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Traditional signal processing methods relying on mathematical data generation models have been cast aside in favour of deep neural networks, which require vast amounts of data. Since the theoretical sample complexity is nearly impossible to evaluate, these amounts of examples are usually estimated with crude rules of thumb. However, these rules only suggest when the networks should work, but do not relate to the traditional methods. In particular, an interesting question is: how much data is required for neural networks to be on par or outperform, if possible, the traditional model-based methods? In this work, we empirically investigate this question in two simple examples, where the data is generated according to precisely defined mathematical models, and where well-understood optimal or state-of-the-art mathematical data-agnostic solutions are known. A first problem is deconvolving onedimensional Gaussian signals and a second one is estimating a circle's radius and location in random grayscale images of disks. By training various networks, either naive custom designed or well-established ones, with various amounts of training data, we find that networks require tens of thousands of examples in comparison to the traditional methods, whether the networks are trained from scratch or even with transferlearning or finetuning.

Introduction

Neural network-based machine learning has widely replaced the traditional methods for solving many signal and image processing tasks that relied on mathematical models for the data [START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Deep learning[END_REF]. In some cases, the assumed models provided ways to optimally address the tasks at hand and resulted in well-performing estimation and prediction methods with theoretical guarantees [START_REF] Wiener | Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[END_REF][START_REF] Novikoff | On convergence proofs for perceptrons[END_REF][START_REF] Elad | Sparse and redundant representations: from theory to applications in signal and image processing[END_REF]. Nowadays, gathering raw data and applying gradient descent-like processes to neural network structures [START_REF] Lecun | Handwritten digit recognition with a back-propagation network[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF] largely replaced modelling and mathematically developing provably optimal solutions.

It is commonly accepted that, if the networks are complex enough and when vast amounts of data are available, neural networks outperform traditionally designed methods [START_REF] Mohamed | Deep belief networks for phone recognition[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] or even humans [START_REF] Geirhos | Generalisation in humans and deep neural networks[END_REF][START_REF] Geirhos | Partial success in closing the gap between human and machine vision[END_REF][START_REF] Bengio | Deep learning for AI[END_REF]. The required amount of data is called in statistical learning theory the sample complexity and is related to the VC-dimension of the problem [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF], which is usually intractable for non trivial networks [START_REF] Anthony | Neural Network Learning: Theoretical Foundations[END_REF]. Instead, various rules of thumb have been used in the field to guess how many samples are needed: at least 10-50 times the number of parameters [START_REF] Alwosheel | Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis[END_REF], at least 10 times per class in classification (and 50 times in regression) the data dimensionality [START_REF] Lakshmanan | Machine learning design patterns[END_REF] and at least 50-1000 times the output dimension [START_REF] Alwosheel | Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis[END_REF].

However, these rules only suggest how much data is needed to get a "good" network, but they do not relate to the traditional data-generation model-based methods. A natural question hence arises: do the neural network-based solutions perform as well as, or even outperform, the processing methods based on traditional data-generation models when lots of data is available, and if so how much data is necessary? We address this question in two simple empirical examples, where the data is produced according to precisely defined models, and where well understood optimal or state-of-the-art mathematical solutions are available. The first is the deconvolution of Gaussian signals, optimally solved with the Wiener filter [START_REF] Wiener | Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[END_REF]. The second is the estimation of the radius and centre coordinates of a disk in an image, which can be elegantly solved using a Pointflow method [START_REF] Yang | A model for automatically tracing object boundaries[END_REF]. This work aids engineers to decide when to use model-based classical methods or simply feed lots of data (if available) to deep neural networks.

Section 2 presents our comparison for the one-dimensional signal recovery, and Section 3 deals with estimation of disk characteristics in an image.

One-dimensional signal recovery

We suggest to first analyse a simple and well-understood problem in the onedimensional case where the optimal solution is provingly known.

