
HAL Id: hal-04271565
https://hal.science/hal-04271565

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental observation of super-Klein tunneling in
phononic crystals

Yifan Zhu, Aurélien Merkel, Liyun Cao, Yi Zeng, Sheng Wan, Tong Guo,
Zihao Su, Siyuan Gao, Haohan Zeng, Hui Zhang, et al.

To cite this version:
Yifan Zhu, Aurélien Merkel, Liyun Cao, Yi Zeng, Sheng Wan, et al.. Experimental observation
of super-Klein tunneling in phononic crystals. Applied Physics Letters, 2023, 122 (21), pp.211701.
�10.1063/5.0151336�. �hal-04271565�

https://hal.science/hal-04271565
https://hal.archives-ouvertes.fr


1 
 

Experimental observation of super-Klein tunneling in phononic 

crystals 
Yifan Zhu†1,2, Aurélien Merkel†1, Liyun Cao1, Yi Zeng1, Sheng Wan1, Tong Guo1, Zihao Su2, Siyuan 

Gao2, Haohan Zeng2, Hui Zhang*2 and Badreddine Assouar*1 
1Université de Lorraine, CNRS, Institut Jean Lamour, F-54000 Nancy, France 

2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, 

School of Mechanical Engineering, Southeast University, Nanjing 211189, China 

 

Abstract 

We numerically and experimentally report the acoustic analogue of the super-Klein tunneling in 

a heterojunction of phononic crystals formed with Willis scatterers that exhibit pseudospin-1 Dirac 

cones. Compared to the pseudospin-1/2 Dirac cones, pseudospin-1 ones require in the band structure 

an additional flat band across the Dirac points. The conventional Klein tunneling, which is predicted 

in pseudospin-1/2 systems like graphene, consists of perfect transmission only under normal 

incidence through a potential barrier of any width. However, the super-Klein tunneling we evidence 

here, is defined for pseudospin-1 systems as a perfect transmission for all incidence angles at one 

single frequency within the energy barrier. This direct observation may have important implications 

in the exploration of the rich physics of pseudospin-1 quasiparticles.  
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The extraordinary electronic properties of graphene offer a fertile platform to explore the rich 

physics of the relativistic Dirac equation [1, 2]. Indeed, the C6v symmetry of the two-dimensional 

honeycomb structure along with the time-reversal symmetry guarantees the existence of a Dirac 

degeneracy at the two points K and K′ at the corners of the Brillouin zone which are characterized by 

the C3v symmetry [3]. As a consequence, the fermionic charge carriers around these points behave as 

two-dimensional massless quasiparticles with pseudospin-1/2, which does not relate to the intrinsic 

spin of the electrons but refers to the spatial degrees of freedom of the wavefunction, and with conical 

bands that obey the Dirac equation. By breaking one of the symmetries, these quasiparticles become 

massive and topological phase transition with a plethora of accompanying phenomena can be 
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observed [2, 4]. Pseudospin-1/2 relativistic quasiparticles are known to feature extraordinary 

tunneling properties known as the Klein paradox where a barrier potential is perfectly transparent to 

Dirac particles under normal incidence [5–9]. Acoustic analogue of the Klein tunneling has been 

observed in a phononic heterojunction [10]. While the two states degeneracy is distinctive of 

pseudospin-1/2 quasiparticles, a three states degeneracy where two linear bands intersect with an 

additional flat band forms a Dirac point with a higher dimensionality and pseudospin value of one. 

Such Dirac cone forming pseudopin-1 systems are found in Dice [11], breathing [12] or Lieb lattices 

[13]. Pseudospin-1 systems have been experimentally obtained in optical Lieb lattices by placing 

bosonic cold atoms [14], photonic square lattices through accidental degeneracies [15, 16], photonic 

Lieb lattices [17–19], and with electronic Lieb lattices [20, 21]. The scattering properties of 

pseudospin-1 quasiparticles, different from those of pseudospin-1/2 quasiparticles, comprise a 

striking unity transmission through one potential barrier at its center frequency for all incident angles 

which is called the super-Klein tunneling (SKT) [11, 22–26]. However, despite experimental 

observation of pseudospin-1 system, direct observation of super-Klein tunneling still represents a 

serious endeavor.  

