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Université de Pau et des Pays de l’Adour, 64000 Pau, France

Abstract

In this course, we are interested to the resolution of elliptical equations
with various types of boundary conditions: Dirichlet, Neumann or Fourier-
Robin, Navier or Navier type conditions. We will study the existence, the
uniqueness and the regularity of the solutions. This regularity will depend,
as we will see on data of the problem and in particular of the regularity
of the domain. For the sake of clarity and simplification, we will examine
two model problems, one involving the Laplacian and the other the Stokes
operator.
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1. Sobolev spaces, inequalities, Dirichlet and Neumann problems
for the Laplacian

1.1. Sobolev spaces

Let us introduce the following Sobolev spaces: for any 1 < p <∞

Wm,p(Ω) =
{
u ∈ D ′(Ω); ∀ |α| ≤ m, Dαu ∈ Lp(Ω)

}
and

W s,p(Ω) =

{
u ∈Wm,p(Ω);

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|N+σp
<∞, ∀ |α| = m

}
where m ∈ N, s = m + σ, 0 < σ < 1 and Ω is an open set of RN . Equipped
with the graph norm, they are Banach spaces.

When Ω = RN , using the Fourier transform, we define for any real
number s the space

Hs(RN ) =

{
u ∈ S ′(RN );

∫
RN

(1 + |ξ|2)s |û(ξ)|2 dξ <∞
}
,

which is an Hilbert space for the norm:

‖u‖Hs(RN ) =

(∫
RN

(1 + |ξ|2)s|û|2dx
)1/2

.

By Plancherel’s theorem we prove that W s,2(RN ) = Hs(RN ) for all s ≥ 0
and this identity is algebraical and topological. So, in the case p = 2, we
denote more simply the space W s,2(Ω) by Hs(Ω).

Definition 1.1. For s > 0 and 1 ≤ p <∞, we denote

W s,p
0 (Ω) = D(Ω)

‖·‖Ws,p(Ω) ,

and its topological dual space

W−s,p
′
(Ω) = [W s,p

0 (Ω)]
′

where p′ is the conjugate of p: 1/p + 1/p′ = 1. For p = 2, we will write
Hs

0(Ω) and H−s(Ω) respectively.
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Proposition 1.2. Suppose T ∈ D ′(Ω). Then T ∈ W−m,p
′
(Ω), with m ∈

N∗, if and only if

T =
∑
|α|≤m

Dαfα, with fα ∈ Lp
′
(Ω).

1.2. First properties

It will be assumed from now on that Ω is a bounded open subset of RN
with a Lipschitz boundary.

Let us consider the following space

D(Ω) =
{
v|Ω; v ∈ D(RN )

}
.

Theorem 1.3. i) The space D(Ω) is dense in W s,p(Ω) for any s > 0 (even
if Ω is unbounded).
ii) The space D(RN ) is dense in W s,p(RN ) for any s ∈ R.

As consequence, we have the following property: for any s > 0

W s,p
0 (RN ) = W s,p(RN ) and W−s,p

′
(RN ) =

[
W s,p(RN )

]′
.

But in general, for any s > 0, we have W s,p
0 (Ω) (W s,p(Ω).

Definition 1.4. For s > 0, we set

W̃ s,p(Ω) =
{
u ∈W s,p(Ω); ũ ∈W s,p(RN )

}
where ũ is the extension by 0 of u outside of Ω.

The space W̃ s,p(Ω) is a Banach space for the norm

‖u‖
W̃ s,p(Ω)

= ‖ũ‖W s,p(RN ) .

It is easy to verify that for any nonnegative integer m

Wm,p
0 (Ω) ↪→ W̃m,p(Ω) (1.1)

and for any u ∈Wm,p
0 (Ω) we have

‖u‖
W̃m,p(Ω)

= ‖u‖Wm,p(Ω) . (1.2)

When s = m+ σ with 0 < σ < 1, we can show that

‖u‖
W̃ s,p(Ω)

' ‖u‖W s,p(Ω) +
∑
|α|=m

∥∥∥∥Dαu

%σ

∥∥∥∥
Lp(Ω)

, (1.3)

where %(x) = d(x,Γ) and Γ = ∂Ω.
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Theorem 1.5. The space D(Ω) is dense in W̃ s,p(Ω) for all s > 0 (even if
Ω is unbounded).

From (1.1), (1.2) and the definition of Wm,p
0 (Ω), we deduce the following:

for any m ∈ N∗,
W̃m,p(Ω) = Wm,p

0 (Ω). (1.4)

Theorem 1.6. For any 0 < s ≤ 1/p, the space D(Ω) is dense in W s,p(Ω),
which means that

W s,p
0 (Ω) = W s,p(Ω). (1.5)

Theorem 1.7. Let 0 < s ≤ 1 and u ∈W s,p
0 (Ω). Then

u

%s
∈ Lp(Ω)⇐⇒ s 6= 1/p

and in this case ∥∥∥∥ u%s
∥∥∥∥
Lp(Ω)

≤ C |u|W s,p(Ω),

where the notation | · | denotes the semi-norm of W s,p(Ω).

The case s =1 is known as Hardy’s inequality: for all u ∈W 1,p
0 (Ω),∥∥∥∥u%

∥∥∥∥
Lp(Ω)

≤ C ‖∇u‖Lp(Ω) .

Using again a Hardy’s inequality, we prove the following result:

Theorem 1.8. Let s > 0 and u ∈W s,p
0 (Ω). Then for any |α| ≤ s, we have

Dαu

%s−|α|
∈ Lp(Ω)⇐⇒ s− 1/p /∈ N. (1.6)

From (1.3) and (1.6), we deduce the following identity:

W̃ s,p(Ω) = W s,p
0 (Ω) (1.7)

which holds for any s > 0 satisfying s− 1/p /∈ N.

Proposition 1.9. i) For any 1 ≤ j ≤ N and for any s ∈ R, the operator

∂

∂xj
: W s,p(RN ) =⇒W s−1,p(RN ) (1.8)

is continuous.
ii) However, if we replace RN by Ω, Property (1.8) takes place unless s =
1/p.
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Proof. Sketch of the proof of Point (ii).
1. Case s = m + σ, with m ∈ N∗ and 0 ≤ σ < 1. Let u ∈ W s,p(Ω). By
definition, we know that

u ∈Wm,p(Ω) and

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|N+σp
<∞, ∀ |α| = m.

So for any 1 ≤ j ≤ N

∂u

∂xj
∈Wm−1,p(Ω) and

∫
Ω

∫
Ω

∣∣∣Dα ∂u
∂xj

(x)−Dα ∂u
∂xj

(y)
∣∣∣p

|x− y|N+σp
<∞,

for all |α| = m− 1. Consequently ∂u
∂xj
∈W s−1,p(Ω).

2. Case s ≤ 0. Let u ∈ W s,p(Ω). Since −s+ 1 ≥ 1, for any ϕ ∈ D(Ω), we
get: ∣∣∣〈 ∂u∂xj , ϕ〉D ′(Ω)×D(Ω)

∣∣∣ =
∣∣∣−〈u, ∂ϕ∂xj 〉D ′(Ω)×D(Ω)

∣∣∣
≤ ‖u‖W s,p(Ω)

∥∥∥ ∂ϕ∂xj ∥∥∥W−s,p′0 (Ω)

≤ ‖u‖W s,p(Ω) ‖ϕ‖W−s+1,p′
0 (Ω)

.