Data model and optimal solution

The original data consists of real random vectors φ of size D that are centred, i.e. E(φ) = 0, and with known autocorrelation R φ = E(φφ ⊤ ) ∈ R D×D . However, φ is degraded by blur and noise producing the observed data φ data as follows:

φ data = Hφ + n, (1) 
where H ∈ R D×D is a known deterministic matrix and n is random additive noise independent from φ that is centred E(n) = 0 and with known autocorrelation matrix R n ∈ R D×D . It is well-known [START_REF] Wiener | Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[END_REF] that the best linear recovery of φ in the L 2 sense, i.e. minimising the Expected Squared Error (ESE) ESE ( φ, φ) = E ∥ φ -φ∥ 2 2 with respect to the matrix M ∈ R D×D such that φ = M φ data , is given by applying the Wiener filter

W = R φ H ⊤ (HR φ H ⊤ + R n ) -1 , i.e. φ * = W φ data .
Moreover, if we further assume both φ ∼ N (0, R φ ) and n ∼ N (0, R n ) are Gaussian, then the Wiener filter W minimises the ESE over all possible recoveries including nonlinear ones. Furthermore, note that if R φ is circulant, i.e. φ is cyclostationary, and so is n, e.g. if n has independent entries implying R n is diagonal, and if H is circulant, then W is also circulant and Wiener filtering is a pointwise multiplication in the Fourier domain given by applying the unitary Discrete Fourier Transform [DF T ] with (k, l)-th entry

[DF T ] k,l = 1 √ D e -i 2πkl
D . In our tests, the dimensionality is D = 32 and the problem is circulant. We use an interpretable symmetric positive-definite autocorrelation matrix R φ parameterised by a large number ρ = 0.95 to create high spatial correlation over a large support decaying with distance and H is a local smoothing convolution. The first lines of R φ and H are 1 ρ ρ 2 ρ 3 ρ 3 ρ 2 ρ and 1 1 0 0 1 . The noise is i.i.d. n ∼ N (0, σ 2 n I) with σ n = 0.1. We display example data in Figure 1, the designed H, R φ , and R n along with their associated Wiener filter W in Figure 2. 

Neural models

We wish to evaluate the capabilities of neural networks by comparing them to humanly designed methods by classical experts using no training. Our criterion is the amount of random training samples N needed to reach or overtake human expertise. Working in the Gaussian case for the data model of equation (1), we create various random training datasets containing N data samples ranging in N ∈ {10, 100, 1000, 10000, 100000}. We train a variety of small Convolutional Neural Networks (CNNs) of various depths K ∈ {0, 1, 2, 3}. The depth of the network is measured as the number of successions of convolutionpointwise-nonlinearity layers. Each network ends with a final fully connected layer A (with bias b A ), i.e. a final unconstrained affine transformation. For simplicity, our CNNs will be single-channel only and without various architecture tricks, e.g. dropout, batch normalisation, or pooling. The network functions, denoted f k for k ∈ {1, . . . , K} can thus be written as:

f k (φ data ) = Aσ • CK • σ • CK-1 • • • • • σ • C1 (φ data ) + b A , (2) 
where Ci (x) = C i x + b i is the i-th convolution layer comprising the circulant matrix C i for the convolution and its additive unconstrained bias b i and σ = ReLU the standard pointwise nonlinearity in neural networks. Note that a CNN with depth 0 degenerates to an unconstrained affine transformation in R D (no pointwise nonlinearity or convolution):

f 0 (φ data ) = Aφ data + b A .
The networks are trained to minimise the Mean Squared Error (MSE) 3 , a proxy for the ESE, using the N generated samples. Denoting f k,N,η the resulting networks (where η a hyperparameter of the optimisation algorithm), we have:

MSE train (f k,N,η ) = 1 N N i=1 ∥f k,N,η (φ data train,i ) -φ train,i ∥ 2 2 , (3) 
where for a sample collection set, φ set,i and φ data set,i denote the i-th original and degraded samples. This quantity is to be compared with ESE (f k,N (φ data ), φ), which evaluates the performance on all possible data of a network trained on N instances only. Naturally, this quantity cannot be computed by hand and is approximated by another MSE calculation on a large test set using N t test samples independently generated from the training ones:

