
HAL Id: hal-04271476
https://hal.science/hal-04271476

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning input-aware performance models of
configurable systems: An empirical evaluation

Luc Lesoil, Helge Spieker, Arnaud Gotlieb, Mathieu Acher, Paul Temple,
Arnaud Blouin, Jean-Marc Jézéquel

To cite this version:
Luc Lesoil, Helge Spieker, Arnaud Gotlieb, Mathieu Acher, Paul Temple, et al.. Learning input-
aware performance models of configurable systems: An empirical evaluation. Journal of Systems and
Software, 2023, pp.111883. �10.1016/j.jss.2023.111883�. �hal-04271476�

https://hal.science/hal-04271476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning Input-aware Performance Models of
Configurable Systems: An Empirical Evaluation

Luc Lesoila, Helge Spiekerb, Arnaud Gotliebb, Mathieu Achera,∗, Paul
Templea, Arnaud Blouina, Jean-Marc Jézéquela

aUniv Rennes, Inria, INSA Rennes, CNRS, IRISA, France
bSimula Research Laboratory, Oslo, Norway

Abstract

Modern software-based systems are highly configurable and come with a number
of configuration options that impact the performance of the systems. However,
selecting inappropriate values for these options can cause long response time,
high CPU load, downtime, RAM exhaustion, resulting in performance degra-
dation and poor software reliability. Consequently, considerable effort has been
carried out to predict key performance metrics (execution time, program size,
energy consumption, etc.) from the user’s choice of configuration options values.
The selection of inputs (e.g., JavaScript scripts embedded in a web page inter-
preted by Node.js or input videos encoded with x264 by a streaming platform)
also impacts software performance, and there is a complex interplay between
inputs and configurations. Unfortunately, owing to the huge variety of existing
inputs, it is yet challenging to automate the prediction of software performance
whatever their configuration and input. In this article, we empirically evaluate
how supervised and transfer learning methods can be leveraged to efficiently
learn performance models based on configuration options and input data. Our
study over 1,941,075 data points empirically shows that measuring the perfor-
mance of configurations on multiple inputs allows one to reuse this knowledge
and train performance models robust to the change of input data. To the best of
our knowledge, this is the first domain-agnostic empirical evaluation of machine
learning methods addressing the input-aware performance prediction problem.

Keywords: Performance Prediction, Software Variability, Input Sensitivity,
Configurable Systems, Learning Models

1. Introduction1

Most modern software systems are widely configurable, featuring many con-2

figuration options that users can set or modify according to their needs, for3

∗Corresponding author
Email address: mathieu.acher@irisa.fr (Mathieu Acher)

Preprint submitted to Elsevier November 6, 2023

instance, to maximise some performance metrics (e.g., execution time, energy4

consumption). As a software system matures, it diversifies its user base and5

adds new features to satisfy new needs, increasing its overall number of options.6

However, manually quantifying the individual impact of each option and their in-7

teractions quickly becomes tedious, costly and time-consuming, which reinforces8

the need to automate how to study and combine these options together. Soft-9

ware reliability can be largely degraded if inappropriate configuration options10

are selected or if ageing-related bugs such as configuration-dependent memory11

leaks remain undetected [74].12

To address these issues, researchers typically apply machine learning (ML)13

techniques [21, 63] to learn performance models from the selection of configu-14

ration options and/or software modules. Conversely, with an accurate perfor-15

mance predictive model, it becomes possible to predict the performance of any16

configuration, to find an optimal configuration, or to identify, debug, and reason17

about influential options of a system [52, 26, 66, 21, 44, 45, 60, 61, 30]. A recent18

survey [52] synthesized the large effort conducted in the software engineering,19

software variability, and software product line engineering communities.20

However, the performance variability of a given software system also obvi-21

ously depends on its input data [2, 72, 38, 77, 8], e.g., a video compressed by a22

video encoder [38] such as x264, a program analyzed by a compiler [8, 11] such23

as gcc, a database queried by a DBMS [77] such as SQLite. All these kinds of24

inputs might interact with the configuration space of the software [11, 3, 42, 34].25

For instance, an input video with fixed and high-resolution images fed to x26426

could reach high compression ratios if configuration options like mbtree are ac-27

tivated. The same option will not be suited for a low-resolution video depicting28

an action scene [38] with lots of changes among the different pictures, leading29

to different performance distributions, as for input videos in Figure 11. The30

interplay between input data and configurations has not caught a great atten-31

tion in the literature [52]. It is a threat of practical interests, since performance32

models of configurable systems or software product lines, can be inaccurate and33

deprecated whenever a new input data is processed.34

Recent works empirically show the significance of inputs (also called work-35

loads) when predicting the performance of configurable systems and software36

product lines. Pereira et al. [3] showed that the performance distribution of37

1152 configurations of x264 heavily depends on the inputs (19 videos) processed.38

Practically, a good configuration can be a bad one depending on the processed39

video; some configuration options have varying influence and importance de-40

pending on videos; a performance prediction model can be inaccurate if blindly41

reused whatever the video. Recent empirical results of Mühlbauer et al. [42]42

and Lesoil et al. [34] over different software systems, configurations and inputs43

demonstrate that inputs can induce substantial performance variations and in-44

teract with configuration options, often in non-monotonous ways. As a result,45

1Videos 1 and 2 are extracted from our dataset (Animation 1080P-5083 and Anima-
tion 1080P-646f)

2

inputs should be considered when building performance prediction models to46

maintain and improve representativeness and reliability.47

Figure 1: The performance prediction problem: how to predict software performance consid-
ering both configurations and inputs?

Measuring all configurations for all possible inputs of a configurable system48

is the most obvious path to resolve the issue. Given a potentially infinite input49

space, it is however either too costly and infeasible in practice or impossible.50

ML techniques are usually employed to measure only a sample of configurations51

and then use these configurations’ measurements to build a performance model52

capable of predicting the performance of other configurations (i.e., configura-53

tions not measured before). However, these measurements are obtained on a54

specific input and are already costly to compute. Systematically repeating this55

process for many inputs would explode the budgets of end-users and organiza-56

tions. The inputs add a new dimension to the problem of learning performance57

models. The combined problem space (configuration and input dimension) re-58

quires substantially more observations and measurements. It further increases59

the computational cost, since it requires running configurations over many input60

samples. The available budget end-users can dedicate to the measurements of61

configurations over inputs is limited by construction. Hence, the challenge is to62

learn an accurate performance model, aware of configurations and inputs, with63

the lowest budget.64

Several input-aware approaches can be envisioned. The first is to learn from65

scratch a performance model, whenever an input is fed to a configurable sys-66

tem. Many works target the scenario where users build their own performance67

models for their own inputs and workloads [21, 60, 52, 3]. Unfortunately, users68

need to measure a sample of configurations for building a new prediction model69

each time a new input should be processed. The computational cost can be70

3

prohibitive as it occurs in an online setting (at runtime). There is no reuse71

of past observations, knowledge, and performance models. Another second ap-72

proach, at the opposite of the spectrum, is to pre-train in an offline setting73

a set of performance models for different inputs and configurations (as, e.g.,,74

proposed in [11]). The upfront cost can be high but can pay off since these75

models are systematically reused when a new input comes in. In the example76

of a configurable video encoder, performance models could be learned offline77

and reused each time a new video (input) is fed. The advantage is that users78

typically have only a small budget and cannot make additional measurements at79

run-time. The counter-part is that pre-trained models can have forgotten some80

inputs and be (much) less accurate than a performance model trained specifi-81

cally on an input. At least, it is a hypothesis worth studying. In between, a82

third approach is to use both online and offline settings through transfer learn-83

ing [52, 26, 4, 37, 68]. Certain transfer learning methods were originally intended84

to handle changes in computing environments, not actual inputs’ changes, ne-85

cessitating the development of new techniques that could effectively leverage86

specific input characteristics [25, 68, 26, 43, 67, 33, 24]. The principle is to87

adapt existing performance models (pre-trained in an offline setting over mul-88

tiple inputs and configurations) thanks to additional measurements gathered89

over a specific input to process. The hope is to transfer the model with very90

few measurements at run time.91

In this article, we study and compare the cost-effectiveness of these three92

input-aware approaches over a large dataset comprising 8 software systems,93

hundreds of configurations and inputs, and dozens of performance properties,94

spanning a total of 1,941,075 configurations’ measurements. The distinction95

between offline and online learning has not received much attention yet (e.g.,96

most works only apply either ”offline” or ”online” learning), certainly because of97

the lack of consideration of input data that can significantly alter the accuracy98

of predictive performance models of configurations, as is empirically shown in99

the rest of the article. We also consider the peculiarities of inputs (i.e., their100

properties) to guide the transfer or reuse of pre-trained models. To the best101

of our knowledge, our work is the first domain-agnostic empirical evaluation102

of ML methods addressing the input-aware performance prediction problem in103

both online and offline settings.104

Our contributions are as follows:105

1. We perform an extended comparative study of performance model training106

approaches, including supervised learning as well as transfer learning. We107

also present their costs and error levels when addressing the performance108

prediction problem;109

2. We provide guidelines to the user who faces a performance prediction problem110

and propose a learning-based solution based on her constraints and resources,111

i.e., based on a trade-off between costs in offline and online settings.112

3. We publish the code, the dataset, and the results of this paper online2 as a113

2See the companion repository at https://github.com/simula-vias/

4

https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models

basis for future work on predictive performance models.114

2. Problem115

As measuring the performance of each software configuration and input prop-116

erties takes time and is computationally costly, we define three different scenar-117

ios based on user personas that have distinct levels of resources (i.e., time and118

computation power). These scenarios lead to different learning strategies: a119

model pre-trained on multiple inputs used only as-is (offline learning); a model120

trained on a single input whenever an end-user processes an input (supervised121

online learning); a model pre-trained on multiple inputs but that will be adapted122

via transfer learning by an end-user. These three learning strategies have pros123

and cons and are further evaluated in the rest of the article (see Section 4).124

2.1. User Persona (UP)125

Performance prediction of software configurations has several interests for126

organizations, individual users and developers of configurable systems [21, 52,127