We conclude by using the density of D(Ω) in W−s+1,p′

0 (Ω).

3. Case 0 < s < 1. Let u ∈ W s,p(Ω). Recall that Ω being Lipschitz open
set, there exists an extension operator

∀t ≥ 0, P : W t,p(Ω) =⇒W t,p(RN )

which is linear, continuous and satisfying

Pv|Ω = v, for any v ∈W t,p(Ω).

As Pu ∈W s,p(RN ), we get ∂Pu
∂xj
∈W s−1,p(RN ). But(

∂Pu

∂xj

)
|Ω

=
∂u

∂xj
,

where ∂u
∂xj

is the restriction to Ω of the distribution T = ∂Pu
∂xj
∈W s−1,p(RN ).

More precisely, we have:

∀ϕ ∈ D(Ω), 〈 ∂u
∂xj

, ϕ〉D ′(Ω)×D(Ω) = 〈T, ϕ̃〉D ′(RN )×D(RN ).
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That implies∣∣∣∣〈 ∂u∂xj , ϕ〉
∣∣∣∣ ≤ ‖T‖W s−1,p(RN ) ‖ϕ̃‖W 1−s,p′ (RN ) = ‖T‖W s−1,p(RN ) ‖ϕ‖W̃ 1−s,p′ (Ω)

.

We have shown that ∂u
∂xj
∈
[
W̃ 1−s,p′(Ω)

]′
. But[

W̃ 1−s,p′(Ω)
]′

=
[
W 1−s,p′

0 (Ω)
]′
⇐⇒ 1− s 6= 1/p′,

i.e, s 6= 1/p. �

Remark 1. The above proof shows that

u ∈W 1/p,p(Ω) =⇒ ∂u

∂xj
∈
[
W̃ 1/p′,p′

]′
.

In particular

u ∈ H1/2(Ω) =⇒ ∂u

∂xj
∈
[
H̃1/2(Ω)

]′
,

where we remark also that

H̃1/2(Ω) ↪→ H1/2(Ω) = H
1/2
0 (Ω).

This embedding being dense, we get by duality

H−1/2(Ω) =
[
H

1/2
0 (Ω)

]′
↪→
[
H̃1/2(Ω)

]′
.

Corollary 1.10. Let s > 0. The following characterization holds:

u ∈ W̃ s,p(Ω)⇐⇒ u ∈W s,p
0 (Ω) and for any |α| = m,

Dαu

%σ
∈ Lp(Ω),

where s = m+ σ,m ∈ N and 0 ≤ σ < 1.

1.3. Traces

Firstly, recall the following inclusions:

W s,p(RN ) ↪→ C 0(RN ) if s >
N

p
.

So that if u ∈ W s,p(RN ) with s > N
p , the restriction of u to the hyperplan

xN = 0 is well defined. But the continuity with respect to all variables is not
necessary. It is enough to have the continuity with respect to the variable
xN . This is possible as soon as s > 1/p.

Actually, we have the following result:
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Theorem 1.11. i) Suppose that s−1/p = k+σ, with k ∈ N and 0 < σ < 1
(which implies in particular that s− 1/p /∈ N). Then the mapping

u
γ7−→ (γ0u, γ1u, . . . , γku)

where

γ0u(x) = u(x′, 0), x′ = (x1, . . . , xN−1), and γju(x′) =
∂ju

∂xjN
(x′, 0),

defined for u ∈ D(RN ), has a unique extension

W s,p(Rn) −→
k∏
j=0

W s−j−1/p,p(RN−1)

which is continuous and where k is the integer part of s > 0.
ii) Moreover this operator has a right continuous inverse R:

∀ g = (g0, . . . , gk) ∈
k∏
j=0

W s−j−1/p,p(RN−1), γRg = g

‖Rg‖W s,p(RN ) ≤ CN
k∑
j=0

‖gj‖W s−j−1/p,p(RN−1) .

Remark 2. For p = 2, the above result can be proved using the Fourier
transform.

This result can be extended to the case where Ω is a bounded open subset
of RN , with a C k,1 boundary (see the the definition below).

Definition 1.12. Let Ω be an open subset of RN . We say that Ω is Lip-
schitz (respectively of class C k,1, k ∈ N?) if for every x ∈ Γ, there exist
a neighbourhood V of x in RN and orthonormal coordinates {y1, . . . , yN}
satisfying:
i) V is an hypercube

V =
{

(y1, . . . , yN ) ∈ RN ; |yj | < aj , 1 ≤ j ≤ N
}
,

ii) there exists a function ϕ defined in

V ′ =
{
y′ ∈ RN−1; |yj | < aj , 1 ≤ j ≤ N − 1

}
,
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such that ϕ and ϕ−1 are Lipschitz (respectively C k,1) and satisfying

∀ y′ ∈ V ′,
∣∣ϕ(y′)

∣∣ ≤ 1

2
aN

Ω ∩ V =
{

(y′, yN ) ∈ V ; yN < ϕ(y′)
}

Γ ∩ V =
{

(y′, yn) ∈ V ; yN = ϕ(y′)
}
.

figure

Let
Φ : V ′ −→ Γ ∩ V

y′ 7−→ (y′, ϕ(y′)).

Definition 1.13. Suppose that Ω is an open subset of RN of class C k,1,
with k ∈ N and let 0 < s ≤ k + 1. We introduce the following space

W s,p(Γ) =
{
u ∈ Lp(Γ); u ◦ Φ ∈W s,p(V ′ ∩ Φ−1(Γ ∩ V ))

}
for any (V, ϕ) verifying the previous definition.
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Let (Vj , ϕj), 1 ≤ j ≤ J , be any atlas of Γ for which each pair (Vj , ϕj) satisfies
the above definition. One possible Banach norm for W s,p(Γ) is given by:

‖u‖W s,p(Γ) =
J∑
j=1

‖u ◦ Φj‖W s,p(V ′j∩Φ−1
j (Γ∩Vj))

which is equivalent when 0 < s < 1 to the norm(
‖u‖pLp(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|p

|x− y|N−1+sp
dσxdσy

)1/p

.

We are now in position to extend Theorem 1.11 to the case where RN−1

is replaced by an N−1-dimensional manifold of RN , but which is sufficiently
regular. This simply uses changes of variables.

If locally Γ is represented by the pair (V, ϕ) with ϕ and ϕ−1 Lipschtiz,
then a unit outward normal vector can be can defined as follows:

for y′ ∈ V ′, ν(y′, ϕ(y′)) =
(−∇′ϕ(y′), 1)√
1 + |∇′ϕ(y′)|2

.

One can then extend this vector in all V by setting

ν(y′, yN ) = ν(y′, ϕ(y′)), y ∈ V.

As Γ ⊂ ∪Jj=1Vj , we know that there exist functions µ0, µ1, ..., µJ ∈ C∞(RN )
such that

i) for all j = 0, . . . , J, 0 ≤ µj ≤ 1 and
J∑
j=1

µj = 1

ii) suppµj is compact and suppµj ⊂ Vj for any j ≥ 1 and suppµ0 ⊂ Ω.
This partition of unity then allows to extend ν in a neighbourhood of Ω

as follows: ν =
J∑
j=0

(µjν). It is then easy to verify that ν ∈ L∞(Ω) if Γ is

Lipschitz and ν ∈ C k−1,1(Ω) if Γ is C k,1.
We are now ready to establish the following result:

Theorem 1.14 (Traces). Let Ω be an open subset of RN of class C k,1,
with k ∈ N. Let s > 0 satisfying s ≤ k + 1 and s − 1/p = ` + σ with
0 < σ < 1 and ` ∈ N. Then the mapping

u
γ7−→ (γ0u, γ1u, . . . , γ`u)
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defined for u ∈ Ck,1(Ω) has a unique continuous extension as an operator

from W s,p(Ω) into
∏̀
j=0

W s−j−1/p,p(Γ) where

γ1u =
∂u

∂ν
= ∇u · ν, γju =

∂ju

∂νj
.