In this letter, we take advantage of a two-dimensional (2D) triangular lattice (similar to the cases 

in Refs. [3, 27, 28]) with C3v-symmetric Willis resonant scatterers to tackle the acoustic analogue of 

the super-Klein tunneling effect. The symmetry of the lattice alongside with the symmetry of the 

scatterers guarantee the existence of a Dirac cone at the corner of the Brillouin zone [3, 27, 28]. The 

key design mechanism is that, the internal resonance of the Willis scatterers adds one band in the 

band structure that can be tuned to be nearly flat, and to intersect with the two linear bands at the 

Dirac point. This provides us opportunities to achieve highly flat band with more flexibility compared 

to photonic crystals with conventional scatterers [29]. The intersection of the three bands forms the 

sought-after pseudospin-1 system. We then create a phononic heterojunction by sandwiching two 

different pseudospin-1 phononic crystals where the Dirac degeneracies take place at two different 

frequencies, thus creating a potential barrier. The transmission properties of acoustic wave through 

the phononic heterojunction is then investigated.  

The 2D phononic heterojunction is constructed by a triangular arrangement of Willis scatterers 

as schematically shown in Fig. 1(a). Willis scatterers are subwavelength scatterers that couple 

monopole to dipole moments and for which the scattering requires cross coupling between acoustic 

pressure and velocity fields [30–32]. Here, the Willis scatterers are hollow cylinders with three necks, 

which are connected to the same internal cavity, with an angle of 2π/3 between each, hence the C3v-

symmetry protecting the Dirac cones at the corner of the Brillouin zone. The internal cavity with the 

three necks induces a resonant mode that lead to the additional flat band, which can be tuned to 

intersect the two other linear bands at the corner of Brillouin zone, thus constructing the pseudospin-



3 
 

1 system. Since the intersection with the flat band is not protected by symmetry but is dependent on 

parameters of the system, this degeneracy is considered as accidental. Varying the sizes of the 

scatterers allows one to shift the Dirac cones without changing the lattice constant a. By designing 

two pseudospin-1 systems using the two Phononic crystals PC1 and PC2 with Dirac frequencies f1 

and f2, respectively, this gives the conditions to construct the phononic analogue of the potential 

barrier of height V = f2 − f1 and width D as shown in Fig. 1(b). The experimental implementation of 

the phononic heterojunction is shown in Fig. 1(c).  

 
FIG. 1. Pseudospin-1 phononic crystals. (a) Scheme of the phononic heterojunction comprising two phononic 

crystals (PC1 and PC2) containing pseudospin-1 systems at different frequencies. The primitive cell is marked by 

red dashed lines. (b) Schematic diagram of the band spectrum corresponding the PC1 and PC2 with the potential 

barrier of width D and height V = f2 − f1. (c) Experimental structure of the phononic heterojunction.  

 

In our system, the unit cells of the two phononic crystals PC1 and PC2 are composed of solid 

Willis scatterers, which can be considered as acoustically rigid, embedded in air as exposed in Fig. 

2(a) and 2(b), respectively. The lattice constant is a = 2.8 cm. The height of the solid cylinders is 

limited to H = 2 cm, which ensures the two-dimensional character of the acoustic propagation in 

experiments. In more details, the scatterers in PC1 (PC2) are composed of cylinders with an external 

radius of R1 = 1.2 cm (R2 = 0.7 cm), with internal cavities of radius r1 = 0.166 cm (r2 = 0.256 cm). In 

both PC1 and PC2, the height of the internal cavities is h = 0.6 cm, and they are connected to the 

surrounding air by three rectangular necks of height h0 = 0.4 cm and width w = 0.1 cm. The 

pseudospin-1 Dirac cones at the two different frequencies of the potential barrier are found by fine 
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tuning the external radiuses of the scatterers and the internal radiuses of the internal cavities. Indeed, 

the band structures of the two phononic crystals PC1 and PC2 exhibit Dirac cones at the K point at f1 

= 5.8 kHz and f2 = 6.8 kHz as shown in Figs. 2(c) and (d), respectively. The linear bands are 

highlighted in red and the flat bands are highlighted in blue for PC1 and yellow for PC2. The height 

of the potential barrier is thus V = 1 kHz. To get more insight, we show in Fig. 2(e) the mode shape 

at the K point for PC2. The linear bands are associated with an acoustic pressure distribution that 

relates with the periodicity of the crystal, whereas the flat band is associated with the resonance of 

the scatterer for which the acoustic pressure is concentrated in the internal cavities of the scatterers.  

