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Abstract. Traditional signal processing methods relying on mathemat-
ical data generation models have been cast aside in favour of deep neu-
ral networks, which require vast amounts of data. Since the theoretical
sample complexity is nearly impossible to evaluate, these amounts of
examples are usually estimated with crude rules of thumb. However,
these rules only suggest when the networks should work, but do not re-
late to the traditional methods. In particular, an interesting question
is: how much data is required for neural networks to be on par or out-
perform, if possible, the traditional model-based methods? In this work,
we empirically investigate this question in two simple examples, where
the data is generated according to precisely defined mathematical mod-
els, and where well-understood optimal or state-of-the-art mathematical
data-agnostic solutions are known. A first problem is deconvolving one-
dimensional Gaussian signals and a second one is estimating a circle’s
radius and location in random grayscale images of disks. By training
various networks, either naive custom designed or well-established ones,
with various amounts of training data, we find that networks require
tens of thousands of examples in comparison to the traditional methods,
whether the networks are trained from scratch or even with transfer-
learning or finetuning.

Keywords: Deep learning · Model-based methods · Sample complexity.

1 Introduction

Neural network-based machine learning has widely replaced the traditional meth-
ods for solving many signal and image processing tasks that relied on mathemat-
ical models for the data [14, 10]. In some cases, the assumed models provided
ways to optimally address the tasks at hand and resulted in well-performing
estimation and prediction methods with theoretical guarantees [21, 17, 7]. Nowa-
days, gathering raw data and applying gradient descent-like processes to neural
network structures [15, 12, 19, 11] largely replaced modelling and mathematically
developing provably optimal solutions.

It is commonly accepted that, if the networks are complex enough and when
vast amounts of data are available, neural networks outperform traditionally
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designed methods [16, 12] or even humans [9, 8, 4]. The required amount of data
is called in statistical learning theory the sample complexity and is related to the
VC-dimension of the problem [20], which is usually intractable for non trivial
networks [2]. Instead, various rules of thumb have been used in the field to guess
how many samples are needed: at least 10-50 times the number of parameters
[1], at least 10 times per class in classification (and 50 times in regression) the
data dimensionality [13] and at least 50-1000 times the output dimension [1].

However, these rules only suggest how much data is needed to get a “good”
network, but they do not relate to the traditional data-generation model-based
methods. A natural question hence arises: do the neural network-based solutions
perform as well as, or even outperform, the processing methods based on tradi-
tional data-generation models when lots of data is available, and if so how much
data is necessary? We address this question in two simple empirical examples,
where the data is produced according to precisely defined models, and where well
understood optimal or state-of-the-art mathematical solutions are available. The
first is the deconvolution of Gaussian signals, optimally solved with the Wiener
filter [21]. The second is the estimation of the radius and centre coordinates of a
disk in an image, which can be elegantly solved using a Pointflow method [22].
This work aids engineers to decide when to use model-based classical methods
or simply feed lots of data (if available) to deep neural networks.

Section 2 presents our comparison for the one-dimensional signal recovery,
and Section 3 deals with estimation of disk characteristics in an image.

2 One-dimensional signal recovery

We suggest to first analyse a simple and well-understood problem in the one-
dimensional case where the optimal solution is provingly known.

2.1 Data model and optimal solution

The original data consists of real random vectors φ of size D that are centred,
i.e. E(φ) = 0, and with known autocorrelation Rφ = E(φφ⊤) ∈ RD×D. However,
φ is degraded by blur and noise producing the observed data φdata as follows:

φdata = Hφ+ n, (1)

where H ∈ RD×D is a known deterministic matrix and n is random additive noise
independent from φ that is centred E(n) = 0 and with known autocorrelation
matrix Rn ∈ RD×D. It is well-known [21] that the best linear recovery of φ in
the L2 sense, i.e. minimising the Expected Squared Error (ESE) ESE (φ̂, φ) =
E
(
∥φ̂− φ∥22