25, 26, 68, 67]:128

• prediction is interesting per se since users know the performance value129

they will get and this quantitative information is actionable. It allows130

users to determine whether it reaches a certain limit (or is within accept-131

able boundaries) and take informed decisions. For instance, users could132

know that the configuration c1 of video encoding will be 56 s (less than133

1min, acceptable) while the configuration c2 is 589 s (more than 10min,134

unacceptable).135

• prediction can help explore tradeoffs by (de)activating some options and136

see the concrete, quantitative effect on performance. Users are usually137

not optimizing w.r.t. one dimension (e.g., execution time) but have also138

technical constraints related to output quality (e.g., users do not want139

to alter much video quality and avoid using mbtree in x264) or other140

metrics in mind (e.g., size of the output). Developers can also explore the141

configuration space to pinpoint inefficient performance and hopefully of142

some configurations;143

• interpretable information can be extracted out of prediction models, like144

feature importance or interactions across features [40, 60, 12]. This infor-145

mation is useful for users and developers in charge of configuring, main-146

taining or debugging configurable software systems.147

In these three cases, inputs can dramatically alter performance distributions148

and thus lead to inaccurate performance prediction if the specificities of input149

are not taken into account [41, 34]. Hence, UP can adopt different strategies to150

input-aware-performance-models

5

https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models
https://github.com/simula-vias/input-aware-performance-models

adapt the performance model, with different computational costs and quality of151

performance predictions.152

Let us consider UP A which is in a rush and has to quickly deploy configured153

software solutions to its customers. Luckily, some already trained models were154

made available online and can be used to make predictions, although they are155

not directly contextualized for UP A’s application. Because fitting customer156

needs must be fast, UP A will directly reuse one of the prediction models as-is;157

i.e., there will be no adaptation made whatsoever. Consequently, the computed158

performance predictions can be of poor quality, something that remains accept-159

able for UP A. Typical examples of UP A include start-up company engineers160

or fast prototyping developers, and R&D software developers that can reuse161

pre-trained models and want to quickly reason over performance prediction of162

their configurable systems.163

In contrast, UP B is not in a rush and has high expectations regarding164

customer satisfaction. B typically wants to retrieve the best predictions so165

that she/he can recommend configurations fitting the users’ needs. To do so, B166

creates a prediction model on-demand specifically tailored to the provided input.167

Typically UP B corresponds to software engineers from large companies, which168

face high expectations in software capitalization and quality of service and can169

absorb the cost of building a performance model per input and workload.170

Ultimately, UP C is committed to high standards, but C wants to quickly171

deliver high-quality software configurations. To do so, C wants to find a trade-172

off between the two previously-identified personas. C is likely to spend effort173

finding a pre-trained performance prediction model (or training it by using174

multiple inputs) so that the model can adapt to various cases. Note that in175

this case, even though most of the training cost is already high, C wants to176

tailor the model to customers’ specific inputs to provide high-quality predictions.177

Examples of UP C include organizations or individuals capable of adapting178

pre-trained models based on the additional measurement of configurations over179

specific inputs.180

2.2. Prediction Strategies181

Based on these different UPs, we can distinguish several strategies for train-182

ing and obtaining a performance prediction model.183

Offline learning (rely on a pre-trained model.) UP A relies on a184

previously trained model, that is, a model which provides predictions before185

A comes up with an input sample. In this case, A is only using a pre-trained186

model and does neither fine-tune the model nor retrain it nor else apply any187

kind of transfer learning. The model is trained on a combination of multiple188

software configurations and multiple input samples. We follow an input-aware189

setup similar to the technique proposed in [11] for a compiler of the PetaBricks190

language. In practice (and it is the main advantage of the method), UP A does191

not need to compute new configurations’ measurements. A simply passes an192

input sample to the trained model that provides a prediction by computing and193

leveraging input properties (see hereafter, in Section section 3.1.2). Eventually,194

6

A sends the predictions to the customers. This “pre-trained model” setting ad-195

vantageously reduces the computational load over UP A that does not need to196

measure configurations. To exploit the model, only the input’s properties need197

to be computed and concatenated to the configurations’ descriptions used for198

training. (Inputs’ properties are specific to an application domain and many199

examples are given in the next section). The model can then be queried and200

all the retrieved predictions can be exploited directly. UP A does not control201

the training process and the quality of the training set (consisting of a selec-202

tion of software configurations and inputs) meaning that the selections may be203

poorly distributed over the input space. Similarly, while querying the model,204

the provided input may be out of distribution, which can possibly result in weak205

predictions and choices.206

Supervised online learning (train a model on demand.) Related to207

UP B, the goal is to control as much as possible the quality of the prediction.208

In this setup, B does not rely on a pre-trained model (there is no cost in the209

offline setting) but rather builds a performance prediction model on-demand,210

in an online setting. For that, B has a pool of preselected software configu-211

rations ready to be executed with the desired inputs (i.e., those coming from212

the customers). Another option is to have access to a software configuration213

sampling procedure. As soon as the input comes up, the first step consists in214

evaluating the performance of each selected software configuration using that in-215

put. Then, the prediction model is built and further predictions can be queried.216

Note that, unlike the previous strategy, only the desired input sample matters217

here, and thus there is no need to discriminate among inputs and compute in-218

put properties. The learned model is thus specific to the provided input, yet,219

predictions are expected to be more accurate than those from UP A (i.e., as220

the input diversity dimension of the problem disappeared). Yet, it supposes221

that UP B has enough resources available to perform both the measurements222

and the training of the system before being able to provide predictions. Thus,223

in an online setting where predictions must come almost instantaneously, this224

strategy is probably inadequate. Also, the model is trained on-demand and for225

a specific input only. If multiple requests from different customers arrive at the226

same time, then the model will be re-trained again and again. This prevents227

sharing knowledge from different models and prevents capitalizing on previous228

training. Traditional statistical learning techniques (e.g., [21, 60, 52, 3]) can be229

used. It boils down to address a regression problem each time a new workload230

or input is considered.231

Transfer learning (adapt pre-trained model). Finally, UP C wants to232

answer best to his customers but cannot afford on-demand full training pre-233

diction models. A suitable strategy would be to leverage the bigger cost that234

can be left to organizations that can provide general prediction models, and235

adapt, on the fly, a model to the specific input that is provided. This way,236

the out-of-distribution and quality of the selected software configurations and237

inputs for training problems would be mitigated. The adaptation would then238

require the general model to be retrieved so that parameters can be modified.239

The idea is not to retrain completely though. Two different methods can be240

7

Approach Description of the approach

Offline cost
(Offshore

Organization)

Online
measurement

cost
(User)

Input
properties

User
Persona

Supervised online
learning

Train performance model on demand,
from scratch, each time

a new input is fed to the configurable system
None High No A

Offline learning
Use a pre-trained model over measurements of multiple
configurations and inputs. Input properties are used

to make the prediction (in an online setting).
High None Yes B

Transfer learning

Adapt a pre-trained model for a new targeted input.
It requires to gather fresh measurements
of some configurations over the input

(in an online setting).

Medium Medium Yes C

Table 1: Comparison of the different approaches to learn input-aware performance models of
configurable systems.

used to adapt models, the first one is fine-tuning, such that the model weights241

can be adjusted quickly to the incoming input; the second one is “transfer learn-242

ing” [52, 26, 4, 37, 68] to find a transformation between the data distribution243

the model was trained for, and the data provided by C’s customers. Transfer244

learning can be applied for several use cases without necessarily making changes245

to the original model, thereby providing additional flexibility.246

In the context of this paper, we focus on transfer learning as it addresses247

the out-of-distribution problem. Some transfer learning techniques have not248

been designed to operate over actual inputs’ changes, but rather changes of249

computing environments [25, 68, 26, 43, 67, 33, 24] (e.g., hardware or versions).250

Hence, we had to design transfer learning techniques capable of leveraging the251

specifics of inputs. The idea is to compute a transformation allowing the transfer252

of the prediction capabilities from the inputs used for training to the one that253

comes from C and vice-versa. For that, C relies on a pre-trained model as254

does UP A. Yet, as the input comes for the customer, the input’s properties255

are sent to the model for prediction and in the meantime, C actually measures256

the performances of the configurations that are used for training on the new257

incoming input. Measured performances and predictions can then be compared258

to retrieve a mathematical transformation that can be applied to the pre-trained259

model to minimize prediction error. As said previously, the main advantage is to260

start from a rather general prediction model and simply adapt it. Yet it requires261

retrieving the model along with the software configurations that were used for262

training. In the end, the effort is split among online and offline settings, and263

between (1) the creation of the original, general model and (2) UP C that has to264

compute the adaptation. Table 1 sums up how efforts are split between online265

and offline settings, UPs, and model providers for the three different prediction266

strategies (offline learning, supervised online learning, and transfer learning).267

2.3. Research Questions (RQs)268

Accounting for the variety of UPs and prediction strategies, we spell out the269

following three research questions (RQs):270

RQ1. How do different machine learning algorithms compare for271

establishing a relevant performance prediction model? The production272

8

of a relevant predictive performance model involves the selection of the most273

appropriate algorithm for that task. To address this question, we quantify the274

errors and the benefits of tuning hyperparameters of several relevant algorithms275

used in the literature. We also compare these results with a non-learning ap-276

proach to the problem, used as a baseline for comparison.277

RQ2. How to select an appropriate set of inputs for training a278

performance prediction model? Prior to the prediction, we have to select279

a list of inputs whose measurements will form the training dataset. We call280

this process input selection. RQ2 investigates what choice of input selection281

technique (e.g., all inputs, random selection of inputs, most diverse inputs)282

leads to the best results in terms of performance prediction. Depending on the283

offline budget, we propose and compare various input selection techniques.284

RQ3. How does the number of measured configurations affect the285

performance prediction models? Since inputs and configurations interact286

with each other to change software performance, input selection is sensitive to287

the sampling of configurations i.e., in the way we select the configurations used288

to train the model. To answer RQ3, we train performance models fed with289

different numbers of inputs and configurations.290

3. Experimental protocol291

To respond to these three research questions, we designed an experimen-292

tal protocol based on the following data (Section 3.1) and prediction models293

(Section 3.2). This section also provides details about RQ1 (Section 3.3), RQ2294

(Section 3.4) and RQ3 (Section 3.5).295

3.1. Data296

3.1.1. Dataset297

We reused the measurements from 8 configurable systems and their inputs,298

as they are introduced in [34] and referenced in the companion repository3.299

Different elements are shown in Table 2. The total number of measurements300

taken for a software system is equal to the number of configurations multiplied301

by the number of inputs and the number of performance properties. For in-302

stance, 201 configurations of x264 have been systematically measured along five303

performance properties and using 1397 videos coming from the YouTube User304

General Content (YUGC) dataset [71], for a total of 1,403,985 measures for305

x264.306

3.1.2. Using input properties to discriminate inputs307

To differentiate the inputs directly in the learning process, we computed308

and added input properties [11] that describe specific characteristics of input309

data. The input properties are preprocessed into an input feature vector and310

3Our data and measurement protocol are available and open

9

https://github.com/simula-vias/input-aware-performance-models/tree/main/data
https://github.com/simula-vias/input-aware-performance-models/blob/main/data/dataset.md

Table 2: An overview of the considered systems in their number of configurations (#Configs),
configuration options (|Options|), inputs (#Input), and input properties (|Input|). It should
be noted that some options have numerical values. The last column states the performance
properties that were measured.

