
HAL Id: hal-04271457
https://hal.science/hal-04271457

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Logical Essence of Well-Bracketed Control Flow
Amin Timany, Armaël Guéneau, Lars Birkedal

To cite this version:
Amin Timany, Armaël Guéneau, Lars Birkedal. The Logical Essence of Well-Bracketed Control Flow.
POPL 2024 - 51st ACM SIGPLAN Symposium on Principles of Programming Languages, SIGPLAN,
Jan 2024, Londres, United Kingdom. �hal-04271457�

https://hal.science/hal-04271457
https://hal.archives-ouvertes.fr

111

The Logical Essence of Well-Bracketed Control Flow

AMIN TIMANY, Aarhus University, Denmark

ARMAËL GUÉNEAU, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, France

LARS BIRKEDAL, Aarhus University, Denmark

A program is said to be well-bracketed if every called function must return before its caller can resume

execution. This is often the case. Well-bracketedness has been captured semantically as a condition on

strategies in fully abstract games models and multiple prior works have studied well-bracketedness by

showing correctness/security properties of programs where such properties depend on the well-bracketed

nature of control flow. The latter category of prior works have all used involved relational models with explicit

state-transition systems capturing the relevant parts of the control flow of the program. In this paper we

present the first Hoare-style program logic based on separation logic for reasoning about well-bracketedness

and use it to show correctness of well-bracketed programs both directly and also through defining unary and

binary logical relations models based on this program logic. All results presented in this paper are formalized

on top of the Iris framework and mechanized in the Coq proof assistant.

Additional Key Words and Phrases: well-bracketedness, stack discipline, program logics, program verification,

logical relations, semantic typing

ACM Reference Format:
Amin Timany, Armaël Guéneau, and Lars Birkedal. 2023. The Logical Essence of Well-Bracketed Control Flow.

Proc. ACM Program. Lang. POPL, 4, Article 111 (August 2023), 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The control flow of a program is said to be well-bracketed if in every function call the caller can

only resume execution after the callee has returned. In other words, function calls take place in

a stack-like fashion which is the reason why they are usually implemented using a call stack at

the hardware level. Note that in a programming language with continuations and/or concurrency,

programs are not guaranteed to be well-bracketed.

Well-bracketedness has been captured semantically as a condition on strategies in fully ab-

stract games models, e.g., Hyland and Ong [2000], and multiple prior works have studied well-

bracketedness by showing correctness, e.g., Dreyer et al. [2010], Hur et al. [2012], Jaber and

Murawski [2021], and security properties, e.g., Skorstengaard et al. [2019], Georges et al. [2021], of

programs where such properties depend on the well-bracketed nature of control flow.

Prior work on reasoning about well-bracketed control flow [Dreyer et al. 2010] has epitomized

the following very awkward example (VAE) as the key example of a program, written in an ML-like

programming language, whose correctness depends on well-bracketedness of control flow:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 (Very Awkward)

Authors’ addresses: Amin Timany, timany@cs.au.dk, Aarhus University, Aarhus, Denmark; Armaël Guéneau, armael.

gueneau@inria.fr, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, Paris, France; Lars Birkedal, Birkedal@cs.au.

dk, Aarhus University, Aarhus, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2475-1421/2023/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-2237-851X
HTTPS://ORCID.ORG/0000-0003-3072-4045
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-2237-851X
https://orcid.org/0000-0003-3072-4045
https://orcid.org/0000-0003-1320-0098
https://doi.org/XXXXXXX.XXXXXXX

111:2 Amin Timany, Armaël Guéneau, and Lars Birkedal

The VAE program above first allocates a reference 𝑟 with value 0, and then returns a closure which

takes a function argument 𝑓 . The returned closure first resets the value of 𝑟 to 0 and subsequently

calls 𝑓 ; here () is the unit value, i.e., the only value in the unit type. After 𝑓 returns, the program

continues by setting 𝑟 to 1, followed by another call to 𝑓 . Finally, the program returns the value

stored in 𝑟 . VAE must always return 1 because the reference 𝑟 is a local reference, only accessible in

the returned closure, which only reads 𝑟 after it has set it to 1. However, the argument for why

this is the case is quite subtle, because the operation of reading 𝑟 and setting 𝑟 to 1 are separated

by a call to 𝑓 . One might hastily dismiss this call to 𝑓 since, after all, the reference 𝑟 is a local

reference only accessible by the returned closure. Hence, one might fallaciously argue that the call

to 𝑓 should in no way affect 𝑟 . However, the function 𝑓 might itself include calls to the closure, and
thus it can affect 𝑟 ! Nonetheless, as long as the execution is well-bracketed, VAE always returns 1.

This is because, in a well-bracketed setting, any calls to the closure within 𝑓 must all end before 𝑓

returns, and hence the part of the code setting 𝑟 to 0 cannot take place after 𝑓 returns. This is in

contrast to settings where control flow is not well-bracketed, e.g., in the presence of continuations

(see Dreyer et al. [2010] for an example where continuations break well-bracketedness of VAE) or
concurrency (see Section 5 for an example of concurrency breaking well-bracketedness of VAE).
Note: the existing literature sometimes refers to VAE also as the awkward example.

A Historical Note. VAE was first mentioned by Ahmed et al. [2009] as a variant, attributed

to Jacob Thamsborg, of an example by Pitts and Stark [1999]. The original example was called

the “awkward” example by Pitts and Stark [1999] because they could not handle it. The Awkward

example is as follows:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 1; 𝑓 (); ! 𝑟 (Awkward)

The approach proposed by Ahmed et al. [2009] can reason about the Awkward example but not

the VAE variant. The core difficulty of the Awkward example is that the value of the reference

undergoes an irreversible change. The value is 0 prior to the assignment only if this is the first

time the closure is being called. To quote Dreyer et al. [2010]: “One of the key contributions of the

ADR [Ahmed et al. [2009]] model was to combine the machinery of step-indexed logical relations

with that of Kripke logical relations in order to model higher-order state.” and “The other key

contribution of the ADR [Ahmed et al. [2009]] model was to provide an enhanced notion of possible

world, which has the potential to express properties of local state that evolve over time.”

Dreyer et al. [2010] state that they “recast the ADR [Ahmed et al. [2009]] model in the more

familiar terms of state transition systems” which enables them to include so-called private transitions
(see below) which are necessary in their approach to reason about well-bracketedness. Using these

private transitions, Dreyer et al. [2010] presented the first formal proof establishing that VAE always
returns 1. The use of private transitions is the key insight that subsequent works on reasoning

about well-bracketedness prior to our work have directly built upon, and in a way, as we will allude

to below, it is also what inspired us in developing our approach.

The logical relations model of Dreyer et al. [2010] was a so-called Kripke logical relations model,

where the worlds consist of state transition systems, which describe how local state may evolve over

time, and the key observation of Dreyer et al. [2010] is that a function can take private transitions

as long as it is not observable by its callers. That is, it must restore the state to a publicly reachable

state before it returns. The state transition system for VAE is as follows:

𝑟 = 0 𝑟 = 1 (VAE-sts)

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:3

Here the solid arrow is a public transition and the dashed arrow is the private transition. Hence,

the program can set the 𝑟 to 0 even if it is already 1 but it must restore it to 1 before returning,

which is precisely the essence of the behavior of VAE.

Using Separation Logic to Build Logical Relation Models. Modern separation logics such as

Iris make it possible to build logical relations models at a higher-level of abstraction [Krebbers et al.

2017; Timany et al. 2022]. In particular, the combination of Iris invariants and ghost state provides a

more abstract alternative to explicit worlds and state transition systems. The Awkward example can

be verified in Iris using this approach: the proof does not involve explicit worlds or even building a

logical relations model, as we show in Section 2. However, using Iris’s invariants and ghost state

has so far only been used to match the reasoning power of state-transition-system-based Kripke

logical relations with public transitions, which do not allow reasoning about well-bracketedness.

A most relevant line of work is the study by Skorstengaard et al. [2019] and Georges et al.

[2021] of security properties for programs at the assembly level. These works both consider

well-bracketedness as a correctness aspect of the calling convention they present. To argue well-

bracketedness, both works verify that (their assembly version of) VAE returns 1 under their re-

spective calling convention. Georges et al. [2021] define their logical relations model using the Iris

program logic, building on the earlier model of Skorstengaard et al. [2019], defined as a “traditional”

step-indexed Kripke logical relation indexed over worlds consisting of state transition systems

with private transitions, much in the style of Dreyer et al. [2010]. Georges et al. [2021] are able to

reap some of the benefits of working in Iris, such as abstracting over less-relevant details of the

model like step-indexing, and reasoning more abstractly about state. However, in order to reason

about well-bracketedness, the model of Georges et al. [2021] is still indexed over an explicit world
consisting of state transition systems. This makes their model more “invasive” in the sense that

one has to consider public/private state transitions when reasoning about any program, not only

when reasoning about examples relying on well-bracketedness.

The Central Question. This raises a question. Can we reason about well-bracketed control

flow without an explicit state transition system, or some such mechanism? In other words, can

we develop a program logic that allows us to reason about well-bracketed control flow whenever

necessary without complicating the reasoning about other programs whose correctness does not

hinge on well-bracketedness of control flow? In this paper we answer this question in the affirmative.

We present a program logic that satisfies the following desiderata:

Conservative Extension It is a Hoare-style program logic based on separation logic which

validates verbatim all the usual reasoning principles of separation logic.
1

Bespoke Facilities It at the same time offers additional reasoning principles for reasoning

about well-bracketedness.

Minimal Extension It uses existing reasoning facilities, e.g., Iris’s ghost state and invariants,

instead of encoding well-bracketedness as a state transition system with public/private

transitions.

Versatility It can be used to used to construct unary and binary logical relations models in the
standard way, i.e., as presented in Krebbers et al. [2017], to obtain a model which enables

reasoning about well-bracketedness like in Georges et al. [2021] while hiding the details of

the underlying mechanism.

To make the central question more concrete, we now sketch how the Awkward example can be

proved in the Iris separation logic.

1
For concreteness, we focus on the Iris separation logic in this paper, but we believe the ideas we present could also be used

in other separation logics, e.g., Nanevski et al. [2014].

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:4 Amin Timany, Armaël Guéneau, and Lars Birkedal

The Essence of the Proof of the Awkward Example in Iris. To reason about non-trivial

programs in separation logic one often uses ghost resources (aka auxiliary or logical state), and

invariants, which are used to tie the ghost state to the physical program state. Ghost resources

are strategically picked so as to ensure that they may only evolve in certain ways. For instance,

a ghost resource could be defined so that it could only be increased and never decreased. In case

of the Awkward example (see Section 2) ghost resources are used to define a ghost theory called

the one-shot ghost theory. The one-shot ghost theory features a pair of predicates: pending(𝛾)
and shot(𝛾) — 𝛾 is the name of the resource instance.

2
The theory only allows the state to start

in pending(𝛾) and evolve to shot(𝛾) but never the other way around. It is then required that the

state of the reference is either 0 in which case we must have pending(𝛾) or it is 1 in which case we

must have shot(𝛾). In Iris, this requirement can be enforced using an Iris invariant. This approach

essentially reflects a state transition system in the ghost theory that is similar to VAE-sts but without
the private transition. (This is precisely the state transition system Dreyer et al. [2010] used to

prove correctness of the Awkward example.)

In summary, the combination of Iris’s notion of invariants and ghost resources naturally supports

reasoning about monotonic evolution of state. This makes Iris perfectly adapted to the kind of

reasoning supported by public transitions in state-transition-systems-based Kripke logical relation

models.

The Well-Bracketed Program Logic. Now, given this perspective on Iris’s methodology for

proving correctness of examples like the Awkward example, we can recast our central question as

follows:

If Iris’s ghost state and invariants capture the public transitions, then which ad-
ditional mechanism does a program logic need to capture the kind of reasoning
supported by private transitions in Kripke logical relations models?

The answer that we give to this question is (at least to us) surprisingly simple and elegant. We

introduce a new program logic, called the well-bracketed program logic, which is a new Hoare

logic of so-called well-bracketed Hoare triples. The additional key ingredient provided by our
well-bracketed program logic is a novel logical mechanism of so-called ghost stacks. (Ghost
stacks are themselves encoded using Iris’s ghost resources; see Section 9 and the accompanying

technical appendix for further details.) In combination with Iris’s existing ghost state and invariants,

ghost stacks make it possible to reason about well-bracketed evolution of state and resources, thus

achieving the same reasoning power as enabled by private transitions.

Our well-bracketed program logic is built on top of the existing Hoare logic of Iris. Hence, just like
the existing Hoare logic of Iris, the well-bracketed program logic can be instantiated with different

programming languages. The main instantiation of the well-bracketed program logic presented in

this paper is Iris’s default concurrent higher-order imperative programming language known as

HeapLang. The other two instantiations of the well-bracketed program logic presented in this paper

are: (1) a variant of HeapLang that enables referring to execution traces based on Birkedal et al.’s

approach [Birkedal et al. 2021] (see Section 6), and (2) a variant of System F featuring higher-order

references and recursive types for which we develop logical relations models (Section 7).