Moreover this operator has a right continuous inverse R (not depending of
p).

Case Ω Lipschitz. Suppose 1/p < s ≤ 1. We have the following properties:
i) If u ∈W s,p(Ω), then u|Γ ∈W s−1/p,p(Γ).

ii) If g ∈ W s−1/p,p(Γ), then there exists u ∈ W s,p(Ω) such that u = g on Γ
and satisfying the estimate

‖u‖W s,p(Ω) ≤ C ‖g‖W s−1/p,p(Γ) .

Case Ω of class C 1,1.
i) Let u ∈ W s,p(Ω). If 1/p < s ≤ 2, then u|Γ ∈ W 1−1/p(Γ). Moreover, for

any g ∈W s−1/p,p(Γ), there exists u ∈W s,p(Ω) such that u = g on Γ, with

‖u‖W s,p(Ω) ≤ C ‖g‖W s−1/p,p(Γ) .

ii) Let u ∈W s,p(Ω). If 1+1/p < s ≤ 2, then ∂u
∂ν ∈W

s−1−1/p,p(Γ). Moreover,

for any g0 ∈ W s−1/p,p(Γ) and g1 ∈ W s−1−1/p,p(Γ), there exists u ∈ W s,p(Ω)
such that

u = g0 and
∂u

∂ν
= g1 on Γ

with
‖u‖W s,p(Ω) ≤ C

(
‖g0‖W s−1/p,p(Γ) + ‖g1‖W s−1−1/p,p(Γ)

)
.

Theorem 1.15. Suppose that Ω is an open subset of RN of class C k,1, with
k ∈ N. Let s > 0 such that s−1/p /∈ N and s−1/p = `+σ, where 0 < σ < 1
and ` ≥ 0 is an integer. Then we have the following characterization for
s ≤ k + 1:

W s,p
0 (Ω) = {u ∈W s,p(Ω); γ0u = γ1u = ... = γ`u = 0} .
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1.4. Interpolation

We will consider here only the case of spaces Hs(Ω), with Ω bounded
open Lipschitz of RN .

Recall that for every s > 0 there exists a continuous linear operator:

P : Hs(Ω) −→ Hs(RN )

satisfying
∀u ∈ Hs(Ω), Pu|Ω = u.

Theorem 1.16. [Interpolation Inequality] Let s1, s2, s3 with 0 ≤ s1 < s2 <
s3. Then

∀ ε > 0, ‖u‖W s2,p(Ω) ≤ ε ‖u‖W s3,p(Ω) +Kε
− s2−s1
s3−s2 ‖u‖W s1,p(Ω)

where K = K(Ω, s1, s2, s3, p).

The above inequality is a consequence of the compactness of the embedding
of W s3,p(Ω) into W s2,p(Ω).

Recall now that we have different ways to define the Sobolev space
Hm(Ω), for m ∈ N:

u ∈ Hm(Ω) ⇐⇒ ∀ |α| ≤ m, Dαu ∈ L2(Ω),
u ∈ Hm(Ω) ⇐⇒ u = U|Ω with U ∈ Hm(RN ),

u ∈ Hm(RN ) ⇐⇒ u ∈ S ′(RN ) and (1 + |ξ|2)m/2û ∈ L2(RN ).

(1.9)

In the case of fractional Sobolev spaces Hs(Ω), with s = m+ σ,m ∈ N, 0 <
σ < 1, we have:

u ∈ Hs(Ω) ⇐⇒ u ∈ Hm(Ω) and ∀ |α| = m,
∫

Ω

∫
Ω
|Dαu(x)−Dαu(y)|
|x−y|N+2σ <∞

u ∈ Hs(Ω) ⇐⇒ u = U|Ω with U ∈ Hs(RN ),

u ∈ Hs(RN ) ⇐⇒ u ∈ S ′(RN ) and (1 + |ξ|2)s/2û ∈ L2(RN ).
(1.10)

We can also get this space by interpolation:

Hs(Ω) =
[
Hm(Ω), L2(Ω)

]
µ
, 0 < µ < 1 (1− µ)m = s

and more generally we have for any 0 < µ < 1

[Hs1(Ω), Hs2(Ω)]µ = H(1−µ)s1+µs2(Ω).

Concerning the interpolation of spaces Hm
0 (Ω), we have:
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[Hs1
0 (Ω), Hs2

0 (Ω)]µ = H
(1−µ)s1+µs2
0 (Ω) if (1− µ)s1 + µs2 /∈

1

2
+ N

and
[Hs1

0 (Ω), Hs2
0 (Ω)]µ = H̃(1−µ)s1+µs2(Ω) otherwise,

with equivalent norms.

1.5. Transposition

Let V et H be two Hilbert spaces on R and A ∈ L (V,H). For every
fixed g ∈ H ′, we consider the following mapping

V −→ R
x 7−→ 〈g,Ax〉H′×H

which defines a linear and continuous form on V that we denote by tAg:

〈tAg, x〉V ′×V = 〈g,Ax〉H′×H .

Remark 3. If A : V −→ H is an isomorphism, then we can define the
transpose of A−1 and we easily verify that

tA−1 =
(
tA
)−1

and tA : H ′ −→ V ′ is an isomorphism.

1.6. Inequalities

They are fundamental tools in the study of partial differential equations:

i) Poincaré’s Inequality. Let Ω be an open space bounded in at least one
direction. Then there exists a constant C ≥ 0, depending on the diameter
of Ω such that

∀u ∈W 1,p
0 (Ω), ‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) .

ii) Poincaré-Wirtinger’s Inequality. Let Ω be a Lipschitz bounded do-
main of RN . Then there exists a constant C(Ω) ≥ 0 such that

∀u ∈W 1,p(Ω), inf
K∈R
‖u+K‖Lp(Ω) ≤ C(Ω) ‖∇u‖Lp(Ω) .

iii) Hardy’s Inequality. Let Ω be a Lipschitz bounded open subset of RN .
Then there exists a constant C(Ω) ≥ 0 such that

∀u ∈W 1,p
0 (Ω),

∥∥∥∥u%
∥∥∥∥
Lp(Ω)

≤ C(Ω) ‖∇u‖Lp(Ω) .

iv) Calderòn-Zygmund’s Inequality.

∀u ∈ D(Ω),

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
Lp(Ω)

≤ C(Ω) ‖∆u‖Lp(Ω) .
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1.7. Weak Solutions

Consider the following problems:

(PD) −∆u = f in Ω and u = g on Γ

and

(PN ) −∆u = f in Ω and
∂u

∂ν
= h on Γ,

where Ω is a Lipschitz bounded domain of RN , f, g and h are given.

Theorem 1.17. Given any f ∈ H−1(Ω) and any g ∈ H1/2(Γ), there exists
a unique solution u ∈ H1(Ω) to Problem (PD). Moreover

‖u‖H1(Ω) ≤ C(Ω)
(
‖f‖H−1(Ω) + ‖g‖H1/2(Γ)

)
.