System #Configs |Options| #Inputs |Input| Performance

gcc 80 5 30 7 size, ctime, exec

imagemagick 100 5 1000 5 size, time

lingeling 100 10 351 4 #conf, #reduc

nodeJS 50 6 1939 6 #operations/s

poppler 16 5 1480 6 size, time

SQLite 50 3 150 8 15 query times q1-q15

x264 201 23 1397 7 size, time, cpu, fps, kbs

xz 30 4 48 2 size, time

concatenated with the configuration features. Input and configuration options311

jointly form the feature vector that is passed as the input to the machine learning312

model.313

The encoding into a single vector allows statistical learning techniques to314

operate over a unified encoding to predict performance. Though both are en-315

coded as features, configuration options and input characteristics refer to and316

describe different entities (i.e., inputs and software configurations respectively).317

Configuration options directly come from the software and the development ac-318

tivity. They are used to differentiate every single configuration that can be319

built. Options have been made explicit, traced back and implemented in the320

code by developers and/or domain experts. On the other hand, characteristics321

describing inputs are not necessarily made explicit and usually require domain322

experts to model features that should be both descriptive about the content,323

helpful for discriminating one input from the other, and also informative for324

predicting performance. They might not be as differentiating as the ones for325

configurations as different inputs may result in the same characteristics. In the326

end, paired with the configuration options, we expect that this feature vector327

allow us to observe very similar performances from the systems. Some learning328

approaches can leverage these input properties as predictors (or features) when329

building or adapting prediction models. Based on domain knowledge, we list330

hereafter what input properties have been computed for the different sorts of331

inputs (see also Table 2): for the .c scripts compiled by gcc, the size of the file,332

the number of imports, methods, literals, for and if loops and the number of333

lines of code (LOCs); for the images fed to imagemagick, the image size, width334

and height, category (describing the image content, e.g., ostrich, dragonfly, or335

koala), and its averaged (r, g, b) pixel value; for SAT formulae processed by336

lingeling, the size of the .cnf file, the number of variables, or operators, and337

and operators; for the test suite of nodejs, the size of the .js script, the LOCs,338

number of functions, variables, if conditions, and for loops; for the .pdf files339

processed by poppler, the page height and width, the image and pdf sizes, the340

10

https://gcc.gnu.org/
https://imagemagick.org/index.php
http://fmv.jku.at/lingeling/
https://nodejs.org/en/
https://poppler.freedesktop.org
https://sqlite.org/index.html
https://www.videolan.org/developers/x264.html
https://tukaani.org/xz/

number of pages and images per input pdf; for databases queried by SQLite, the341

number of lines for eight different tables of the database; for input videos en-342

coded by x264, the spatial, temporal, and chunk complexity, the resolution, the343

encoded frames per second, the CPU usage, the width and height of videos 4;344

for the system files compressed by xz, the format and the size.345

3.1.3. Separation Training-Test346

We randomly split each set of configurations into a training set and a test347

set. We repeat this with varying proportions of configurations in the training348

set – we start with 10% of configurations dedicated to training and then 20%,349

30%, . . . , up to 90%. The training set is available for data selection and training350

of the models, whereas the test set is purely dedicated to evaluating the trained351

models. To avoid biasing the results with different samplings of configurations,352

we fix the random seeds so the different techniques work with the same training353

and test sets. Note that every training is done independently from one model354

to another and from scratch so that all training procedures do not share any355

information and start from the same point.356

Figure 2: Learning approaches to address the performance prediction problem

3.2. Performance Prediction Models357

In this section, we define the different predictive performance models used358

in the rest of the paper.359

3.2.1. Strategies and baselines360

In addition to the three learning strategies that we described in Section 2.2361

(supervised online learning, offline learning, transfer learning), we consider a362

baseline that does not learn the specifics of the inputs. The approach, called363

4For x264, input properties were already computed in [71]

11

Average, simply computes the average of configurations’ measurements ob-364

served on the input. This is supposed to mimic the behaviour of an end-user365

that might consider first a configuration of a system (e.g., the default configu-366

ration [76]) and then slightly explore the configuration space to have an average367

of the performance values. This way, the end-user may measure various config-368

urations and approximate the trend of performance values. Average is a better369

approximation than the systematic use of a single point (e.g., default value)370

when it comes to predicting the performance of any configuration, especially371

when inputs change.372

An advantage of this approach is that there is no cost for an offshore organi-373

zation (i.e., the ones that provide pre-trained models). Instead, the baseline374

applies on demand for every new input (in an online setting). Once the input375

is received, a set of randomly sampled configurations is executed over the in-376

put to retrieve performance measures. The average of these performances is377

returned, and these are the values that are communicated to the users in the378

sense that they can expect such performance on average. Obviously, such an379

averaged configuration does not account for possible variations in the perfor-380

mance of configurable systems. In particular, the average value remains fixed381

regardless of the configuration we wish to predict performance for, which could382

possibly lead to a high degree of inaccuracy.383

3.2.2. Learning Algorithm384

Until now, we described the learning strategies but did not mention which385

learning algorithms we were using. We chose 4 different algorithms, namely:386

1. OLS Regression [57] from Scikit-learn [51], estimating the performance value387

with a weighted sum of variables. It is not designed for complex cases;388

2. Decision Tree [55] from Scikit-learn, using decision rules to separate the con-389

figurations into sets and then predicting the performance separately for each390

set;391

3. Random Forest [49] from Scikit-learn, an ensemble algorithm based on bag-392

ging, combining the knowledge of different decision trees to make its predic-393

tion;394

4. Gradient Boosting Tree [18] from XGBoost [10], also derived from Decision395

Tree. Unlike Random Forest training different trees, gradient boosting aims396

at improving one tree by specialising its rules of decision at each step.397

These are prevalent algorithms and are commonly used for tabular data. We398

do not include deep learning or neural networks since we do not have lots of399

measurements in an online setting, which is usually a requirement, and since400

these methods are still commonly outperformed by random forests or gradient401

boosting [58, 20]. We train each machine learning algorithm with its default402

parameters, if not stated otherwise. The optimal parameters for an algorithm403

are dependent on the dataset, its size, and the performance property. As a404

result, they are necessary to be adjusted on a per-case basis.405

12

3.3. Selecting Algorithms (RQ1)406

First, we address RQ1 - How do different machine learning algorithms com-407

pare for establishing a relevant performance prediction model?. We decompose408

it into three parts, that jointly answer the research question.409

3.3.1. Why using machine learning?410

Our first goal is to state whether machine learning is suited to address the411

performance prediction problem. To assess the benefit of using machine learn-412

ing, we compare the Average baseline to different learning algorithms. We im-413

plement them in an online setting, i.e., we use the supervised online approach;414

given the input of the user, we want to estimate its performance distribution.415

This is a prediction for one input at a time.416

3.3.2. Which machine learning algorithm to use?417

This evaluation is also the opportunity to compare these learning algorithms418

and search for the one that outperforms the others. We also study the evolu-419

tion of their prediction errors with increasing training sizes. We consider those420

listed in Section 3.2.2. After training them on the training set, we predict the421

performance distribution of the test set and compute the prediction error. We422

repeat it for all combinations of system, inputs, and performance properties.423

As prediction error, we rely on the Mean Absolute Percentage Error [40]. In424

Figure 3, we display the average MAPE values for various training sizes.425

3.3.3. What is the benefit of hyperparameter tuning?426

Finally, we want to estimate how much accuracy we could expect to gain427

when we tune the hyperparameters of learning algorithms. To do so, we rely428

on a grid search [5] for hyperparameter tuning. We compute the training du-429

ration and prediction errors of these algorithms, with and without tuning their430

hyperparameters, and report the average difference for both.431

3.4. Selecting Inputs (RQ2)432

RQ1 studies the effectiveness of machine learning. However, different ways433

of selecting inputs during the data collection or a different number of inputs434

could alter the accuracy of the final performance model. Then, we address RQ2435

- How to select an appropriate set of inputs for training a performance prediction436

model? We separate this into three questions.437

3.4.1. How many inputs do we need to learn an accurate predictive performance438

model?439

From the perspective of a user in charge of the training, adding an input to440

measure incurs a computational cost and should be justified by an improvement441

of the model. So, what is the effect of adding new inputs on the accuracy of442

predictive performance models? How many inputs do we need to reach a decent443

level of accuracy? We aim at minimising the number of inputs used in the444

training while maximising the accuracy of the obtained model. To do so, in445

13

this part of the evaluation, we train different performance models using various446

numbers of inputs and compare their prediction errors.447

Then, once the number of inputs is fixed, we search if there is any benefit448

in precisely and methodologically selecting the inputs for data collection and449

model training. Does it bring any improvement over the random selection of450

inputs? Do the different inputs used in the training set change the final predic-451

tive performance model accuracy? Depending on the offline budget of the user,452

we have different objectives.453

3.4.2. How to select the input data for an offline setting?454

If the offline budget is restricted, a.k.a. the offline setting, the goal is to455

constitute a representative set of inputs to learn from, in order to build a per-456

formance model that will generalise as much as possible. We care about selecting457

diverse and representative inputs, in order to predict accurate results whatever458

the input data. For this setting, we compare the following input selections:459

1. Random - Using a uniform distribution to decide which inputs should be460

included in the training;461

2. K-means - Based on input properties, we apply K-means clustering to dif-462

ferentiate clusters of inputs with distinct characteristics. To increase the463

diversity in the selection, we pick the inputs closest to the center of the clus-464

ters;465

3. HDBScan - Similar to the previous technique but with another clustering466

algorithm, namely the HDBScan [6], using density-based instead of means-467

based5;468

4. Submodular (Selection) - This technique computes a similarity matrix be-469

tween the different inputs of a software system and optimises facility location470

functions [31] to choose a representative set of inputs6.471

For this offline setting, we implement the supervised offline approach with a472

Gradient Boosting (best in Section 4.1.2). Once the input selection technique473

chose the input, we include all related measurements in the training set. The474

test set is then composed of the measurements of all other inputs, not selected.475

To avoid biasing the machine learning model with different scales of performance476

distribution, we choose to standardise [13] all performance properties. But it477

has a drawback: since their values are close to zero, it artificially increases478

the MAPE values. To overcome this, we switch to the Mean Absolute Error479

(MAE) [40]. Since the performance property is standardised, we assume that480

models with MAE values inferior to 0.2 are good – way better than the expected481

average distance 2
π ≃ 1.13 [64] between two points selected uniformly. We repeat482

the prediction 20 times and depict the average MAE (y-axis, left) in Figure 4483

for different input selection techniques (lines) and number of inputs (x-axis) on484

a per-system basis. We added the number of training samples (y-axis, right).485

Except for gcc and xz, x-axis are in log scale.486

5We rely on this implementation: https://hdbscan.readthedocs.io/ [39]
6We rely on this implementation: https://apricot-select.readthedocs.io/ [56]