MSE test (f k,N,η ) = 1 Nt Nt i=1 ∥f k,N,η (φ data test,i )-φ test,i ∥ 2 2 ----→ Nt→∞ ESE (f k,N,η (φ data ), φ).
(4) In our tests, N t = 100000. Note that implicitly in ESE (f k,N,η (φ data ), φ) the network f k,N,η is the given result of a minimisation algorithm. For randomised algorithms, it is thus to be understood as the expectation conditional to the learned network f k,N,η :

ESE (f k,N,η (φ data ), φ) = E(∥f k,N,η (φ data )-φ∥ 2 2 | f k,N,η
). We train our networks using Stochastic Gradient Descent with Nesterov momentum parameter equal to 0.9. We train the networks using various learning rates η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} over 50 epochs, performing N r = 50 independent training trials per learning rate, and compute the final median performance per learning rate on a validation set generated independently of the train and test data comprising N v = 100000 validation samples:

MSE val (f k,N,η ) = 1 Nv Nv i=1 ∥f k,N,η (φ data val,i )-φ val,i ∥ 2 2 -----→ Nv→∞ ESE (f k,N,η (φ data ), φ).
(5) 3 The loss function is actually scaled to 1 D MSE train as is commonly done in practice.

The validation set is used to choose the best learning rate for each amount of training data η * (N ) by taking:

η * (N ) = argmin η MEDIAN r (MSE val (f k,N,η )), (6) 
where MEDIAN r takes the median over the r ≤ N r best independent runs on the validation set per η. Given that a significant amount of runs do not converge or get trapped early in a poor local minimum depending on the random initialisation, choosing r ≪ N r ensures that only the networks finding a good local minimum are considered. The final performance of CNNs SCORE k,r (N ) for each amount of data N is then the median of the test performance over those selected r trials4 of the final test score at the chosen learning rate η * (N ):

SCORE k,r (N ) = M EDIAN r (MSE test (f k,N,η * (N ) )). ( 7 
)
We display the evolution of the networks' performance on the amount of training data N in Figure 3 for each depth k, with detailed scores in Table 1, along with the performance of the Wiener filter. Regardless of N , the Wiener filter outperforms the neural models as expected by the theory, but their performance converges to the Wiener's one when a lot of data is available, with similar performance when at least 10000 training samples are available. We can thus consider this study as providing a criterion that a model would be preferable if data is limited to fewer than 10000 samples to train on. 

Two-dimensional geometric estimation

We next analyse a more complicated yet well-understood problem based on Euclidean geometry. The goal is to estimate basic geometric properties on simple data: the radius and centre location of a random disk in an image. It was shown in [START_REF] Dagès | From compass and ruler to convolution and nonlinearity: On the surprising difficulty of understanding a simple cnn solving a simple geometric estimation task[END_REF] that this seemingly trivial task is more complex than expected for neural models even when focusing on radius estimation of centred disks. Table 1. Median MSE scores SCORE k,r of the CNNs on r = 10 selected runs, compared to the theoretically optimal Wiener filter.

Data model

The original data now consists of D × D random two-dimensional grayscale images of disks. Images are centred at (0, 0), and for a pixel

x ∈ [-D-1 2 , D-1 2 ] 2 : φ(x) = b if ∥x -c∥ 2 > r f if ∥x -c∥ 2 ≤ r, ( 8 
)
where r is the circle's radius, c = (c x , c y ) its centre, and f (resp. b) is the foreground (resp. background) intensity. These parameters are independently 5and uniformly chosen at random:

r ∼ U([ εr 2 D-1 4 , (1 -εr 2 ) D-1 4 ]) with ε r = 0.4, c ∼ U([(D -1) εc 2 -D-1 2 , (D -1)(1 -εc 2 ) -D-1 2 ] 2 ) with ε c = 0.5, b ∼ U([0, 1]), and f | b ∼ U([0, 1] \ [b -δ, b + δ]) with δ = 50
255 the minimum contrast6 . However, φ is degraded with blur and noise giving the observed data φ data as follows:

φ data = g σ b * φ + n, (9) 
where g σ b (x) = 1 2π exp(-

∥x∥ 2 2 2σ 2 b
) is a Gaussian convolution kernel, and n is i.i.d. white noise n ∼ N (0, σ n I D 2 ). We plot example data in Figure 4. The task is to estimate the three geometric numbers (r, c) = (r, c x , c y ) from φ data . 

