LRAs

|L| 9, 338
10, 000
50, 000
100, 000

|Ri| , sih same as Alibaba [2] similar to Alibaba [2]

affinity density ∆
1%
5%
10%

0.5%

affinity graph type
arbitrary
threshold
normal

arbitrary
threshold
normal

d = 2
(CPU, memory)

90 instances
without temporal changes

90 instances
without temporal changes

d = 98× 2
(CPU, memory, 98 epochs)

90 instances
with temporal changes

90 instances
with temporal changes

Bacci and Nicoloso [11] for parameter correction. We
propose the third approach to generate so called nor-
mal graphs. It starts with a graph of |L| vertices and
no arcs, and then for each vertex i it randomly picks
a value pi following the normal distribution of mean
∆|L| and standard deviation ∆|L|/2, restricting the
value between 0 and |L| − 1. Then pi vertices are se-
lected at random using uniform distribution and they
are used as end-nodes for arcs originating from vertex
i.

The resource requirements of each LRA are copied
from the Alibaba dataset for all 98 sampling points, if
considering the class with temporal changes (last row
of Table 4), or they are extrapolated if considering
the class without temporal changes (penultimate row
of Table 4): for each LRA i we select the maximum
values si1, si2 among those provided for the 98
sampling points and round them to the next integer.

Evaluation methodology and metrics. We eval-
uate the effectiveness and time efficiency of each al-
gorithm.

The effectiveness is measured by recording the
number of nodes found in a feasible solution and
calculating the deviation from the lower bound, a
“lower-the-better” indicator. Since the total number
of nodes cannot be smaller than the total demand
Wh of all LRAs in dimension h divided by the node
capacity Ch in that dimension, where h = 1, . . . , n,
the lower bound is defined as

LB = max
1≤h≤d

{⌈
Wh

Ch

⌉}
. (5)

The time efficiency is measured as the algorithm’s
computation time, averaged over the 10 instances
of a given configuration of graph class and density
value, or graph class and LRA number.

Algorithm naming. We implemented our algo-
rithms and the three baseline algorithms, Medea-TP,
Medea-NC and LRASched-Fitness (§4.6), in C++.

The shortcut names of Application-Centric algo-
rithms include the ordering rule (§4.2) and the size
measure (Table 1). For example, WFD-AvgExp de-

14

notes the WFD algorithm with the size measure “av-
erage with exponential weight”.
Node-Centric Algorithms with Decreasing Scores

are denoted by NCD followed by the scoring name
(Table 2). “Decreasing score” indicates the choice of
the largest application-node score in each step. For
example, NCD-DotProduct denotes the Node-Centric
algorithm with decreasing dot-product score.
Considering Multi-Node algorithms, we focus on

the versions with replica spreading and exclude the
versions with application-node matching from our ex-
periments, as their running times were observably too
long even for the instances with 9,338 LRAs.
For the replica spreading versions we use prefix

Spread in the notation, and postfix BinSearch or
Decr, depending on the search strategy used for mul-
tiple calls with different values of the target number
of nodes.
Binary search strategy narrows down the interval

which estimates the minimum number of nodes. It
uses Eq. (5) for the initial lower bound, and the out-
put of the First Fit (FF) algorithm for the initial up-
per bound. For example, SpreadWFD-Avg-BinSearch
denotes the spreading version of WFD (with “aver-
age” size measure) in combination with binary search.
The alternative, Decrementing approach arranges

the search by decreasing the target number of nodes
in steps. For the starting point, it uses the same value
for the upper bound as binary search. In the nota-
tion, postfix Decr is followed by the step value. For
example, SpreadWFD-Avg-Decr2 denotes the spread-
ing version of WFD (with “average” size measure) in
combination with the decrementing approach, which
decreases the target number of nodes from the best
value found so far, in decrements computed as 2% of
the lower bound.

5.2 Capabilities of the ILP Model

The instances introduced in Table 4 appeared to be
too hard for the ILP model formulated in §3.2. Con-
sidering smaller instances, we have found that solu-
tions can be obtained for medium size instances, with
up to 2, 000 LRAs having about 15, 500 replicas in to-
tal. In those instances, LRAs have resource require-
ments in CPU and memory, which do not change over

Figure 3: Performance summary of algorithms for
instances with 9, 338 LRAs, different affinity densities
and without temporal changes

time. This is the two-dimensional case of the problem
under study. Allowing sufficiently large computation
time, of up to 4 hours, Gurobi solver can find solu-
tions within 0.2% from lower bounds.

Clearly, for instances with more than 2, 000 LRAs,
heuristics should be preferred due to their scalability
and flexibility of integrating with real-life schedulers.

5.3 Results for Instances without
Temporal Changes

In this section we discuss the performance of the al-
gorithms on two-dimensional instances, which corre-
spond to the penultimate row of Table 4. A high-level
overview of the results, averaged over all 90 instances
with different affinity densities, is illustrated in Fig. 3.
The trade-off between effectiveness and computation
time can help practitioners in selecting the algorithm
that best fits their requirements.