The HeapLang instantiation of the well-bracketed Hoare triples satisfy verbatim all the same

reasoning principles as Iris’s Hoare triples except for the rule for forking of threads (naturally

so, since concurrency breaks well-bracketedness). Additionally, the well-bracketed program logic

includes proof rules to allocate new ghost stacks (stacks of ghost names), and to access them when

necessary. This is similar to how the standard Iris program logic allows the user to allocate new

2
Our one-shot resource is a slight simplification of the one-shot resource of Jung et al. [2016].

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:5

invariants, and to access them when necessary. The core idea of using ghost stacks to reason about

well-bracketedness is then as follows. When using an invariant to tie the physical state of the

program to a ghost resource, instead of using a fixed instance of a ghost resource, one ties the

physical state to the ghost resource instance whose name is on top of the ghost stack. This shift,
from a fixed instance of ghost state to a stack of ghost states enables encoding private transitions as

follows. To make a private transition from state 𝑠 to state 𝑠′ we just leave the ghost state associated
to state 𝑠 untouched. Instead, we allocate a fresh instance of ghost state in state 𝑠′. We then pushes
the name of this newly allocated ghost state on top of the stack. In order to roll back a private

transition, we simply pop the stack.

As we will demonstrate in Section 3.2, ghost stacks allow us to prove correctness of VAE using

a stack of (names of) one-shot resources, i.e., precisely the resource that we use in Section 2 for

the proof of the Awkward example. We note that the point of the well-bracketed program logic

is to increase the expressivity of the logic. It allows us to prove more expressive specifications

for programs by using ghost stacks to reason about programs whose specifications relies on well-

bracketedness. When proving specifications for programs that do not rely on well-bracketedness,

we do not need ghost stacks. Hence, such proofs can be exactly as in the standard Iris program

logic. This means that one should think of the ghost stacks of the well-bracketed program logic as
playing a role similar to the role invariants play for reasoning about concurrent programs — the stacks
are a logical mechanism that allow us to easily prove specifications for a wider class of programs.

Contributions.

• We present a well-bracketed Hoare logic on top of Iris’s Hoare logic, satisfying the desider-

ata described above [Conservative Extension, Bespoke Facilities, Minimal Extension, and

Versatility]. The key idea is a novel reasoning mechanism of so-called ghost stacks.
• We give a proof of VAE demonstrating that the well-bracketed Hoare logic can indeed be

used to reason about well-bracketed control flow [Bespoke Facilities].

• We use the well-bracketed Hoare logic (instead of the ordinary Hoare logic of Iris) to construct

unary and binary logical relations models for a variant of System F featuring higher-order

references and recursive types [Versatility]; essentially a typed variant of the sequential subset

of HeapLang.We use both logical relations models to reason aboutVAE. These logical relations
models are the first such defined in Iris that support reasoning about well-bracketedness

without explicit indexing over worlds.

• We use the technique of Birkedal et al. [2021] to demonstrate that the proof of VAE in our

well-bracketed program logic implies that, in the trace generated by any program that uses

VAE, the calls to the VAE closure are indeed well-bracketed.

• We prove that any state transition system with public and private transitions, in the sense of

Dreyer et al. [2010], can be encoded using ghost stacks.

• We have mechanized all results in the Coq proof assistant on top of the Iris framework.

The structure of the rest of the paper. Section 2 presents a proof of the Awkward example in

Iris. We also use this example to introduce basic concepts of the Iris program logic. We present

our well-bracketed program logic in Section 3. In Section 3.2 we show how the well-bracketed

program logic can be used to prove correctness, and well-bracketedness of VAE. Section 4 gives

the definition of the well-bracketed program logic in terms of the underlying program logic of Iris.

This definition is given in terms of what we will call a theory of stack collections. We discuss, in

Section 4.2, how we derive the rules of the well-bracketed program logic. Then, in Section 5 we

discuss how the well-bracketed program logic can be used, in conjunction with the underlying

program logic of Iris, to reason about well-bracketedness of programs even in the presence of what

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:6 Amin Timany, Armaël Guéneau, and Lars Birkedal

we call innocuous concurrency. In Section 6 we show that well-bracketed Hoare triples enforce

well-bracketedness of calls and returns, stated as an intensional trace property. In Section 7 we use

our well-bracketed program logic to construct logical relations models capable of reasoning about

well-bracketedness similar to prior works [Dreyer et al. 2010; Georges et al. 2021; Skorstengaard

et al. 2019]. We demonstrate generality of ghost stacks in Section 8 by showing that we can use

them to encode any state transition system with private and public transitions. Section 9 presents

the construction of the theory of stack collections and in Section 10 we discuss related and future

work. Finally, our concluding remarks are in Section 11.

2 THE PROOF OF THE AWKWARD EXAMPLE IN IRIS
In this section we briefly discuss the Iris program logic proof of the fact that the Awkward example

always returns 1. The programming language we use to write examples in throughout this paper is

the HeapLang language which Iris comes equipped with. HeapLang is an ML-like call-by-value

language with general references and shared-memory concurrency — for this paper it suffices to

have an intuitive understanding of its operational semantics. We recall the necessary parts of the

Iris program logic along the way, and refer to the accompanying Coq development for the full

details.

Formally, we wish to prove the following Hoare triple for Awkward:

{True}
let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 1; 𝑓 (); ! 𝑟

{𝑔. ∀𝑓 . {{True} 𝑓 () {𝑥 . 𝑥 = ()}}𝑔 𝑓 {𝑥 . 𝑥 = 1}}
(awkward-spec)

Here, awkward-spec states that Awkward returns a closure 𝑔 that, when applied to any function 𝑓

satisfying a simple Hoare triple, returns 1. Note how in Hoare triples the return value is bound to a

variable (𝑔 and 𝑥 in the rule above) so that the postcondition can refer to it. We will also sometimes

use a predicate as a postcondition and write {𝑃 } 𝑒 {𝛷} as a shorthand for {𝑃 } 𝑒 {𝑥 . 𝛷 (𝑥)} .
In Iris, we use a combination of invariants and ghost state to reason about the Awkward example.

First, to capture the only-the-first-time evolution of the state in Awkward, we use the one-shot

ghost state mentioned earlier. We introduce two Iris propositions pending(𝛾) and shot(𝛾), where
pending(𝛾) may be turned into shot(𝛾) via a ghost state update, but not the other way around. The
name 𝛾 is used to identify a specific instance of these two predicates. Second, we use an invariant to

hold these ghost resources and tie them to the physical state of the program (the reference allocated

at the start).

To prove awkward-spec, we first allocate a fresh instance named 𝛾 of the one-shot resource using

rule make-one-shot:

make-one-shot

⊢ |⇛∃𝛾 . pending(𝛾)
This rule states that we can always update ghost resources (|⇛ is Iris’s so-called update modality)

so as to make a new instance of the one-shot resource. Here, ⊢ stands for logical entailment between

Iris propositions.

After the reference has been allocated by the program (which results in a memory location ℓ),

we use the freshly allocated pending(𝛾) resource to establish the following invariant:

AwkwardInv ≜ (ℓ ↦→ 0 ∗ pending(𝛾)) ∨ (ℓ ↦→ 1 ∗ shot(𝛾)) Nawk
(awkward-inv)

In Iris we write 𝑃
N
for the persistent (and hence duplicable) proposition that asserts that 𝑃

holds invariantly. The N in 𝑃
N
is the name of the invariant. It is used for bookkeeping purposes.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:7

Looking inside our invariant, the proposition ℓ ↦→ 𝑣 asserts exclusive ownership over memory

location ℓ , and, in addition states that this location stores the value 𝑣 . The connective ∗ is called
the separating conjunction. It incorporates a notion of separation or disjointness. Intuitively, 𝑃 ∗𝑄
holds if we can split resources into two disjoint parts, one satisfying 𝑃 and the other 𝑄 .

The program logic of Iris (Iris’s Hoare logic) enforces that an invariant, once established, is

always preserved. This is effectively achieved by the rule inv-open enforcing that invariants can

only be accessed for the duration of atomic operations, i.e., an operation like loading from, or

storing into a reference.
3
Interestingly, it might appear that this rule is consuming the invariant

while opening it, but this is in fact not a problem as invariants are always persistent and hence can

be duplicated as necessary.

inv-open

{𝐼 ∗ 𝑃 } 𝑒 {𝑥 . 𝐼 ∗𝑄} 𝑒 is atomic

{ 𝐼 N ∗ 𝑃 } 𝑒 {𝑥 . 𝑄}
Opening an invariant allows us to access the resource it contains, as long as the invariant can

be re-established afterwards. Furthermore, Iris’s Hoare logic is designed to allow us to update

resources (formally, to eliminate the update modality) at any point throughout the proof.

The one-shot ghost theory, in addition to the rule make-one-shot earlier, enjoys the following

rules:

shoot

pending(𝛾) ⊢ |⇛shot(𝛾)
pending-not-shot

pending(𝛾) ∗ shot(𝛾) ⊢ False
shot-persistent

⊢ persistent(shot(𝛾))
Using the shoot rule, any pending resource can be shot by updating ghost resources. Note that

shot(𝛾) is persistent (and hence duplicable) as it merely asserts the knowledge that the resource is

not pending anymore. On the other hand, pending(𝛾) asserts exclusive ownership indicating that

the instance 𝛾 of the one-shot resource is not shot yet. This is to ensure that each instance of the

one-shot resource can only be shot once; hence the name. Note, in particular, that persistence of

shot(𝛾) and exclusivity of pending(𝛾) mean that we have shot(𝛾) ⊣⊢ shot(𝛾) ∗ shot(𝛾), for shot(𝛾),
but not the analogous for pending(𝛾). Here, ⊣⊢ is the bi-entailment relation (logical entailment

in both directions). Finally, the rule pending-not-shot states that it is not possible for an instance

of the one-shot resource to be both shot and pending at the same time. Notice how the behavior

of the one-shot resource closely resembles the manner in which the state of the reference in the

Awkward example evolves — the reference stores 0 (the writing of 1 is pending) until the store

operation takes place (is shot), a change which persists. (The accompanying technical appendix

details how this ghost theory is defined using Iris’s resource algebras.)

To finish the proof, we only need to show the following Hoare triple for the rest of the program:

{AwkwardInv ∗ {True} 𝑓 () {𝑥 . 𝑥 = ()}} ℓ ← 1; 𝑓 (); ! ℓ {𝑥 . 𝑥 = 1} (1)

Since, the operation ℓ ← 1 is an atomic operation we get to assume the invariant AwkwardInv
before it, and need to reestablish it afterwards. The essence of the argument here is that we can

prove the following Hoare triple:

{(ℓ ↦→ 0 ∗ pending(𝛾)) ∨ (ℓ ↦→ 1 ∗ shot(𝛾))} ℓ ← 1 {𝑥 . 𝑥 = () ∗ ℓ ↦→ 1 ∗ shot(𝛾)} (2)

Note how the postcondition above allows us to reestablish the invariant, and at the same time, since

shot(𝛾) is persistent (and thus duplicable), also retain a copy of shot(𝛾). To prove (2) we simply

perform a case analysis on the disjunction in the precondition. In the case of the right disjunct

3
In practice Iris’s Hoare triples are equipped with a mask, which is a set of invariant names, to ensure that invariants are

not opened in a nested way. For the sake of simplicity we ignore these masks in this paper. We also elide the use of the

so-called later modality in this paper which technically should also appear in this rule.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:8 Amin Timany, Armaël Guéneau, and Lars Birkedal

nothing needs to be done. In the case of the left disjunct, after the operation we obtain ℓ ↦→ 1 in the

postcondition as the storing operation has mutated the heap of the program. In addition, from the

precondition we have pending(𝛾). To reconcile the postcondition we only need to produce shot(𝛾)
from pending(𝛾). This is precisely what the rule shoot allows us to do. To finalize the proof, it

suffices to show

{AwkwardInv ∗ {True} 𝑓 () {𝑥 . 𝑥 = ()} ∗ shot(𝛾)} 𝑓 (); ! ℓ {𝑥 . 𝑥 = 1} (3)

For the call to 𝑓 we have a Hoare triple provided in the precondition. As for loading from ℓ , since it

is an atomic operation, we can access the invariant again. This time though, since we also have

shot(𝛾) we can discard the left disjunct of the invariant as it is impossible due to the rule pending-

not-shot. The fact that we can discard the left disjunct is a key step; it captures the irreversibility

of the update to ℓ .

3 WELL-BRACKETED PROGRAM LOGIC
In this section we present the well-bracketed program logic which is centered around the notion of

well-bracketed Hoare triples, which we write as follows:

L𝑃M 𝑒 L𝑥 . 𝑄MO

Just like with an ordinary Hoare triple, 𝑃 is the precondition, 𝑒 is the program, and 𝑄 is the

postcondition which may also refer to the final return value of the program bound to 𝑥 . Additionally,

a well-bracketed Hoare triple is parameterized by a stack mask O, representing the set of names of

stacks that are out, i.e., those that are not controlled by the program logic (we will explain this in

more detail later). We will omit the stack mask O whenever it is just the empty set.

Intuitively, a well-bracketed Hoare triple is very much like an ordinary triple, except that it

has additionally access to ghost stacks which allow reasoning about well-bracketed evolution of

ghost state. In Iris, an ordinary triple asserts that assuming 𝑃 , 𝑒 runs safely and produces a result

satisfying𝑄 while all invariants are satisfied at each step. A well-bracketed Hoare triple asserts that

assuming 𝑃 , 𝑒 runs safely and produces a result satisfying 𝑄 while all invariants are satisfied, and
that ghost state tracked in ghost stacks evolves in a well-bracketed manner matching the execution of

the program.