14

https://hdbscan.readthedocs.io/
https://apricot-select.readthedocs.io/

3.4.3. How to select the input data for an online setting?487

If the offline budget is low, a.k.a., in the online setting, then we must be488

efficient and focus on predicting the performance distribution for the current489

input of the user. For this setting, we implement a transfer learning approach:490

the input of the user becomes the target input, and the candidate input becomes491

the source input. In this online setting, the goal of input selection becomes to492

find one good source input that is as close as possible to the current input493

of the user - in terms of characteristics and performance. The choice of a494

good source should improve the performance prediction of the transfer learning495

approach [32]. We propose the following input selections:496

1. Random - Same baseline as in the offline setting;497

2. Closest (Input) Properties - Two inputs sharing common characteristics might498

also share common performance distributions. Following this reasoning, to499

improve the performance prediction, we have to select an input whose prop-500

erties are similar to the current input’s properties. To do so, we compute the501

MAE between the properties of the current input and the properties of all502

the candidate inputs. We pick the input obtaining the smallest MAE value;503

3. Closest Performance - We use the few measurements already measured on the504

current input. For these, we compute the Spearman correlation [27] between505

the performance distribution of the current input and all the candidate inputs.506

Finally, we select the candidate with the highest correlation;507

4. Input Clustering (& Random) - With the help of a K-Means algorithm, we508

form different clusters of inputs based on their properties. We randomly pick509

a candidate input in the cluster of the current input.510

For this question, we use Gradient Boosting. We display the median MAPE511

results over 10 predictions for all software systems, performance properties and512

number of inputs in Table 3.513

3.5. Selecting Configurations (RQ3)514

In this section, we vary the budgets of (1) inputs and (2) configurations515

used to constitute the training set fed to the model. RQ3 - How does the516

number of measured configurations affect the performance prediction models? In517

this research question, we compare the accuracy of models according to the518

numbers of inputs and configurations used during their training, answering these519

questions:520

3.5.1. What is the best tradeoff between selecting inputs and sampling configu-521

rations?522

For a fixed number of configurations, we study the evolution of the accuracy523

with the number of considered inputs. Is it better to measure lots of config-524

urations or numerous inputs? Since the evaluation is designed to improve the525

generalization of the model, it mostly relates to models trained in an offline526

setting. Therefore, we implement the offline approach, fix the algorithm to527

Gradient Boosting and use the random baseline as input selection technique.528

We repeat the experiment 20 times. In Figure 5, we depict the MAE (colour)529

for various numbers of inputs (x-axis) and configurations (y-axis).530

15

We are then interested to look at the impact of the number of configurations531

on the accuracy of three input-aware approaches (transfer learning vs supervised532

online; offline learning vs supervised online).533

3.5.2. Is it better to use the transfer learning or the supervised online approach?534

Depending on the online budget of the user, it can be worth (or not) to535

transfer the knowledge from one input to another. If the online budget is high,536

we guess there is no need to transfer, i.e., we do not use transfer learning. If537

this budget is low, we can benefit from the transfer learning approach. How538

much online budget justifies the decision for transfer learning? To answer this,539

we implement both approaches with different numbers of configurations on the540

target input. We use Gradient Boosting and predict the performance spanning541

all systems and performance properties. Due to outliers drastically increasing542

the average value, we compute the median MAPE instead of the average. In543

Figure 6, we display the MAPE value (y-axis) for different budgets of configu-544

rations (x-axis).545

3.5.3. Should we train performance models offline or online?546

To answer this question, we compare the supervised offline approach to the547

supervised online approach w.r.t. MAE. We predict performance implementing548

both approaches and compute the MAE value for different training size – varying549

from 10% to 90% of the configurations available per input. Figure 7 displays550

the results for both approaches, i.e., the average MAE on all software systems551

and performance properties.552

4. Evaluation553

We report the results following the protocol of Section 3.554

4.1. Selecting Algorithms (RQ1)555

4.1.1. Is using ML relevant in the context of predictive performance modelling?556

Figure 3 shows the benefits of using ML as compared to the Average base-557

line. It appears that ML techniques clearly outperform the average performance558

value predicted by the baseline for all training sizes. The key indicator to study559

is the evolution of errors with increasing training proportions; while the base-560

line’s accuracy does not progress with additional measurements, the learning561

algorithms improve their prediction, from 12% to 3% error.562

4.1.2. Which ML algorithm to use?563

While ML is generally beneficial, the prediction quality varies between the564

different algorithms. For instance, OLS Regression generally leads to bad re-565

sults, e.g., 22% of error with 10% of the configurations. Unlike the OLS re-566

gression, tree-based learning algorithms take advantage of the addition of new567

measurements. For a budget of 50% of the configurations, their median pre-568

diction goes under the 5% of error, which is encouraging. This result of 5% is569

16

Figure 3: Which (learning) algorithm to use?

only valid in average; the prediction will be better for a few software systems,570

e.g., imagemagick or x264, but does not hold for others, e.g., lingeling or pop-571

pler. Though there is no big difference between these three learning algorithms,572

we observe slightly better predictions for Random Forest compared to Decision573

Trees, and for Gradient Boosting compared to Random Forest.574

17

Figure 4: Offline setting with Gradient Boosting (best) and different input selection tech-
niques: Influence of input selection and the number of inputs (lower MAPE = better).

18

4.1.3. What is the benefit of hyperparameter tuning?575

Our results found that hyperparameter search improves the MAPE on av-576

erage by 8 ± 16% within a range of 3 → 37% but also requires on average 120577

times more training time when doing a grid search of estimator parameters. It578

should be noted that this is an improvement in percent, not percentage points.579

While the exact overhead of hyperparameter search is dependent on the num-580

ber of configuration options of the model and the search method, we note that581

the overall benefit on the datasets is limited. This is especially confirmed by582

the observation that the best-found hyperparameters were changing depending583

on both the system and the size of the training dataset. For simplicity of the584

setup, the rest of the evaluation uses the default parameters of each model, if585

not otherwise noted.586

RQ1 Machine learning is well-suited to address the predictive perfor-
mance modelling problem over configurations and inputs. It outper-
forms the Average baseline as it makes more accurate predictions. Our
results also show that using tree-based learning should be favoured over
OLS Regression. These tree-based algorithms reach decent levels of er-
rors with reasonable online budgets, between 5% and 10% relative error
for most of the cases, and potentially improved by 8% when tuning hy-
perparameters.

587

4.2. Selecting Inputs (RQ2)588

4.2.1. How many inputs are needed to learn an accurate predictive performance589

model?590

Measuring inputs differs across software systems: measuring 5 inputs rep-591

resents 5 ∗ 201 = 1005 configurations for x264 but only 5 ∗ 30 = 150 for xz.592

Figure 4 shows that the performance model reaches its lowest error threshold593

when considering about 20 inputs. Results are thus easier to interpret on sys-594

tems with more inputs, as compared to gcc and xz. There are however more595

difficult cases, e.g., Node.js and poppler, in our experiment that might require596

more inputs to improve the accuracy of the prediction. To get a consistent pre-597

diction, we recommend the user to measure at least 25 inputs with a sufficient598

number of configurations per input.599

4.2.2. How to select the input data for an offline setting?600

In an offline setting, we seek to train a generalized model for all inputs; the601

selected inputs are supposed to be representative of the diverse set of inputs to602

be expected during deployment. Figure 4 presents our results. As expected,603

with an increased number of selected inputs, the influence of the input selection604

decreases. The input selection is especially important for small numbers of605

inputs. The evaluation shows that our techniques kmeans, submodular and606

hdbscan fail to beat the random baseline when selecting the inputs prior to607

19

Figure 5: Offline setting with Gradient Boosting (best) and random baseline as input selection
technique: Error of performance models (lower MAE = brighter color = better) according to
different budgets (inputs & configurations). For imagemagick a consistent avg. MAE of 0.06
is observed.

the training of the model. There is no clear outperforming technique of input608

selection. These results could be explained by multiple factors: (1) the input609

properties processed by the input selections are not sufficient to differentiate610

the inputs (2) our baseline focuses on selecting different profiles of inputs, while611

it may be more efficient to select a set of average-like inputs. Out of this result,612

we advise keeping it simple and adopting the random baseline.613

4.2.3. How to select the input data for an online setting?614

In an online setting, we specifically build a model for the current input and615

select a similar input to transfer the knowledge from. Table 3 details the re-616

sults for the different input selections, as the median MAPE results over 10617

predictions for all software systems, performance properties, and the number of618

inputs. Unlike the offline setting, our input selection techniques were able to619

beat the random baseline, the best input selection technique being the Closest620

Performance with an average MAPE around 3.8, followed by the Closest Proper-621

ties (4.2) and the Input Clustering (4.7). Wilcoxon signed-rank tests [59] (with622

significance levels at 0.05) confirm that predictions related to different input se-623

lections are significantly different from those using the random baseline: p = 0.0624

for Closest Performance, p = 1 ∗ 10−184 for Closest Properties and p = 1 ∗ 10−27
625

for the Input Clustering. Therefore, and to continue to provide guidance for626

users, we advise using the Closest Performance to select the input in an online627

setting. But beyond the raw comparison of error values, beating the Random628

baseline with the Closest Property technique is a strong result. Empirically,629

it validates that these input properties are valuable to compute and should be630

20

Table 3: Online Setting - Influence of input selection

Input Selection MAPE (%) Training Time (sec)

Random 5.22 0.02
Closest Properties 4.17 0.05
Closest Performance 3.82 0.07
Input Clustering 4.70 0.02

included in the models to improve the prediction. Besides, the evaluation shows631

that training times are negligible.632

RQ2 In an offline setting, the results show that diversification of inputs
(rather than configurations) should be prioritized by using uniform dis-
tribution to select inputs, i.e., the random baseline. In an online set-
ting, the performance correlations technique gains about 1.4 point of
error compared to a random selection of inputs. Our results empirically
validate the important role of input properties when predicting software
performance, i.e., pretrained performance models (offline) can be reused
under the condition input properties are computed and leveraged on-
line.

633

4.3. Selecting Configurations (RQ3)634

4.3.1. What is the best trade-off between selecting inputs and sampling configu-635

rations?636

According to Figure 5 results, diversifying the inputs is more effective than637

selecting different configurations to train an input-aware performance model.638

But for a fixed budget of inputs, there is a slight improvement in accuracy when639

increasing the number of configurations. As a result, both should be combined640

to obtain the best possible model. Overall, the ideal budget – both in terms641

of inputs and configurations – highly depends on the expected level of errors642

combined with the difficulty of learning a predictive performance model for the643

software under test. For instance, predicting the performance of imagemagick644

is relatively easy, with an average MAE value at 0.06. For this software system,645

picking 25 inputs is almost already a waste of resources, we do not need that646

much data - 5 inputs is already enough with 30% of the configurations. Other647

systems are harder to learn from e.g., lingeling with an average MAE of 0.76.648

For these, we recommend increasing the number of inputs and configurations.649

The MAE obtained on the training set should be used as a proxy to estimate the650

difficulty of predicting the performance of the software under test. The greater651

its value, the greater the budget needed to learn an accurate model.652

21

Figure 6: Transfer Learning VS Supervised Online Learning.