In the following, we analyze in depth the algo-
rithms’ performance on instances with varied affinity
density (described in column 2 of Table 4) and on
instances with varied number of LRAs (described
in column 3 of Table 4). As no major differences
were observed between the results obtained for
the three types of affinity graphs, we report the re-
sults for the graphs of arbitrary type, unless specified.

Effectiveness. Instances with varied density. In

15

1 5 10
Affinity Density (%)

0

2

4

6

8

10

12

D
ev

ia
ti

on
 fr

om
Lo

w
er

 B
ou

nd
 (

%
)

(a) Effectiveness

1 5 10
Affinity Density (%)

101

102

103

104

Ti
m

e
Co

ns
um

pt
io

n
(s

)
lo

g-
sc

al
e

FF
BFD-Avg
WFD-AvgExp
NCD-DotProduct
SpreadWFD-Avg-Decr2

SpreadWFD-Avg-BinSearch
LRASched-Fitness
Medea-TP
Medea-NC

(b) Time consumption - log-scale

Figure 4: Different affinity densities under fixed resource requests, |L| = 9, 338

general, all Application-Centric algorithms (FF and
various versions of FFD, BFD and WFD with differ-
ent size measures) perform similarly, with approxi-
mately 12.1% deviation from the lower bound on av-
erage, with two exceptions. First, algorithms FFD,
BFD and WFD with the “Extended Sum” measure
are consistently worst-performing, with 15.6% devi-
ation on average. Second, WFD-AvgExp has 10.7%
deviation on average and consistently outperforms all
others. The advantage of WFD-AvgExp stems from
the focus on the most demanding dimensions when
selecting the next LRA to be allocated.

Node-Centric algorithms place themselves between
WFD-AvgExp and the other Application-Centric al-
gorithms, with 11.5% deviation on average.

The spreading versions of the Multi-Node al-
gorithms are particularly successful. For exam-
ple, SpreadWFD-Avg-BinSearch and SpreadWFD-
Avg-Decr2 achieve 4.5% and 5.4% deviation from

the lower bound, respectively. Solutions of similar
quality are obtained by the versions of SpreadWFD-
AvgExp, but at the cost of larger computation time
(a consequence of computing a more elaborate size
measure).

We visualize the results of the representatives of
each algorithm family in Fig 4, where we also in-
clude the summary of the baseline algorithms. We
observe that Medea-NC, with 12.6% deviation, is
outperformed by all other algorithms (except for al-
gorithms with the “ExtendedSum” measure not in-
cluded in Fig 4), while Medea-TP performs similar
to the Application-Centric algorithms, with 12.2%
deviation. LRASched-Fitness works similar to other
Node-Centric algorithms, with a slightly smaller ex-
ecution time. Compared with these baselines, our
algorithms of type SpreadWFD-Avg are 7% closer
to the lower bound. This marginal number implies
about 350 nodes saving, which is of significance for

16

10,000 50,000 100,000
Number of Submitted LRAs

0.0

0.5

1.0

1.5

2.0

2.5

D
ev

ia
ti

on
 fr

om
Lo

w
er

 B
ou

nd
 (

%
)

(a) Effectiveness

10,000 50,000 100,000
Number of Submitted LRAs

101

102

103

104

Ti
m

e
Co

ns
um

pt
io

n
(s

)
lo

g
sc

al
e

FF
BFD-Avg
WFD-AvgExp
NCD-DotProduct

SpreadWFD-Avg-Decr2
SpreadWFD-Avg-BinSearch
LRASched-Fitness
Medea-TP

(b) Time consumption - log-scale

Figure 5: Different LRA numbers under fixed resource requests, affinity graph density is 0.5%

cost-effective and energy-efficient datacenters.

Comparing the results for different affinity den-
sities we do not observe noticeable differences in
the algorithms’ effectiveness. The exceptions are
SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-
Decr2 applied to the instances with threshold graphs,
where the deviation from the lower bound increases
from 3.6% to 10.5% as the graph density increases.

Instances with varied LRA number. As shown in
Fig. 5(a), the algorithms’ effectiveness generally im-
proves when the LRA scale increases. With 100, 000
LRAs, FF, BFD-Avg and Medea-TP achieve 2.5%
deviation from the lower bound on average, NCD-
DotProduct and LRASched-Fitness achieve 2.4% de-
viation, and WFD-AvgExp reaches 2% deviation.

SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-
Decr2 are particularly successful, achieving 0.9%
and 1.8% deviation on average, with figures as
low as 0.3% for SpreadWFD-Avg-BinSearch when

applied to instances with 100, 000 LRAs. However,
an interesting anomaly was observed for smaller
instances, with 10, 000 LRAs: there were several
instances with arbitrary and normal affinity graphs
for which two SpreadWFD algorithms could not find
better solutions than FF. Still the performance of
SpreadWFD is the best even on small instances, if
averaging the results of multiple experiments.

Execution time. Instances with varied density.
Fig. 4(b) shows the average execution times of the
algorithms when applied to the instances with dif-
ferent affinity densities. FFD-based algorithms are
among the fastest, along with FF and Medea-TP,
while BFD-based algorithms are slightly slower. All
these algorithms merely take less than 5s, 18s, and
33s for densities 1%, 5% and 10%, respectively. In
contrast, WFD-based algorithms are much slower,
taking 26s, 41s and 61s, respectively.