Standard rules. The well-bracketed program logic satisfies all the rules satisfied by the or-

dinary Iris program logic for HeapLang, except the fork rule, since concurrency can break well-

bracketedness. An excerpt of these is given in Figure 1. Note how these rules never effect the stack

mask. The rules wbHoare-alloc, wbHoare-load and wbHoare-store simply reflect the operational

semantics of the language, e.g., wbHoare-alloc expresses that when we allocate a new location,

it is fresh because we immediately receive exclusive ownership over it in terms of the points-to

proposition 𝑥 ↦→ 𝑣 . The rule wbHoare-conseqence and wbHoare-inv-open need little explanation.

The former is the standard rule of consequence for Hoare logic and the latter is the invariant

opening rule inv-open expressed for well-bracketed Hoare triples. The rule wbHoare-frame is the

frame rule of separation logic. It states that once a program is proven correct with respect to a

certain pre- and postcondition it remains correct in the presence of other resources, be it physical

or ghost resources. In rule wbHoare-frame, the use of separating conjunction is key as owning

more resources disjoint from 𝑃 can never invalidate 𝑃 . The rule wbHoare-bind is an important rule

for modular reasoning. It concerns programs of the form 𝐾 [𝑒] that consist of an expression 𝑒 under

an evaluation context 𝐾 , the part of the program that would run following evaluation of 𝑒 . The

rule wbHoare-bind states that to show correctness of 𝐾 [𝑒], it suffices to show that 𝑒 is correct, and

that 𝐾 is correct when plugging into it any value that satisfies the postcondition of 𝑒 .

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:9

wbHoare-conseqence

𝑄 =⇒ 𝑃 ∀𝑣 . 𝛷 (𝑣) =⇒ Ψ(𝑣)

L𝑃M 𝑒 L𝛷MO ⊢ L𝑄M 𝑒 LΨMO

wbHoare-inv-open

L𝐼 ∗ 𝑃M 𝑒 L𝑥 . 𝐼 ∗𝑄MO 𝑒 is atomic

L 𝐼 N ∗ 𝑃M 𝑒 L𝑥 . 𝑄MO

wbHoare-bind

L𝑃M 𝑒 LΨMO ∀𝑣 . LΨ(𝑣)M𝐾 [𝑣] L𝛷MO

L𝑃M𝐾 [𝑒] L𝛷MO
wbHoare-frame

L𝑃M 𝑒 L𝛷MO ⊢ L𝑃 ∗ 𝑅M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ 𝑅MO

wbHoare-alloc

⊢ LTrueM ref (𝑣) L𝑥 . 𝑥 ↦→ 𝑣MO
wbHoare-load

⊢ Lℓ ↦→ 𝑣M ! ℓ L𝑥 . 𝑥 = 𝑣 ∗ ℓ ↦→ 𝑣MO

wbHoare-store

⊢ Lℓ ↦→ 𝑣M ℓ ← 𝑤 L𝑥 . 𝑥 = () ∗ ℓ ↦→ 𝑤MO

Fig. 1. All the rules satisfied by the ordinay program logic are also satisfied by the well-bracketed program
logic — this figure depicts a sample set.

wbHoare-create-stack

∀𝑁 . stack• (𝑁, []) ∗ stack◦ (𝑁, []) ⊢ |⇛𝑅(𝑁) ∗ ∃𝑠 . stack• (𝑁, 𝑠) ∀𝑁 . L𝑃 ∗ 𝑅(𝑁)M 𝑒 L𝛷MO

L𝑃M 𝑒 L𝛷MO

wbHoare-access-stack

𝑁 ∉ O(
∀𝑠 . L𝑃 ∗ stack• (𝑁, 𝑠)M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ stack• (𝑁, 𝑠)MO∪{𝑁 }

)
⊢ Lstack∃ (𝑁) ∗ 𝑃M 𝑒 L𝛷MO

wbHoare-mend-stack

L𝑃M 𝑒 L𝛷MO\{𝑁 } ⊢ Lstack• (𝑁, 𝑠) ∗ 𝑃M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ stack• (𝑁, 𝑠)MO
Hoare-wbHoare

{𝑃 } 𝑒 {𝛷} ⊢ L𝑃M 𝑒 L𝛷MO

Fig. 2. Rules connecting well-bracketed Hoare triples and ghost stacks.

Accessing ghost stacks. The distinguishing feature of well-bracketed triples is the ability to

access ghost stacks. Concretely, ghost stacks are tracked using three novel predicates of our

well-bracketed program logic: stack• (𝑁, 𝑠) called system stack, stack◦ (𝑁, 𝑠) called user stack, and

stack∃ (𝑁) called stack-exists. In these predicates, 𝑁 is the name of the stack and 𝑠 is a sequence of

ghost resource names which constitutes the contents of the stack. The idea is that stack• (𝑁, 𝑠) and
stack◦ (𝑁, 𝑠) must always agree on the contents of the stack. The former represents the “system’s

view” (read: the program logic’s view) of the stack, which is tracked by well-bracketed Hoare

triples. The latter is handed to the user, and therefore represents the “user’s view” of the stack. The

predicate stack∃ (𝑁) is a persistent proposition. It merely expresses the knowledge that there exists

a stack by the name of 𝑁 , without asserting any ownership over it.

Figure 2 displays the rules that connect well-bracketed Hoare triples to these stack predicates.

The Hoare-wbHoare rule asserts that not using ghost stacks is always an option. Indeed, if one is

able to verify a triple without leveraging ghost stacks, then the same triple should also hold in the

well-bracketed program logic (for an arbitrary mask)! This means that we can combine reasoning

in the ordinary program logic with reasoning in the well-bracketed program logic. This allows us

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:10 Amin Timany, Armaël Guéneau, and Lars Birkedal

stacks-agree

stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠′) ⊢ 𝑠 = 𝑠′
stack-system-uniqe

stack• (𝑁, 𝑠) ∗ stack• (𝑁, 𝑠′) ⊢ False

stack-user-uniqe

stack◦ (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠′) ⊢ False
stack-exists

stack◦ (𝑁, 𝑠) ⊢ stack∃ (𝑁)

stacks-push

stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠) ⊢ |⇛stack• (𝑁,𝛾 :: 𝑠) ∗ stack◦ (𝑁,𝛾 :: 𝑠)

stacks-pop

stack• (𝑁,𝛾 :: 𝑠) ∗ stack◦ (𝑁,𝛾 :: 𝑠) ⊢ |⇛stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠)

Fig. 3. Reasoning rules on ghost stacks.

to show that well-bracketed programs remain well-bracketed, even in the presence of innocuous
uses of non-well-bracketed programs, e.g., programs featuring concurrency — we will discuss this

further in Section 5.

If one does want to leverage ghost stacks, one can create new stacks using the rule wbHoare-

create-stack, at any point in the proof of a well-bracketed Hoare triple. There are a few points of

interest here regarding the rule wbHoare-create-stack. Note how the user of the rule has to pick a

predicate 𝑅 parameterized by the fresh stack name 𝑁 , which the program logic picks when creating

the stack — this is why in both antecedents of the rule the name 𝑁 is universally quantified. Also,

the user obtains both stack◦ and stack• predicates where the stack is empty. The user can use these

predicates, and any other resources and/or invariants, in order to establish 𝑅. Finally, along 𝑅, the

user of the rule must return the stack• predicate for some initial stack chosen by the user. This is

why the fresh name 𝑁 is not added to the stack mask, unlike the rule wbHoare-access-stack for

accessing stack•.
The rulewbHoare-access-stack allows access to the stack• part of existing stacks. The crucial point

here is that the contents of the stack are expected to be returned untouched in the postcondition;

this is exactly the reason why we can guarantee well-bracketedness. Any temporary changes made

must be undone by the time stack is returned. (This will become more evident later, when we

consider the proof of VAE.) The rule wbHoare-access-stack requires stack∃ as evidence that a stack
with the name 𝑁 has indeed been created before. Importantly, we must show that the name of the

stack, i.e., 𝑁 , is not already in the stack mask O of stacks that are already accessed.

The final rule for using stacks of ghost names is rule wbHoare-mend-stack and it is the exact

dual of wbHoare-access-stack. The soundness of this rule relies on the fact that well-bracketed

Hoare triples always respect all stacks. The rule wbHoare-mend-stack allows us to temporarily put
the stack back so as to give access to it to the rest of the program. However, at the same time, it

guarantees that the stack will come back to us unchanged. (See the discussion below regarding the

proof of VAE.) Note also that since we have stack• (𝑁, 𝑠) in the precondition of the Hoare triple in

the consequent of the rule wbHoare-mend-stack, we know that the name 𝑁 must be in the stack

mask O as it cannot both be tracked by the program logic and outside at the same time.

Reasoning with ghost stacks. Ghost stack predicates come with a straightforward ghost theory

that corresponds to the intuition given earlier. Figure 3 lists the formal rules that one may leverage

on the stack predicates one gets access to by applying some of the rules of Figure 2.

The propositions stack• (𝑁, 𝑠) and stack◦ (𝑁, 𝑠) express exclusive ownership over respective halfs
of the ghost stack named 𝑁 . They consequently agree on the stack contents (stacks-agree) and are

unique (stack-system-uniqe and stack-user-uniqe). Given stack◦ (𝑁, 𝑠) one may derive a persistent

witness that the stack 𝑁 exists (stack-exists). Finally, when having full access to both halves of a

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:11

ghost stack, one may update its contents, either by pushing a new ghost name (stacks-push), or

popping the top of the stack (stacks-pop).

3.1 The Adequacy Theorem of the Well-Bracketed Program Logic
The adequacy theorem of the well-bracketed program logic, establishing its soundness, is similar to

that of the ordinary program logic of Iris. It states that any program 𝑒 for which we have Hoare triple

is safe, i.e., it does not crash, and whenever it terminates to a value 𝑣 , 𝑣 satisfies the postcondition.

Formally, this is stated as the following theorem.

Theorem 3.1 (Adeqacy). Let 𝑒 be a program, 𝜎 be the initial state (usually the empty heap in
HeapLang), and 𝜑 a meta-logic predicate on values, i.e., a predicate that does not involve Iris — a Coq
predicate of type Val→ Prop. The following holds:4(

⊢ |⇛SI(𝜎) ∗ LTrueM 𝑒 L𝑥 . ⌈𝜑 (𝑥)⌉M
)
=⇒ Safe𝜑 (𝜎, 𝑒)

where SI is the predicate reflecting the state of the programming language into Iris resources. In case of
HeapLang it reflects the heap in Iris resources so as to define and validate all the rules governing heap
points-to propositions.

Notice that in the adequacy theorem above the postcondition must be a meta-level proposition 𝜑

(⌈·⌉ embeds meta-level propositions, i.e., Prop in Coq into Iris’s iProp), as otherwise the predicate
Safe𝜑 does not make sense at the meta level. We emphasize that the statement of the adequacy

theorem above is the same as for the standard Iris program logic — recall that the point of the

well-bracketed program logic is to prove a wider class of specifications, not to change the meaning

of specifications.

Note how the statement of the adequacy theorem above requires the user of the theorem to

provide resources for the initial state of the program (rather trivial when we start in the empty

heap). It does not, however, require the initialization resources for ghost stacks. This is because

the initialization of ghost stacks, always with the empty collection of stacks, is taken care of as

part of the proof of the adequacy theorem. Apart from this initialization of the collection of ghost

stacks, the proof of the adequacy theorem above follows directly from the adequacy theorem of

the ordinary program logic of Iris. The reason why we always initialize with the empty collection

of ghost stacks is because, whereas there are cases where it makes sense to speak of executing a

program on a non-empty heap, it makes no sense to start a proof with an existing collection of stacks.

That is, proofs should always allocate their required stacks using the rule wbHoare-create-stack.

The Soundness of the Well-Bracketed Program Logic. Note again that both the statement of

the adequacy theorem (the implication), and the predicate Safe𝜑 are statements in the meta-theory

(i.e. Coq in our Coq formalization). It is only the initialization of the resources for the initial state

and the proof of well-bracketed Hoare triples that take place in Iris. (These facts are syntactically

indicated by the Iris turnstile being delimited by the surrounding parentheses.) In other words, to

trust that the program is indeed safe, one only needs to trust the soundness of the meta theory

(Coq) and nothing about Iris, its construction, the rules of the ordinary program logic of Iris, or

the rules of the well-bracketed program logic. Hence, the adequacy theorem above does indeed

establish soundness of well-bracketed program logic.

Following the strategy of Iris’s ordinary program logic (see our Coq formalization), we in fact

prove a stronger version of the adequacy theorem for the well-bracketed program logic which

implies, and is used to prove, the adequacy theorem detailed above. This stronger adequacy theorem

4
In the Coq formalization, following Iris’s terminology, the Safe predicate is called adequate.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:12 Amin Timany, Armaël Guéneau, and Lars Birkedal

is also used to prove the adequacy theorem that is used in Section 6 to establish well-bracketedness

as a trace property.

3.2 Proof of VAE
Now we have all the necessary building blocks to prove correctness and well-bracketedness of VAE.
The specification VAE-spec we ascribe to VAE is similar to the specification awkward-spec of the

Awkward example we saw earlier, except it is expressed in terms of well-bracketed Hoare triples

instead of Iris’s ordinary Hoare triples.