)
with respect to the matrix M ∈ RD×D such that φ̂ = Mφdata , is

given by applying the Wiener filter W = RφH
⊤(HRφH

⊤ + Rn)
−1, i.e. φ̂∗ =

Wφdata . Moreover, if we further assume both φ ∼ N (0, Rφ) and n ∼ N (0, Rn)
are Gaussian, then the Wiener filter W minimises the ESE over all possible
recoveries including nonlinear ones. Furthermore, note that if Rφ is circulant,
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i.e. φ is cyclostationary, and so is n, e.g. if n has independent entries implying Rn

is diagonal, and if H is circulant, then W is also circulant and Wiener filtering is
a pointwise multiplication in the Fourier domain given by applying the unitary
Discrete Fourier Transform [DFT ] with (k, l)-th entry [DFT ]k,l =

1√
D
e−i 2πkl

D .
In our tests, the dimensionality is D = 32 and the problem is circulant.

We use an interpretable symmetric positive-definite autocorrelation matrix Rφ

parameterised by a large number ρ = 0.95 to create high spatial correlation over
a large support decaying with distance and H is a local smoothing convolution.
The first lines of Rφ and H are

(
1 ρ ρ2 ρ3 ρ3 ρ2 ρ

)
and

(
1 1 0 0 1

)
. The

noise is i.i.d. n ∼ N (0, σ2
nI) with σn = 0.1. We display example data in Figure

1, the designed H, Rφ, and Rn along with their associated Wiener filter W in
Figure 2.

Fig. 1. Two example signals φdata, with their associated blur Hφ and noise n.

H Rφ Rn W

Fig. 2. Chosen model matrices and associated optimal Wiener filter.

2.2 Neural models

We wish to evaluate the capabilities of neural networks by comparing them to
humanly designed methods by classical experts using no training. Our crite-
rion is the amount of random training samples N needed to reach or overtake
human expertise. Working in the Gaussian case for the data model of equa-
tion (1), we create various random training datasets containing N data sam-
ples ranging in N ∈ {10, 100, 1000, 10000, 100000}. We train a variety of small
Convolutional Neural Networks (CNNs) of various depths K ∈ {0, 1, 2, 3}. The
depth of the network is measured as the number of successions of convolution-
pointwise-nonlinearity layers. Each network ends with a final fully connected
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layer A (with bias bA), i.e. a final unconstrained affine transformation. For sim-
plicity, our CNNs will be single-channel only and without various architecture
tricks, e.g. dropout, batch normalisation, or pooling. The network functions,
denoted fk for k ∈ {1, . . . ,K} can thus be written as:

fk(φ
data) = Aσ ◦ C̃K ◦ σ ◦ C̃K−1 ◦ · · · ◦ σ ◦ C̃1(φ

data) + bA, (2)

where C̃i(x) = Cix + bi is the i-th convolution layer comprising the circulant
matrix Ci for the convolution and its additive unconstrained bias bi and σ =
ReLU the standard pointwise nonlinearity in neural networks. Note that a CNN
with depth 0 degenerates to an unconstrained affine transformation in RD (no
pointwise nonlinearity or convolution): f0(φdata) = Aφdata + bA.

The networks are trained to minimise the Mean Squared Error (MSE)3, a
proxy for the ESE, using the N generated samples. Denoting fk,N,η the resulting
networks (where η a hyperparameter of the optimisation algorithm), we have:

MSE train(fk,N,η) =
1
N

N∑
i=1

∥fk,N,η(φ
data
train,i)− φtrain,i∥22, (3)

where for a sample collection set , φset,i and φdata
set,i denote the i-th original and

degraded samples. This quantity is to be compared with ESE (fk,N (φdata), φ),
which evaluates the performance on all possible data of a network trained on
N instances only. Naturally, this quantity cannot be computed by hand and
is approximated by another MSE calculation on a large test set using Nt test
samples independently generated from the training ones:

MSE test(fk,N,η)=
1
Nt

Nt∑
i=1

∥fk,N,η(φ
data
test,i)−φtest,i∥22−−−−→

Nt→∞
ESE (fk,N,η(φ

data), φ).

(4)
In our tests, Nt = 100000. Note that implicitly in ESE (fk,N,η(φ

data), φ) the
network fk,N,η is the given result of a minimisation algorithm. For randomised
algorithms, it is thus to be understood as the expectation conditional to the
learned network fk,N,η: ESE (fk,N,η(φ

data), φ) = E(∥fk,N,η(φ
data)−φ∥22 | fk,N,η).