 
FIG. 2. (a-b) Unit cells of Phononic Crystal 1 (PC1) and Phononic Crystal 2 (PC2), respectively. (Solid and air parts 

are shown in the top and in the bottom, respectively.). While the height H, the internal dimensions w, h and h0 are 

kept constant between PC1 and PC2, the band structure are modulated by the external radiuses R1 and R2 and internal 

radiuses r1 and r2 for PC1 and PC2, respectively. Band structures of (c) PC1 with a Dirac cone at f1 = 5.8 kHz and 

(d) PC2 with a Dirac cone at f2 = 6.8 kHz. The linear bands are highlighted in red, the flat bands are highlighted (c) 

in blue and (d) in yellow. The difference between the frequencies f1 and f2 gives the opportunity to create a 

heterojunction forming a potential barrier of height V = 1 kHz. (insets) Zoom around of the Dirac cones. (e) Acoustic 

pressure distributions in the unit cell of the three modes of PC2 at the K point and at the frequency f2, corresponding 

to the two linear bands and the flat band.  

 

The band structure around the K point is then described by the Hamiltonian [11, 22, 24-26] 

𝐻! = 𝑣"𝑺 ⋅ 𝒌   (1) 

where vg is the group velocities, k is wavevector and the spin-one matrices are  
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𝑺=	𝑺𝒙𝒙 + 𝑺𝒚𝒚,	with	𝑺𝒙 =
!
√&
0
0		1		0
1		0		1
0		1		0

3 , and	S𝒚 =
!
√&
0
0 − 𝑖0
−𝑖0 − 𝑖
0 − 𝑖0

3   (2) 

the theoretical transmission of systems described by Eqs. (1) and (2) through a potential barrier at its 

center frequency, i.e., f = f1+V/2, is equal to unity for any incidence angle and any barrier width D. 

The potential barrier is introduced along one armchair direction of the crystal, which do not affect the 

transmission properties [10]. The numerical and experimental transmissions through a barrier width 

of 16.8 cm with an angle of incidence of 30° reveals a peak transmission at 6.4 kHz, whereas the 

transmission in the potential barrier, i.e., from 5.8 kHz to 6.8 kHz remains very low around T = 0.2 

as shown in Fig. 3(a) (See supplemental materials, Notes 1 and 2). To further test the tunneling 

properties, the transmission at the frequency 6.4 kHz is numerically and experimentally measured as 

a function of the angle of incidence θ as shown in Fig. 3(b). The transmission is maximum for θ = 0o 

and remains above T = 0.81 numerically, and T = 0.84 experimentally up to an angle of 30°. Above 

30° incidence, the transmission decreases to reach the value T = 0.5 at an incidence angle of 60°. 

Transmission lower than unity for large incidence angles in contrast with the theoretical predictions 

has been observed in previous numerical simulations [11, 24]. For comparison, if the Willis scatterers 

are converted into cylindrical rigid scatterers, i.e. by removing the internal air cavities, the flat bands 

disappear from the band structures and Klein tunneling can be observed at normal incidence [10] (See 

supplemental materials, Note 3). As shown in Fig. S4, the transmission amplitude drops much faster 

with increasing incidence angle than in the case of SKT, thus supporting the efficiency of SKT. The 

transmission still exists at the boundary of the potential barrier at 5.8 kHz and 6.8 kHz as one can 

observe in Fig. 3(c), which is slightly different from the theoretical calculation for pseudospin-1 

systems in electron systems provided in Ref. [11] (More details about the physical mechanism is 

discussed in supplemental materials, Note 4). In our system, the acoustic transmission is strongly 

reduced only in the frequency range within the potential barrier. Also, the frequency of maximum 

transmission in the potential barrier do not exactly correspond to its center frequency. Our 

pseudospin-1 systems differ from the theoretical modeling on several aspects. The flat bands are not 

perfectly flat. The group velocities vg of the linear bands are not exactly equal between PC1 and PC2, 

and the Dirac cones of the real structures are slightly tilted. Tilted Dirac cones affect the tunneling 

properties in heterojunctions [33]. It is also worth mentioning the unavoidable effects of viscothermal 

losses. As a consequence, the theoretical model might not perfectly capture the wave propagation in 

the real fabricated structure. Nevertheless, the tunneling, while not completely angular independent, 

is still clearly visible for a broad range of incidence angles from 0o up to 60o, which differs drastically 

from the Klein tunneling where the transmission decreases much faster with increasing angle of 

incidence. We show in Fig. 3(c) the numerical acoustic pressure maps in the heterojunction 

corresponding the experimental setup shown in Fig. 3(d) for different frequencies with an incident 
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wave at an angle of 30°. In Fig. 3(e), one can see that the acoustic wave transmits through the barrier 

at 6.4 kHz, with an excellent agreement with the experimental measurements whereas it is mostly 

reflected at 6.1 kHz.  