17

Node-Centric algorithms and LRASched-Fitness
are in-between: NCD-DotProduct takes 16s, 34s
and 62s on average for the three densities, while
LRASched-Fitness runs a few seconds faster.

Overall, the relative difference in running times be-
tween these algorithms tends to decrease when the
affinity density increases. With 10% density, the run-
ning times for the WFD-based algorithms are similar
to LRASched-Fitness and NCD-DotProduct.

The best-performing algorithm SpreadWFD-Avg-
BinSearch is unsurprisingly among the slowest al-
gorithms, taking 225s, 653s and 1214s on average,
when the affinity density grows. This is because bi-
nary search needs iterative calls of the replica spread-
ing version of WFD to find the appropriate num-
ber of nodes. Replacing binary search by itera-
tively decreasing the number of target nodes en-
ables SpreadWFD-Avg-Decr2 to achieve a two-fold
speedup, compared with the binary search version.

Medea-NC is the slowest algorithm observed. It
takes on average 512s, 3, 200s and 8, 005s when han-
dling the instances with 1%, 5% and 10% density. It
is worth noticing that, while using fine-tuned data
structure may reduce the running time of Medea-NC,
its effectiveness would not change and remain inferior
to other algorithms.

Instances with varied LRA number. Fig. 5(b) shows
the average execution times of the algorithms applied
to the instances with different numbers of LRAs, and
obviously there is an increasing trend when there are
more LRAs to be scheduled. The fastest algorithms
include FF, Medea-TP and BFD-Avg that can solve
instances with 100, 000 LRAs within 8 minutes. In
contrast, LRASched-Fitness, NCD-DotProduct and
WFD-AvgExp are much slower, taking about 35, 45
and 78 minutes on average to do the same task.
Spreading approaches take even longer time: 2 and
7 hours, respectively. Medea-NC was excluded from
this series of experiments due to overly excessive ex-
ecution time even for 10, 000 LRAs. Aligned with
Fig. 3, the results indicate that datacenter opera-
tors need to thoroughly strike a balance between the
targeted solution quality and the permitted planning
time to pinpoint the bespoke option.

5.4 Results for Instances with Tempo-
ral Changes

The instances with time-varying resource requests
of applications are modeled as the problem with
d = 98 × 2 dimensions, as described in the last
row of Table 4. This dimension increase leads to a
substantial growth of execution time. Medea-NC,
LRASched-Fitness and Node-Centric algorithms
such as NCD-DotProduct were discarded from the
performance comparison for being too computa-
tionally expensive. Again, as no major differences
were observed between results of the three different
affinity graphs, we only report the results for the
graphs of arbitrary type, unless specified.

Effectiveness. Instances with varied density. For
the majority of the algorithms, the change in the
affinity density does not significantly affect the ac-
curacy of the solutions found, as demonstrated in
Fig 6(a). The exceptions occur for the threshold
graphs, similar to the instances without temporal
changes: there is a substantial degradation in the
performance of the two SpreadWFD algorithms, from
2.2% to 10.1% when the affinity density changes from
1% to 10%. Again, this is because the SpreadWFD
algorithms could not find better solutions than the
given upper bound on several instances with 5% or
10% density, and the solutions from FF were used
instead.

Instances with varied LRA number. As shown in
Fig. 7(a), there is a negligible discrepancy among
the performance of each algorithm with different
numbers of LRAs, when handling time-varying
resource requests. For example, with SpreadWFD-
Avg-BinSearch, the deviation from the lower bound
only increases from 3.2% to 3.8% when the LRA
number grows from 10, 000 to 100, 000. Similar
observations are valid for other algorithms, indicat-
ing that the proposed algorithms are successful in
large-scale scenarios.

Execution time. Instances with varied density. As
shown in Fig. 6(b), FF, BFD-Avg and Medea-TP
can solve any instance within 45 seconds on av-
erage, while WFD-AvgExp finishes within 4 min-

18

1 5 10
Affinity Density (%)

0

2

4

6

8

10
D

ev
ia

ti
on

 fr
om

Lo
w

er
 B

ou
nd

 (
%

)

(a) Effectiveness

1 5 10
Affinity Density (%)

101

102

103

Ti
m

e
Co

ns
um

pt
io

n
(s

)
- l

og
-s

ca
le

FF
BFD-Avg
WFD-AvgExp

SpreadWFD-Avg-Decr2
SpreadWFD-Avg-BinSearch
Medea-TP

(b) Time consumption - log-scale
Figure 6: Different affinity densities under time-varying resource requests, |L| = 9, 338

utes and SpreadWFD-Avg-Decr2 within 9 minutes.
SpreadWFD-Avg-BinSearch takes about 18 minutes
to solve high density instances with 9, 338 LRAs,
which seems to be the best choice of algorithm con-
sidering its achieved effectiveness of less than 3%
deviation from the lower bound, on average. It is
also worth noticing that, for instances with 1% den-
sity, the running times of SpreadWFD-Avg-BinSearch
and WFD-AvgExp are similar and almost double
the running time of SpreadWFD-Avg-Decr2. This
is particularly unexpected for WFD-AvgExp, which
involves one call of the application-centric WFD-
algorithm, compared to multiple calls of SpreadWFD-
Avg-Decr2.