LTrueM
let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟

L𝑔. ∀𝑓 . LLTrueM 𝑓 () L𝑥 . 𝑥 = ()MM𝑔 𝑓 L𝑥 . 𝑥 = 1MM
(VAE-spec)

In the proof we first allocate the location ℓ , and obtain ℓ ↦→ 0. We then allocate an instance 𝛾 of

the one-shot resource using the rule make-one-shot, just as in the proof of the Awkward example.

At this point, we use the rule wbHoare-create-stack to create a new stack and pick the invariant

VAE-inv below, together with stack∃ (𝑁), as the predicate 𝑅. We use the resources we have at hand

together with the rule stacks-push to obtain stack◦ (𝑁, [𝛾]) and stack• (𝑁, [𝛾]) in order to establish

the invariant VAE-inv below. Subsequently, we return stack• (𝑁, [𝛾]) to the program logic.

VAEInv ≜ ∃𝛾, 𝑠 . stack◦ (𝑁,𝛾 :: 𝑠) ∗ (ℓ ↦→ 0 ∗ pending(𝛾)) ∨ (ℓ ↦→ 1 ∗ shot(𝛾)) Nvae
(VAE-inv)

Note that the invariant VAE-inv is similar to the awkward-inv invariant, except for the fact that the

name of the one-shot instance is not fixed. Instead, it is the name on the top of the stack 𝑁 . What

remains is to show the following for the body of the closure returned by VAE:

LVAEInv ∗ stack∃ (𝑁) ∗ LTrueM 𝑓 () L𝑥 . 𝑥 = ()MM ℓ ← 0; 𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ L𝑥 . 𝑥 = 1M (4)

Here, we wish to reason about the well-bracketed nature of the calls to the closure. Hence, we

proceed by applying the rule wbHoare-access-stack to obtain stack• (𝑁, 𝑠′) for some stack 𝑠′, which
leaves us with having to prove:

LVAEInv ∗ stack• (𝑁, 𝑠′) ∗ LTrueM 𝑓 () L𝑥 . 𝑥 = ()MM
ℓ ← 0; 𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ

L𝑥 . 𝑥 = 1 ∗ stack• (𝑁, 𝑠′)M{𝑁 }
(5)

Here, the stack 𝑠′ is just some stack for which we only know the following by the fact that the

invariant VAE-inv holds: 𝑠′ is non-empty, and furthermore, the one-shot resource whose name is

on top of the stack reflects the value stored in ℓ . This makes intuitive sense: we have to show the

spec (4) without knowing whether or not it is the first call to the VAE closure, or whether it is a

nested call, i.e., a call (indirectly) made by the closure itself, because it was passed a function 𝑓 that

calls the closure itself. (See Section 3.3 for more details on the latter situation.) As we will see in the

rest of the proof, during the part where the program writes 0 to ℓ , we create a new instance of the

one-shot resource and push its name on the stack. On the other hand, when the program writes 1

to ℓ , we pop the ghost name on top of the stack. To make the intuition we develop here clearer, let

us call the writing of 0 in the VAE closure “opening the bracket” and writing 1, “closing the bracket”.

Following this intuitive terminology, we can describe the contents of the stack 𝑠′ as follows. The
stack 𝑠′, in addition to the name of the original one-shot resource allocated at the beginning of the

proof (at the bottom of the stack), stores all the names of one-shot resources corresponding to the

“opening the bracket” part of all the parent calls to the VAE closure (in case of nested calls), with

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:13

the most recent parent call that has not yet “closed the bracket” on top of the stack. In other words,

if the current call to the VAE closure is not a nested call, i.e., all previous calls to the closure have

already terminated, the stack 𝑠′ is a singleton, storing only the ghost name of the original one-shot

resource that was allocated at the beginning of the proof.

To proceed with proving (5) above, since the store operation ℓ ← 0 is atomic, we can open the

invariant (by isolating the store operation using the wbHoare-bind) to obtain stack◦ (𝑁,𝛾1 :: 𝑠)
which we use along with the rule stacks-agree to unify 𝑠′ with 𝛾1 :: 𝑠 , which leaves us having to

prove the following (note how the postcondition of (6) implies the invariant as required):
5

LVAEInv ∗ stack• (𝑁,𝛾1 :: 𝑠) ∗ stack◦ (𝑁,𝛾1 :: 𝑠) ∗(ℓ ↦→ 0 ∗ pending(𝛾1)) ∨ (ℓ ↦→ 1 ∗ shot(𝛾1)) M
ℓ ← 0

L𝑥 . 𝑥 = () ∗ (pending(𝛾1) ∨ shot(𝛾1)) ∗ stack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗
stack◦ (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗ ℓ ↦→ 0 ∗ pending(𝛾2)) M

{𝑁 }
(6)

and the following for the code after the store operation:

LVAEInv ∗ (pending(𝛾1) ∨ shot(𝛾1)) ∗ stack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗ LTrueM 𝑓 () L𝑥 . 𝑥 = ()MM
𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ

L𝑥 . 𝑥 = 1 ∗ stack• (𝑁,𝛾1 :: 𝑠)M{𝑁 }
(7)

Observe that we have to show two triples because we have applied the wbHoare-bind rule (from

bottom to top) and that we “made a good choice” of Ψ in wbHoare-bind, which will allow us to

complete the proof. Note further how at this point in the proof, we do not know whether ℓ stores 0

or 1 prior to our store operation; hence the only thing we can retain is (pending(𝛾1) ∨ shot(𝛾1))
(cf. the precondition of (7)). Nonetheless, by creating a new instance 𝛾2 of the one-shot resource we

have managed to reestablish the invariant, this time by taking 𝛾 to be 𝛾2 and the stack 𝑠 to be 𝛾1 :: 𝑠 .

In addition, since we keep hold of stack•, we remember the exact contents of the stack even after

reestablishing the invariant. To show that (7) holds, we use the wbHoare-bind and wbHoare-frame

(to frame VAEInv and pending(𝛾1) ∨ shot(𝛾1)) rules, which leaves us having to prove the following:

Lstack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗ LTrueM 𝑓 () L𝑥 . 𝑥 = ()MM 𝑓 () L𝑥 . 𝑥 = () ∗ stack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠)M{𝑁 } (8)

and the following for the code after calling 𝑓 :

LVAEInv ∗ (pending(𝛾1) ∨ shot(𝛾1)) ∗ stack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗LTrueM 𝑓 () L𝑥 . 𝑥 = ()M M
ℓ ← 1; 𝑓 (); ! ℓ

L𝑥 . 𝑥 = 1 ∗ stack• (𝑁,𝛾1 :: 𝑠)M{𝑁 }

(9)

To establish (8) we simply use the rule wbHoare-mend-stack and then it suffices to show the

following trivial triple:

LLTrueM 𝑓 () L𝑥 . 𝑥 = ()MM 𝑓 () L𝑥 . 𝑥 = ()M
We proceed with proving (9) by again using the wbHoare-bind rule to isolate the store operation.

We then use the rule wbHoare-inv-open to open the invariant as before, this time unifying the

5
Note that we retain the invariant as it is persistent. Also, in the Hoare triple (6) we implicitly frame the specs for 𝑓 .

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:14 Amin Timany, Armaël Guéneau, and Lars Birkedal

stacks of stack• (which we have) and stack◦ (which we obtain from the invariant). From this we

learn that the current instance name of the one-shot resource tracking the state of ℓ is in fact 𝛾2.

Thus, we have to show:

LVAEInv ∗ (pending(𝛾1) ∨ shot(𝛾1)) ∗ stack• (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗ stack◦ (𝑁,𝛾2 :: 𝛾1 :: 𝑠) ∗(ℓ ↦→ 0 ∗ pending(𝛾2)) ∨ (ℓ ↦→ 1 ∗ shot(𝛾2)) M
ℓ ← 1

L𝑥 . 𝑥 = () ∗ stack• (𝑁,𝛾1 :: 𝑠) ∗ stack◦ (𝑁,𝛾1 :: 𝑠) ∗ ℓ ↦→ 1 ∗ shot(𝛾1)M{𝑁 }

(10)

and the following for the code after the store operation:

LVAEInv ∗ stack• (𝑁,𝛾1 :: 𝑠) ∗ shot(𝛾1) ∗ LTrueM 𝑓 () L𝑥 . 𝑥 = ()MM
𝑓 (); ! ℓ

L𝑥 . 𝑥 = 1 ∗ stack• (𝑁,𝛾1 :: 𝑠)M{𝑁 }
(11)

To prove (10), we use the rule stacks-pop to pop 𝛾2 from the stack. Again, at this point, we do

not know what the value of ℓ is. As we discussed earlier, it depends on whether the function 𝑓

has called the closure of VAE or not. Nonetheless, we are performing a store operation storing 1

into ℓ . Furthermore, whether we have obtained pending(𝛾2) or shot(𝛾2) from the invariant, either

resource is not of any use to us anymore. Hence, we discard it.
6
At this point, the only missing

piece (to ensure that we have indeed applied the wbHoare-bind rule correctly) is to obtain shot(𝛾1).
However, we have pending(𝛾1) ∨ shot(𝛾1), left over from the last time we opened the invariant. In

either case, we can obtain shot(𝛾1) — in the case of the left disjunct we simply use the rule shoot.

Note that since shot(𝛾1) is persistent we can both use it to reestablish the invariant, and at the

same time pass it to the rest of the program, i.e., the postcondition of (10), and the precondition

of (11). To prove the correctness of the call to 𝑓 in (11) we simply repeat the argument as in the

previous call to 𝑓 . This leaves us to show the following in order to finish the proof:

LVAEInv ∗ stack• (𝑁,𝛾1 :: 𝑠) ∗ shot(𝛾1)M ! ℓ L𝑥 . 𝑥 = 1 ∗ stack• (𝑁,𝛾1 :: 𝑠)M{𝑁 } (12)

Here we can access the invariant again, and since we know that the stack must be 𝛾1 :: 𝑠 and,

moreover, we have shot(𝛾1) we can exclude the case where ℓ stores 0, and thereby finish the proof!

Note how, save for the use of the stack, the overarching argument of the proof of VAE resembles

the proof of the Awkward example. In a sense, our methodology of using the stack has decoupled

the part of the reasoning that relates to well-bracketedness from the rest of the proof.

3.3 VAE applied to itself
As we discussed earlier, the intricacy of reasoning about VAE arises from the fact that the callback

𝑓 can itself invoke the closure returned by VAE. Here is a simple example where this happens:

let𝑔 = let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in𝑔 (𝜆_. 𝑔 (𝜆_. ()); ()) (VAE-self-applied)

It is now quite simple to prove that VAE-self-applied returns 1. We use the specification VAE-spec
above, which only requires us to show the following:

L∀𝑓 . LLTrueM 𝑓 () L𝑥 . 𝑥 = ()MM𝑔 𝑓 L𝑥 . 𝑥 = 1MM𝑔 (𝜆_. 𝑔 (𝜆_. ()); ()) L𝑥 . 𝑥 = 1M (13)

6
Iris is an affine separation logic. Hence, we can always discard resources as necessary.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:15

To prove (13) we simply use the Hoare triple in the precondition of (13). After this step, we only

need to show:
7

L∀𝑓 . LLTrueM 𝑓 () L𝑥 . 𝑥 = ()MM𝑔 𝑓 L𝑥 . 𝑥 = 1MM𝑔 (𝜆_. ()); () L𝑥 . 𝑥 = ()M (14)

To prove (14) we use the wbHoare-bind rule together with the Hoare triple in the precondition

once more. Thus, there remains only two things to show: (1) that the program, after the call to 𝑔,

returns (), which is obvious, and (2) the following, which is again trivial:

LTrueM (𝜆_. ()) () L𝑥 . 𝑥 = ()M (15)

Applying the Adequacy theorem yields that running the program VAE-self-applied (in terms of

the operational semantics) starting in the empty heap will always result in 1.

3.4 The semantic essence of well-bracketedness
An interesting aspect of our well-bracketed program logic is the fact that we have instantiated it

with HeapLang, a concurrent programming language, with the caveat that the program logic does

not have a rule for reasoning about forking of threads. In Section 5 we will show how this allows

us to reason about well-bracketedness even for programs that use concurrency (in an innocuous

way). This means that, the well-bracketed program logic does not rely on a syntactic restriction of

programs to capture well-bracketedness. Instead, it captures the notion of well-bracketedness at a

semantic level. That is, we can use the well-bracketed Hoare logic to establish well-bracketedness,

in addition to the usual partial correctness (safety) property of Iris Hoare triples. For further

justification of this claim, see Section 6, where we show that well-bracketed Hoare triples enforce

well-bracketedness of calls and returns, stated as an intensional trace property.

4 THE INTERNALS OF THEWELL-BRACKETED PROGRAM LOGIC
In this section we begin the process of explaining how the well-bracketed program logic is con-

structed internally. We explain the internal construction of the well-bracketed program logic

by peeling off layers of abstraction, one after the other. We first explain how well-bracketed

Hoare triples are defined in terms of well-bracketed weakest preconditions. We then explain how

well-bracketed weakest preconditions themselves are defined in terms of ordinary Iris weakest

preconditions. To define well-bracketed weakest preconditions we use a ghost theory of stack
collections. Later on, in Section 9 we present the details of the ghost theory of stack collections.

This also includes the theory of stacks we have seen before governing predicates stack•, stack◦, and
stack∃ . We conclude this section with a discussion of how well-bracketed weakest precondition

rules can be derived from corresponding Iris weakest precondition rules.