 

 
FIG. 3. Transmission through a potential barrier of width D = 16.8 cm. (a) Simulated (Simu.) and Experimental 

(Expt.) transmission T as a function of frequency with an angle of incidence θ = 30o showing a peak at the frequency 

6.4 kHz (b) Transmission at 6.4 kHz as a function of the angle of incidence. (c) Simulated acoustic pressure maps 

for 30o incidence at 5.8 kHz, 6.1 kHz, 6.4 kHz and 6.8 kHz, corresponding to lowest boundary of the potential 

barrier, a frequency which is blocked, Super-Klein Tunneling (SKT) frequency and the highest boundary of the 

potential barrier, respectively. (d) Photograph of the 3D printed sample. (e) Simulated (Simu.) and experimental 

(Expt.) acoustic field distributions for SKT at 6.4 kHz.  
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FIG. 4. Transmission through a potential barrier of width D = 22.4 cm. (a) Simulated (Simu.) and Experimental 

(Expt.) transmission T as a function of frequency with an angle of incidence θ = 30° showing a peak at the frequency 

6.4 kHz (b) Transmission at 6.4 kHz as a function of the angle of incidence. (c) Simulated acoustic pressure maps 

for 30° incidence at 5.8 kHz, 6.1 kHz, 6.4 kHz and 6.8 kHz, corresponding to lowest boundary of the potential 

barrier, a frequency which is blocked, Super-Klein Tunneling (SKT) frequency and the highest boundary of the 

potential barrier, respectively. (d) Photograph of the 3-D printed sample. (e) Simulated (Simu.) and experimental 

(Expt.) acoustic field distributions for SKT at 6.4 kHz.  

 

The super-Klein tunneling has the striking peculiarity to not depend on the barrier width. We 

now consider the case of wider barrier of a width of D = 22.4 cm. In Fig. 4(a), the transmission still 

presents a peak at 6.4 kHz with an angle of incidence of 30°. The transmission drops similarly when 

increasing the incidence angle like the case with a barrier width of D = 16.8 cm, as can be seen in Fig. 

4(b). The acoustic pressure maps in Fig. 4(c) do not show drastic differences with this wider barrier 

compared to the one in Fig. 3(c). The experimental results using the structure shown in Figs. 4(d) are 

in excellent agreement with the numerical simulations as can be seen in Figs. 4(e). The dependence 

on the barrier width is further verified by simulating the transmission for an incidence angle of 30° 

with different barrier widths starting from 8.2 cm, which corresponds to 3 units wide, up to 22.4 cm, 

which corresponds to 8 units wide. The SKT is visible for each barrier width as shown in Fig. 5, 

which confirms that the transmission peak do not depend on the barrier width. Furthermore, this result 
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demonstrates that the mechanism of SKT is different from the conventional resonance transmission 

peak occuring when the barrier width corresponds to a multiple of half-wavelength. 

 
FIG. 5. Simulated transmissions with 30o incidence angle through potential barrier of different widths. The SKT 

effects can be observed with continuously variable widths from 8.4 cm to 22.4 cm, extending from 3 units to 8 units 

the PC2. 

 

In summary, we have constructed and demonstrated the acoustic analogue of pseudospin-1 

systems using phononic crystals composed of Willis scatterers. By changing the external and internal 

dimensions of the scatterers, the Dirac cones shift in frequency, which allowed us to build a 

heterojunction with a potential barrier. As key feature of pseudospin-1 quasiparticles, the transmission 

through the potential barrier exposes peak even at oblique incidences demonstrating the analogue of 

super-Klein tunneling in numerical simulations, which are in excellent agreement with the 

experimental measurements. Without the need of extreme low temperature or atom manipulation, 

phononic crystal with Willis scatterers represent a useful platform to investigate the rich physics of 

pseudospin-1 quasiparticles with, for instance, negative refraction effects with which it could be 

envisioned to build Veselago lenses [24, 26, 34, 35].  

 

See supplemental material for details on the experimental measurements, numerical simulations, 

and discussions. 
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