We train our networks using Stochastic Gradient Descent with Nesterov mo-
mentum parameter equal to 0.9. We train the networks using various learning
rates η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} over 50 epochs, performing
Nr = 50 independent training trials per learning rate, and compute the final me-
dian performance per learning rate on a validation set generated independently
of the train and test data comprising Nv = 100000 validation samples:

MSE val(fk,N,η)=
1
Nv

Nv∑
i=1

∥fk,N,η(φ
data
val,i)−φval,i∥22 −−−−−→

Nv→∞
ESE (fk,N,η(φ

data), φ).

(5)

3 The loss function is actually scaled to 1
D
MSE train as is commonly done in practice.
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The validation set is used to choose the best learning rate for each amount of
training data η∗(N) by taking:

η∗(N) = argmin
η

MEDIAN r(MSE val(fk,N,η)), (6)

where MEDIAN r takes the median over the r ≤ Nr best independent runs
on the validation set per η. Given that a significant amount of runs do not
converge or get trapped early in a poor local minimum depending on the random
initialisation, choosing r ≪ Nr ensures that only the networks finding a good
local minimum are considered. The final performance of CNNs SCOREk,r(N)
for each amount of data N is then the median of the test performance over those
selected r trials4 of the final test score at the chosen learning rate η∗(N):

SCOREk,r(N) = MEDIANr(MSE test(fk,N,η∗(N))). (7)

We display the evolution of the networks’ performance on the amount of
training data N in Figure 3 for each depth k, with detailed scores in Table 1,
along with the performance of the Wiener filter. Regardless of N , the Wiener
filter outperforms the neural models as expected by the theory, but their per-
formance converges to the Wiener’s one when a lot of data is available, with
similar performance when at least 10000 training samples are available. We can
thus consider this study as providing a criterion that a model would be preferable
if data is limited to fewer than 10000 samples to train on.

Fig. 3. Median test scores for CNNs with depth k ∈ {0, 1, 2, 3} on r = 10 selected runs
(k = 0 is just a linear layer). Vertical bars represent the standard deviation of the MSE
of these runs. The right figure is a zoomed-in plot of the left one for large N .

3 Two-dimensional geometric estimation

We next analyse a more complicated yet well-understood problem based on
Euclidean geometry. The goal is to estimate basic geometric properties on simple
data: the radius and centre location of a random disk in an image. It was shown
in [6] that this seemingly trivial task is more complex than expected for neural
models even when focusing on radius estimation of centred disks.
4 Selected on the validation set.
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N 0 10 100 1000 10000 100000

Wiener 1.743 — — — — —
Linear (k = 0) — 6.204 2.295 1.811 1.751 1.748
CNN (k = 1) — 12.386 3.662 1.924 1.799 1.762
CNN (k = 2) — 15.614 3.789 2.051 1.842 1.767
CNN (k = 3) — 20.395 4.911 2.167 1.869 1.771

Table 1. Median MSE scores SCOREk,r of the CNNs on r = 10 selected runs, com-
pared to the theoretically optimal Wiener filter.

3.1 Data model

The original data now consists of D × D random two-dimensional grayscale
images of disks. Images are centred at (0, 0), and for a pixel x ∈ [−D−1

2 , D−1
2 ]2:

φ(x) =

{
b if ∥x− c∥2 > r

f if ∥x− c∥2 ≤ r,
(8)

where r is the circle’s radius, c = (cx, cy) its centre, and f (resp. b) is the
foreground (resp. background) intensity. These parameters are independently5

and uniformly chosen at random: r ∼ U([ εr2
D−1
4 , (1 − εr

2 )
D−1
4 ]) with εr = 0.4,

c ∼ U([(D − 1) εc2 − D−1
2 , (D − 1)(1− εc

2 )−
D−1
2 ]2) with εc = 0.5, b ∼ U([0, 1]),

and f | b ∼ U([0, 1]\ [b−δ, b+δ]) with δ = 50
255 the minimum contrast6. However,

φ is degraded with blur and noise giving the observed data φdata as follows:

φdata = gσb
∗ φ+ n, (9)

where gσb
(x) = 1

2π exp(−
∥x∥2

2

2σ2
b
) is a Gaussian convolution kernel, and n is i.i.d.

white noise n ∼ N (0, σnID2). We plot example data in Figure 4. The task is to
estimate the three geometric numbers (r, c) = (r, cx, cy) from φdata .