4.3.2. Is it better to use transfer learning or a supervised online approach?653

With the input selection technique set to Closest Performance and whatever654

the percentage of configurations used in the training, the transfer approach al-655

ways outperforms the supervised online approach, as shown in Figure 6. This656

strong result demonstrates the importance of capitalizing on the existing mea-657

surements, measured in an offline setting. Hence, if we are able to create rep-658

resentative sets of inputs for each software system (thanks to Closest Perfor-659

mance), then transfer learning becomes the best approach to use.660

However, the strategy of picking the source input among all the inputs of our661

dataset is not always possible – it requires a high offline budget. We consider662

another scenario where we put ourselves in the situation of a user with a low663

offline budget i.e., not able to select an ideal source input. We thus add the664

comparison of transfer learning with a random input selection baseline. Even in665

this case, we still outperform the supervised approach for less than 55% of the666

configurations. But this transfer with random selection has an expiration date;667

after a training proportion of 55% - represented by the arrow on the graph,668

it leads to negative transfer: the added measurements (of the source) become669

noisy data interfering with the training of the target model.670

4.3.3. Should we train performance models offline or online?671

Figure 7 shows the evolution of the two supervised approaches, offline and672

online, depending on how many configurations are used as part of the train-673

ing. The first point we notice is the slow progression of the supervised offline674

approach, only from 0.37 to 0.30 between 10% and 90% of configurations.675

A possible explanation is that it is so hard to generalize over the input dimen-676

sion that it hides the benefit of adding configurations. While when considering677

only one input at a time, this difference in performance distributions does not678

bother the training of the machine learning model. Nevertheless, comparing the679

22

Figure 7: Offline Learning VS Supervised Online Learning.

raw numbers provides a straight answer to the initial question: unless the online680

budget is really low, if the choice between a supervised offline and a supervised681

online approach occurs, one should definitely prefer the online approach. But682

this finding has to be contextualized w.r.t. cost and effectiveness. From the683

point of view of the final user, the computation of measurements in an online684

setting to build a performance model will always last longer than offline predic-685

tion, using an already-trained model. Yet, when users have an online budget686

(even a small one), they should always prefer the online approach compared to687

the offline approach. Stated differently, the supervised offline approach should688

be adopted for lack of a better solution, as the last approach to implement when689

users cannot afford to measure configurations in an online setting.690

RQ3 Supervised online learning quickly outperforms the offline learn-
ing version. With more than 20% of configurations for training, online
learning already shows a lower MAE on average than its offline counter-
part. We come up with the following high-level recommendation: 1) if
the online budget is low, transfer learning should be used; 2) with a sub-
stantial online budget (55% of the configurations in our experiments), it
might be better to use the supervised online approach; 3) offline learning
without transfer should be avoided, except for very small online config-
uration budgets.

691

5. Discussion692

Each part of the evaluation provides a recommendation for the three user693

profiles defined in Section 2.1, depending on the trade-off between their offline694

23

and their online budgets. This discussion summarizes our findings while answer-695

ing RQ1 to RQ3 and turns these findings into recommendations and actionable696

rules, thus guiding the user to solve the performance prediction problem. How697

to help users predict their software performance, whatever be the698

input data and their configuration?699

Depending on the available online budget, we distinguish the following cases:700

• If the user has a high online budget (e.g., user persona C) we recommend701

using the supervised online approach (Sec. 4.3.3) with a Gradient Boosting702

Tree implementation (Sec. 4.1.2) and tuned hyperparameters (Sec. 4.1.3). In703

that case, users can expect low prediction errors. Assuming configurations’704

measurement has been collected, learning a performance model from scratch705

for each unique input is the ideal scenario, as is the case with a large online706

budget.707

• If the user has a low online budget, we can also recommend the super-708

vised online approach, but cannot promise outstanding performance estima-709

tions. Hence, if a representative set of inputs has already been measured i.e.,710

with a big offline budget (as for user persona B) we rather recommend using711

the transfer learning approach (Sec. 4.3.2) with a Gradient Boosting algorithm712

and using the closest performance input selection technique (Sec. 4.2.3). Our713

experiments show that the performance predictions of user persona B, who is714

counting on inputs in an offline setting, will outperform the online predictions of715

user persona C whatever be the budget of configurations for reasonable budgets716

of configurations;717

• If the user has no online budget (e.g., the user persona A), then the available718

offline budget is key. If the offline budget is low, there is no silver bullet:719

since we cannot guarantee low errors with our models, it is probably better720

to avoid predicting than providing a poor estimation of software performance.721

If the user has access to a diverse set of configurations’ measurements over722

different inputs (high offline budget), then we can advise using the supervised723

offline approach (Sec. 4.3.3) implementing a Gradient Boosting algorithm with724

a random selection of inputs (see Sec. 4.2.2).725

Figure 8 summarizes these rules of thumb into a flow diagram. We also726

depict likely locations for user personas A, B and C at the end of the decision727

process, based on our previous recommendations, as well as the observed relative728

errors from our experiments. These observed errors serve as a rule-of-thumb,729

but are, of course, not directly transferable to other systems and setups.730

As a limitation of our work, we highlight that it is difficult to learn the731

performance distribution for a few software systems e.g., lingeling, poppler, and732

even Node.js For these systems, the prediction errors are above 20% when im-733

plementing a supervised offline approach with tight budgets of configurations734

or inputs. It is worth noticing that a computational effort in terms of measure-735

ments is requested i.e., to measure more than the general and averaged threshold736

of 25 inputs on average. The requested amount of inputs on a per-system basis737

24

Figure 8: Lessons Learned - A flow diagram for users

is documented in the companion repository7. This is potentially related to the738

impact of individual features on the performance metric, i.e. the spread of the739

correlation, which was investigated in concurrent work for the same dataset as740

used in this paper [34]. For the difficult-to-learn software systems, there are741

multiple features that have a high impact on the performance metric [34, Ta-742

ble 4], leading to a more difficult-to-learn objective landscape for the regression743

task.744

Our results relate further to the existing body of work and confirm some745

of the results previously found. For example, BEETLE [32] highlights the im-746

portance of selecting the right input-specific source(s) for transfer learning to747

maximize the accuracy and mitigate the risk of negative transfer, a problem748

similar to the input selection we consider in RQ2. In [26], it is discussed in749

which scenarios transfer learning is more applicable compared to when it might750

lead to a negative transfer. The applicability is found to be hindered by a751

higher severity of the change between the original training environment and the752

target prediction environment to which the model is transferred. This prob-753

lem of negative transfer in variability modelling was similarly confirmed for the754

Linux kernel in [37]. The negative transfer problem underlines the importance755

of establishing a training set that is as broad and diverse as possible, in order756

to best fit the data distribution that the model will apply during deployment.757

The closer the target environment, albeit new inputs, configurations, or other758

variability aspects, is to the environments from which the training data was col-759

lected, the smaller the risk of a negative transfer and the better the performance760

prediction quality.761

7See https://github.com/simula-vias/input-aware-performance-models/blob/main/

src/when_to_stop_measuring_inputs.ipynb

25

https://github.com/simula-vias/input-aware-performance-models/blob/main/src/when_to_stop_measuring_inputs.ipynb
https://github.com/simula-vias/input-aware-performance-models/blob/main/src/when_to_stop_measuring_inputs.ipynb

6. Threats to Validity762

A first threat to validity is linked to the data we are using; since we rely763

on a dataset [34], we are exposed to the same threats to validity. In particu-764

lar, an error in the measurement protocol could invalidate our results. Besides,765

we do not consider all the possible configuration options of the software sys-766

tems. The fact that it includes multiple software systems (8 in total) and a767

consequent number of performance measurements (roughly two million when768

considering the different performance properties) is supposed to alleviate these769

threats. A second threat to validity relates to the input properties computed in770

Section 3.1.2. Since we are not domain experts of each of the eight software sys-771

tems considered in this experiment, we cannot validate the construction of such772

properties, i.e., it is likely that there is an opportunity to craft more expressive773

input properties. To the best of our knowledge, which input properties to use in774

order to improve the performance prediction remains an open question [11, 75].775

Furthermore, we neglect their computational cost. As we mentioned, being able776

to report precisely the properties can be a tedious problem. Measures need777

to be precise, external factors need to be mitigated as much as possible to re-778

duce potential interactions with the measurements, etc. Being meticulous about779

these aspects may drastically increase the cost to get such measurements and780

ultimately threaten the results of Section 4.2.2 or overestimate the benefit of the781

supervised offline approach. Another threat to validity is related to the random-782

ness in machine learning methods, subject to modifications in their predictions.783

To reduce these stochastic effects, we (1) fix the random seed to feed the same784

training and test sets to all models and have comparable results and (2) repeat785

the experiments 20 times. Finally, we acknowledge that we relied on already786

existing libraries and implementations. These can be buggy or present some in-787

accuracies that may favour our results. We choose to use ML implementations788

coming from scikit-learn which is one of the most popular Python ML libraries789

at the moment. Its community is active and sensitive to these aspects, we can790

assume that if such a problem would exist, it would have been discovered and791

fixed quickly.792

7. Related Work793

Machine learning and configurable systems. Machine learning tech-794

niques have been widely considered in the literature to learn software configura-795

tion spaces [52, 54, 43, 25, 26, 68, 44, 45, 48, 19, 12, 16, 23]. Several works have796

proposed to predict the performance of configurations, with several use-cases in797

mind for developers and users of configurable systems [60, 12, 63, 62]: the main-798

tenance and interpretability of configuration spaces, the exploration of tradeoffs799

in the configuration space, the automated specialization of configurable sys-800

tems, or simply taking informed decisions when choosing a suited configuration.801

The selection of an optimal configuration [48, 19, 47] is also an extensive line802

of research. We do not target the problem of finding an optimal configuration803

in this article. Though prediction model can be leveraged, more targeted and804

26

effective techniques have been proposed to find an optimal configuration [47].805

Most of the studies support learning models restrictive to specific static settings,806

such that a new prediction model has to be learned from scratch once the en-807

vironment changes. The variability of input data exacerbates the problem and808

questions the generalization of configuration knowledge, e.g., a configuration is809

only optimal for a given input.810

Input sensitivity of configurable systems. Input sensitivity has been811

partly considered in some specific research works. Let us take the video encod-812

ing [38] as an example: Pereira et al. [3] study the effect of sampling training813

data from the configuration space on x264 configuration performance models for814