Proof. Using Theorem 1.14, there exists ug ∈ H1(Ω) such that

ug = g on Γ with ‖ug‖H1(Ω) ≤ C(Ω) ‖g‖H1/2(Γ) .

Setting
fg = −∆ug = −div∇ug ∈ H−1(Ω),

the problem becomes: Find v ∈ H1
0 (Ω) solution of

(P 0
D) −∆v = f − fg in Ω and v = 0 on Γ.

This last problem is equivalent to the following variational formulation:

(FV )D

 Find v ∈ H1
0 (Ω) such that

∀ϕ ∈ H1
0 (Ω),

∫
Ω
∇v · ∇ϕdx = 〈f − fg, ϕ〉H−1(Ω×H1

0 (Ω).

Applying Lax-Milgram Lemma or Riesz Theorem, we prove the existence
of a unique solution v ∈ H1

0 (Ω) satisfying (FV )D.

Note that the bilinear form

a(v, ϕ) =

∫
Ω
∇v · ∇ϕdx

is continuous on H1
0 (Ω)×H1

0 (Ω) and coercive on H1
0 (Ω) thanks to Poincaré’s

inequality. In addition, this form allows to define a scalar product on
Hilbert’s space H1

0 (Ω). �
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Remark 4. i) If Ω is of class C 1, f ∈ W−1,p(Ω) and g ∈ W 1−1/p,p(Γ) with
1 < p <∞, then there exists a unique solution u ∈W 1,p(Ω) to (PD).
ii) When Ω is only Lipschitz, this regularity result holds for p ∈ ]2−ε′, 2+ε[
where ε and ε′ > 0 are depending on Ω and 2− ε′ and 2 + ε are conjugate.

Concerning the Neumann problem, the approach is a bit more compli-
cated. Indeed, if we are looking for a solution u ∈ H1(Ω) only, the boundary
condition on the normal derivative does not make sense, since the functions
of L2(Ω) do not have any trace at the boundary. Here, in fact, if one set
v = ∇u we have

∂u

∂ν
= v · ν on Γ.

Definition 1.18.

H(div; Ω) =
{
v ∈ L2(Ω); div v ∈ L2(Ω)

}
.

It is a Hilbert space for the scalar product

((v ,w))H(div; Ω) =

∫
Ω
v ·wdx+

∫
Ω

(div v)(divw)dx.

Proposition 1.19. i) The space D(Ω) is dense in H(div; Ω).
ii) The linear mapping

v 7−→ v · ν,

defined on D(Ω)N , can be uniquely extended into a linear mapping of H(div; Ω)

in H−1/2(Γ) :=
[
H1/2(Γ)

]′
.

iii) In addition, we have the following Green’s formula (or Stokes’ formula):

∀ϕ ∈ H1(Ω), ∀v ∈ H(div; Ω),

∫
Ω
v · ∇ϕdx+

∫
Ω
ϕdiv v dx = 〈v · ν, ϕ〉Γ

where 〈·, ·〉Γ denotes the duality brackets H−1/2(Γ)×H1/2(Γ).

Corollary 1.20. Let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω). Then ∂u
∂ν ∈

H−1/2(Γ). Moreover for any ϕ ∈ H1(Ω), we have the following Green for-
mula: ∫

Ω
ϕ∆u dx+

∫
Ω
∇u · ∇ϕdx = 〈∂u

∂ν
, ϕ〉Γ.

Proof. It suffices to apply Proposition 1.19 by setting v = ∇u. �
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As a Consequence we can show that for any f ∈ L2(Ω) and for any
g ∈ H−1/2(Γ), the problems

(PN )


Find u ∈ H1(Ω) such that
−∆u = f in Ω,
∂u
∂ν = g on Γ

and

(QN )

 Find u ∈ H1(Ω) such that

∀ϕ ∈ H1(Ω),

∫
Ω
∇u · ∇ϕdx =

∫
Ω
fϕ dx+ 〈g, ϕ〉Γ

are equivalent, so that any solution of one is a solution of the other.

Remark 5. i) The open Ω being bounded, the constant functions belong to
H1(Ω). So that if u is a solution of (QN ), taking ϕ = 1, the data f and g
must satisfy the (necessary) compatibility condition:∫

Ω
f dx+ 〈g, 1〉Γ = 0.

ii) The implication (PN ) =⇒ (QN ) results from Corollary 1.20. The re-
verse implication also uses Green’s formula and the surjectivity of the trace
operator of H1(Ω) into H1/2(Γ).

Theorem 1.21. Let Ω be a bounded, connected and lipschitzian open of
RN , with N ≥ 2. Let f ∈ L2(Ω), g ∈ H−1/2(Γ) satisfying the compatibility
condition ∫

Ω
f dx+ 〈g, 1〉Γ = 0.

Then Problem (PN ) has a solution H1(Ω), unique to an additive constant,
verifying the estimate:

‖∇u‖L2(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖g‖H−1/2(Γ)

)
.

Proof. According to Poincaré-Wirtinger’s inequality, we have

inf
K∈R
‖u+K‖H1(Ω) ≤ C(Ω) ‖∇u‖L2(Ω) .

So that the bilinear form

a(u, ϕ) =

∫
Ω
∇u · ∇ϕdx

is coercive on the quotient space V = H1(Ω)/R. It is then sufficient to apply
Lax-Milgram on the Hilbert space V . �
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Remark 6. i) We could have chosen as space V the space H1(Ω) ∩ L2
0(Ω)

where

L2
0(Ω) =

{
v ∈ L2(Ω);

∫
Ω
v dx = 0

}
,

which is a Hilbert space and then use the inequality:

∀ v ∈ H1(Ω) ∩ L2
0(Ω), ‖v‖H1(Ω) ≤ C ‖∇v‖L2(Ω) .

ii) We could have taken f in a space larger than L2(Ω). More precisely if
f ∈ L(2∗)′(Ω), where (2∗)′ is the conjugate of 2∗ defined by

1

2∗
=

{
1
2 −

1
N if N ≥ 3

ε > 0 arbitrary if N = 2

i.e, (2∗)′ = 2N
N+2 if N ≥ 3 and (2∗)′ > 1 if N = 2.

iii) In Lp-theory, we have existence results in W 1,p(Ω) when Ω is C 1 and
1 < p <∞ or when Ω is C 0,1 and 2− ε′ < p < 2 + ε.

In the same spirit, we can consider the case of Fourier-Robin boundary
condition:

(PFR)


Find u ∈ H1(Ω)
−∆u = f in Ω,
∂u
∂ν + αu = g on Γ,

where α is a positive function defined on Γ, which can be formulated in an
equivalent way by:

(QFR)

 Find u ∈ H1(Ω) such that

∀ϕ ∈ H1(Ω),

∫
Ω
∇u · ∇ϕdx+

∫
Γ
αuϕdx =

∫
Ω
fϕ dx+ 〈g, ϕ〉Γ.

1.8. Strong solutions

Theorem 1.22. Let Ω be a bounded open of class C 1,1 of RN . Let f ∈
L2(Ω) and g ∈ H/2(Γ). Then the solution u given by Theorem 1.17 belongs
to H2(Ω) and verifies the estimate:

‖u‖H2(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖g‖H3/2(Γ)

)
.

Proof. Firstly, we note that

L2(Ω) ↪→ H−1(Ω) and H3/2(Γ) ↪→ H1/2(Γ)

so that the problem (PD) has a unique solution u ∈ H1(Ω).
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We shift the data g ∈ H3/2(Γ) by ug ∈ H2(Ω) and we set again u = v+ug,
so that v ∈ H1(Ω) vérifies:{

−∆v = f + ∆ug ∈ L2(Ω),
v = 0 on Γ.