Fig. 4. Four examples of clean φ and degraded φdata disk images.

3.2 Expert engineer’s solution

Unlike in the Wiener case, the optimal estimator minimising the ESE is not
so trivial to find. Instead, we choose a method called Pointflow designed by an
expert engineer that perfectly tackles the problem at hand.
5 Except f and b which are slightly correlated to ensure a minimal contrast |f−b| > δ.
6 In our tests, we take D = 201 implying that r ∼ U([10, 40]) and c ∼ U([−50, 50]2).
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Pointflow [22, 3] is an elegant subpixel level contour integrator and edge detec-
tor in images requiring no learning whatsoever. It consists in defining potential
vector fields V along which random points P flow: dP

dt (t) = V (P (t)), such that
end trajectories lie on edges of the image I. The vanilla Pointflow [22] uses two
fields V+ and V− from the edge attraction Va and rotating Vr fields based on the
image gradients as follows:

Va = ∇∥∇Ib∥2, Vr = ∇I⊥b , V± = 1
2 (Va ± Vr), (10)

where Ib = gσPf
∗ I is a blurred version of I with a Gaussian kernel gσPf

.
Various stopping conditions and uses of V± exist to detect edges in natural
images, however on our data containing a single circular edge per image, we
need only consider the basic ones. Indeed, the possible cases for trajectories are:
it loops (Cl), it leaves the image domain (Co), or it is stuck in an area with
small magnitude ∥V ∥2 (Cs). Flowing initially from V+, if we loop (Cl), then
the point has reached the circle and it suffices to reflow along V+ to extract
just the circle’s contour. If we end up outside the image domain (Co), which
is rare in our data, we reflow from the exit point along V−. If we are in a low
flow magnitude area (Cs), which is not rare, then we discard the trajectory. In
total, NPf = 200 points are randomly uniformly sampled in the image domain
and used for Pointflow, and a fraction of them end up flowing on the disk’s
edge with subpixel precision, as the other ones lead to discarded trajectories.
For more details on our implementation of Pointflow see Appendix A. For some
illustrations of Pointflow results on our data see Figure 5.

(a) φ (b) φdata (c) V+ (d) V− (e) (f)

Fig. 5. Pointflow in practice. (5a): clean data. (5b): degraded data. (5c) and (5d):
pointflow fields sampled every five pixels. (5e): initial flows of points without reflowing
with groundtruth boundary in green. (5f): all final trajectories that have reflown in a
closed loop (Cl) with groundtruth boundary in green and all regressed circles using
least squares on each looped trajectory in blue (used for estimating the centre).

To estimate the disk’s radius and centre from pointflow contours (Cl), we can
simply compute the average length of the reflown closed contours and divide it
by 2π. To compute the centre’s coordinates, we could compute for each closed
trajectory the average of its points, and then average over these estimations.
However, this method empirically did not best perform on validation data, so
we refined it by applying least-squares regression on the equation of a circle to
estimate from it its location per trajectory and then average the estimations.
Note that the least-squares regression did not provide a better estimation of the
radius so we keep the crude length integration strategy for it.
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3.3 Neural models

As in the one-dimensional case, the expert’s method is to be compared with a
convolutional neural network. Although the learning problem seems trivial, it is
actually harder than expected for networks, as has been shown in [6] even when
the circles are centred. Empirically, we were not able to train correctly a small
custom model similar to those previously used having just three layers and even
many channels per layers and no further deep learning tricks. To overcome this
limitation, we use famous networks in the deep learning literature: Alexnet [12],
VGG [19] and Resnet7 [11]. To adapt the model to our task, we change the final
fully connected layer to have 3 outputs only.