19 input videos on two performance properties. Netflix conducts a large-scale815

study for comparing the compression performance of x264, x265, and libvpx [1].816

5000 12-second clips from the Netflix catalogue were used, covering a wide range817

of genres and signal characteristics. However, only two configurations were con-818

sidered and the focus of the study was not on predicting performances. Our819

study covers much more inputs, systems, and performance properties. Valov et820

al. [67] proposed a method to transfer the Pareto frontiers (encoding time and821

size) of performances across heterogeneous hardware environments. Yet, the in-822

puts (video) remain fixed, which is an immediate threat to validity. In fact, this823

threat is shared by numerous studies on configurable systems that consider con-824

figurations with the same input video (see [52] for the references). In response,825

we carefully assess numerous combinations of learning approaches, algorithms,826

and input selections to deal with input sensitivity. Input sensitivity is both the827

root cause hidden behind the need of input-aware performance models and the828

reason why these models may fail at predicting software performance whatever829

their input is. If there were no interaction at all between inputs and configu-830

rations, a simple performance model for all inputs would suffice. Based on this831

work combined with [34], our conjecture is as follows: the more input-sensitive832

a software system is, the more difficult (and costly) it is to train an efficient833

input-aware performance model.834

The input sensitivity issue has also been identified — and sometimes dealt835

with — in some other domains: SAT solvers [75, 17], compilation [53, 11], data836

compression [29], database management [69, 14], cloud computing [15, 36, 12],837

etc. These works purposely leverage the specifics of their domain. However,838

it is unclear how proposed techniques could be adapted to any domain and all839

software systems [42]. Thus, We favour a generic, domain-agnostic approach840

(e.g., transfer learning) as part of our study. Importantly, most of these works841

pursue the objective of optimizing the performance of a software system ac-842

cording to a given input (workload). In contrast, we consider the problem of843

predicting the performance of any configuration. Our key goal is to investigate844

how configuration knowledge can be generalized or transferred among inputs.845

Transfer learning. Transfer learning has been considered for configurable846

software systems, with the idea of transferring knowledge across different com-847

puting environments etc. The promise is to reduce measurements’ efforts and848

costs over configurations. Jamshidi et al. define Learning to Sample (L2S) [26]849

that combines an exploitation of the source and an exploration of the target to850

27

sample a list of configurations. As many other transfer learning works [4], L2S851

is applied to transfer performance of executing environments (e.g., hardware852

changes), not input changes. L2S could be adapted as part of transfer learning853

(see Figure 2). However, L2S is highly sensitive to the selection of a source (an854

input) for a given target (another input). Martin et al. develop TEAMs [37], a855

transfer learning approach predicting the performance distribution of the Linux856

kernel using the measurements of its previous releases. Valov et al. showed857

that linear models are effective to transfer knowledge across different hardware858

environments [68]. However, inputs can significantly alter performance distri-859

butions e.g., Pearson correlations can be close to 0 for some pairs of inputs,860

systems, and performance properties. There is not necessarily a linear correla-861

tion and relationship, as for hardware changes. We assess model shifting as part862

of transfer learning. There are many studies in the literature of software engi-863

neering applying transfer learning for defect prediction [7, 35, 46, 9, 70]. They864

are used for handling a classification problem instead of a regression problem as865

in our case. Additionally, while researchers commonly utilize software quality866

metrics as predictive features for cross-software defects, our approach differs as867

we leverage configuration options to forecast performance. Beyond software sys-868

tems, transfer learning is subject to intensive research in many domains (e.g.,869

image processing, natural language processing) [50, 73, 78]. Different kinds of870

data, assumptions, and tasks have been considered. The interplay between con-871

figuration options and inputs calls to tackle a regression problem over tabular872

data that differ from images or textual content. Some techniques are simply873

not applicable in our context. Another specificity of our problem is that there874

is this open question on how to select and adapt the source for a given target875

(here: a new input fed to a configurable system). Overall, we design transfer876

learning techniques that leverage characteristics of inputs and that can operate877

over tabular data.878

In this paper, transfer learning techniques targeting the interplay between879

inputs and configurations work best if the source and the target inputs are close880

to each other (in terms of performance profiles [11]). To this matter and for881

this specific context, the most important part is neither the used ML algorithm882

nor the way to transfer the knowledge, but just to associate the right source883

input to the target input under prediction. Two insights regarding this finding;884

1. to be optimal, transfer learning might require an additional offline effort885

(i.e., measuring potential source inputs) to work best, even if the technique is886

supposed to be labelled as online, so we can pick the best source input among a887

sufficient set of inputs; 2. More than comparing TL techniques with each other,888

future efforts should be focusing the optimal association of inputs, how to find889

the best source input given the current target input. Our current proposition,890

deriving input properties as metrics between inputs to select the best source, can891

be seen as an extension of the bellwether effect (e.g., used by BEETLE [32]),892

stating there exists a unique source input leading to superior transfer results893

whatever the target.894

Selection problem. The automated algorithm selection problem is sub-895

ject to intensive research [28, 22, 75, 65]: given a computational problem, a set896

28

of algorithms, and a specific problem instance to be solved, the problem is to897

determine which of the algorithms can be selected to perform best on that in-898

stance. Techniques have substantially improved the State-of-the-Art in solving899

many prominent artificial intelligent problems, such as SAT, CSP, QBF, ASP,900

or scheduling problems [28]. For instance, SATZilla uses machine learning to901

select the most effective algorithm from a portfolio of SAT solvers for a given902

SAT formula [75]. There are several differences in our work. First, we target903

the problem of predicting the performance of any configuration as opposed to904

finding an optimal system. Second, in our case, the set comprises all (valid)905

configurations of a single, parameterized, configurable system. In the auto-906

mated algorithm setting, the set of algorithms come from different individual907

software implementation and systems. As stated in [28] (Section 6), our problem908

differs and is still open because (1) the space of valid configurations to select909

from is typically very large; (2) learning the mapping from instance features910

(i.e., inputs’ properties) to configurations is challenging. We precisely address911

this problem in this article, considering a large dataset and multiple learning912

approaches.913

8. Conclusion914

Due to the interactions between inputs and configurations, predicting the915

performance property of a software configurable system whatever the input data916

is non-trivial and yet of practical importance. In particular, performance mod-917

els trained on a single input can quickly become inaccurate and useless when918

used over other inputs. This lack of generalizability and practicality suggests919

to investigate solutions for learning input-aware performance models. In this920

article, we empirically evaluated the effectiveness of different learning strategies921

(offline learning, supervised online learning, transfer learning) and user personas922

when addressing this problem. We leveraged a large dataset comprising 8 soft-923

ware systems, hundreds of configurations and inputs, and dozens of performance924

properties, spanning a total of 1,941,075 configurations’ measurements.925

Our study empirically proves that measuring the performance of configura-926

tions on multiple inputs leads to 1) learning the complexity of predictive perfor-927

mance models ; 2) training models which are robust to the change of input data.928

Offline learning can build configuration knowledge that pays off and benefits to929

online learning when a new input needs to be processed. We emphasize the need930

to compute relevant input properties (e.g., video characteristics) as part of the931

learning to discriminate the different inputs fed to the software system. As fu-932

ture work, we plan to consider input-aware optimization methods. The problem933

would differ: instead of transferring the whole performance distribution across934

inputs and configurations, optimization pursues the goal of finding a single opti-935

mal point, typically through the transfer of some configuration knowledge across936

inputs.937

29

Acknowledgements.938

This research was funded by the ANR-17-CE25-0010-01 VaryVary project939

and the associated Inria/Simula team Resilient Software Science (RESIST EA)940

https://gemoc.org/resist/941

30

https://gemoc.org/resist/

References942

[1] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron: A943

Large-Scale Comparison of x264, x265, and libvpx – a Sneak Peek. netflix-944

study (2016)945

[2] Alourani, A., Bikas, M., Grechanik, M.: Input-sensitive profiling: A survey.946

In: Advances in Computers, pp. 31–52. Elsevier (2016)947

[3] Alves Pereira, J., Acher, M., Martin, H., Jézéquel, J.M.: Sampling effect948

on performance prediction of configurable systems: A case study. In: Proc.949

of ICPE’20, p. 277–288 (2020)950

[4] Ballesteros, J., Fuentes, L.: Transfer Learning for Multiobjective Optimiza-951

tion Algorithms Supporting Dynamic Software Product Lines, p. 51–59.952

Association for Computing Machinery, New York, NY, USA (2021). URL953

https://doi.org/10.1145/3461002.3473944954

[5] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.955

Journal of machine learning research 13(2) (2012)956

[6] Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-Based Clustering957

Based on Hierarchical Density Estimates. In: J. Pei, V.S. Tseng, L. Cao,958

H. Motoda, G. Xu (eds.) Advances in Knowledge Discovery and Data Min-959

ing, Lecture Notes in Computer Science, pp. 160–172. Springer, Berlin,960

Heidelberg (2013). DOI 10.1007/978-3-642-37456-2 14961

[7] Chen, H., Jing, X.Y., Li, Z., Wu, D., Peng, Y., Huang, Z.: An empirical962

study on heterogeneous defect prediction approaches. IEEE Transactions963

on Software Engineering (2020)964

[8] Chen, J., Xu, N., Chen, P., Zhang, H.: Efficient compiler autotuning via965

bayesian optimization. In: Proc. of ICSE’21, pp. 1198–1209 (2021). DOI966

10.1109/ICSE43902.2021.00110967

[9] Chen, J., Yang, Y., Hu, K., Xuan, Q., Liu, Y., Yang, C.: Multiview transfer968

learning for software defect prediction. IEEE Access 7, 8901–8916 (2019)969

[10] Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system.970

In: Proceedings of the 22nd ACM SIGKDD International Conference on971

Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. ACM,972

New York, NY, USA (2016). DOI 10.1145/2939672.2939785. URL http:973

//doi.acm.org/10.1145/2939672.2939785974

[11] Ding, Y., Ansel, J., Veeramachaneni, K., Shen, X., O’Reilly, U.M., Ama-975

rasinghe, S.: Autotuning algorithmic choice for input sensitivity. In: ACM976

SIGPLAN Notices, vol. 50, pp. 379–390. ACM (2015)977

31

https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://doi.org/10.1145/3461002.3473944
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785