Instances with varied LRA number. As shown in
Fig. 7(b), similar but smaller differences in the execu-
tion times can be observed under different submission
scales, compared with the observations in Fig. 6(b).
The disparity is due to the computation time of the
size measures of LRAs with 196 dimensions. Nu-
merically, FF and Medea-TP can solve any instance
with 100, 000 LRAs in 14 minutes on average and
BFD-Avg takes 18 minutes. SpreadWFD-Avg-Decr2,

WFD-AvgExp and SpreadWFD-Avg-BinSearch take
2.5, 5 and 11 hours, respectively, to solve the largest
instances. Interestingly, SpreadWFD-Avg-Decr2 ap-
pears to be the best choice for instances with time-
varying resource requests, as it achieves effective-
ness close to the best algorithm, SpreadWFD-Avg-
BinSearch, with a 4-fold speedup in terms of the run-
ning time.

6 Algorithm Recommenda-
tions

We recommend Application-Centric algorithms if the
computation time is required to be as small as pos-
sible. In that group of algorithms, the version of the
traditional bin packing algorithm First Fit (FF), ad-
justed to handle the problem with replicas and affini-
ties, is among the fastest approaches. Its solution
quality is either similar or just slightly worse than
the quality of solutions found by other Application-
Centric algorithms. Only one published algorithm,
Medea-TP, achieves comparable computation time

19

10,000 50,000 100,000
Number of Submitted LRAs

0
1
2
3
4
5
6

D
ev

ia
ti

on
 fr

om
Lo

w
er

 B
ou

nd
 (

%
)

(a) Effectiveness

10,000 50,000 100,000
Number of Submitted LRAs

101

102

103

104

Ti
m

e
Co

ns
um

pt
io

n
(s

)
- l

og
 s

ca
le

FF
BFD-Avg
WFD-AvgExp

SpreadWFD-Avg-Decr2
SpreadWFD-Avg-BinSearch
Medea-TP

(b) Time consumption - log-scale
Figure 7: Different LRA numbers under time-varying resource requests, affinity graph density is 0.5%

and solution quality. As we show in §4, Medea-TP
belongs to the same group of Application-Centric al-
gorithms and differs from FF by an additional or-
dering of LRAs. It appears that, on the instances
generated from the Alibaba Tianchi dataset, special
ordering does not have a significant impact on the
quality of the solution and on computation time.

We recommend Multi-Node algorithms if the pri-
mary aim is to find solutions of the best quality, possi-
bly with longer but still acceptable computation time
(say, up to 30 minutes to allocate 10, 000 LRAs). An
ultimate winner in our experiments is Spread-WFD-
Avg-BinSearch. It uses a special spreading mecha-
nism to allocate replicas of the same LRA across dif-
ferent nodes. The spreading mechanism substantially
increases the range of nodes suitable for co-location of
a current application with a broader set of compatible
LRAs. Additionally, it adopts binary search to iden-
tify the smallest, but feasible, number of nodes in the
solution. None of the algorithms, either in our suite
or among the published ones, achieves the same so-
lution quality, namely 0.3% deviation from the lower
bound, when handling instances with 100, 000 LRAs.

Finally, in-between the two extremes of fastest but
less accurate algorithms, and slowest but most ac-
curate ones, there are those of intermediate run-
ning time and intermediate solution quality. All
Node-Centric algorithms fall into this category, with
LRASched-Fitness and NCD-DotProduct being best
performing. Both algorithms produce solutions of
comparable quality and differ slightly in their running
times: LRASched-Fitness is faster on instances with
affinities, while DotProduct is faster and superior in
terms of the solution quality on instances without
affinities.

There is one outlier in the Application-Centric
group, WFD-AvgExp: it performs slower than
the majority of Application-Centric algorithms and
slower than the Node-Centric algorithms but outper-
forms all of them in terms of the solution quality. We
would like to observe that overall the Application-
Centric algorithm WFD is often overlooked by prac-
titioners and not included in their trials.

As a final note, we observe that all algorithms be-
come much slower for instances with time-varying
profiles, and the Node-Centric algorithms become

20

prohibitively slow. Therefore, we narrow down
our recommendations to Medea-TP and FF (the
fastest), Spread-WFD-Avg-Decr2 (of intermediate
running time and solution quality) and Spread-WFD-
Avg-BinSearch (the best solution quality).

7 Practical Considerations

Integration into multi-stage cluster manage-
ment. While this paper focuses on the algorithmic
support for resource provisioning, the proposed algo-
rithm suite can be more widely integrated in a multi-
stage cluster management that consists of cluster ini-
tialization and runtime scheduling.