Expert engineer's solution

Unlike in the Wiener case, the optimal estimator minimising the ESE is not so trivial to find. Instead, we choose a method called Pointflow designed by an expert engineer that perfectly tackles the problem at hand. Pointflow [START_REF] Yang | A model for automatically tracing object boundaries[END_REF][START_REF] Bai | Point flow edge detection method based on phase congruency[END_REF] is an elegant subpixel level contour integrator and edge detector in images requiring no learning whatsoever. It consists in defining potential vector fields V along which random points P flow: dP dt (t) = V (P (t)), such that end trajectories lie on edges of the image I. The vanilla Pointflow [START_REF] Yang | A model for automatically tracing object boundaries[END_REF] uses two fields V + and V -from the edge attraction V a and rotating V r fields based on the image gradients as follows:

V a = ∇∥∇I b ∥ 2 , V r = ∇I ⊥ b , V ± = 1 2 (V a ± V r ), (10) 
where I b = g σ P f * I is a blurred version of I with a Gaussian kernel g σ P f . Various stopping conditions and uses of V ± exist to detect edges in natural images, however on our data containing a single circular edge per image, we need only consider the basic ones. Indeed, the possible cases for trajectories are: it loops (C l ), it leaves the image domain (C o ), or it is stuck in an area with small magnitude ∥V ∥ 2 (C s ). Flowing initially from V + , if we loop (C l ), then the point has reached the circle and it suffices to reflow along V + to extract just the circle's contour. If we end up outside the image domain (C o ), which is rare in our data, we reflow from the exit point along V -. If we are in a low flow magnitude area (C s ), which is not rare, then we discard the trajectory. In total, N P f = 200 points are randomly uniformly sampled in the image domain and used for Pointflow, and a fraction of them end up flowing on the disk's edge with subpixel precision, as the other ones lead to discarded trajectories.

For more details on our implementation of Pointflow see Appendix A. For some illustrations of Pointflow results on our data see Figure 5. To estimate the disk's radius and centre from pointflow contours (C l ), we can simply compute the average length of the reflown closed contours and divide it by 2π. To compute the centre's coordinates, we could compute for each closed trajectory the average of its points, and then average over these estimations. However, this method empirically did not best perform on validation data, so we refined it by applying least-squares regression on the equation of a circle to estimate from it its location per trajectory and then average the estimations. Note that the least-squares regression did not provide a better estimation of the radius so we keep the crude length integration strategy for it.

Neural models

As in the one-dimensional case, the expert's method is to be compared with a convolutional neural network. Although the learning problem seems trivial, it is actually harder than expected for networks, as has been shown in [START_REF] Dagès | From compass and ruler to convolution and nonlinearity: On the surprising difficulty of understanding a simple cnn solving a simple geometric estimation task[END_REF] even when the circles are centred. Empirically, we were not able to train correctly a small custom model similar to those previously used having just three layers and even many channels per layers and no further deep learning tricks. To overcome this limitation, we use famous networks in the deep learning literature: Alexnet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and Resnet 7 [START_REF] He | Deep residual learning for image recognition[END_REF]. To adapt the model to our task, we change the final fully connected layer to have 3 outputs only.

For each architecture, we either train the networks from scratch (SC), or initialise the weights, except those of the final fully connected layers, to those publicly available obtained by classification on Imagenet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF], as is commonly done in the field. The pretrained weights can be either frozen for transfer-learning (TL) or retrained as well for finetuning (FT). Although the task and data are fundamentally different from ours, it is generally believed that the wide variety of natural images encourages the famous networks to learn features that generalise quite well to most reasonable tasks.