So, we need to show that v ∈ H2(Ω). One of the methods to establish this
regularity consists in using the technique of the differential quotients.

The complete proof being long and tedious, we will admit it. �

Remark 7. We can also establish the existence of solutions in W 2,p(Ω) when
the data f and g verify:

f ∈ Lp(Ω) and g ∈W 2−1/p,p(Γ)

and the domain Ω is of class C 1,1.

1.9. Very weak solutions

We assume here that Ω is a bounded open of class C 1,1 and we are
interested in the homogeneous problem

(PHD )


Find u ∈ L2(Ω)
−∆u = 0 in Ω,
u = g on Γ,

where g ∈ H−1/2(Γ).

Remark 8. As the function u belongs ”only” to L2(Ω), the boundary con-
dition u = g on Γ has a priori no sense. But we will see that in fact, we
can make sense of the trace of a harmonic function in L2(Ω) and (we can in
fact weaken this last hypothesis).

Lemma 1.23. i) The space D(Ω) is dense in the sapce

E(Ω; ∆) =
{
v ∈ L2(Ω); ∆v ∈ L2(Ω)

}
.

ii) The mapping v 7−→ v|Γ defined on D(Ω) can be uniquely extended into a

continuous linear mapping of E(Ω; ∆) into H−1/2(Γ).
iii) In addition, we have the following Green’s formula: ∀ v ∈ E(Ω; ∆), ∀ϕ ∈ H2(Ω) ∩H1

0 (Ω)∫
Ω
v∆ϕdx−

∫
Ω
ϕ∆v dx = 〈v, ∂ϕ

∂ν
〉H−1/2(Γ)×H1/2(Γ).

17



Proof. i) The idea is to use the Hahn-Banach theorem. So let ` ∈
[E(Ω; ∆)]′ vanishing on D(Ω) and show that it cancels on E(Ω; ∆).

We know that there exist (f, g) ∈ L2(Ω)× L2(Ω) such that

∀ v ∈ E(Ω; ∆), 〈`, v〉 =

∫
Ω
fv dx+

∫
Ω
g∆v dx.

Let f̃ and g̃ the extensions by 0 outside of Ω of f and g respectively. Then,
for any v ∈ D(RN )

〈`, v|Ω〉 =

∫
Ω
fv dx+

∫
Ω
g∆v dx =

∫
RN

f̃v dx+

∫
RN

g̃∆v dx,

i.e,
∆g̃ = −f̃ in RN .

As g̃ ∈ L2(RN ) and ∆g̃ ∈ L2(RN ), then g̃ ∈ H2(RN ). Therefore g ∈ H2(Ω).
The extension g̃, by 0 outside of Ω belongs to H2(RN ). We know then that
g ∈ H2

0 (Ω). By definition, there exists a sequence (gk)k of fonctions of D(Ω)
such that gk −→ g in H2(Ω).

Finally, let v ∈ E(Ω; ∆). So,

〈`, v〉 = lim
k=⇒∞

[∫
Ω
−v∆vk dx+

∫
Ω
gk∆v dx

]
= lim

k=⇒∞
0 = 0.

ii) Let v ∈ D(Ω) fixed and ϕ ∈ H2(Ω) ∩H1
0 (Ω). Then∫

Ω
v∆ϕdx−

∫
Ω
ϕ∆v dx =

∫
Γ
v
∂ϕ

∂ν
.

Now let µ ∈ H1/2(Γ). According to the trace theorem and since Ω is of class
C 1,1, there exists ϕ ∈ H2(Ω) verifying{

ϕ = 0 and ∂ϕ
∂ν = µ on Γ,

‖ϕ‖H2(Ω) ≤ C ‖µ‖H1/2(Γ) .

Thus, using the Cauchy-Schwarz inequality∣∣∣〈v, µ〉H−1/2(Γ)×H1/2(Γ)

∣∣∣ =

∣∣∣∣∫
Γ
vµ

∣∣∣∣ =

∣∣∣∣∫
Γ
v
∂ϕ

∂ν

∣∣∣∣
≤ C(Ω)

(
‖v‖2L2(Ω) + ‖∆v‖2L2(Ω)

)1/2
‖ϕ‖H2(Ω)
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≤ C(Ω) ‖v‖E(Ω;∆) ‖µ‖H1/2(Γ) .

This shows that the linear mapping

D(Ω) −→ H−1/2(Γ)
v 7−→ v|Γ

is continuous when D(Ω) is equipped with the norm of E(Ω; ∆). We finish
the proof by using the density of D(Ω) in E(Ω; ∆).
iii) Immediat. �

Theorem 1.24. Let Ω be a bounded open of class C 1,1 of RN and let
g ∈ H−1/2(Γ). Then, the problem (P 0

D) has a unique solution u ∈ L2(Ω)
verifying the estimate

‖u‖L2(Ω) ≤ C(Ω) ‖g‖H−1/2(Γ) .

Proof. From Green’s formula above, it is easy to see that u ∈ L2(Ω) is a
solution of the problem (P 0

D) if and only if

∀ϕ ∈ H2(Ω) ∩H1
0 (Ω),

∫
Ω
u∆ϕdx = 〈g, ∂ϕ

∂ν
〉Γ. (1.11)

Indeed, let u ∈ L2(Ω) be a solution of (P 0
D). Green’s formula implies that

(1.11) takes place.
Conversely, let u ∈ L2(Ω) be a solution of (1.11). Then, for all ϕ ∈ D(Ω),

we have

0 =

∫
Ω
u∆ϕdx = 〈∆u, ϕ〉D ′(Ω)×D(Ω)

i.e,
∆u = 0 in Ω. (1.12)

Let now ϕ ∈ H2(Ω) ∩ H1
0 (Ω). From (1.12) and Green’s formula above, we

deduce successively that:

0 =

∫
Ω
ϕ∆u dx =

∫
Ω
u∆ϕdx− 〈u, ∂ϕ

∂ν
〉Γ

then

〈u, ∂ϕ
∂ν
〉Γ = 〈g, ∂ϕ

∂ν
〉Γ.

From the surjectivity of the trace mapping v 7→ (v|Γ,
∂v
∂ν ) from H2(Ω) into

H3/2(Γ)×H1/2(Γ) we know that

∀µ ∈ H1/2(Γ), 〈u, µ〉Γ = 〈g, µ〉Γ
i.e, u = g in H−1/2(Γ). �
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Remark 9. A similar result can be established for the Neumann problem
(P 0

N ) with boundary data h in H−3/2(Γ) and satisfying the compatibiity
condition 〈h, 1〉Γ = 0.

1.10. Solutions in Hs(Ω), with 0 < s < 2

We have established in the previous paragraphs the existence of solutions
in H1(Ω), H2(Ω) and L2(Ω) under generally optimal assumptions (except for
the Neumann problem).

We will now consider the case of solutions in Hs(Ω) with 0 < s < 2 and
s 6= 1. The main ingredient is to use interpolation (complex here).