For each architecture, we either train the networks from scratch (SC), or
initialise the weights, except those of the final fully connected layers, to those
publicly available obtained by classification on Imagenet [18], as is commonly
done in the field. The pretrained weights can be either frozen for transfer-learning
(TL) or retrained as well for finetuning (FT). Although the task and data are
fundamentally different from ours, it is generally believed that the wide variety of
natural images encourages the famous networks to learn features that generalise
quite well to most reasonable tasks.

Once again, the MSE loss is used for training8. As it is significantly more
expensive to train such networks compared to the tiny ones in the Wiener case,
we only perform Nr = 1 run per learning rate configuration, ranging in η ∈
{0.000001, 0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1}, with
a batch size of 10 for 50 epochs. As previously, the optimal learning rate is
chosen on the performance on validation data. Both the test and validation data
use Nv = Nt = 100000 independently randomly sampled images, whereas the
training sets have N ∈ {10, 100, 1000, 10000, 100000} ones.

3.4 Results

We present the results in Figure 6 and Table 2. Although the networks are
simultaneously trained for both the radius and centre location estimation, we
also present the MSE on the estimation of each geometric concepts separately.

First, the transfer-learning network Resnet-TL is not able to correctly esti-
mate the radius or centre’s location, meaning that its learned features on classifi-
cation of Imagenet are not able to handle our simple data: they are not so general
after all. Likewise, the prelearned features of Alexnet-TL and VGG-TL do not
generalise well to this toy problem, requiring significantly more data than the
maximum available to compare with the simple data agnostic pointflow. How-
ever, when the networks are entirely trained, either finetuned or from scratch,
they are either flatly beaten by pointflow when using small amounts of training
data or on par or slightly outperform it when N ≥ 10000. The only networks
7 We use the simplest ones VGG11 and ResNet18, as larger ones are here unnecessary.
8 To help the networks converge, the radius and centre coordinates are scaled to [−1, 1]

using rs = 8
D−1

(r− D−1
8

) and cs = 2
D−1

c. In all plots and numbers provided in this
paper, the results are rescaled to the original scale: r and c and not rs and cs.



A model is worth tens of thousands of examples 9

beating pointflow overall are VGG-SC and Resnet-FT when N = 100000, but
more (VGG-FT, VGG-SC, Resnet-FT, and Resnet-SC) significantly outperform
pointflow on the radius estimation when N ≥ 10000. The difference between
finetuning and training from scratch seems to only appear when small amounts
of training data are available, and then finetuning is better. However, in these
cases, both approaches pale in comparison to the reference data agnostic method.

From this experiment, we conclude that a realistic neural network is worth at
least tens of thousands of examples on a fairly simple task (toy problem vs real
world challenge) compared to an expert engineer. We thus provide a criterion
that a data model is preferable if fewer than 10000 training samples are available.

(r, c) r c

(r, c) r c

Fig. 6. Test scores of the data-agnostic Pointflow and of the best transfer-learned or
finetuned networks. Left: MSE computed on both the radius and the centre’s location
estimation. Middle: same but only on the radius estimation. Right: same but only on
the centre location’s estimation. We zoom-in in the bottom set of figures.

4 Conclusion

We analysed the amount of data required by neural networks, either shallow
custom ones or deep famous ones, trained from scratch, finetuned, or transfer-
learned, to compete with optimal or state-of-the-art traditional data-agnostic
methods based on mathematical data generation models. To do so, we mathe-
matically generated data, and fed various amounts of samples to the networks
for training. We found that tens of thousands of data examples are needed for
the networks to be on par or beat the traditional methods, if they are able to. For
mathematical accuracy, we did not investigate real-world problems, which are
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N Pointflow Alexnet VGG Resnet

TL FT SC TL FT SC TL FT SC

(r, c) 0 0.66
10 826 524 1748 1581 754 1748 5256 3358 2590
100 314 66 291 448 69 215 2064 1124 793
1000 183 23 9.0 189 6.5 7.6 1092 48 45
10000 140 31 4.8 71 2.9 1.2 814 3.7 4.4
100000 67 17 1.5 40 0.68 0.42 826 0.51 0.93

r 0 0.26
10 66 65 75 75 69 75 110 86 82
100 36 5.9 42 52 5.6 40 42 25 31
1000 26 2.4 1.3 20 0.57 0.62 24 2.2 1.3
10000 16 2.0 1.5 9.9 0.23 0.11 19 0.19 0.27
100000 6.8 1.7 0.69 4.9 0.075 0.051 19 0.066 0.078

c 0 0.40
10 759 454 1673 1506 675 1673 5142 3206 2507
100 277 60 249 393 63 175 2020 1099 762
1000 157 21 7.7 169 5.9 6.9 1067 46 43
10000 118 29 3.0 61 2.6 1.1 795 3.5 4.1
100000 57 6.4 0.79 36 0.57 0.37 807 0.45 0.86