At the initialization stage, given that the schedul-
ing system foreknows all information of LRAs to be
submitted, the resource planner that runs the algo-
rithm suite can work out the best option for schedul-
ing the LRAs with the minimal required nodes. Hor-
izontal scaling will be consequently used to match
the planning outcome, through elastically sizing the
number of bare metal servers or virtual machines
in the resource pool. Once the cluster is initial-
ized for hosting the LRAs, the cluster management
will shift into the runtime scheduling stage that re-
sponds to the new LRA submissions and available
resource release. Cluster schedulers can accept any
incoming LRA in the regular round of resource al-
location [45, 48, 35, 29]. Consequently, the admitted
LRAs will gradually consolidate the nodes in the clus-
ter until there is no room for new LRAs and a long
waiting queue manifests. Cluster auto-scaling will
be performed to mitigate the long starvation of the
waiting LRAs and handle dynamic load spikes. The
resource provisioning algorithm will be re-triggered
accordingly.

Runtime management considerations. While
our algorithm suite can provide competitive solutions
that minimize the number of required computing
nodes, the resource provisioning in practice usually
comes with some resource slack or over-provisioning
to increase reliability for the unknown and prevent
degradation in user experience. Based upon the cal-
culation of initial resource provisioning as a guidance,
additional resource reservation by system operators

allows to mitigate uncertainties at runtime such as
an excessive increase in LRA’s tail latency, out-of-
memory problems when the LRA’s resource usage
fluctuates, failures or stragglers due to unexpected
data stream coming into the LRA, etc. The reserved
yet idle resources can be harvested by using a series
of system optimization techniques including hypervi-
sor or kernel level oversubscription [48, 35, 32] and
core reassignment mechanism [38].

Other objectives considerations. The scheduling
problem formulated in the paper is an attempt to find
the minimum number of nodes that accommodate
different LRA scales and affinity restriction densities.
However, in real scenarios, the compute capability is
sometimes limited compared to the increasing num-
ber of LRAs. The Multi-Node algorithms are well
suited to address these types of problems. They oper-
ate with a fixed value n for the number of nodes, given
as part of the input. In the implementation described
in §4, a Multi-Node algorithm declares a failure if not
all LRAs are allocated to the pool of n nodes. How-
ever, the LRA allocation, available after the algo-
rithm terminates, is an appropriate solution for the
problem with a given node value n. Depending on
the optimization criterion, one may decide to adopt
the Multi-Node Algorithms with Replica Spreading,
if the number of accepted LRAs is to be maximized,
or the Multi-Node Algorithm with Application-Node
Matching if the node utilization is to be maximized.

8 Related Work

Cluster management. Resource management sys-
tems in shared clusters can be divided into two cat-
egories: centralized and decentralized systems. Cen-
tralized approaches assign resources based on user re-
quests [50, 45, 44] or framework offers [28]. Multiple
resources are negotiated among diverse applications
through a central resource manager. To make the
procedure fair and avoid resource starvation, Domi-
nant Resource Fairness [25], capacity or fair schedul-
ing are adopted for resource sharing among multiple
jobs. Decentralized approaches [42, 35, 12, 31] are
developed for clusters that expect a high throughput
or high cluster utilization. However, the goal of these

21

works is to enable sub-second resource allocation and
task scheduling at runtime without solving a global
optimization problem with complex placement con-
straints.

LRA scheduling. YARN [44] mainly supports the
affinity constraints related to nodes/racks. Borg [45]
and ROSE [42] use machine scoring mechanism for
matching a specific collection of nodes to the re-
quirements of the applications. Graph-based ap-
proaches [30, 26] model the scheduling problem as
a min-cost max-flow optimization over a network.
However, they merely consider one dimension in the
capacity constraint, and affinities to specific machines
constraints. An attempt to incorporate those addi-
tional features in Aladdin [47] makes it prohibitive
for applying powerful min-cost max-flow methods.

Application-level affinity is increasingly important.
Kubernetes scheduler [6] is responsible for selecting
the best node for each incoming pod. A pod is re-
ferred to as an independent execution unit and is
equivalent to one replica of an LRA in this paper. A
ReplicaSet parameter ensures that a specified number
of pods are running anytime. However, it considers
one pod at each scheduling round and implements
the node selection in a filtering phase. The nodes
that cannot run the pod are ruled out considering
the specifications in the node/pod affinity. This de-
sign leads to one-shot resource allocation to a pod
rather than considering it as a global optimization
problem.

Medea [23] formulates the placement problem as an
ILP and employs heuristics periodically to consider
multiple LRAs at once at a lower scheduling latency.
However, the focus of the authors is on scheduling
a small batch of LRAs. By contrast, our work ad-
dresses pre-execution resource planning for the whole
set of LRAs.

We also refer the reader to thorough surveys on
wide-ranging bin packing algorithm design [18, 36,
39].