4.1 The Definition of the Well-Bracketed Program Logic
In Iris, Hoare triples are defined in terms of weakest preconditions as follows:

{𝑃 } 𝑒 {𝛷} ≜ □ (
𝑃 −∗ wp 𝑒

{
𝛷
})

Here, □ is the persistently modality which enforces that Hoare triples are persistent. In practice

this means that all the non-persistent resources necessary for correctness of 𝑒 must be captured

by 𝑃 . In other words, the precondition is not underapproximating the necessary conditions for

correctness of 𝑒 . The connective −∗, pronounced magic wand, or simply wand, is the separating

implication; it is to separating conjunction ∗, what implication =⇒ is to ordinary conjunction ∧.
7
Since (well-bracketed) Hoare triples are persistent they can be freely duplicated and also moved in and out of preconditions

just like ordinary Hoare triples of Iris; see Birkedal and Bizjak [2017] for more details.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:16 Amin Timany, Armaël Guéneau, and Lars Birkedal

mask-subset-dom

AllStacksExcept(S,O) ⊢ O ⊆ dom(S)
stack-exists-in

stack∃ (𝑁) ∗ AllStacksExcept(S,O) ⊢ 𝑁 ∈ dom(S)

stack-user-not-out

𝑁 ∉ O
stack◦ (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ S(𝑁) = 𝑠

stack-system-is-out

stack• (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ 𝑁 ∈ O

stack-take-out

𝑁 ∈ dom(S) \ O
AllStacksExcept(S,O) ⊢ ∃𝑠 . AllStacksExcept(S,O ∪ {𝑁 }) ∗ stack• (𝑁, 𝑠)

stack-put-back

S(𝑁) = 𝑠
stack• (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ AllStacksExcept(S,O \ {𝑁 })

change-out-stack

𝑁 ∈ O
AllStacksExcept(S,O) ⊢ AllStacksExcept(S[𝑁 ↦→ 𝑠′],O)

create-stack

AllStacksExcept(S,O) ⊢ |⇛∃𝑁 . 𝑁 ∉ dom(S) ∗ AllStacksExcept(S[𝑁 ↦→ ∅],O) ∗ stack◦ (𝑁, ∅)

Fig. 4. Rules governing AllStacksExcept.

We define well-bracketed Hoare triples in terms of well-bracketed weakest preconditions, in the

same way ordinary Hoare triples are defined in terms of ordinary weakest preconditions.

L𝑃M 𝑒 L𝛷MO ≜ □
(
𝑃 −∗ wbwp 𝑒 L𝛷MO

)
Well-bracketed weakest preconditions themselves are defined in terms of ordinary Iris weakest

preconditions.

wbwp 𝑒 L𝛷MO ≜ ∀S. AllStacksExcept(S,O) −∗
wp 𝑒

{
𝑥 . ∃S′ . S ⊆ S′ ∗ AllStacksExcept(S′,O) ∗𝛷 (𝑥)

}
(wbwp-definition)

Here S is a mapping from stack names to stacks. The proposition AllStacksExcept(S,O) asserts
that the map S describes all stacks in existence, and, moreover, that it owns all propositions

stack• (𝑁,S(𝑁)) for all stacks except for those whose names are in O. Note that we allow the

map of stacks to grow from S to S′. This is to allow the program logic to allocate more stacks

as necessary. However, we require that in the end S ⊆ S′ (as sets of pairs), meaning that all the

stacks that existed in S must remain exactly the same in S′!
All the rules governing the AllStacksExcept predicate which are necessary for validating the

rules of the well-bracketed program logic are given in Figure 4. The rule stack-exists-in states

that an existing stack must always be in the map of all stacks. Note how the stack map must

always agree with stack◦ whenever the stack is tracked by AllStacksExcept. On the other hand,

the set O in AllStacksExcept are exactly the set of stacks that are not tracked by AllStacksExcept,
as evidenced by the rules stack-system-is-out and change-out-stack. The latter states that the

map S in AllStacksExcept(S,O) can be arbitrarily updated for any stack that is not tracked by

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:17

AllStacksExcept. The rules stack-take-out and stack-put-back respectively allow us to take stack•
propositions out of AllStacksExcept and put them back (as long as they agree) with the map of

stacks. These rules together with change-out-stack allow us to take a stack out, update it arbitrarily
and then put it back. There is no restriction on how the stack may evolve as far as the theory around

AllStacksExcept predicate is concerned. The stack discipline is instead enforced in the definition

of well-bracketed weakest preconditions wbwp-definition as it requires in the postcondition that

the map of stacks has only grown but not changed in any other way (captured by the condition:

S ⊆ S′). Finally, the rule create-stack allows us to create fresh stacks whose stack• part initially
remains within the AllStacksExcept predicate.

4.2 Deriving Well-Bracketed Weakest Precondition Rules
The well-bracketed program logic is constructed on top of the existing Iris program logic. This

has two major implications. The first implication is that whenever a rule in the well-bracketed

program logic has a counterpart in the Iris program logic (this is the case for all rules except for

Hoare-wbHoare, wbHoare-create-stack, wbHoare-access-stack, and wbHoare-mend-stack), then

we can prove soundness of that rule in the well-bracketed program logic by just applying the proof

of the corresponding rule in Iris’s program logic. The second implication is that we can combine

reasoning steps of the two program logics, as witnessed by rule Hoare-wbHoare. Below, we will

discuss how the well-racketed program logic’s rules are derived.

As for the bespoke rules of thewell-bracketed program logic, i.e.,wbHoare-create-stack,wbHoare-

access-stack, and wbHoare-mend-stack, it is not difficult to see that the rules presented in Figure 4

allow us to validate all of them. The interested reader is referred to the rather short proofs of

these rules in our Coq development. We divide the rest of the rules into two groups, those general

rules that apply to all instantiations of the logic, e.g., wbHoare-conseqence, wbHoare-inv-open,

wbHoare-bind, etc., and those that reflect the semantics of the basic building blocks of the language,

e.g., wbHoare-alloc, wbHoare-load, etc.
The general rules are proven directly by unfolding the definition of Hoare triples (both well-

bracketed Hoare triples and the underlying ones), and the definition of well-bracketed weakest

preconditions. The proof then follows using the corresponding Iris rule for Iris’s weakest precon-

ditions. To derive the rules for the basic building blocks of the language, we simply apply the

rule Hoare-wbHoare to lift the operation’s Hoare triple in the underlying program logic to the

well-bracketed program logic.

Proving the rule Hoare-wbHoare is straightforward. We just need to unfold the definition of

well-bracketed triples. Intuitively, if an expression does not interact with other parts of the program

that rely on well-bracketedness (as its correctness does not require taking ghost stacks into account),

then it cannot break well-bracketedness either, because it does not have access to ghost stacks.

The rule Hoare-wbHoare may seem surprising in that it seems to allow “side-stepping” the

well-bracketed logic completely. That is, by carrying all reasoning in the ordinary program logic,

and then lifting it to the well-bracketed logic only at the very end. However, this is not the case, in

particular in the case of higher-order programs (such as VAE)! Since proving VAE-spec requires both
establishing and assuming well-bracketed Hoare triples, one cannot simply use Hoare-wbHoare to

get a well-bracketed specification of VAE “for free”. The rule Hoare-wbHoare is nevertheless an

interesting rule, in that it allows us to prove that innocuous uses of non-well-bracketed programs

(e.g., programs featuring concurrency) can be safely combined with other well-bracketed programs,

as we discuss next in Section 5.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:18 Amin Timany, Armaël Guéneau, and Lars Birkedal

5 WELL-BRACKETED REASONING AND CONCURRENCY
One difference between the current work and other works that have verified correctness of VAE
[Dreyer et al. 2010; Georges et al. 2021; Skorstengaard et al. 2019] is that others have done so

using a logical relations model. Logical relations models, put succinctly, are models of the entire

programming language stating particular properties that all (well-typed) programs in the language

satisfy. This makes them useful for showing language-level properties, e.g., that all programs

terminate (normalization), type-safety, well-bracketedness, etc. By contrast, in this paper, we

present a program logic which expresses well-bracketedness of programs without saying anything

about the other programs in the programming language. Indeed, in the HeapLang programming

language we use here, one can easily use concurrency to write non-well-bracketed programs. As we

will discuss in Section 7, our program logic can also be used to construct logical relations models

capable of showing that all programs are well-bracketed (if this is guaranteed by the programming

language in question). In this section we demonstrate how the well-bracketed program logic can

be used to show well-bracketedness of certain function calls even if part of the program is not well-

bracketed. Before that, however, we will first demonstrate, via a simple example, how concurrency

can break well-bracketedness.

Concurrency Breaking Well-Bracketedness. As an example of concurrency breaking well-

bracketedness consider the following program:

let𝑔 = let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in
fork {𝑔 (𝜆_. ())} ;𝑔 (𝜆_. ()) (bad-concurrency)

It takes the VAE closure, 𝑔 here, and calls it twice concurrently (with a trivial argument). Here, we

assume that programs’ execution terminates when all its threads terminate. When the program

terminates, it returns the result of its main thread. That is, the final result of the program bad-

concurrency above is the result of the call to 𝑔 in the main thread. Under certain schedulings, the

program bad-concurrency above can produce 0 as its final result. Here is an example:

I. Schedule all of the calls to 𝑔 in the main thread until before the very last expression which

reads and returns the value of the reference.

II. Switch to the forked-off thread and execute 𝑔 until it writes 0 into the reference.

III. Switch back to the main thread to read 0 and terminate the main thread.

IV. Switch back again to the forked-off thread and run it to completion.

This shows that concurrency can break well-bracketedness in general. Indeed, the reason for the

program bad-concurrency above returning 0 under the above scheduling is that this scheduling

breaks well-bracketedness. That is, under this scheduling, the call to 𝑔 in the forked-off thread

terminates after its caller, the main thread program.

Innocuous Concurrency. Despite concurrency breaking well-bracketedness, as discussed above,
we present here an example of innocuous concurrency and show that we can use our well-bracketed

program logic to reason about such cases. The example innocuous-concurrency below is a sim-

ple case of innocuous concurrency that uses VAE. Many schedulings of the program innocuous-

concurrency below are not well-bracketed as per our definition. That is, a function execution

outlives it caller, but nonetheless this does not impact well-bracketedness of the calls and returns

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:19

to the VAE closure. The program innocuous-concurrency is as follows:

let𝑔 =

letfirst = ref (true) in let res = ref (None) in
let recwait () = if ! res = None thenwait () else ()in
𝜆_. if !first thenfirst ← false; fork {res← Some(fact 1000000)} elsewait ()

in

letℎ = let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in
ℎ 𝑔 (innocuous-concurrency)

This program applies the VAE closure to a function whose execution depends on whether it is the

first time it is executed or not. The first execution, i.e., when the reference first stores true, forks
a thread that computes the factorial of a large number and stores the result in he reference res.
The subsequent calls will simply wait for the computation of the large factorial to terminate, i.e.,
for res to not be None. Clearly, in many runs the factorial function in the forked thread does not

terminate before the second call to function 𝑔. (The operational semantics of HeapLang makes no

assumptions regarding scheduling.) Hence, this program does exhibit non-well-bracketed behavior

as per our definition. Despite this, innocuous-concurrency still behaves well-bracketed, at least as

far as VAE is concerned. We can prove this by showing the following:

LTrueMℎ 𝑔 L𝑥 . 𝑥 = 1M (16)

where ℎ and 𝑔 are as in innocuous-concurrency above. To prove (16) above, by using the VAE-spec
from earlier, it suffices to show the following:

LTrueM𝑔 () L𝑥 . 𝑥 = ()M (17)

We can prove (17) above using the rule Hoare-wbHoare, which leave us to prove the following Iris

triple:

{True}𝑔 () {𝑥 . 𝑥 = ()} (18)

The Hoare triple (18) above, however, is just a rather easy exercise in concurrent separation logic.

It can be proven by simply using the following invariant after allocating the two references first
and res:

∃𝑏 ∈ {true, false} . first ↦→ 𝑏 ∗ (res ↦→ None ∨ ∃𝑛 ∈ N. res ↦→ Some(𝑛)) Nfact

6 WELL-BRACKETEDNESS AS A TRACE PROPERTY
Our well-bracketed program logic allows proving that VAE returns 1. This is then understood as a

witness that our program logic is strong enough to reason about programs that make essential use of

well-bracketedness of calls and returns. We now make this argument very explicit by showing that

well-bracketed Hoare triples imply well-bracketedness of calls and returns, stated as an intensional
trace property.

To this end, we apply the technique introduced by Birkedal et al. [2021], in which one can derive

intensional trace properties from separation logic specifications as so-called “free theorems”. (We

do not have space to recall all the details of Birkedal et al. [2021], so this section is necessarily a

bit high-level.) Using this technique, we show that given an arbitrary program specified using a

well-bracketed Hoare triple, the trace of its interactions with a client (as “call” and “return” events)

necessarily belongs to a language of well-bracketed traces. (Well-bracketed traces being defined

inductively using a grammar matching corresponding call and return events.) In other words, our

program logic not only allows proving that VAE returns 1, but is also powerful enough to explicitly

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:20 Amin Timany, Armaël Guéneau, and Lars Birkedal

capture the well-bracketedness of every function call and return across a higher-order, reentrant

specification such as that of VAE.
We first port the general framework of Birkedal et al. [2021] to work with our program logic. We

then consider an arbitrary expression 𝑒 satisfying the specification of VAE, dubbed VAESpec and
parameterized by the implementation 𝑒 and initial resources 𝑃0:

VAESpec(𝑒, 𝑃0) ≜ L𝑃0M 𝑒 L𝑔. ∀𝑓 . L{True} 𝑓 () {𝑥 . 𝑥 = ()}M𝑔 𝑓 L𝑥 . 𝑥 = 1MM (VAESpec)

Note that, since this specification uses well-bracketed triples in a higher-order fashion, the earlier

remark of Section 4.2 applies. Such a specification cannot be derived from a standard specification

that would be stated using standard Hoare triples.