Theorem 1.25. Let Ω be a bounded open of class C 1,1.
i) Suppose that 1

2 < s < 2. Then the operators

∆ : Hs(Ω) ∩H1
0 (Ω) −→ Hs−2(Ω) =

[
H2−s

0 (Ω)
]′

if 1 < s < 2 and s 6= 3
2 ,

∆ : H
3/2
0 (Ω) −→

[
H

1/2
00 (Ω)

]′
,

∆ : H2−s
0 (Ω) −→ H−s(Ω) = [Hs

0(Ω)]′ if 1 < s < 3
2 ,

(1.13)
are isomorphisms.
ii) For any g ∈ Hs(Γ), with −1

2 < s < 3
2 , Problem (PHD ) has a unique

solution u ∈ Hs+ 1
2 (Ω).

Remark 10. What happens if Ω is only Lipschitz? For what values of s can
we have u ∈ Hs(Ω)?

2. The Stokes problem with various boundary conditions

We are interested here in the study of the Stokes problem:

(S)


Find (u , π) satisfying
−∆u +∇π = f in Ω,
divu = 0 in Ω,

with one of the following boundary conditions on Γ:
i) u = 0 (Dirichlet boundary condition)
ii) u · ν = 0 and curlu × ν = 0 (Navier type boundary condition)
iii) u · ν = 0 and (Du)ν + αuτ = 0 (Navier boundary condition)
iv) u × ν = 0 and π = π0 (pressure boundary condition).

Here u denotes the velocity field, π the pressure field, Ω a connected
bounded open set we assume at least Lipschitz.
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Recall that

divu = ∇ · u , curlu = ∇× u and Du =
1

2

(
∇u + (∇u)T

)
.

The notation uτ denotes the tangential component of u : uτ = u − (u ·ν)ν.
Finally f and α are given on Ω and Γ respectively.

Remark 11. i) We limit ourselves here, with the exception of pressure, to
the case of homogeneous boundary conditions.
ii) If the boundary of Ω is flat (like a cube for example or half space), the
above boundary conditions are more easily written. When Ω = R3

+, the
Navier-type boundary condition is equivalent to:

u3 = 0 and
∂u1

∂x3
=
∂u2

∂x3
= 0

and that of Navier at:

u3 = 0 and
∂u1

∂x3
− αu1 =

∂u2

∂x3
− αu2 = 0.

2.1. The Problem (S) with Dirichlet boundary condition

As for the Laplace equation with the Dirichlet boundary condition, we
will assume

f ∈ H−1(Ω)3

and so look for u ∈ H1
0 (Ω)3 verifying (S). Here we have in addition the

constraint
divu = 0 in Ω

and the Lagrange multiplier π. First of all, as π must verify

∇π = f + ∆u ∈ H−1(Ω)3

it is therefore reasonable to look for π in L2(Ω). Moreover, it is easy to
verify that such π satisfies:

∀ v ∈ H1
0 (Ω)3, 〈∇π, v〉H−1(Ω)×H1

0 (Ω) = −
∫

Ω
π div v dx.

The space
V =

{
v ∈ H1

0 (Ω)3; div v = 0 in Ω
}

being a subspace of H1
0 (Ω)3 is therefore a Hilbert space. Moreover

∀ v ∈ V, 〈∇π, v〉H−1(Ω)×H1
0 (Ω) = 0.
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We are now able to propose a variational formulation of Problem (S):

(P 0
D)

 Find u ∈ V such that

∀ v ∈ V,
∫

Ω
∇u : ∇v dx = 〈f , v〉H−1(Ω)×H1

0 (Ω),

where we note that the pressure π has ”disappeared”.

Lemma 2.1. The problem

(S0
D)


Find (u, π) ∈ H1

0 (Ω)3 × L2(Ω)
−∆u +∇π = f in Ω,
divu = 0 in Ω

is equivalent to the problem (P 0
D).

Proof. The implication (S0
D) =⇒ (P 0

D) is immediate. Conversely, let u be
a solution of (P 0

D). Then, in particular,

∀ v ∈ D(Ω)3 such that div v = 0 in Ω,

we have
〈−∆u − f , v〉D ′(Ω)3×D(Ω)3 = 0. (2.1)

As −∆u − f ∈ H−1(Ω)3 and the space

V (Ω) =
{
v ∈ D(Ω)3; div v = 0 in Ω

}
is dense in the space V , then the relation (2.1) takes place for all v . Then we
know that there exists π ∈ L2(Ω), unique up an additive constant, because
Ω is connected, such that

−∆u − f = ∇(−π) in Ω

(this result is called ”De Rham’s version of the theorem” in H−1(Ω)N ). And
finally, as u ∈ V , then

divu = 0 in Ω and u = 0 on Γ.

This ends the proof of the lemma. �

Theorem 2.2. For any f ∈ H−1(Ω)3, the Stokes problem (P 0
D) has a unique

solution u ∈ V vérifying further

‖u‖H1(Ω)3 ≤ C(Ω) ‖f ‖H−1(Ω)3 .
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Proof. Simply apply Lax-Milgram theorem. �

Remark 12. The theory is well known for everything that concerns the reg-
ularity of solutions when the data are:
- solutions in W 1,p(Ω)3 × Lp(Ω)
- solutions in W 2,p(Ω)3 × Lp(Ω)
with 1 < p <∞.

In particular if f ∈ L2(Ω)3 and Ω is of class C 1,1, then u ∈ H2(Ω)3 and
π ∈ H1(Ω).

2.2. The Stokes problem with Navier type boundary condition

Here we are still interested in Stokes’ problem, but with the following
boundary condition:

u · ν = 0 and curlu × ν = 0 on Γ.

In order to take into account this condition at the boundary, it is important
to write the Laplacian operator in the form:

−∆ = curl curl −∇ div.

On the other hand, if we study the existence of weak solutions u in H1(Ω)3,
it will be necessary to give a meaning to the condition at the boundary

curlu × n = 0 on Γ.

Recall the following Green formulas:
i) If v ∈ L2(Ω)3 and curl v ∈ L2(Ω)3, then v × ν ∈ H−1/2(Γ)3 and

∀ϕ ∈ H1(Ω)3,

∫
Ω
v · curlϕ dx−

∫
Ω
ϕ · curl v dx = 〈v × n ,ϕ〉Γ

where 〈·, ·〉Γ denotes the duality brackets H−1/2(Γ)×H1/2(Γ).
ii) If v ∈ L2(Ω)3 and div v ∈ L2(Ω), then v · ν ∈ H−1/2(Γ) and

∀ϕ ∈ H1(Ω),

∫
Ω
v · ∇ϕdx+

∫
Ω
ϕdiv v dx = 〈v · n , ϕ〉Γ

Remark 13. If v ∈ L2(Ω)3 and curl v ∈ L6/5(Ω)3 (respectively div v ∈
L6/5(Ω)), then

v × ν ∈ H−1/2(Γ)3 (resp. v · ν ∈ H−1/2(Γ))

and Green’s formulas above remain valid.
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Proposition 2.3. Let v ∈ L2(Ω)3 such that curl v ∈ L2(Ω)3 and curl curl v ∈
L6/5(Ω)3. Then curl v× ν ∈ H−1/2(Γ)3 et we have he following Green for-
mula:

∀ϕ ∈ H1(Ω)3,

∫
Ω
curl v · curlϕ−

∫
Ω
ϕ · curl curl v = 〈curl v× ν,ϕ〉Γ.