Table 2. MSE scores of the networks compared to Pointflow on test data, computed
on both r and c (top), just r (middle), or just c (bottom). Networks were trained on
joint prediction of r and c. For the separate r (resp. c) scores, the selected networks
were those providing the best r (resp. c) error on validation data.

commonly harder with less accurate or non-existent mathematical data genera-
tion models, but more data should be needed in those complex tasks. We have
empirically derived a simple criterion, enabling researchers working on tasks
where data is not easily available, to choose whether to use model-based tra-
ditional methods, by using either preexisting or newly created data generation
models, or simply feed data to deep neural networks.

A Pointflow implementation details

The pointflow dynamics are implemented by discretising time and approximating
the time derivative with a forward finite difference scheme, although it could be
improved with a Runge-Kutta 4 implementation [5]. Given the small magnitudes
of the fields, we found that a large time step dt = 50 works well. We define three
thresholds, τl = 0.9 for Cl, τs = 10−6 for Cs, and τlen = 0.001. we consider
having looped Cl if a point reaches a previous point within squared Euclidean
distance τl while having on the trajectory between the looping points at least
one point with squared distance to them of at least τl. A trajectory is stuck if
it reaches a point where the current flow V has small magnitude ∥V ∥22 ≤ τs.
Each flow is run for Ni = 1000 iterations, and trajectories shorter than τlen
are discarded, e.g. trajectories of type Cs. We used σPf = 5 for blurring out
the noise before computing the fields. The implemented pointflow algorithm for
finding contours in our circle images is presented in Algorithm 1.

After computing the list of contours C in the image I, we estimate the radius
using the average curve length r̂ = 1

2π

∑|C|
i=1 length(Ci). Since the average of



A model is worth tens of thousands of examples 11

Algorithm 1 Contour integration with Pointflow on image I

Compute Ib = gσPf ∗ I
Compute Va = ∇∥∇Ib∥2 and Vr = ∇I⊤b
Compute V+ = 1

2
(Va + Vr) and V− = 1

2
(Va − Vr)

Choose NPf random points independently and uniformly in the image domain
[−D−1

2
, D−1

2
]2

Let C = [] be an empty list of computed contours
for i = 1 . . . NPf do

Let (traj+, C) be the flow along V+ starting from the i-th point
if C = Cl and length(traj+) ≥ τlen then

Let (trajl, Cl) be the reflow along V+ starting from the endpoint of traj+
C.append(trajl)

else if C = Co and length(traj+) ≥ τlen then
Let (traj−, C−) be the reflow along V− starting from the endpoint of traj+
if C− = Cl and length(traj−) ≥ τlen then

Let (trajl, C) be the reflow along V− starting from the endpoing of traj−
C.append(trajl)

end if
end if

end for
Return C

the points did not yield the best estimation of the circle centre, we estimate
it instead using least squares. The equation of a circle is naturally given by
(x − cx)

2 + (y − cy)
2 = r2, which can be written as θ1x + θ2y + θ3 = x2 + y2,

where θ1 = 2cx, θ2 = 2cy, and θ3 = r2 − c2x − c2y. We can thus estimate for
each contour θ = (θ1, θ2, θ3)

⊤ by least squares as θ̂ = A⊤(AA⊤)−1B, with
Ai,: = (xi, yi, 1) and Bi = x2

i + y2i and i ranging in the number of computed
points on the contour. From θ̂ we can estimate ĉ = ( θ12 ,

θ2
2 ). The final centre

estimation is then given by the average of this estimation over all contours. Note
that we can also estimate r using θ3 but we found that it did not outperform
the lenght strategy so we do not use it.
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