Next, the central idea is to consider an instrumented version of 𝑒 with additional calls to primitives

that record events on a global linear trace collected during the execution. Since we want to inspect

calls and returns to the VAE closure, the instrumentation is defined as follows. We use the fresh
primitive to generate a fresh identifier (a string) and record an event on the trace with this identifier:

if fresh(call) returns 𝜏 , then the event ⟨𝜏, call⟩ has been added to the trace. We then use emit to
simply add an event to the trace: emit(𝜏, ret) adds the event ⟨𝜏, ret⟩. In other words, for each call to

the VAE closure we emit a pair of call (before) and ret events with a matching unique identifier 𝜏 .

instrument (𝑒) ≜ let𝑔 = 𝑒 in 𝜆𝑓 . let𝜏 = fresh(call) in let 𝑟 = 𝑔 𝑓 in emit(𝜏, ret); 𝑟

For any 𝑒 that satisfies VAESpec, the goal is now to prove that instrument (𝑒) produces a trace of
call and ret events that is well-bracketed. The language Lseq of well-bracketed traces (as sequences

of program values) is easily defined. We let Lseqfull ⊆ Val∗ be the language of well-bracketed

complete traces defined below, and then take Lseq to be its prefix closure.

Lseqfull ::= ⟨𝜏, call⟩ · Lseqfull · ⟨𝜏, ret⟩ | Lseqfull · Lseqfull | 𝜀 (𝜏 ∈ Tag ≜ String)

Following the methodology from Birkedal et al. [2021] we can then prove that instrument (𝑒)
satisfies VAESpec while emitting traces in Lseq, as captured by:

VAESpec(𝑒, True) −∗
VAESpec(instrument (𝑒), trace(𝜀) ∗ traceInv(Lseq)) (instrument-trace)

Technically speaking, we use Birkedal et al. [2021]’s traceInv predicate to indicate that Lseq is the

trace invariant which has to be upheld during all executions. Establishing instrument-trace is the

main proof step, where we make use of the key reasoning principles provided by our well-bracketed

program logic.

As a last step, we combine the instrument-trace lemma with the Adequacy Theorem of Birkedal

et al. [2021], adapted to our program logic. (This adequacy theorem, in our case, is derived from the

stronger variant of Adequacy we mentioned in Section 3.1, which instead of Safe𝜑 concludes trace

properties of the program). We obtain a theorem that does not depend on auxiliary predicates such

as traceInv, and which expresses that emitted events belong to the expected language of traces

directly according to the operational semantics. (We point to the Coq development for the exact

statement of this theorem.)

It is worth noting that the present result holds for any implementation satisfying VAESpec,
and for any client of this implementation satisfying the adequate well-bracketed Hoare triple. As

such, we can instantiate the above theorem by implementations or clients that, e.g., internally use

concurrency, as long as they satisfy the required specifications: we still get that their interaction

trace is a well-bracketed sequence of calls and returns.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:21

7 WELL-BRACKETED LOGICAL RELATIONS MODELS
So far we have shown that our well-bracketed program logic, which has only been instantiated

with HeapLang, a concurrent language, can be used to reason about well-bracketed programs in a

language that does not guarantee well-bracketedness. We furthermore showed, in Section 5, that

our program logic can be employed to reason about well-bracketedness even in the presence of

innocuous concurrency. In this section we will show that, when instantiated to a programming

language where all programs are well-bracketed, our well-bracketed program logic can be used to

construct a logical relations model in Iris. Such logical relations models enable reasoning about

well-bracketedness, similarly to the more explicit Kripke logical relations of Georges et al. [2021],

Dreyer et al. [2010], and Skorstengaard et al. [2019] mentioned earlier.

To demonstrate this point, we took both the unary and binary logical relations models presented

in Krebbers et al. [2017] for F𝜇,ref ,8 almost verbatim (we removed concurrency), and only replaced the
weakest preconditions in these logical relations models with well-bracketed weakest preconditions

mutatis mutandis. For an introductory treatise on logical relations models in Iris see Timany et al.

[2022].

7.1 Unary Logical Relations
The unary logical relations model of Krebbers et al. [2017] allows one to prove semantic type
soundness: by showing that a program 𝑒 is in the logical relation for its type, it holds that 𝑒 does not

crash when run. Type safety is achieved by showing that all well-typed programs are indeed in the

logical relations that corresponds to their types. As discussed in detail by Timany et al. [2022] this

approach allows one to safely combine syntactically well-typed programs with semantically type

sound programs, even if the latter are not necessarily syntactically well-typed. Here we consider

the following example program, which we explain below:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); if ! 𝑟 ≠ 1 then () () else 1 (VAE-check)

This program is essentially the same as VAE except it performs a check before returning the final

value. If the return value is not 1 then it crashes (applies the unit value to itself), otherwise it simply

returns 1. The program VAE-check is not syntactically well-typed as it is treating the unit value

() as a function. Nonetheless, it is semantically type sound of the expected type: (1 → 1) → Z.
Formally, we write this as follows:

∅ | ∅ ⊨ VAE-check : (1→ 1) → Z (semantic typing of VAE-check)

Here, the relation Ξ | Γ ⊨ 𝑒 : 𝜏 is the semantic typing relation, distinguished from the syntactic

typing relation by the use of ⊨ instead of ⊢. The Ξ is the context of type variables (ranged over by

𝛼, 𝛽, . . .), while Γ is the context of term variables (ranged over by 𝑥,𝑦, . . .); both are empty in this

case as VAE-check is a closed program. The complete definition of our unary logical relations model

for F𝜇,ref is given in Figure 5. At the heart of this model are the so-called expression interpretation

J_Ke and value interpretation J_K.10 These are, unary relations (predicates) on closed expressions and

values, respectively. The former has type Expr→ iProp, while the latter has type Val→ iProp
□
. Here

iProp is the universe of Iris propositions and iProp
□
is the universe of persistent Iris propositions.

The value interpretation should be persistent while expressions need not be. This is because in

our CBV semantics expressions are evaluated only once. The resulting values, however, can be

freely duplicated and reused multiple times. The expression and value interpretations are defined

8
Sequential System F featuring both universal and existential types, recursive types, and higher-order references.

10
Note that the superscript 𝑒 in the J_Ke relation is part of the notation, not an argument.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:22 Amin Timany, Armaël Guéneau, and Lars Birkedal

J𝜏Ke
𝛿
≜ 𝜆𝑒.wbwp 𝑒 LJ𝜏K𝛿M

J𝛼K𝛿 ≜ 𝛿 (𝛼)
J1K𝛿 ≜ 𝜆𝑣. 𝑣 = ()
JBK𝛿 ≜ 𝜆𝑣. 𝑣 ∈ {true, false}
JZK𝛿 ≜ 𝜆𝑣. 𝑣 ∈ Z

J𝜏1 × 𝜏2K𝛿 ≜ 𝜆𝑣. ∃𝑣1, 𝑣2 . (𝑣 = (𝑣1, 𝑣2)) ∗ J𝜏1K𝛿 (𝑣1) ∗ J𝜏2K𝛿 (𝑣2)
J𝜏1 + 𝜏2K𝛿 ≜ 𝜆𝑣.

∨
𝑖∈{1,2} ∃𝑤. (𝑣 = inj𝑖 𝑤) ∗ J𝜏𝑖K𝛿 (𝑤)

J𝜏 → 𝜌K𝛿 ≜ 𝜆𝑣. □
(
∀𝑤. J𝜏K𝛿 (𝑤) −∗ J𝜌Ke

𝛿
(𝑣 𝑤)

)
J∀𝛼. 𝜏K𝛿 ≜ 𝜆𝑣. □

(
∀(Ψ : Val→ iProp

□
). J𝜏Ke

𝛿,𝛼 ↦→Ψ (𝑣 ⟨⟩)
)

J∃𝛼. 𝜏K𝛿 ≜ 𝜆𝑣. ∃(Ψ : Val→ iProp
□
). ∃𝑤. (𝑣 = pack⟨𝑤⟩) ∗ J𝜏K𝛿,𝛼 ↦→Ψ (𝑤)

J𝜇𝛼. 𝜏K𝛿 ≜ 𝜇 (Ψ : Val→ iProp
□
). 𝜆𝑣 . ∃𝑤. (𝑣 = fold𝑤) ∗ ⊲J𝜏K𝛿,𝛼 ↦→Ψ (𝑤)

Jref (𝜏)K𝛿 ≜ 𝜆𝑣. ∃(ℓ : Loc). (𝑣 = ℓ) ∗ ∃𝑤. ℓ ↦→ 𝑤 ∗ J𝜏K𝛿 (𝑤)
Nty .ℓ

J∅Kc
𝛿
(𝜖) ≜ True

JΓ, 𝑥 : 𝜏Kc
𝛿
(®𝑣 𝑤) ≜ JΓKc

𝛿
(®𝑣) ∗ J𝜏K𝛿 (𝑤)

Ξ | Γ ⊨ 𝑒 : 𝜏 ≜ □
(
∀𝛿, ®𝑣 . dom(Ξ) ⊆ dom(𝛿) −∗ JΓKc

𝛿
(®𝑣) −∗ J𝜏Ke

𝛿
(𝑒 [®𝑣/®𝑥])

)
Fig. 5. The expression interpretation J_Ke, value interpretation J_K, typing context interpretation J_Kc, and
semantic typing judgment for F𝜇,ref .9

in a mutually recursive fashion by induction on types.
11

As types feature type-level variables

(used in universal, existential, and recursive types) all interpretation relations are parameterized

by a mapping 𝛿 mapping free type variables to their value interpretations, i.e., predicates of type
Val→ iProp

□
. The expression interpretation is simply defined in terms of well-bracketed weakest

preconditions, capturing that a closed expression is in the interpretation for a type if it is safe and it

produces a value in the value interpretation of that type. The definition of the expression relation is

the only place where our logical relations model deviates from that in Timany et al. [2022]. We use

well-bracketed weakest preconditions as opposed to the ordinary Iris weakest preconditions used by

Timany et al. [2022], which enables reasoning about well-bracketedness. The value interpretation

describes when a value is, or rather behaves as, a value of a type. For the base types, 1, B, and
Z, it simply requires the value to be an appropriate constant. Type variables are interpreted by

looking up in the map 𝛿 . Products and sums are interpreted to require their values to have the

appropriate form with underlying terms again in the value interpretation for the corresponding

type. A value in the interpretation of a function type, when applied to a value in the interpretation

of the domain type, must produce an expression in the codomain type. Universal and existential

types are interpreted using the quantifiers of the logic, i.e., by quantifying over arbitrary value

interpretation predicates. We write 𝑣 ⟨⟩ for specialization of a polymorphic value to a type, which

we omit in the program expression. Note that 𝑣 ⟨⟩ is an expression and not a value as polymorphic

11
In practice (in the Coq development) this conceptual mutuality is broken by defining the expression interpretation first as

a general predicate transformer of the type (Val→ iProp
□
) → (Expr→ iProp) , which is essentially just the (well-bracketed)

weakest precondition in our case. The value interpretation is then defined based on this general predicate transformer.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:23

terms are suspended, and are only run after specialization. The value interpretation of recursive

types is defined using Iris’ guarded fixed points. The guarded fixed point 𝜇𝑟 . 𝑃 is always defined,

and is a fixed point, i.e., 𝜇𝑟 . 𝑃 ⊣⊢ 𝑃 [𝜇𝑟 . 𝑃/𝑟], whenever the variable 𝑟 appears only guarded in 𝑃 ,

i.e., under a later modality, ⊲. Intuitively, the interpretation of a recursive type 𝜇𝛼. 𝜏 says that a

value must be a folded value where the underlying unfolded value is a value of type 𝜏 , where 𝛼 is

itself interpreted as the recursive type 𝜇𝛼. 𝜏 . Finally, the value interpretation of a reference type

ref (𝜏) requires that values be memory locations always storing a value in the interpretation of 𝜏 .

Here, we consider locations to be of a syntactically distinct class from the rest of the values with an

implicit injection to them. This is why we write ∃(ℓ : Loc). (𝑣 = ℓ) ∗ . . . to express that the value

is some location ℓ . The “always storing a value in the interpretation of 𝜏” part is captured by an

invariant asserting ownership over the location, and enforcing the desired property. Note that the

invariant name is derived from the location itself assigning distinct names to distinct locations.