[12] Ding, Y., Pervaiz, A., Carbin, M., Hoffmann, H.: Generalizable and inter-978

pretable learning for configuration extrapolation. In: Proceedings of the979

29th ACM Joint Meeting on European Software Engineering Conference980

and Symposium on the Foundations of Software Engineering, ESEC/FSE981

2021, p. 728–740. Association for Computing Machinery, New York, NY,982

USA (2021). DOI 10.1145/3468264.3468603. URL https://doi.org/10.983

1145/3468264.3468603984

[13] Dowdy, S.M., Wearden, S.: Statistics for research. Wiley (1983)985

[14] Duan, S., Thummala, V., Babu, S.: Tuning database configuration param-986

eters with ituned. Proc. VLDB Endow. 2(1), 1246–1257 (2009). DOI987

10.14778/1687627.1687767. URL https://doi.org/10.14778/1687627.988

1687767989

[15] Duarte, F., Gil, R., Romano, P., Lopes, A., Rodrigues, L.: Learning non-990

deterministic impact models for adaptation. In: Proc. of SEAMS’18, p.991

196–205 (2018). DOI 10.1145/3194133.3194138. URL https://doi.org/992

10.1145/3194133.3194138993

[16] Eggensperger, K., Lindauer, M., Hutter, F.: Neural networks for predicting994

algorithm runtime distributions. In: Proceedings of the 27th International995

Joint Conference on Artificial Intelligence, IJCAI’18, pp. 1442–1448. AAAI996

Press, Stockholm, Sweden (2018)997

[17] Falkner, S., Lindauer, M., Hutter, F.: Spysmac: Automated configuration998

and performance analysis of sat solvers. In: Proc. of SAT’15, pp. 215–222999

(2015)1000

[18] Friedman, J.H.: Stochastic gradient boosting. Computational Statis-1001

tics & Data Analysis 38(4), 367–378 (2002). DOI https://doi.org/10.1002

1016/S0167-9473(01)00065-2. URL https://www.sciencedirect.com/1003

science/article/pii/S0167947301000652. Nonlinear Methods and Data1004

Mining1005

[19] Fu, W., Menzies, T.: Easy over hard: A case study on deep learning. In:1006

Proc. of ESEC-FSE’17, p. 49–60 (2017). DOI 10.1145/3106237.3106256.1007

URL https://doi.org/10.1145/3106237.31062561008

[20] Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep1009

learning models for tabular data. In: A. Beygelzimer, Y. Dauphin, P. Liang,1010

J.W. Vaughan (eds.) Advances in Neural Information Processing Systems1011

(2021). URL https://openreview.net/forum?id=i_Q1yrOegLY1012

[21] Guo, J., Czarnecki, K., Apely, S., Siegmundy, N., Wasowski, A.:1013

Variability-aware performance prediction: A statistical learning approach.1014

In: Proc. of ASE’13, p. 301–311 (2013). DOI 10.1109/ASE.2013.6693089.1015

URL https://doi.org/10.1109/ASE.2013.66930891016

32

https://doi.org/10.1145/3468264.3468603
https://doi.org/10.1145/3468264.3468603
https://doi.org/10.1145/3468264.3468603
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.1145/3194133.3194138
https://doi.org/10.1145/3194133.3194138
https://doi.org/10.1145/3194133.3194138
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1145/3106237.3106256
https://openreview.net/forum?id=i_Q1yrOegLY
https://doi.org/10.1109/ASE.2013.6693089

[22] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based op-1017

timization for general algorithm configuration. In: Proc. of LION’05,1018

p. 507–523 (2011). DOI 10.1007/978-3-642-25566-3 40. URL https:1019

//doi.org/10.1007/978-3-642-25566-3_401020

[23] Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime pre-1021

diction: Methods & evaluation. Artificial Intelligence 206, 79–111 (2014).1022

DOI 10.1016/j.artint.2013.10.0031023

[24] Iorio, F., Hashemi, A.B., Tao, M., Amza, C.: Transfer learning for cross-1024

model regression in performance modeling for the cloud. In: Proc. of Cloud-1025

Com’19, pp. 9–18 (2019). DOI 10.1109/CloudCom.2019.000151026

[25] Jamshidi, P., Siegmund, N., Velez, M., Kästner, C., Patel, A., Agarwal, Y.:1027

Transfer learning for performance modeling of configurable systems: An1028

exploratory analysis. In: Proc. of ASE’17, p. 497–508 (2017)1029

[26] Jamshidi, P., Velez, M., Kästner, C., Siegmund, N.: Learning to sam-1030

ple: Exploiting similarities across environments to learn performance1031

models for configurable systems. In: Proc. of ESEC/FSE’18, p. 71–821032

(2018). DOI 10.1145/3236024.3236074. URL https://doi.org/10.1145/1033

3236024.32360741034

[27] Kendall, M.G.: Rank correlation methods. Griffin (1948)1035

[28] Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated1036

algorithm selection: Survey and perspectives. Evolutionary Computa-1037

tion 27(1), 3–45 (2019). DOI 10.1162/evco\ a\ 00242. URL https:1038

//doi.org/10.1162/evco_a_002421039

[29] Khavari Tavana, M., Sun, Y., Bohm Agostini, N., Kaeli, D.: Exploiting1040

adaptive data compression to improve performance and energy-efficiency1041

of compute workloads in multi-gpu systems. In: Proc. of IPDPS’19, pp.1042

664–674 (2019). DOI 10.1109/IPDPS.2019.000751043

[30] Knüppel, A., Thüm, T., Pardylla, C.I., Schaefer, I.: Understanding pa-1044

rameters of deductive verification: An empirical investigation of key. In:1045

J. Avigad, A. Mahboubi (eds.) Interactive Theorem Proving - 9th In-1046

ternational Conference, ITP 2018, Held as Part of the Federated Logic1047

Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, Lec-1048

ture Notes in Computer Science, vol. 10895, pp. 342–361. Springer (2018).1049

DOI 10.1007/978-3-319-94821-8\ 20. URL https://doi.org/10.1007/1050

978-3-319-94821-8_201051

[31] Krause, A., Golovin, D.: Submodular function maximization. Tractability1052

3, 71–104 (2014)1053

[32] Krishna, R., Nair, V., Jamshidi, P., Menzies, T.: Whence to learn? trans-1054

ferring knowledge in configurable systems using beetle. IEEE Transactions1055

33

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/978-3-319-94821-8_20
https://doi.org/10.1007/978-3-319-94821-8_20
https://doi.org/10.1007/978-3-319-94821-8_20

on Software Engineering 47(12), 2956–2972 (2021). DOI 10.1109/TSE.1056

2020.29839271057

[33] Larsson, H., Taghia, J., Moradi, F., Johnsson, A.: Source selection in1058

transfer learning for improved service performance predictions. In: Proc.1059

of Networking’21, pp. 1–9 (2021). DOI 10.23919/IFIPNetworking52078.1060

2021.94728181061

[34] Lesoil, L., Acher, M., Blouin, A., Jézéquel, J.M.: Input Sensitivity on the1062

Performance of Configurable Systems: An Empirical Study. Journal of Sys-1063

tems and Software (2023). URL https://hal.inria.fr/hal-034764641064

[35] Li, Z., Jing, X.Y., Wu, F., Zhu, X., Xu, B., Ying, S.: Cost-sensitive transfer1065

kernel canonical correlation analysis for heterogeneous defect prediction.1066

ASE 25(2), 201–245 (2018)1067

[36] Liu, F., Miniskar, N.R., Chakraborty, D., Vetter, J.S.: Deffe: A data-1068

efficient framework for performance characterization in domain-specific1069

computing. In: Proc. of CF’20, p. 182–191 (2020). DOI 10.1145/3387902.1070

3392633. URL https://doi.org/10.1145/3387902.33926331071

[37] Martin, H., Acher, M., Lesoil, L., Jezequel, J.M., Khelladi, D.E., Pereira,1072

J.A.: Transfer learning across variants and versions : The case of linux1073

kernel size. IEEE Transactions on Software Engineering 1, 1–1 (2021).1074

DOI 10.1109/TSE.2021.31167681075

[38] Maxiaguine, A., Yanhong Liu, Chakraborty, S., Wei Tsang Ooi: Iden-1076

tifying ”representative” workloads in designing mpsoc platforms for me-1077

dia processing. In: 2nd Workshop onEmbedded Systems for Real-Time1078

Multimedia, 2004. ESTImedia 2004., pp. 41–46 (2004). URL https:1079

//ieeexplore.ieee.org/document/13597021080

[39] McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based1081

clustering. The Journal of Open Source Software 2(11) (2017). DOI1082

10.21105/joss.00205. URL https://doi.org/10.21105%2Fjoss.002051083

[40] Molnar, C.: Interpretable Machine Learning. Lulu.com, München, Bayern,1084

Deutschland (2020)1085

[41] Mühlbauer, C.S., Sattler, F., Siegmund, N.: Analyzing the impact of1086

workloads on modeling the performance of configurable software systems.1087

In: Proceedings of the International Conference on Software Engineering1088

(ICSE), IEEE (2023)1089

[42] Mühlbauer, S., Sattler, F., Kaltenecker, C., Dorn, J., Apel, S., Siegmund,1090

N.: Analyzing the impact of workloads on modeling the performance of1091

configurable software systems. In: Proceedings of the 45th International1092

Conference on Software Engineering. IEEE (2023)1093

34

https://hal.inria.fr/hal-03476464
https://doi.org/10.1145/3387902.3392633
https://ieeexplore.ieee.org/document/1359702
https://ieeexplore.ieee.org/document/1359702
https://ieeexplore.ieee.org/document/1359702
https://doi.org/10.21105%2Fjoss.00205