Once again, the MSE loss is used for training 8 . As it is significantly more expensive to train such networks compared to the tiny ones in the Wiener case, we only perform N r = 1 run per learning rate configuration, ranging in η ∈ {0.000001, 0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1}, with a batch size of 10 for 50 epochs. As previously, the optimal learning rate is chosen on the performance on validation data. Both the test and validation data use N v = N t = 100000 independently randomly sampled images, whereas the training sets have N ∈ {10, 100, 1000, 10000, 100000} ones.

Results

We present the results in Figure 6 and Table 2. Although the networks are simultaneously trained for both the radius and centre location estimation, we also present the MSE on the estimation of each geometric concepts separately.

First, the transfer-learning network Resnet-TL is not able to correctly estimate the radius or centre's location, meaning that its learned features on classification of Imagenet are not able to handle our simple data: they are not so general after all. Likewise, the prelearned features of Alexnet-TL and VGG-TL do not generalise well to this toy problem, requiring significantly more data than the maximum available to compare with the simple data agnostic pointflow. However, when the networks are entirely trained, either finetuned or from scratch, they are either flatly beaten by pointflow when using small amounts of training data or on par or slightly outperform it when N ≥ 10000. The only networks 7 We use the simplest ones VGG11 and ResNet18, as larger ones are here unnecessary. 8 To help the networks converge, the radius and centre coordinates are scaled to [-1, 1] using rs = 8 D-1 (r -D-1 8 ) and cs = 2 D-1 c. In all plots and numbers provided in this paper, the results are rescaled to the original scale: r and c and not rs and cs.

beating pointflow overall are VGG-SC and Resnet-FT when N = 100000, but more (VGG-FT, VGG-SC, Resnet-FT, and Resnet-SC) significantly outperform pointflow on the radius estimation when N ≥ 10000. The difference between finetuning and training from scratch seems to only appear when small amounts of training data are available, and then finetuning is better. However, in these cases, both approaches pale in comparison to the reference data agnostic method.

From this experiment, we conclude that a realistic neural network is worth at least tens of thousands of examples on a fairly simple task (toy problem vs real world challenge) compared to an expert engineer. We thus provide a criterion that a data model is preferable if fewer than 10000 training samples are available. 

Conclusion

We analysed the amount of data required by neural networks, either shallow custom ones or deep famous ones, trained from scratch, finetuned, or transferlearned, to compete with optimal or state-of-the-art traditional data-agnostic methods based on mathematical data generation models. To do so, we mathematically generated data, and fed various amounts of samples to the networks for training. We found that tens of thousands of data examples are needed for the networks to be on par or beat the traditional methods, if they are able to. For mathematical accuracy, we did not investigate real-world problems, which are commonly harder with less accurate or non-existent mathematical data generation models, but more data should be needed in those complex tasks. We have empirically derived a simple criterion, enabling researchers working on tasks where data is not easily available, to choose whether to use model-based traditional methods, by using either preexisting or newly created data generation models, or simply feed data to deep neural networks.

A Pointflow implementation details

The pointflow dynamics are implemented by discretising time and approximating the time derivative with a forward finite difference scheme, although it could be improved with a Runge-Kutta 4 implementation [START_REF] Butcher | Numerical Methods for Ordinary Differential Equations[END_REF]. Given the small magnitudes of the fields, we found that a large time step dt = 50 works well. We define three thresholds, τ l = 0.9 for C l , τ s = 10 -6 for C s , and τ len = 0.001. we consider having looped C l if a point reaches a previous point within squared Euclidean distance τ l while having on the trajectory between the looping points at least one point with squared distance to them of at least τ l . A trajectory is stuck if it reaches a point where the current flow V has small magnitude ∥V ∥ 2 2 ≤ τ s . Each flow is run for N i = 1000 iterations, and trajectories shorter than τ len are discarded, e.g. trajectories of type C s . We used σ P f = 5 for blurring out the noise before computing the fields. The implemented pointflow algorithm for finding contours in our circle images is presented in Algorithm 1.