Proof. Il suffices to put w = curl v and use the previous reminders. �

We are now able to propose a variational formulation for the Stokes
problem (S) with the Navier type homogeneous condition. To do this, we
set

V =
{
v ∈ L2(Ω)3; curl v ∈ L2(Ω), div v = 0 in Ω and v · ν = 0 on Γ

}
equipped with the graph norm:

‖v‖V =
(
‖v‖2L2(Ω) + ‖curl v‖2L2(Ω)3

)1/2

which makes it a Hilbert space.
We suppose f ∈ L6/5(Ω)3 and we consider the following variational for-

mulation:

(P 0
TN )

 Find u ∈ V such that for any v ∈ V,∫
Ω

curlu · curl v dx =

∫
Ω
f · v dx.

Questions

i) Is the problem (P 0
TN ) equivalent to the problem (S0

TN )?
ii) If so, is the bilinear form

V × V −→ R

(u , v) 7−→
∫

Ω
curlu · curl v dx

coercive?
ii) Is the solution unique?

Remark 14. As with the Neumann problem for the Laplacian, the boundary
condition

curlu × ν = 0 on Γ

is ”hidden” in the variational formulation.
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Answers to the above questions
In order to study Problem (P 0

TN ), we have to describe with more pre-
cision the geometry of the domain. We first need the following definition.

Definition 2.4. A bounded domain in R3 is called pseudo-C 0,1 (respec-
tively pseudo-C 1,1) if for any point x on the boundary there exist an integer
r(x ) equal to 1 or 2 and a strictly positive real number λ0 such that for all
real numbers λ with 0 < λ < λ0, the intersection of Ω with the ball with
centre x and radius λ, has r(x ) connected components, each one being C 0,1

(resp. C 1,1).

Hypothesis. There exist J connected open surfaces Σj , 1 ≤ j ≤ J , called
“cuts ”, contained in Ω, such that:

(i) each surface Σj is an open part of a smooth manifold Mj ,

(ii) the boundary of Σj is contained in ∂Ω for 1 ≤ j ≤ J ,

(iii) the intersection Σ̄i ∩ Σ̄j is empty for i 6= j,

(iv) the open set

Ω◦ = Ω \
J⋃
j=1

Σj

is pseudo-C 0,1 (respectively pseudo-C 1,1) simply-connected.

Example for J = 1 and I = 3

Theorem 2.5. Let Ω be a bounded open pseudo-C 1,1 set.
i) Let v ∈ L2(Ω)3 such that div v ∈ L2(Ω), curl v ∈ L2(Ω) and satisfying in
addition

v · ν ∈ H1/2(Γ) (respectively v× ν ∈ H1/2(Γ)3).
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Then v ∈ H1(Ω)3 and we have the following estimates:

‖v‖H1(Ω) ≤ C(Ω)(‖v‖L2(Ω) + ‖div v‖L2(Ω) + ‖curl v‖L2(Ω) + ‖v · ν‖H1/2(Γ))
(2.2)

and

‖v‖H1(Ω) ≤ C(Ω)
[
‖v‖L2(Ω) + ‖div v‖L2(Ω) + ‖curl v‖L2(Ω) + ‖v× ν‖H1/2(Γ))

]
.

(2.3)
ii) Under the above assumptions, if in addition v ·ν = 0 on Γ, then we have
the following estimate:

‖v‖H1(Ω) ≤ C(Ω)
(
‖div v‖L2(Ω) + ‖curl v‖L2(Ω) +

J∑
j=1

∣∣∣∣∣
∫

Σj

v · ν

∣∣∣∣∣ ) (2.4)

and if v× ν = 0 on Γ, then we have the following estimate:

‖v‖H1(Ω) ≤ C(Ω)
(
‖div v‖L2(Ω) + ‖curl v‖L2(Ω) +

J∑
i=1

∣∣∣∣∫
Γi

v · ν
∣∣∣∣ ) (2.5)

Remark 15. i) Suppose that

v ∈ L2(Ω)3, div v ∈ L2(Ω) and curl v ∈ L2(Ω)3

with
v · ν = 0 and v × ν = 0 on Γ.

Let us then extend v by 0 outside of Ω. It is easy to show that this extension
verifies:

ṽ ∈ L2(R3)3, div ṽ ⊂ L2(R3) and curl ṽ ∈ L2(R3)3.

As −∆ = curl curl −∇ div, then ∆ṽ ∈ H−1(R3)3 and

ṽ −∆ṽ ∈ H−1(R3)3,

which means that ṽ ∈ H1(R3)3 and therefore v ∈ H1
0 (Ω)3.

ii) Now note that if u ∈ D(R3)3, then∫
Ω
|∇u |2 dx = −

∫
R3

u ·∆u dx =

∫
R3

[u · (curl curlu)− u ·∆divu ] dx

=

∫
R3

(
|curlu |2 + |divu |2

)
dx.
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Since D(R3)3 is dense in H1(R3)3, we deduce that:

∀u ∈ H1(R3)3,

∫
R3

|∇u |2 dx =

∫
R3

(
|curlu |2 + |divu |2

)
dx.

iii) Back to point i) of the remark: since v ∈ H1
0 (Ω)3, we have:

‖∇v‖2L2(Ω) = ‖∇ṽ‖L2(R3) =

∫
R3

(
|curl ṽ |2 + |div ṽ |2

)
dx,

which gives the relation∫
Ω
|∇v |2 dx =

∫
Ω

(
|curl v |2 + |div v |2

)
dx.

Note that this last relation can also be directly established if v ∈ D(Ω)3

and then, by density of D(Ω) in H1
0 (Ω)3, for any v ∈ H1

0 (Ω)3.

Remark 16. i) If Ω is simply connected, then for any v ∈ H1(Ω)3 such that
v · ν = 0 on Γ, the inequality (2.4) is written

‖v‖H1(Ω)3 ≤ C(Ω)
(
‖div v‖L2(Ω) + ‖curl v‖L2(Ω)

)
.

ii) If Γ is connected (I = 1), then for any v ∈ H1(Ω)3 such that v × ν = 0
on Γ, the inequality (2.5) is written

‖v‖H1(Ω)3 ≤ C(Ω)
(
‖div v‖L2(Ω) + ‖curl v‖L2(Ω)

)
.

Proposition 2.6. Let Ω be a bounded open subset of class C 1,1 of R3. Then
the bilinear form

(u, v) 7−→
∫

Ω
curl u · curl v dx

is coercive on the following spaces V and on W respectively:

V =

{
v ∈ H1(Ω)3; div v = 0 in Ω, v · ν = 0 on Γ and

∫
Σj

v · ν = 0, 1 ≤ j ≤ J

}

W =

{
v ∈ H1(Ω)3; div v = 0 in Ω, v× ν = 0 on Γ and

∫
Γi

v · ν = 0, 1 ≤ j ≤ I
}
.

We are now able to study the problem (P 0
TN ). We start with the simplest

case where Ω is simply connected.
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Theorem 2.7. Let Ω be a bounded open domain of class C 1,1 of R3. Suppose
that Ω is simply connected.
i) Then for any f ∈ L6/5(Ω)3, Problem (P 0

TN ) admits a unique solution
verifying the estimate

‖u‖H1(Ω) ≤ C(Ω) ‖f‖L6/5(Ω) .

ii) The problem (P 0
TN ) is equivalent to the problem (S0

TN ).
iii) If moreover Ω is of class C 1,1 then the solution (u, π) ∈ W 2,6/5(Ω)3 ×
W 1,6/5(Ω).

Proof. i) The open Ω being simply connected, then

V =
{
v ∈ H1(Ω)3; div v = 0 in Ω, v · ν = 0 on Γ

}
and V is an Hilbert space. Then let’s put

a(u , v) =

∫
Ω

curlu · curl v dx.