In addition, a huge body of machine learning and
reinforcement learning based scheduling techniques
offer alternatives for scheduling LRAs to mitigate the
limitations of manual specification and resource esti-
mation – which usually require expert knowledge and

operational experience – in the process of requirement
engineering. LraSched [13] employs online machine
learning for auto-estimating the size of LRAs’ con-
tainers and the degree of affinity. Metis [46] and
George [33] adopt deep reinforcement learning (DRL)
to automatically learn to place LRAs based on ob-
serving the incurred reward and iteratively improving
the scheduling policy. However, these works heavily
depend on a huge number of high-quality workload
logs, which are feasible for big companies but will
place a huge obstacle on small businesses and aca-
demic organizations. Due to the exponential space
of actions, DRL-based solutions are also limited to
small-scale optimization problem, and thus only ap-
plicable to on-the-fly decision making.

Interference-aware LRA runtime manage-
ment. There is a substantial body of research on
interference-aware LRA scheduling and runtime man-
agement. Paragon [21] and Quasar [22] use multi-
variable statistical classifiers to predict the expected
interference among co-located LRAs. ROSEQ [48]
and Toposch [29] devise performance-aware schedul-
ing mechanisms that can safely co-locate batch jobs
together with LRAs through elaborately monitor-
ing the runtime performance of the LRAs. How-
ever, kernel/application-level counters are leveraged
to track the runtime performance of the LRAs as a
whole, without discussing the replicas and their im-
pact on the scheduling quality. Overall, the focus
of these research works prioritizes the performance
guarantee through effective container isolating and
low-cost preemption. They are orthogonal to the re-
source provisioning scheme developed in this paper
and offer supplementary mechanisms in the runtime
execution stage.

9 Conclusions and Future
Work

Resource provisioning of shared clusters is extremely
important for minimizing the operating cost and en-
suring that the scheduling systems meet both current
and future demands. LRA workloads add further
complexity to resource provisioning since they run

22

from hours to months, typically having time-varying
resource requirements and co-location affinity con-
straints. Careless or no planning often leads to poor
utilization and performance of a cluster system.
This paper develops an affinity-aware resource pro-

visioning scheme for LRA placement in shared clus-
ters, supported by a new system model and an ad-
justable algorithmic toolkit. The main benefits of
that toolkit are as follows.

• Consisting of dozens of algorithms with multi-
ple parameters, there are three major approaches
which complement each other. Their implemen-
tation can be streamlined as algorithms’ building
blocks are of similar nature.

• Application-Centric approach is the most popular
one within researchers and practitioners. How-
ever, one of its algorithms, Worst Fit Decreasing,
is broadly overlooked in the literature and in prac-
tice. Our experiment shows that it often outper-
forms all other Application-Centric algorithms in
terms of solution quality, and its execution time is
comparable to the widely used First Fit Decreas-
ing or Best Fit Decreasing algorithms from the
same approach. Worst Fit Decreasing also out-
performs the Node-Centric algorithms but at the
cost of a slightly longer execution time.

• The third and novel approach is Multi-Bin ac-
tivation. While it involves multiple calls to one
of the LRA allocation function of Application-
Centric and Node-Centric approaches, individual
calls are relatively fast. If needed, the algorithm
can be terminated earlier, still achieving improved
solutions compared to the first two approaches.

• The proposed toolkit is comprehensive and en-
compasses a variety of the published algorithms,
which can be classified as special cases of
the Application-Centric and Node-Centric ap-
proaches. A systematic summary of size measures
and score functions, provided in this paper, makes
the toolkit tunable to fit specific features of real-
world scenarios. We have illustrated how the tun-
ing works based on an Alibaba public dataset and
similar work could be conducted for any required
scenario.

In the future, we plan to investigate automatic al-
gorithm selection from our algorithm pool and auto-
matic tuning of the selected algorithm. We also plan
to integrate the proposed heuristics into Kubernetes
to evaluate how theoretical study can navigate the
runtime execution.

Acknowledgments

This work was supported by UK EPSRC Grant
(EP/T01461X/1), Turing Pilot Project and Turing
PDEA Scheme funded by UK Alan Turing Institute.
Experiments were undertaken on ARC4, part of the
High Performance Computing facilities at the Uni-
versity of Leeds, UK.

References

[1] Alibaba cluster trace. github.com/alibaba/

clusterdata.

[2] Alibaba Tianchi Dataset. https://tianchi.

aliyun.com/dataset/dataDetail?dataId=

6287&lang=en-us.

[3] Flink. flink.apache.org.

[4] HBase. hbase.apache.org.

[5] Kafka stream. kafka.apache.org.

[6] Kubernetes. kubernetes.io/docs/concepts.

[7] MongoDB. www.mongodb.com.

[8] Statista survey. https://www.

statista.com/statistics/1236823/

microservices-usage-per-organization-size/.

[9] Storm. storm.apache.org.

[10] Mart́ın Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: a sys-
tem for large-scale machine learning. In Proc. of
USENIX OSDI, pages 265–283, 2016.

23

github.com/alibaba/clusterdata
github.com/alibaba/clusterdata
https://tianchi.aliyun.com/dataset/dataDetail?dataId=6287&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=6287&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=6287&lang=en-us
flink.apache.org
hbase.apache.org
kafka.apache.org
kubernetes.io/docs/concepts
www.mongodb.com
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
storm.apache.org

[11] Tiziano Bacci and Sara Nicoloso. On the bench-
mark instances for the Bin Packing with Con-
flicts. arXiv preprint arXiv:1706.03526, 2017.