The expression and value interpretations, which are predicates on closed terms, are lifted to

arbitrary open programs in the semantic typing judgment Ξ | Γ ⊨ 𝑒 : 𝜏 in the standard way for

logical relations models, i.e., by closing open terms with semantically well-typed values ®𝑣 of the
appropriate type, and by universally quantifying over all possible semantic type-level environments

𝛿 for the free type variables. For this purpose we define the typing context interpretation JΓKc
𝛿
(®𝑣)

so as to require that each value is in the value interpretation for its corresponding type in Γ.
Now, given the definition of the unary logical relations we return to establishing semantic

typing of VAE-check. Since VAE-check is a closed program, semantic typing of VAE-check above

is equivalent to J(1 → 1) → ZKe∅ (VAE-check). This can in turn, after unfolding the expression

and value interpretations, be simplified into a form which very closely resembles VAE-spec of
Section 3.2 — note that J1K∅ only holds for a singleton consisting of the unit value. That is, we get

the following, after the aforementioned simplifications:

wbwp VAE-check L𝑔. □ (
∀𝑓 . □

(
∀𝑤. 𝑤 = () −∗ wbwp 𝑓 𝑤 L𝑦. 𝑦 = ()M

)
−∗ wbwp 𝑔 𝑓 L𝑦. 𝑦 ∈ ZM

)M
Finally, we can get rid of the quantified𝑤 inside, and substitute it with (), and fold the well-bracketed
weakest preconditions into equivalent well-bracketed Hoare triples:

wbwp VAE-check L𝑔. L∀𝑓 . LTrueM 𝑓 () L𝑦. 𝑦 = ()MM𝑔 𝑓 L𝑦. 𝑦 ∈ ZMM
As a result, we can employ the same line of reasoning as in Section 3.2 to prove the semantic typing

of VAE-check! We emphasize that the earlier logical relations model of Krebbers et al. [2017] does

not support reasoning about well-bracketedness, and thus cannot be used to show semantic typing

of VAE-check.

7.2 Binary Logical Relations
In addition to the unary logical relations model above, our work also includes a binary logical

relations model which can be used to establish contextual refinements and equivalences. Again,

this logical relations model is very similar to that in Timany et al. [2022] with the minor difference

of replacing weakest preconditions with well-bracketed weakest preconditions, and removing

concurrency. Recall that for a pair of programs 𝑒 and 𝑒′ such that Ξ | Γ ⊢ 𝑒 : 𝜏 and Ξ | Γ ⊢ 𝑒′ : 𝜏 ,
we say that 𝑒 contextually refines a program 𝑒′, written Ξ | Γ ⊢ 𝑒 ≤ctx 𝑒′ : 𝜏 , if in any context (any

program of ground type with a hole), we can replace 𝑒′ with 𝑒 without changing the overall behavior
of the program. In a refinement Ξ | Γ ⊢ 𝑒 ≤ctx 𝑒′ : 𝜏 , we often refer to 𝑒 as the implementation and

𝑒′ is the specification. We say that 𝑒 is contextually equivalent to 𝑒′, written Ξ | Γ ⊢ 𝑒 ≈ctx 𝑒′ : 𝜏 , if
both Ξ | Γ ⊢ 𝑒 ≤ctx 𝑒′ : 𝜏 and Ξ | Γ ⊢ 𝑒′ ≤ctx 𝑒 : 𝜏 hold. The binary logical relations model is set up

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:24 Amin Timany, Armaël Guéneau, and Lars Birkedal

so that whenever 𝑒 logically refines 𝑒′, i.e., when the pair (𝑒, 𝑒′) is in the logical relation, written

Ξ | Γ ⊢ 𝑒 ≤log 𝑒′ : 𝜏 , then we can conclude Ξ | Γ ⊢ 𝑒 ≤ctx 𝑒′ : 𝜏 .
We use our binary logical relations model to prove that VAE is contextually equivalent to the

program 𝜆𝑓 . 𝑓 (); 𝑓 (); 1 at type (1 → 1) → Z. The latter simply calls 𝑓 twice before returning

1. We prove the equivalence by showing the two refinements. For both directions, the essence of

the reasoning is the same as that of the proof of VAE in Section 3.2. We start by allocating the

reference for VAE, regardless of which side VAE is on, obtain a stack using wbHoare-create-stack,

and proceed to establish the exact invariant as in VAE-inv. We then follow a similar proof strategy

to show that the VAE program returns 1 regardless of the side of refinement it appears on. For the

detailed proof, see our accompanying Coq formalization.

8 DISCUSSION: ENCODING STATE TRANSITION SYSTEMS
In this paper we have proposed ghost stacks as a logical mechanism for reasoning about well-

bracketedness. We demonstrated that ghost stacks can be used to reason logically about examples

that prior work reasoned about using relational models indexed over state transition systems with

private and public transitions. One may naturally ask whether ghost stacks are indeed stronger

than state transition systems. That is, can we reason about all programs that one could using state

transition systems? The answer is: yes, we can. We prove this by showing that we can use ghost

stacks to encode a given state transition system with private and public transitions into program

logic predicates that essentially track the state of the state transition system. These predicates are

defined using the monotone resource algebra [Timany and Birkedal 2021] to construct a resource

that can only be updated in accordance with the public transition relation. The private transitions

are modeled using ghost stacks. For brevity, we refer the reader to our accompanying technical

appendix and Coq formalization for further details of this encoding, and a proof of VAE which uses

the encoding of the state transition system VAE-sts instead of the more direct proof using ghost

stacks presented earlier.

One interesting observation regarding the proof of VAE is that we only ever use the top element

of the ghost stack. Indeed, the proof could also have been carried out if instead of pushing on the

stack we had kept the stack a singleton. That is, instead of pushing, we could have swapped the top

(only) element of the stack with the new ghost name when making a “private transition”. However,

in the general encoding of state transition systems (see the Coq proof for details) we need to refer

to the stack elements below the top elements in order to assert that “private transitions” do take

place according to the private transition relation of the state transition system we work with.

9 THE GHOST THEORY OF STACK COLLECTIONS
To define the predicates AllStacksExcept, stack•, stack◦, and stack∃ we introduce the following new
propositions which are themselves directly defined in terms of ghost resources: stackIN• , stack

IN
◦ ,

EntireDom, and SubsetOfDom. The predicatesAllStacksExcept, stack•, stack◦, and stack∃ are defined
as follows:

stack• (𝑁, 𝑠) ≜ stackIN• (𝑁, 𝑠) ∗ SubsetOfDom({𝑁 })
stack◦ (𝑁, 𝑠) ≜ stackIN◦ (𝑁, 𝑠) ∗ SubsetOfDom({𝑁 })
stack∃ (𝑁) ≜ SubsetOfDom({𝑁 })

AllStacksExcept(S,O) ≜ O ⊆ dom(S) ∗ EntireDom(dom(S)) ∗ ∗
𝑁 ∈dom(S)\O

stack• (𝑁,S(𝑁))

The SubsetOfDom predicate is the only predicate among these predicates that is persistent. The

predicates SubsetOfDom and EntireDom together track, in terms of resources, the finite domain of

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:25

the map of all stacks. These predicates, as their names suggest, are defined so that the set tracked

by a SubsetOfDom predicate is a subset of the set tracked by EntireDom:

SubsetOfDom(𝐴) ∗ EntireDom(𝐵) ⊢ 𝐴 ⊆ 𝐵 (dom-subset)

SubsetOfDom(𝐴) ∗ SubsetOfDom(𝐵) ⊣⊢ SubsetOfDom(𝐴 ∪ 𝐵) (dom-distributes)

EntireDom(𝐵) ∗ finite(𝐴) ⊢ |⇛EntireDom(𝐴 ∪ 𝐵) ∗ SubsetOfDom(𝐴) (dom-grow)

The predicates stack• and stack◦ both feature SubsetOfDom({𝑁 }) to express that the name 𝑁 is

indeed in the domain of all tracked stacks. The other parts of these predicates, stackIN• and stackIN◦
are defined to satisfy the following basic rules:

stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢𝑠 = 𝑠′ (stacks
IN
-agree)

stackIN• (𝑁, 𝑠) ∗ stackIN• (𝑁, 𝑠′) ⊢False (stacks• IN-unique)

stackIN◦ (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢False (stacks◦ IN-unique)

stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢|⇛stackIN• (𝑁, 𝑠′′) ∗ stackIN◦ (𝑁, 𝑠′′) (stacks
IN
-update)

infinite(𝐴) ⊢|⇛∃𝑁 ∈ 𝐴. stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠) (stacks
IN
-create)

Note how these rules specify that the stacks always agree (stacks
IN
-agree), that they are initially

created in a way that they agree (stacks
IN
-create), and that they may only be updated as long as the

agreement is maintained (stacks
IN
-update). The reason why it is necessary to track the domain of

the map of stacks in a separate resource is because we need to prove that whenever we have stack•
or stack◦, for some stack 𝑁 , then the stack 𝑁 must indeed be in the map tracked by AllStacksExcept.
Otherwise, the latter would only be a collection of stack• predicates for which we only know that

they are not in the stack mask.

It is easy to see how the rules above can derive the rules governing stack• and stack◦: stacks-
agree, stack-system-uniqe, stack-user-uniqe, stack-exists, stacks-push, and stacks-pop — the

stack-like behavior of the rules stacks-push and stacks-pop is not enforced at the level of resources

but only by the “interface” of the rules for updating stack• and stack◦.
It only remains for us to justify that the definitions of AllStacksExcept, stack•, stack◦, and stack∃

do indeed satisfy the rules presented in Figure 4. The rule mask-subset-dom follows by definition.

For the rule stack-exists-in we essentially only need to apply dom-subset. As for the rule stack-

user-not-out, we will first apply the rule stack-exists together with mask-subset-dom to obtain that

𝑁 ∈ dom(S). Given that𝑁 ∉ O, the proposition stack• (𝑁,S(𝑁)) must be part of the big separating

conjunction in the definition of the AllStacksExcept proposition. This allows us to conclude the

proof by applying the rule stacks-agree. For the rule stack-system-is-out, assume the contrary,

i.e., that 𝑁 ∉ O. Since SubsetOfDom({𝑁 }) is included in the definition of stack• (𝑁, 𝑠), we have
𝑁 ∈ dom(S). This means that we can obtain stack• (𝑁,S(𝑁)) from the big separating conjunction

in the definition of the AllStacksExcept proposition. This is a contradiction as per stack-system-

uniqe. The rules stack-take-out and stack-put-back, respectively, simply take the system part of

the stack, stack•, out of the big separating conjunction in the definition of AllStacksExcept, and put
it back in there. Note that there is nothing in the definition of AllStacksExcept(S,O) that pins down
the contents of a stack that is in the mask O. Hence, the contents of such a stack can be changed

arbitrarily in the S part of AllStacksExcept(S,O). This is exactly what the rule change-out-stack

states. In order to validate the rule create-stack we allocate a new stack 𝑁 using the rule stacks
IN
-

create. We then use the rule dom-grow to update the EntireDom and obtain SubsetOfDom({𝑁 }).
This allows us to construct stack• and stack◦ propositions as necessary. However, we need to

guarantee that the name 𝑁 is indeed fresh, in the sense that it is not already an element of dom(S).
This is why in the rule stacks

IN
-create we have the possibility to pick a set 𝐴 of stack names to

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:26 Amin Timany, Armaël Guéneau, and Lars Birkedal

draw the stack name from. The only side condition is that the set𝐴 must be an infinite set. The idea

is that the infinitude of 𝐴 guarantees existence of a fresh stack name that appears in 𝐴. Here we

take 𝐴 to be the set of all stack names except for those in dom(S) which is by definition a finite set.

10 RELATED AND FUTUREWORK
We have already discussed the most closely related work in the Introduction; in this section we

discuss other related work.

Reasoning About Well-Bracketedness via Contextual Equivalences. To the best of our

knowledge, prior work has only reasoned about correctness of programs that depend on well-

bracketedness by using models that can prove contextual program equivalences. For instance,

Dreyer et al. [2010] used a binary logical relations model to prove that VAE is (contextually)

equivalent to a program that simply calls its higher-order argument twice and returns 1. In contrast,

we present a program logic for reasoning about well-bracketedness. One advantage of our program

logic approach is that it can both be used to reason about partial correctness of programs and to build

logical relation models for reasoning about semantic type soundness and contextual equivalence,

as shown in Section 7.

Apart from logical relations models, which we have already discussed, other semantic approaches

have also been used to studywell-bracketedness. In particular, well-bracketedness has been captured

semantically in game semantics models, which have been developed for a variety of programming

languages, e.g., [Abramsky et al. 1998; Laird 1997; Murawski 2005; Murawski and Tzevelekos 2011].

Game semantics has been used to obtain fully-abstract denotational semantics which can thus in

principle be used to prove program equivalences by showing that the game-based denotations

of programs (called strategies) are equivalent. However, it is not trivial to do so for concrete

challenging examples, such as the Awkward and Very Awkward examples.

Inspired by game semantics models, so-called operational game semantics techniques [Lassen and

Levy 2007, 2008; Støvring and Lassen 2009] develop an approach called “normal form bisimulation”

which are coinductive relations which, in essence, can be used to show equivalence of programs’

Böhm trees.

Environmental bisimulation techniques [Biernacki et al. 2019; Hur et al. 2012; Sumii 2009; Sumii

and Pierce 2004] define relational models on expressions using coinduction. These techniques can

prove the contextual equivalence for the VAE example (similar to our logical relation in Section 7.2).

Notable among these is the work of Hur et al. [2012] where the authors, inspired by Dreyer et al.