After computing the list of contours C in the image I, we estimate the radius using the average curve length r = 1 2π |C| i=1 length(C i ). Since the average of
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 12 Fig. 1. Two example signals φ data , with their associated blur Hφ and noise n.

Fig. 3 .

 3 Fig. 3. Median test scores for CNNs with depth k ∈ {0, 1, 2, 3} on r = 10 selected runs (k = 0 is just a linear layer). Vertical bars represent the standard deviation of the MSE of these runs. The right figure is a zoomed-in plot of the left one for large N .
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 4 Fig. 4. Four examples of clean φ and degraded φ data disk images.

Fig. 5 .

 5 Fig. 5. Pointflow in practice. (5a): clean data. (5b): degraded data. (5c) and (5d): pointflow fields sampled every five pixels. (5e): initial flows of points without reflowing with groundtruth boundary in green. (5f): all final trajectories that have reflown in a closed loop (C l ) with groundtruth boundary in green and all regressed circles using least squares on each looped trajectory in blue (used for estimating the centre).

Fig. 6 .

 6 Fig. 6. Test scores of the data-agnostic Pointflow and of the best transfer-learned or finetuned networks. Left: MSE computed on both the radius and the centre's location estimation. Middle: same but only on the radius estimation. Right: same but only on the centre location's estimation. We zoom-in in the bottom set of figures.

Table 2 .

 2 MSE scores of the networks compared to Pointflow on test data, computed on both r and c (top), just r (middle), or just c (bottom). Networks were trained on joint prediction of r and c. For the separate r (resp. c) scores, the selected networks were those providing the best r (resp. c) error on validation data.

	N	Pointflow Alexnet		VGG			Resnet	
		TL FT SC TL FT	SC	TL FT	SC
	(r, c) 0	0.66						
	10	826 524 1748 1581 754 1748 5256 3358 2590
	100	314 66 291 448 69	215 2064 1124 793
	1000	183 23 9.0 189 6.5	7.6 1092 48	45
	10000	140 31 4.8	71	2.9	1.2	814 3.7	4.4
	100000	67 17 1.5	40 0.68 0.42 826 0.51 0.93
	r 0	0.26						
	10	66 65 75	75	69	75	110 86	82
	100	36 5.9 42	52	5.6	40	42	25	31
	1000	26 2.4 1.3	20 0.57 0.62	24	2.2	1.3
	10000	16 2.0 1.5 9.9 0.23 0.11 19 0.19 0.27
	100000	6.8 1.7 0.69 4.9 0.075 0.051 19 0.066 0.078
	c 0	0.40						
	10	759 454 1673 1506 675 1673 5142 3206 2507
	100	277 60 249 393 63	175 2020 1099 762
	1000	157 21 7.7 169 5.9	6.9 1067 46	43
	10000	118 29 3.0	61	2.6	1.1	795 3.5	4.1
	100000	57 6.4 0.79 36 0.57 0.37 807 0.45 0.86

Selected on the validation set.

Except f and b which are slightly correlated to ensure a minimal contrast |f -b| > δ.

In our tests, we take D = 201 implying that r ∼ U ([START_REF] Goodfellow | Deep learning[END_REF] 40]) and c ∼ U ([-50, 50] 2 ).
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the points did not yield the best estimation of the circle centre, we estimate it instead using least squares. The equation of a circle is naturally given by (x -c x ) 2 + (y -c y ) 2 = r 2 , which can be written as θ 1 x + θ 2 y + θ 3 = x 2 + y 2 , where θ 1 = 2c x , θ 2 = 2c y , and θ 3 = r 2 -c 2

x -c 2 y . We can thus estimate for each contour θ = (θ 1 , θ 2 , θ 3 ) ⊤ by least squares as θ = A ⊤ (AA ⊤ ) -1 B, with A i,: = (x i , y i , 1) and B i = x 2 i + y 2 i and i ranging in the number of computed points on the contour. From θ we can estimate ĉ = ( θ1 2 , θ2 2 ). The final centre estimation is then given by the average of this estimation over all contours. Note that we can also estimate r using θ 3 but we found that it did not outperform the lenght strategy so we do not use it.