[12] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing
Shi, Jingren Zhou, Zhengping Qian, Ming Wu,
and Lidong Zhou. Apollo: scalable and coordi-
nated scheduling for cloud-scale computing. In
Proc. of USENIX OSDI, pages 285–300, 2014.

[13] Binlei Cai, Qin Guo, and Junfeng Yu. LraSched:
Admitting More Long-Running Applications via
Auto-Estimating Container Size and Affinity.
The Computer Journal, 2021.

[14] Alberto Caprara and Paolo Toth. Lower bounds
and algorithms for the 2-dimensional vector
packing problem. Discrete Applied Mathemat-
ics, 111(3):231–262, 2001.

[15] Yue Cheng, Zheng Chai, and Ali Anwar. Char-
acterizing co-located datacenter workloads: an
Alibaba case study. In Proc. of ACM APSys,
pages 1–3, 2018.

[16] Ludmila Cherkasova, Wenting Tang, and Sharad
Singhal. Providing high availability using lazy
replication. ACM TOCS, 10(4):360–391, 1992.

[17] Ludmila Cherkasova, Wenting Tang, and Sharad
Singhal. An SLA oriented capacity planning tool
for streaming media services. In Proc. of IEEE
DSN, pages 743–752, 2004.

[18] Edward G Coffman, János Csirik, Gábor Galam-
bos, Silvano Martello, and Daniele Vigo. Bin
Packing Approximation Algorithms: Survey and
Classification. In Handbook of Combinatorial
Optimization, pages 455–531, 2013.

[19] Eli Cortez, Anand Bonde, Alexandre Muzio,
Mark Russinovich, Marcus Fontoura, and Ri-
cardo Bianchini. Resource central: understand-
ing and predicting workloads for improved re-
source management in large cloud platforms. In
Proc. of ACM SOSP, pages 153–167, 2017.

[20] Jeffrey Dean and Sanjay Ghemawat. MapRe-
duce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–
113, 2008.

[21] Christina Delimitrou and Christos Kozyrakis.
Paragon: QoS-aware scheduling for heteroge-
neous datacenters. ACM SIGPLAN Notices,
pages 77–88, 2013.

[22] Christina Delimitrou and Christos Kozyrakis.
Quasar: resource-efficient and QoS-aware cluster
management. ACM SIGPLAN Notices, pages
127–144, 2014.

[23] Panagiotis Garefalakis, Konstantinos Karana-
sos, Peter Pietzuch, Arun Suresh, and Sriram
Rao. Medea: scheduling of long running appli-
cations in shared production clusters. In Proc.
of EuroSys, pages 1–13, 2018.

[24] Michel Gendreau, Gilbert Laporte, and Frédéric
Semet. Heuristics and lower bounds for the bin
packing problem with conflicts. Computers and
Operations Research, 31(3):347–358, 2004.

[25] Ali Ghodsi, Matei Zaharia, Benjamin Hindman,
Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types. In Proc. of USENIX
NSDI, 2011.

[26] Ionel Gog, Malte Schwarzkopf, Adam Gleave,
Robert NM Watson, and Steven Hand. Fir-
mament: fast, centralized cluster scheduling at
scale. In Proc. of USENIX OSDI, pages 99–115,
2016.

[27] Jing Guo, Zihao Chang, Sa Wang, Haiyang
Ding, Yihui Feng, Liang Mao, and Yungang Bao.
Who limits the resource efficiency of my datacen-
ter: an analysis of Alibaba datacenter traces. In
Proc. of ACM IWQoS, pages 1–10, 2019.

[28] Benjamin Hindman, Andy Konwinski, Matei Za-
haria, Ali Ghodsi, Anthony D Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: a
platform for fine-grained resource sharing in the
data center. In Proc. of USENIX NSDI, 2011.

24

[29] Chunming Hu, Jianyong Zhu, Renyu Yang, Hao
Peng, Tianyu Wo, Shiqing Xue, Xiaoqiang Yu,
Jie Xu, and Rajiv Ranjan. Toposch: Latency-
Aware Scheduling Based on Critical Path Anal-
ysis on Shared YARN Clusters. In Proc. of IEEE
CLOUD, pages 619–627, 2020.

[30] Michael Isard, Vijayan Prabhakaran, Jon Cur-
rey, Udi Wieder, Kunal Talwar, and Andrew
Goldberg. Quincy: fair scheduling for dis-
tributed computing clusters. In Proc. of ACM
SOSP, pages 261–276, 2009.

[31] Konstantinos Karanasos, Sriram Rao, Carlo
Curino, Chris Douglas, Kishore Chaliparam-
bil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga.
Mercury: hybrid centralized and distributed
scheduling in large shared clusters. In Proc. of
USENIX ATC, pages 485–497, 2015.

[32] Sangwook Kim, Hwanju Kim, Joonwon Lee,
and Jinkyu Jeong. Group-based memory over-
subscription for virtualized clouds. Journal of
Parallel and Distributed Computing, 74(4):2241–
2256, 2014.