[2010], incorporate state transition systems with public/private transitions to improve support for

reasoning about evolution of local state. Biernacki et al. [2019] present a bisimulation relation over

untyped terms. In order to ensure well-bracketedness Biernacki et al. [2019], following Jagadeesan

et al. [2009]; Laird [2007], uses a stack of evaluation contexts. Similarly to Dreyer et al. [2010] and

what we did in Section 7.2, Biernacki et al. [2019] use their bisimulation relation to show that VAE
is equivalent to a program that calls its argument twice and returns 1.

Recently, Jaber andMurawski [2021] proposed so-called Kripke normal-form bisimulations, which

combine ideas from normal-form bisimulation and Kripke logical relations with game semantics,

and which also accounts for well-bracketing and can be used to prove contextual equivalence for

the VAE example.

The closest work to ours is a short unpublished note by Pottier [2009]. Pottier [2009] generalizes

the higher-order frame rule and the anti-frame rule of his earlier work [Pottier 2008] to enable

reasoning about well-bracketedness. The system that Pottier [2009] works in is not a program logic

but rather a type-and-capability system. A capability 𝐼 in this system, according to Pottier [2009]: “at

the same time asserts ownership and describes the type structure of a piece of state. (One could also

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

The Logical Essence of Well-Bracketed Control Flow 111:27

think of 𝐼 as a separation logic assertion.)” Intuitively, capabilities indicate the (possible) side-effects

of a computation. The higher-order frame rule of Pottier [2009] allows conjoining capabilities to the

type of computations that do not require those capabilities — essentially weakening a computation

without a certain side-effect to one where (the capability for) the side-effect is included in the type.

The anti-frame rule, being the dual of the higher-order frame rule, allows hiding a local side-effect
— a capability can be removed from the type of a computation if that capability regards resources

that are allocated and initialized by the code in question. The generalization presented by Pottier

[2009] parameterizes capabilities with an arbitrary kind and a relation on the elements of that

kind. (Pottier [2009] uses the term kind instead of what would normally be called a type, e.g. the
kind Z of integers.) The generalizations of the higher-order frame rule and the anti-frame rule

enforce that programs only change state in a way that obeys the given relation. Intuitively, in effect,

the parameter of the capability and the relation on it are, respectively, analogous to the states of

the state-transition-system and its public transition relation. Pottier [2009] present a proof, in the

form of a typing derivation, of VAE with an assertion before the end of the closure that asserts

that the return value is always 1. The capability picked here asserts ownership over the location

allocated by VAE. It furthermore requires that the value of the location is in the set {0, 1}, and
that this value is exactly the same as the integer parameter of the capability. The relation on the

parameter is simply taken to be the ≤ relation on integers. The higher-order frame rule and the

anti-frame rule of Pottier [2009], at a very high intuitive level, respectively play the roles of our

rules wbHoare-mend-stack and wbHoare-access-stack, the major difference being that our program

logic decouples ownership (capabilities in Pottier [2009]) from the well-bracketedness mechanism,

i.e., stacks. In contrast to our formalized proofs, Pottier [2009] does not prove but only conjectures

the soundness of his proposed generalizations of the higher-order frame and anti-frame rules.

Innocuous Control Effects. In Section 5 we discussed how our program logic can be used to

reason about well-bracketedness of programs that make use of concurrency in an innocuous way.

This raises the question of whether our program logic can reason about well-bracketed programs

in the presence of innocuous control effects such as call/cc or algebraic effects and handlers. We

conjecture that it is the case if there are reasoning principles in place that can be used as the

basis for our logic. For instance, for call/cc, the context-local weakest preconditions of Timany

and Birkedal [2019] ensure context-locality, i.e., that all the uses of call/cc are not observable from
outside. Building our well-bracketed program logic on top of context-local weakest preconditions

should result in a system which can reason about innocuous uses of call/cc. As for algebraic effects

and handlers with delimited control effects, Hoare-logic-based reasoning principles for programs in

such systems usually come equipped with clear markers which demarcate the limits of the control

effects within the program, e.g., the protocols in de Vilhena and Pottier [2021]. We conjecture

that such logics can serve as a basis for a well-bracketed program logic that can reason about

well-bracketedness in the presence of innocuous uses of control effects.

11 CONCLUSION
We have presented a versatile well-bracketed program logic which captures the essence of well-

bracketedness. We showed how our program logic can be used directly to reason about tricky

examples, whose correctness relies on well-bracketedness. In particular, we used the well-bracketed

program logic to prove correctness of implementation of the very awkward example (VAE) in
HeapLang, a concurrent language which does not enforce well-bracketedness. We used this fact to

demonstrate that even in the presence of innocuous concurrency, we can still employ our program

logic to establish well-bracketedness of the calls to the VAE closure, even if the entire execution

trace is not necessarily well-bracketed. Furthermore, we employed the technique of Birkedal et al.

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

111:28 Amin Timany, Armaël Guéneau, and Lars Birkedal

[2021] to show that well-bracketed Hoare triples imply that the traces of calls and returns produced

by the program are in fact well-bracketed. We also used our well-bracketed program logic to

construct (unary and binary) logical relations models for a sequential programming language were

well-bracketedness is enforced by the operational semantics. The remarkable aspect of these logical

relations models is that they are almost entirely standard [Krebbers et al. 2017] except for the use

of well-bracketed weakest preconditions in place of ordinary weakest preconditions of Iris. We

used both of these logical relations models to show examples that rely on well-bracketedness.

ACKNOWLEDGMENTS
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation.

REFERENCES
S. Abramsky, K. Honda, and G. McCusker. 1998. A fully abstract game semantics for general references. In Proceedings.

Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226). 334–344. https://doi.org/10.1109/

LICS.1998.705669

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-Dependent Representation Independence. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA) (POPL
’09). Association for Computing Machinery, New York, NY, USA, 340–353. https://doi.org/10.1145/1480881.1480925

Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2019. A Complete Normal-Form Bisimilarity for State. In Foundations
of Software Science and Computation Structures, Mikołaj Bojańczyk and Alex Simpson (Eds.). Springer International

Publishing, Cham, 98–114.

Lars Birkedal and Aleš Bizjak. 2017. Lecture Notes on Iris: Higher-Order Concurrent Separation Log. (2017). http://iris-

project.org/tutorial-pdfs/iris-lecture-notes.pdf

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.

Theorems for Free from Separation Logic Specifications. Proc. ACM Program. Lang. 5, ICFP, Article 81 (aug 2021), 29 pages.
https://doi.org/10.1145/3473586

Paulo Emílio de Vilhena and François Pottier. 2021. A Separation Logic for Effect Handlers. Proc. ACM Program. Lang. 5,
POPL, Article 33 (jan 2021), 28 pages. https://doi.org/10.1145/3434314

Derek Dreyer, Georg Neis, and Lars Birkedal. 2010. The Impact of Higher-Order State and Control Effects on Local

Relational Reasoning. In Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming
(Baltimore, Maryland, USA) (ICFP ’10). Association for Computing Machinery, New York, NY, USA, 143–156. https:

//doi.org/10.1145/1863543.1863566

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique

Devriese, and Lars Birkedal. 2021. Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities.

Proc. ACM Program. Lang. 5, POPL, Article 6 (jan 2021), 30 pages. https://doi.org/10.1145/3434287

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The Marriage of Bisimulations and Kripke Logical

Relations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Philadelphia, PA, USA) (POPL ’12). Association for Computing Machinery, New York, NY, USA, 59–72. https://doi.org/

10.1145/2103656.2103666

J. M. E. Hyland and C.-H. Luke Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285–408.
https://doi.org/10.1006/inco.2000.2917

Guilhem Jaber and Andrzej S. Murawski. 2021. Compositional relational reasoning via operational game semantics. In 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–13.
https://doi.org/10.1109/LICS52264.2021.9470524

Radha Jagadeesan, Corin Pitcher, and James Riely. 2009. Open Bisimulation for Aspects. Springer Berlin Heidelberg, Berlin,

Heidelberg, 72–132. https://doi.org/10.1007/978-3-642-02059-9_3

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-Order Ghost State. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for Computing

Machinery, New York, NY, USA, 256–269. https://doi.org/10.1145/2951913.2951943

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. 205–217. http://dl.acm.org/citation.cfm?id=3009855

J. Laird. 1997. Full abstraction for functional languages with control. In Proceedings of Twelfth Annual IEEE Symposium on
Logic in Computer Science. 58–67. https://doi.org/10.1109/LICS.1997.614931

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.1109/LICS.1998.705669
https://doi.org/10.1109/LICS.1998.705669
https://doi.org/10.1145/1480881.1480925
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3434314
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/3434287
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1109/LICS52264.2021.9470524
https://doi.org/10.1007/978-3-642-02059-9_3
https://doi.org/10.1145/2951913.2951943
http://dl.acm.org/citation.cfm?id=3009855
https://doi.org/10.1109/LICS.1997.614931

The Logical Essence of Well-Bracketed Control Flow 111:29

James Laird. 2007. A Fully Abstract Trace Semantics for General References. In Automata, Languages and Programming, Lars
Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej Tarlecki (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

667–679.

Soren B. Lassen and Paul Blain Levy. 2007. Typed Normal Form Bisimulation. In Computer Science Logic, Jacques Duparc
and Thomas A. Henzinger (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 283–297.

Soren B. Lassen and Paul Blain Levy. 2008. Typed Normal Form Bisimulation for Parametric Polymorphism. In 2008 23rd
Annual IEEE Symposium on Logic in Computer Science. 341–352. https://doi.org/10.1109/LICS.2008.26

Andrzej S. Murawski. 2005. Functions with local state: Regularity and undecidability. Theoretical Computer Science 338, 1
(2005), 315–349. https://doi.org/10.1016/j.tcs.2004.12.036

Andrzej S. Murawski and Nikos Tzevelekos. 2011. Game Semantics for Good General References. In 2011 IEEE 26th Annual
Symposium on Logic in Computer Science. 75–84. https://doi.org/10.1109/LICS.2011.31

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In Programming Languages and Systems, Zhong Shao (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 290–310.

A. M. Pitts and I. D. B. Stark. 1999. Operational Reasoning for Functions with Local State. Cambridge University Press, USA,

227–274.

Francois Pottier. 2008. Hiding Local State in Direct Style: A Higher-Order Anti-Frame Rule. In 2008 23rd Annual IEEE
Symposium on Logic in Computer Science. 331–340. https://doi.org/10.1109/LICS.2008.16

François Pottier. 2009. Generalizing the higher-order frame and anti-frame rules. (2009). http://cambium.inria.fr/~fpottier/

publis/fpottier-gaf-2009.pdf [Unpublished notes available on Pottier’s institutional homepage (accessed on Jun 7
th

2023)].

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019. StkTokens: Enforcing Well-Bracketed Control Flow

and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL, Article 19 (jan 2019), 28 pages.

https://doi.org/10.1145/3290332

Kristian Støvring and Soren B. Lassen. 2009. A Complete, Co-inductive Syntactic Theory of Sequential Control and State.
Springer Berlin Heidelberg, Berlin, Heidelberg, 329–375. https://doi.org/10.1007/978-3-642-04164-8_17

Eijiro Sumii. 2009. A Complete Characterization of Observational Equivalence in Polymorphic 𝜆-Calculus with General

References. In Computer Science Logic, Erich Grädel and Reinhard Kahle (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 455–469.

Eijiro Sumii and Benjamin C. Pierce. 2004. A Bisimulation for Dynamic Sealing. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association for Computing

Machinery, New York, NY, USA, 161–172. https://doi.org/10.1145/964001.964015

Amin Timany and Lars Birkedal. 2019. Mechanized Relational Verification of Concurrent Programs with Continuations.

Proc. ACM Program. Lang. 3, ICFP, Article 105 (July 2019), 28 pages. https://doi.org/10.1145/3341709

Amin Timany and Lars Birkedal. 2021. Reasoning about monotonicity in separation logic. In CPP ’21: 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, Catalin Hritcu

and Andrei Popescu (Eds.). ACM, 91–104. https://doi.org/10.1145/3437992.3439931

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. Reported
under submission on https:// iris-project.org/ (2022). https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.

pdf

Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.1109/LICS.2008.26
https://doi.org/10.1016/j.tcs.2004.12.036
https://doi.org/10.1109/LICS.2011.31
https://doi.org/10.1109/LICS.2008.16
http://cambium.inria.fr/~fpottier/publis/fpottier-gaf-2009.pdf
http://cambium.inria.fr/~fpottier/publis/fpottier-gaf-2009.pdf
https://doi.org/10.1145/3290332
https://doi.org/10.1007/978-3-642-04164-8_17
https://doi.org/10.1145/964001.964015
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3437992.3439931
https://iris-project.org/
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf

	Abstract
	1 Introduction
	2 The Proof of the Awkward Example in Iris
	3 Well-Bracketed Program Logic
	3.1 The Adequacy Theorem of the Well-Bracketed Program Logic
	3.2 Proof of VAE
	3.3 VAE applied to itself
	3.4 The semantic essence of well-bracketedness

	4 The Internals of the Well-Bracketed Program Logic
	4.1 The Definition of the Well-Bracketed Program Logic
	4.2 Deriving Well-Bracketed Weakest Precondition Rules

	5 Well-Bracketed Reasoning and Concurrency
	6 Well-Bracketedness as a Trace Property
	7 Well-Bracketed Logical Relations Models
	7.1 Unary Logical Relations
	7.2 Binary Logical Relations

	8 Discussion: Encoding State Transition Systems
	9 The Ghost Theory of Stack Collections
	10 Related and Future Work
	11 Conclusion
	Acknowledgments
	References