Proposition 2.6 shows that the form a is coercive on V . Finally, the form
`(v) =

∫
Ω f · v dx is clearly continuous because the continuous embedding

H1(Ω)3 ↪→ L6(Ω)3. The Lax-Milgram theorem implies the existence of a
unique solution of Problem (P 0

TN ).
ii) Let us first show that

(S0
TN ) =⇒ (P 0

TN ).

Set
H =

{
v ∈ L6(Ω)3; div v ∈ L2(Ω), v · ν = 0 on Γ

}
.

We know that D(Ω)3 is dense in H. So we can show that the dual of H can
be characterized as follows:

H ′ =
{
g +∇χ; g ∈ L6/5(Ω)3 and χ ∈ L2(Ω)

}
(similar proof to the characterization of the dual H−1(Ω) of H1

0 (Ω)).
Let now (u , π) ∈ V × L2(Ω) solution of (S0

TN ). Then for any v ∈ V

〈∇π, v〉H′×H = −
∫

Ω
π div v dx = 0.

Therefore,
−∆u = ∇π − f ∈ H ′.

We need the following lemma:
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Lemma 2.8. i) The space D(Ω)3 is dense in the following space

E =
{
v ∈ H1(Ω)3; ∆v ∈ H ′

}
.

ii) The mapping
v 7−→ curl v× ν

defined on D(Ω)3 can be uniquely extended into a continuous linear mapping
from E into H−1/2(Γ)3.
iii) Moreover, for any ϕ ∈ H1(Ω)3 such that

divϕ = 0 in Ω and ϕ · ν = 0 on Γ

and for any v ∈ E, we have the following Green formula

−〈∆v,ϕ〉H′×H =

∫
Ω
curl v · curlϕ dx+ 〈curl v× ν,ϕ〉Γ

where 〈·, ·〉Γ denotes the duality brackets H−1/2(Γ)3 ×H1/2(Γ)3.

We return to the proof of the theorem. Since u ∈ H1(Ω)3 and ∆u ∈ H ′,
i.e, u ∈ E, we can use this lemma to deduce on the one hand that the
condition curlu = 0 has a meaning in H−1/2(Γ)3 and on the other hand
that

∀ v ∈ V, 〈−∆u , v〉H′×H =

∫
Ω

curlu · curl v dx =

∫
Ω
f · v dx

i.e, u is solution of (P 0
TN ).

Conversely, let u ∈ V solution of Problem (P 0
TN ). Then

divu = 0 in Ω, u · ν = 0 on Γ

and
∀ v ∈ D(Ω)3 with div v = 0 in Ω

we have
〈curl curlu , v〉D ′(Ω)3×D(Ω)3 = 〈f , v〉D ′(Ω)3×D(Ω)3 .

That gives
〈−∆u , v〉D ′(Ω)3×D(Ω)3 = 〈f , v〉D ′(Ω)3×D(Ω)3 .

So there exists, by De Rham’s theorem, a function π in L2(Ω), unique up
an additive constant, such that

−∆u − f = ∇(−π) in Ω (2.6)
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(note that L6/5(Ω) ↪→ H−1(Ω)).
It remains to show that u vérifies:

curlu × ν = 0 on Γ.

For that, from (2.6) and use the formula of Green of the first lemma, one
deduces that

∀ v ∈ V, 〈−∆u +∇π, v〉H′×H =

∫
Ω

curlu · curl v dx+ 〈curlu × ν, v〉Γ

that is to say that

∀ v ∈ V,
∫

Ω
curlu · curl v dx+ 〈curlu × ν, v〉Γ =

∫
Ω
f · v dx.

But u being solution of (P 0
TN ), then

∀ v ∈ V, 〈curlu × ν, v〉Γ = 0.

Now let it be µ ∈ H1/2(Γ). We know that there exists

w ∈ H1(Ω)3, divw = 0 in Ω, w = µτ on Γ

where µτ = µ− (µ · ν)ν the tangentrial component of µ on Γ. As w ∈ V ,
we have:

〈curlu × ν,µ〉Γ = 〈curlu × ν,µτ 〉Γ = 〈curlu × ν,w〉Γ = 0,

which means that
curlu × ν = 0 on Γ.

iii) The regularity W 1,6/5(Ω) of π is due to the fact that π satisfies:

div (∇π − f ) = 0 in Ω and (∇π − f ) · ν = 0 on Γ

Setting z = curlu , the regularity W 2,6/5(Ω)3 of u is a consequence of the
following properties:

z ∈ L6/5(Ω)3, div z = 0, curl z ∈ L6/5(Ω)3 and z × ν = 0 on Γ.

�

Case Ω non simply connected
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We then show that the kernel:

KT (Ω) =
{
v ∈ L2(Ω)3; divv = 0, curl v = 0 in Ω and v · ν = 0 on Γ

}
is of finite dimension and that the dimension corresponds to the number of

cuts Σj necessary to obtain an open set
◦
Ω = Ω \ ∪Jj=1Σj simply connected.

As a consequence, if

V =
{
v ∈ H1(Ω)3; div v = 0 in Ω and v · ν = 0 on Γ

}
then, to prove that Problem (P 0

TN ) admits a solution, it is necessary that f
satisfies the following compatibility condition:

∀ v ∈ KT (Ω),

∫
Ω
f · v dx = 0.

Moreover, if a such solution u exists, it is unique up an additive element of
KT (Ω).

2.3. The Stokes problem with Navier boundary condition

We recall the Navier condition:

[2(Du)ν]τ + αuτ = 0 on Γ

where

Du =

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))
1≤i,j≤3

is the deformation tensor, α defined on Γ is the friction coefficient and uτ is
the tangential component of u . To simplify, we will consider here only the
case α = 0.

Note that when div u = 0 in Ω, then 2div Du = ∆u .

Lemma 2.9. If (u, π) ∈ H1(Ω)3 × L2(Ω) is such that

−∆u +∇π ∈ L6/5(Ω)3

then
[(Du)ν]τ ∈ H

−1/2(Γ)3

and

for any ϕ ∈ H1(Ω)3 such that divϕ = 0 in Ω and ϕ · ν = 0 on Γ
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we have the Green’s formula :∫
Ω

(−∆u +∇π) · ϕdx = 2

∫
Ω
Du : Dϕ dx− 2〈[(Du)ν]τ ,ϕ〉Γ

where 〈·, ·〉Γ denotes the duality brackets H−1/2(Γ)3 ×H−1/2(Γ)3.

With this Green’s formula, the Stokes problem can be formulated as:

(P 0
N )

 Find u ∈ V, such that for any ϕ ∈ V,

2

∫
Γ
Du : Dϕ dx =

∫
Ω
f ·ϕ dx.

Set

a(u ,ϕ) =

∫
Ω
Du : Dϕ dx.

When Ω is not axisymmetric, then this form is coercive on V due to Korn’s
inequality:

‖u‖H1(Ω) w ‖Du‖L2(Ω) .

While if Ω is axisymmetric, this is not the case anymore. We must then
quotient by some finite dimensional kernel.

Remark 17. In fact, on Γ we have the relation:

[2(Du)ν]τ = curlu × ν − Λu

where Λ is an operator of order 0:

Λu =
2∑

k=1

(
uτ ·

∂ν

∂sk

)
τ k

where (τ 1, τ 2) is a base of the tangent plane to Γ at point x and (s1, s2) are
local coordinates in this tangent plane.

This means that on the questions of regularity, they can be reduced to
those concerning the Navier type condition.
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