[33] Suyi Li, Luping Wang, Wei Wang, Yinghao Yu,
and Bo Li. George: learning to place long-lived
containers in large clusters with operation con-
straints. In Proceedings of the ACM Symposium
on Cloud Computing, pages 258–272, 2021.

[34] Qixiao Liu and Zhibin Yu. The elasticity and
plasticity in semi-containerized co-locating cloud
workload: a view from Alibaba trace. In Proc.
of ACM SoCC, pages 347–360, 2018.

[35] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos
Kozyrakis. Heracles: improving resource effi-
ciency at scale. In Proc. of ACM ISCA, pages
450–462, 2015.

[36] Sivano Martello and Paolo Toth. Bin-Packing
Problem. In Knapsack Problems: Algorithms
and Computer Implementations, pages 221–245.
Wiley, 1990.

[37] Albert E Fernandes Muritiba, Manuel Iori, En-
rico Malaguti, and Paolo Toth. Algorithms for
the Bin Packing Problem with Conflicts. IN-
FORMS Journal on Computing, 22(3):401–415,
2010.

[38] Amy Ousterhout, Joshua Fried, Jonathan
Behrens, Adam Belay, and Hari Balakrishnan.
Shenango: achieving high CPU efficiency for
latency-sensitive datacenter workloads. In 16th
USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), pages 361–
378, 2019.

[39] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda,
and Udi Wieder. Heuristics for Vector Bin Pack-
ing. Microsoft Research, 2011.

[40] Ruslan Sadykov and François Vanderbeck. Bin
Packing with conflicts: a generic branch-and-
price algorithm. INFORMS Journal on Com-
puting, 25(2):244–255, 2013.

[41] Bikas Saha, Hitesh Shah, Siddharth Seth,
Gopal Vijayaraghavan, Arun Murthy, and Carlo
Curino. Apache Tez: a unifying framework for
modeling and building data processing applica-
tions. In Proc. of ACM SIGMOD, pages 1357–
1369, 2015.

[42] Xiaoyang Sun, Chunming Hu, Renyu Yang, Pe-
ter Garraghan, Tianyu Wo, Jie Xu, Jianyong
Zhu, and Chao Li. ROSE: cluster resource
scheduling via speculative over-subscription. In
Proc. of IEEE ICDCS, pages 949–960, 2018.

[43] Luis Quesada Torres and Doug Colish. SRE Best
Practices for Capacity Management. USENIX
PATRONS, page 49, 2020.

[44] Vinod Kumar Vavilapalli, Arun C Murthy, Chris
Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. Apache
Hadoop YARN: yet another resource negotiator.
In Proc. of ACM SoCC, pages 1–16, 2013.

[45] Abhishek Verma, Luis Pedrosa, Madhukar Ko-
rupolu, David Oppenheimer, Eric Tune, and

25

John Wilkes. Large-scale cluster management
at Google with Borg. In Proc. of ACM Eurosys,
pages 1–17, 2015.

[46] Luping Wang, Qizhen Weng, Wei Wang, Chen
Chen, and Bo Li. Metis: learning to sched-
ule long-running applications in shared con-
tainer clusters at scale. In SC20: International
Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–17.
IEEE, 2020.

[47] Heng Wu, Wenbo Zhang, Yuanjia Xu, Hao Xi-
ang, Tao Huang, Haiyang Ding, and Zheng
Zhang. Aladdin: optimized maximum flow man-
agement for shared production clusters. In Proc.
of IEEE IPDPS, pages 696–707, 2019.

[48] Renyu Yang, Chunming Hu, Xiaoyang Sun, Pe-
ter Garraghan, Tianyu Wo, Zhenyu Wen, Hao
Peng, Jie Xu, and Chao Li. Performance-aware
speculative resource oversubscription for large-
scale clusters. IEEE Transactions on Parallel
and Distributed Systems, 31(7):1499–1517, 2020.

[49] Matei Zaharia, Reynold S Xin, Patrick Wen-
dell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J Franklin, et al.
Apache Spark: a unified engine for big data
processing. Communications of the ACM,
59(11):56–65, 2016.

[50] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang,
Hong Tang, and Jie Xu. Fuxi: a fault-tolerant
resource management and job scheduling system
at internet scale. In Proc. of VLDB Endowment,
pages 1393–1404, 2014.

26

	Introduction
	Background and Motivation
	Microservice and Long-running Applications
	Resource Provisioning
	Problem Scope and Challenges

	System Model and Problem Formulation
	System Model
	Problem Formulation

	Our Algorithm Suite
	Overview
	Application-Centric Algorithms
	Node-Centric Algorithms
	Multi-Node Algorithms
	Time Complexity of Algorithms
	Classification of Existing Schedulers

	Performance Evaluation
	Experimental Settings
	Capabilities of the ILP Model
	Results for Instances without Temporal Changes
	Results for Instances with Temporal Changes

	Algorithm Recommendations
	Practical Considerations
	Related Work
	Conclusions and Future Work