[43] Nair, V., Krishna, R., Menzies, T., Jamshidi, P.: Transfer learning with1094

bellwethers to find good configurations. CoRR abs/1803.03900 (2018).1095

URL http://arxiv.org/abs/1803.039001096

[44] Nair, V., Menzies, T., Siegmund, N., Apel, S.: Using bad learners to find1097

good configurations. In: Proc. of ESEC/FSE’17, pp. 257–267 (2017)1098

[45] Nair, V., Yu, Z., Menzies, T., Siegmund, N., Apel, S.: Finding faster con-1099

figurations using flash. IEEE Transactions on Software Engineering (2018)1100

[46] Nam, J., Fu, W., Kim, S., Menzies, T., Tan, L.: Heterogeneous defect1101

prediction. IEEE Transactions on Software Engineering 44(9), 874–8961102

(2017)1103

[47] OH, J., Batory, D., HERADIO, R.: Finding near-optimal configurations in1104

colossal spaces with statistical guarantees. TOSEM (2023)1105

[48] Oh, J., Batory, D., Myers, M., Siegmund, N.: Finding near-optimal con-1106

figurations in product lines by random sampling. In: Proceedings of1107

the 2017 11th Joint Meeting on Foundations of Software Engineering,1108

ESEC/FSE 2017, p. 61–71. Association for Computing Machinery, New1109

York, NY, USA (2017). DOI 10.1145/3106237.3106273. URL https:1110

//doi.org/10.1145/3106237.31062731111

[49] Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random1112

forest? In: P. Perner (ed.) Machine Learning and Data Mining in Pattern1113

Recognition, pp. 154–168. Springer Berlin Heidelberg, Berlin, Heidelberg1114

(2012)1115

[50] Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22(10), 1345–1116

1359 (2009)1117

[51] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,1118

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.:1119

Scikit-learn: Machine learning in python. the Journal of machine Learning1120

research 12, 2825–2830 (2011)1121

[52] Pereira, J.A., Acher, M., Martin, H., Jézéquel, J.M., Botterweck, G., Ven-1122

tresque, A.: Learning software configuration spaces: A systematic litera-1123

ture review. JSS p. 111044 (2021). DOI https://doi.org/10.1016/j.jss.2021.1124

111044. URL https://www.sciencedirect.com/science/article/pii/1125

S01641212210014121126

[53] Plotnikov, D., Melnik, D., Vardanyan, M., Buchatskiy, R., Zhuykov, R.,1127

Lee, J.H.: Automatic tuning of compiler optimizations and analysis of1128

their impact. Procedia Computer Science 18, 1312–1321 (2013). DOI1129

10.1016/j.procs.2013.05.298. URL https://doi.org/10.1016/j.procs.1130

2013.05.2981131

35

http://arxiv.org/abs/1803.03900
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://www.sciencedirect.com/science/article/pii/S0164121221001412
https://www.sciencedirect.com/science/article/pii/S0164121221001412
https://www.sciencedirect.com/science/article/pii/S0164121221001412
https://doi.org/10.1016/j.procs.2013.05.298
https://doi.org/10.1016/j.procs.2013.05.298
https://doi.org/10.1016/j.procs.2013.05.298

[54] Quinton, C., Vierhauser, M., Rabiser, R., Baresi, L., Grünbacher, P.,1132

Schuhmayer, C.: Evolution in dynamic software product lines. Journal1133

of Software: Evolution and Process p. e2293 (2020)1134

[55] Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier method-1135

ology. IEEE transactions on systems, man, and cybernetics 21(3), 660–6741136

(1991)1137

[56] Schreiber, J., Bilmes, J., Noble, W.S.: Apricot: Submodular selection for1138

data summarization in Python. Journal of Machine Learning Research1139

21(161), 1–6 (2020)1140

[57] Seber, G.A., Lee, A.J.: Linear regression analysis, vol. 329. John Wiley &1141

Sons, North America (2012)1142

[58] Shwartz-Ziv, R., Armon, A.: Tabular data: Deep learning is not all you1143

need. Information Fusion 81, 84–90 (2022). DOI 10.1016/j.inffus.2021.11.1144

0111145

[59] Siegel, S.: Nonparametric statistics for the behavioral sciences. The Journal1146

of Nervous and Mental Disease 125, 497 (1956)1147

[60] Siegmund, N., Grebhahn, A., Kästner, C., Apel, S.: Performance-influence1148

models for highly configurable systems. In: ESEC/FSE’15 (2015). URL1149

https://doi.org/10.1145/2786805.27868451150

[61] Sinha, U., Cashman, M., Cohen, M.B.: Using a genetic algorithm to opti-1151

mize configurations in a data-driven application. In: A. Aleti, A. Panichella1152

(eds.) Search-Based Software Engineering - 12th International Sympo-1153

sium, SSBSE 2020, Bari, Italy, October 7-8, 2020, Proceedings, Lecture1154

Notes in Computer Science, vol. 12420, pp. 137–152. Springer (2020).1155

DOI 10.1007/978-3-030-59762-7\ 10. URL https://doi.org/10.1007/1156

978-3-030-59762-7_101157

[62] Temple, P., Acher, M., Jezequel, J.M., Barais, O.: Learning contextual-1158

variability models. IEEE Software 34(6), 64–70 (2017)1159

[63] Temple, P., Acher, M., Jézéquel, J.M., Noel-Baron, L., Galindo, J.A.:1160

Learning-Based Performance Specialization of Configurable Systems. Re-1161

search report, IRISA, Inria Rennes ; University of Rennes 1 (2017). URL1162

https://hal.archives-ouvertes.fr/hal-014672991163

[64] Thirey, B., Hickman, R.: Distribution of euclidean distances be-1164

tween randomly distributed gaussian points in n-space. arXiv preprint1165

arXiv:1508.02238 (2015)1166

[65] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka:1167

Combined selection and hyperparameter optimization of classification al-1168

gorithms. In: Proc. of KDD’13, p. 847–855 (2013)1169

36

https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1007/978-3-030-59762-7_10
https://doi.org/10.1007/978-3-030-59762-7_10
https://doi.org/10.1007/978-3-030-59762-7_10
https://hal.archives-ouvertes.fr/hal-01467299

[66] Valov, P., Guo, J., Czarnecki, K.: Empirical comparison of regression1170

methods for variability-aware performance prediction. In: Proceedings of1171

the 19th International Conference on Software Product Line, SPLC ’15,1172

p. 186–190. Association for Computing Machinery, New York, NY, USA1173

(2015). DOI 10.1145/2791060.2791069. URL https://doi.org/10.1145/1174

2791060.27910691175

[67] Valov, P., Guo, J., Czarnecki, K.: Transferring pareto frontiers across het-1176

erogeneous hardware environments. In: Proceedings of the ACM/SPEC1177

International Conference on Performance Engineering, ICPE ’20, p. 12–23.1178

Association for Computing Machinery, New York, NY, USA (2020). DOI1179

10.1145/3358960.3379127. URL https://doi.org/10.1145/3358960.1180

33791271181

[68] Valov, P., Petkovich, J.C., Guo, J., Fischmeister, S., Czarnecki, K.: Trans-1182

ferring performance prediction models across different hardware platforms.1183

In: Proceedings of the 8th ACM/SPEC on International Conference on1184

Performance Engineering, ICPE ’17, p. 39–50. Association for Computing1185

Machinery, New York, NY, USA (2017). DOI 10.1145/3030207.3030216.1186

URL https://doi.org/10.1145/3030207.30302161187

[69] Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic database1188

management system tuning through large-scale machine learning. In: Pro-1189

ceedings of the 2017 ACM International Conference on Management of1190

Data, SIGMOD ’17, p. 1009–1024. Association for Computing Machin-1191

ery, New York, NY, USA (2017). DOI 10.1145/3035918.3064029. URL1192

https://doi.org/10.1145/3035918.30640291193

[70] Wang, A., Zhang, Y., Wu, H., Jiang, K., Wang, M.: Few-shot learning1194

based balanced distribution adaptation for heterogeneous defect prediction.1195

IEEE Access 8, 32989–33001 (2020)1196

[71] Wang, Y., Inguva, S., Adsumilli, B.: Youtube ugc dataset for video com-1197

pression research. 2019 IEEE 21st International Workshop on Multimedia1198

Signal Processing (MMSP) (2019). DOI 10.1109/mmsp.2019.8901772. URL1199

http://dx.doi.org/10.1109/MMSP.2019.89017721200

[72] Wei, H., Zhou, S., Yang, T., Zhang, R., Wang, Q.: Elastic resource man-1201

agement for heterogeneous applications on paas. In: Proceedings of the 5th1202

Asia-Pacific Symposium on Internetware, Internetware ’13. Association for1203

Computing Machinery, New York, NY, USA (2013). DOI 10.1145/2532443.1204

2532451. URL https://doi.org/10.1145/2532443.25324511205

[73] Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning.1206

Journal of Big data 3(1), 9 (2016)1207

[74] Xu, B., Zhao, D., Jia, K., Zhou, J., Tian, J., Xiang, J.: Cross-project aging-1208

related bug prediction based on joint distribution adaptation and improved1209

37

https://doi.org/10.1145/2791060.2791069
https://doi.org/10.1145/2791060.2791069
https://doi.org/10.1145/2791060.2791069
https://doi.org/10.1145/3358960.3379127
https://doi.org/10.1145/3358960.3379127
https://doi.org/10.1145/3358960.3379127
https://doi.org/10.1145/3030207.3030216
https://doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.1109/MMSP.2019.8901772
https://doi.org/10.1145/2532443.2532451

subclass discriminant analysis. In: 2020 IEEE 31st International Sympo-1210

sium on Software Reliability Engineering (ISSRE), pp. 325–334 (2020).1211

DOI 10.1109/ISSRE5003.2020.000381212

[75] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-1213

based algorithm selection for sat. Journal of artificial intelligence research1214

32, 565–606 (2008)1215

[76] Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.: Hey,1216

you have given me too many knobs!: Understanding and dealing with over-1217

designed configuration in system software. In: Proceedings of the 20151218

10th Joint Meeting on Foundations of Software Engineering, pp. 307–3191219

(2015). DOI 10.1145/2786805.27868521220

[77] Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B., Xing, J., Wang,1221

Y., Cheng, T., Liu, L., Ran, M., Li, Z.: An end-to-end automatic cloud1222

database tuning system using deep reinforcement learning. In: Proceedings1223

of the 2019 International Conference on Management of Data, SIGMOD1224

’19, p. 415–432. Association for Computing Machinery, New York, NY,1225

USA (2019). DOI 10.1145/3299869.3300085. URL https://doi.org/10.1226

1145/3299869.33000851227

[78] Zhang, W., Deng, L., Zhang, L., Wu, D.: Overcoming negative transfer: A1228

survey. arXiv preprint arXiv:2009.00909 (2020)1229

38

https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3299869.3300085

	Introduction
	Problem
	User Persona (UP)
	Prediction Strategies
	Research Questions (RQs)

	Experimental protocol
	Data
	Dataset
	Using input properties to discriminate inputs
	Separation Training-Test

	Performance Prediction Models
	Strategies and baselines
	Learning Algorithm

	Selecting Algorithms (RQ1)
	Why using machine learning?
	Which machine learning algorithm to use?
	What is the benefit of hyperparameter tuning?

	Selecting Inputs (RQ2)
	How many inputs do we need to learn an accurate predictive performance model?
	How to select the input data for an offline setting?
	How to select the input data for an online setting?

	Selecting Configurations (RQ3)
	What is the best tradeoff between selecting inputs and sampling configurations?
	Is it better to use the transfer learning or the supervised online approach?
	Should we train performance models offline or online?

	Evaluation
	Selecting Algorithms (RQ1)
	Is using ML relevant in the context of predictive performance modelling?
	Which ML algorithm to use?
	What is the benefit of hyperparameter tuning?

	Selecting Inputs (RQ2)
	How many inputs are needed to learn an accurate predictive performance model?
	How to select the input data for an offline setting?
	How to select the input data for an online setting?

	Selecting Configurations (RQ3)
	What is the best trade-off between selecting inputs and sampling configurations?
	Is it better to use transfer learning or a supervised online approach?
	Should we train performance models offline or online?

	Discussion
	Threats to Validity
	Related Work
	Conclusion

